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Abstract

The efficiency of energy flow through aquatic food webs is crucial for ecosystem 
functioning. The energy available to higher trophic levels varies across ecosystems 
and is influenced by factors such as nutrient availability and species composition. 
Recent research indicates that temperature also plays a significant role in 
determining energy transfer efficiency. This essay addresses the factors 
contributing to variability in energy flow efficiency between aquatic ecosystems, 
with a focus on the impacts of global climate change. It explores how food web 
characteristics influence energy transfer between trophic levels and examines the 
challenges in understanding and estimating energy flow due to complex trophic 
relationships, spatial subsidies, and processes across multiple biological levels. The 
essay highlights the dynamic response of energy flow efficiency to climate change-
related environmental changes, such as rising temperatures, altered precipitation 
patterns, and nutrient inputs. Additionally, it identifies gaps in our current 
understanding and suggests important avenues for further research to improve 
predictions of energy flow changes, essential for informing sustainable 
management strategies in the face of environmental change. 
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1. Introduction 

All life depends on the utilisation of an external source of energy (Lindeman, 1942). 
Autotrophs synthesise carbohydrates from simple inorganic molecules (CO2 and 
H2O) with the help of sunlight energy. In doing so, energy originating from the sun 
becomes accessible to consumers belonging to higher trophic levels within the 
complex networks of feeding, or trophic, interactions among diverse species in 
ecosystems (i.e. food webs, Elton, 1927). The recognition of trophic structure 
opened the door to understanding causes of variation in ecosystem properties, such 
as food chain length, biomass distribution across trophic levels, community 
stability, and the amount of energy that moves from one trophic level to another 
(Vincent and Anderson, 1979; Post, 2002; Williams and Martinez, 2004; Wootton 
and Emmerson, 2005; Jia et al., 2021). 

Organisms can be classified hierarchically based on their feeding. Primary 
producers and bacteria represent the total basal energy source for aquatic food webs 
(Jones, 1992; Pomeroy et al., 2007). Autotrophs, including plants and algae, 
photosynthesise and rely on carbon dioxide as a source of carbon, whereas 
heterotrophic bacteria rely on oxidising organic molecules as a carbon source 
(Jansson et al., 2007; Pomeroy et al., 2007). As consumers graze on the basal 
trophic level (energy mobilizers), some but not all of the energy transfers to the 
consecutive trophic level. The remaining energy is lost via respiration, death, 
excretion or messy feeding (Jones, 1992, Eddy et al. 2021). The proportion of 
energy passed from one trophic level to another is quantified as the trophic transfer 
efficiency (TTE; table 1), providing a measure of how efficiently energy is 
transferred from one trophic level to the next, from resources to consumers (Table 
1). 

It can also be useful to estimate the efficiency of energy transfer from producers to 
the top trophic level, referred to as food web efficiency (FWE; Table 1). FWE is a 
measure of overall system energy efficiency, and helps understand the constraints 
on upper trophic level production.  A high FWE means that a greater proportion of 
the energy produced at the basal trophic level is transferred to the top trophic level. 
This can influence the number of trophic levels (food chain length; Dickman et al., 
2008) and the abundance and biomass of top predators (Stock et al., 2017). Top 
predators are important not only for ecosystem functioning (Lennox et al., 2022), 
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but often serve as food for humans. It is therefore critical to determine and 
understand the causes and consequences of variation in FWE to utilise  aquatic 
resources sustainably. 

 

Table 1. Definitions of trophic transfer efficiency (TTE) and food web efficiency (FWE), where n 
denotes trophic position.   

Term Equation Reference 
 

Trophic Transfer 
Efficiency 

 

𝑇𝑇𝑇𝑇𝑇𝑇 =  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ( 𝑝𝑝 + 1) 

 

Mehner et al., 
2022 

   
Food Web 
Efficiency 

𝐹𝐹𝐹𝐹𝑇𝑇 =  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 ℎ𝑝𝑝𝑖𝑖ℎ𝑙𝑙𝑒𝑒𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝𝑏𝑏𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 Rand & Stewart, 
1998 
 

 

Understanding and studying processes controlling FWE is not straightforward 
(Eddy et al., 2021); we can attribute this to three main difficulties. First, species 
interact in complex food webs composed of many interdependent and variable 
trophic relationships. For example, predators frequently feed on more than one 
trophic level, including within their own trophic guild, known as intraguild 
predation, by feeding on a different species that exploit similar resources (Polis et 
al., 1989). Second, energy often crosses between biomes in the form of nutrients, 
detritus, prey and consumers, known as spatial subsidies (Polis et al. 1997). Finally, 
FWE depends on processes at multiple levels of biological organisation: energy 
gains, losses and life cycles at the individual level, intraspecific interactions, such 
as competition, at the population level, and trophic interactions at the community 
level (Eddy et al,. 2021). 
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Figure 1. A generalised overview of an aquatic pelagic food web, depicting how basal producers, 
phytoplankton and bacteria, mobilise energy for higher trophic levels by use of solar energy and 
dissolved inorganic carbon (DIC) and terrestrially derived dissolved organic carbon (DOC). For 
simplicity, recycling of carbon and the role of bacteria as decomposers is not shown. 

To better understand the processes controlling FWE is becoming increasingly 
important since they respond dynamically to climate change driven changes in the 
environment (Dickman et al., 2008; Ullah et al., 2018; Pontavice et al., 2019; 
Barneche et al., 2021; Baruch et al., 2023). Rising global surface temperature is a 
key component of climate change (Blunden and Arndt, 2016; IPCC, 2023), and is 
more pronounced towards the earths poles (Manabe and Wetherald, 1975; Holland 
and Bitz, 2003; Pithan and Mauritsen, 2014; Park et al., 2018). For instance, in the 
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Baltic Sea region, air temperatures are projected to increase on average 1.4 °C to 
3.9 °C by the end of this century (HELCOM, 2021; IPCC, 2023). Warming alone 
has profound consequences on lakes, including loss of ice cover, changes in 
evaporation and water budgets, warming of surface waters and alterations in mixing 
regimes (reviewed in Woolway et al., 2020). Climate change is also affecting global 
precipitation patterns (IPCC, 2023). However, these changes vary regionally. 
Southern Europe is witnessing a decline in annual precipitation, whereas northern 
Europe is experiencing an increase (IPCC, 2023). In northern latitudes, increased 
precipitation coupled with changes in land use have led to enhanced surface runoff. 
This results in greater inflows of terrestrial dissolved organic carbon (DOC) and 
iron into water bodies (Creed et al. 2018, Kritzberg et al., 2020), which contain 
light absorbing components, causing lakes to become browner, known as browning 
(Monteith et al., 2007, Leech et al. 2018). An increase in surface runoff can also 
carry additional nutrients which can cause eutrophication, i.e. excess of nutrients , 
plant and algal growth (Chapin and Stuart 2002; Malone and Newton, 2020). 
Eutrophication can cause the proliferation of inedible algae and cyanobacteria, 
which are often either unviable or poor food sources for zooplankton (Karpowicz 
et al., 2020). This can lead to a very high primary production while a relatively low 
zooplankton and fish production (Brett and Muller-Navarra, 1997) as less energy 
flows up to higher trophic levels, i.e. a lower FWE. The potential of climate change 
to reduce energy flows from basal producers to fish is concerning because it adds 
to already declining fish stocks, caused mainly by overfishing (e.g. van Rijn et al., 
2017). Fishing is an essential source of protein for humans, providing an estimated 
3.3 billion people with at least 20% of their annual per capita intake of animal 
protein (FAO, 2022). As we advance our understanding of climate impacts, it is 
increasingly apparent that we need mitigation measures aimed at preserving 
biodiversity and the valuable ecosystem services it provides, including the basis for 
biomass production and food web stability by means of sustained energy transfer 
(Rinke et al., 2019). 

A crucial part to developing mitigation strategies is to understand and estimate how 
energy flows through food webs are responding to environmental changes. Previous 
studies have estimated TTE as 10% in aquatic food webs (Lindeman, 1942, Pauly 
and Christensen, 1995, Schulz et al., 2004), which many still accept. However, 
there are discrepancies in this value both within and between food webs. In 
oligotrophic systems, it is common for TTE between phytoplankton and 
zooplankton communities to vary between ca. 5 - 30% (Lacroix et al., 1999). More 
recent estimations report FWE ranging from 0 – 40% in aquatic food webs. (Eddy 
et al., 2021). It is therefore apparent we should not apply a general estimation of 
energy transfer efficiency to all food webs, given there is significant variation this 
value (Barnes et al., 2010; Stock et al., 2017; Eddy et al., 2021). Such variation in 
energy transfer efficiency can partly be explained by differences and importance of 
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nutrient availability in aquatic ecosystems, and in the species composition of 
aquatic food webs in determining energy transfer efficiency at each trophic 
coupling (Dickman et al., 2008; Baruch et al., 2023). Furthermore, recent research 
suggests temperature might also play an important role in constraining energy 
transfer efficiency (Barneche et al., 2021; Baruch et al., 2023). 

Changes in the efficiency of energy transfer caused by climate change is predicted 
to radically alter the function and fuelling of aquatic food webs (Hayden et al., 
2019). This essay aims to resolve which factors contribute to variability in the 
efficiency of energy flow between aquatic ecosystems. It discusses the diverse 
characteristics of food webs and how their differences determine the efficiency of 
energy transfer between trophic levels. Additionally, it explores the current 
understanding of how energy transfer efficiency is likely to change under climate 
change, and the potential consequences this may have for the functioning of food 
webs. Finally, it identifies gaps in our understanding of energy flow efficiency 
through aquatic food webs. 
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2. Drivers of Variation in Energy Flow 
Efficiency Through Aquatic Food Webs 

The efficiency in which energy flows through entire food webs depends on energy 
transfer efficiencies at each trophic coupling (Hairston and Hairston, 1993). These 
are the product of multiple ecological and physiological processes, which vary 
significantly throughout nature. To understand why energy transfer efficiency is not 
consistent across all food webs, we must therefore understand how ecological and 
physiological processes vary within and between food webs. 

2.1 Environmental Drivers 
Seasonal change and location determine intrinsic variation in nutrient availability, 
light and temperature. Differences in these abiotic variables influence energy 
transfer efficiency in aquatic food webs, both through bottom up processes by 
limiting available resources for producers (Hunter and Price, 1992), and by directly 
affecting consumer physiology (van de Pol et al., 2017; Bernhardt et al.,2018; 
Volkoff and Rønnestad, 2020). 

2.1.1 Nutrient Loading and Light Availability 
Nutrient and light availability are highly variable across seasonal and spatial 
gradients in aquatic ecosystems. Nutrient concentration and light availability are 
influenced by decomposers, the availability and type of organic matter in the 
surrounding area, the landscape’s morphology and to a large extent by climate, 
(Seekell et al. 2014; Lapierre et al., 2015; 2018). For example, more intense periods 
of precipitation can alter water pathways, increasing leaching of organic 
compounds from surrounding catchment areas into aquatic environments (Ingram, 
2016). This is likely to increase loading of associated nutrients and coloured 
dissolved organic matter (CDOM), which affects both nutrient concentrations and 
light availability in aquatic environments. 

 A high level of primary production, induced by high nutient concentrations, might 
not always result in a high FWE (Friedland et al., 2012). Very high levels of 
primary production can instead have a negative impact on FWE. This is because a 
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large proportion of primary producers may remain uneaten due to the sheer quantity 
of phytoplankton, or because eutrophic conditions are usually dominated by 
cyanobacterial and large inedible algae (Karpowicz et al.,2020). These primary 
producers die and decompose; meaning the energy they produced is not transferred 
up the food web, albeit some may be re-used as an energy source after 
decomposition (Fig. 1). Therefore, in cases of exceptionally high nutrient input, 
which leads to eutrophic conditions, FWE is likely to decline. However, when 
nutrient concentrations are low,limiting algal growth, increased nutrient input 
appears to enhance energy transfer efficiency through food webs (Dickman et al., 
2008), particularly in oligotrophic conditions (Lefebure et al., 2013). This is likely 
because the nutritional quality of primary producers, i.e. their stoichiometry, can be 
favourably influenced by the addition of nutrients, up until certain concentrations 
(Falkowski and Davis, 2004). 

Nutrient and light availability are both key determinants of primary productivity 
(Schindler, 1997; Smith, 1979; Karlsson et al., 2009) and influence the 
stoichiometry, and therefore nutritional quality, of primary producers in aquatic 
ecosystems (Hall et al., 2007). The stoichiometry of primary producers can be a 
key factor in determining the efficiency of energy transfer between trophic levels 
(Dickman et al., 2008). The stoichiometric ‘light:nutrient hypothesis’ states that an 
ecosystem with a high supply of light in comparison to the supply of phosphorous 
will yield primary producers with a high tissue C:P ratio (phosphorus poor 
producers; Sterner et al., 1997). The result is a decrease in food quality for grazers 
since the C and nutrient uptake of herbivores is mediated by the C to nutrient ratio 
supplied by their food (van de Waal et al., 2009). The theory of ecological 
stoichiometry predicts that herbivores consuming food with an imbalance in 
element ratios relative to their requirements (e.g. having a high C:P ratio) will suffer 
a strongly reduced efficiency of converting ingested carbon in to new biomass 
(Schindler and Eby, 1997; Elser et al., 2000). That is, inadequate supply of one or 
more mineral elements slows the growth of animals. For instance, several studies 
have shown that the common zooplankton grazer Daphnia sp. exhibit a rapid 
decline in growth rate when feeding on phosphorous poor producers (Urabe et al., 
2002; DeMott et al., 1998). The nutritional makeup of food, where the relative shift 
from one element to another in limiting growth, is termed the threshold elemental 
ratio (TER) (Sterner, 1997; Frost et al., 2006). These stoichiometric constraints 
generally become less important at higher trophic levels, because the tissue 
composition of carnivores is more similar to that of their prey (Sterner and Elser, 
2002). 

Recycled nutrients and carbon, i.e. nutrients that are excreted and returned to the 
mineral pool by bacteria, plants or consumers, are an often-overlooked but 
important source of nutrients (Fuhrman et al., 1992; Alongi, 1994; Quevreux et al., 
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2020). Nutrients and carbon that are not recycled or consumed are lost, and 
represent energy removed from the food web. Nutrient cycling is therefore likely 
to preserve energy, because energy that would otherwise be lost has a ‘second 
chance’ to be utilised and transferred to consumers (Mehner et al. 2022). In periods 
of extremely high primary productivity, where there is a higher proportion of un-
grazed and therefore decomposing phytoplankton, the nutritional make-up of these 
individuals can be recycled through the bacterial pathway (“microbial loop”, Azam 
et al., 1983) and via protozoa feeding on bacteria, providing food for some 
zooplankton (figure 1; Stoecker and Capuzzo, 1990). Therefore, efficient recycling 
of nutrients in aquatic food webs may promote higher energy transfer efficiency.  

The availability of nutrients also influences the contribution of the microbial 
pathway relative to that of the autotrophic pathway (Jansson et al. 2007, Fig. 1). 
Bacteria rely on access to organic nutrients from phytoplankton or external carbon 
sources (i.e. DOC from the terrestrial environment), while phytoplankton can 
synthesise organic nutrients from inorganic nutrients. Under high DOC 
concentrations, bacteria can synthesise this external supply of organic nutrients, 
decoupling their dependence on phytoplankton for organic carbon production and 
therefore act as competitors to phytoplankton for limited nutrients (Carney et al., 
2016). The contribution of bacteria to basal production can consequently increase 
under high relative to low DOC input (Carney et al., 2016). When energy is 
produced through the microbial pathway, it often flows to higher trophic levels via 
more trophic couplings (figure 1). All else equal, this results in lower FWE as 
energy is lost during each trophic transfer (Berglund et al. 2007).  

2.1.2 Temperature 
In most aquatic systems, temperature is largely the product of latitude, altitude and 
season. Changes in temperature across space and time can affect aquatic food webs 
through altering both primary production (Lewandowska et al., 2012), internal 
biological rates (e.g. metabolic costs, Barneche and Allan 2018, Lindmark et al. 
2022, ecological rates (e.g. species interactions, Gårdmark and Huss 2020) and 
therefore biomass production (Van Dorst et al. 2019) and community composition 
(Nagelkerken et al. 2020). 

The temperature size rule (TSR) states that warming leads to shorter developmental 
times, but smaller adult body sizes in ectotherms (Atkinson, 1994). This pattern has 
been observed in ectotherms such as fish, and is generally more pronounced in 
aquatic environments (Ohlberger, 2013; Baudron et al., 2014; Horne et al., 2015, 
2017), but there are also examples with no decline in adult body size (Lindmark et 
al., 2023; Solokas et al., 2023). The most widely accepted explanation for the TSR 
is based on metabolic rate theory, stating that higher temperatures increase 
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metabolism, accelerating growth rate but shortening the time fish are growing 
(Zhang et al., 2017). However, the relationship between temperature and growth 
may vary depending on the size and developmental size of fish (Van Dorst et al. 
2019) as well as their sex (Van Dorst et al. 2024), in line with changes in optimum 
growth temperature as individuals grow in size (Lindmark et al., 2022). This 
suggests that while more energy can be gained through increased food intake (up 
to a threshold temperature), fish must spend more energy in warmer environments 
to keep up with costs for maintenance, which leaves less energy for biomass 
production (Gårdmark and Huss 2020). The resulting lower efficiency of individual 
energy production also implies a lower efficiency of energy transfer, as less energy 
is available for use by higher trophic levels. 

At the base of pelagic food webs, phytoplankton communities can respond to 
warming by shifting to smaller cell size (Hillebrand et al. 2022) but sometimes also 
by shifts in species composition towards larger (Yvon-Durocher et al., 2015; 
Padfield et al., 2018), and more carbon-rich, less palatable species (Woods et al., 
2003; Craine et al., 2010; Yvon-Durocher et al., 2015). Accordingly, a recent 
experiment showed how warming can be detrimental to grazers despite accelerated 
phytoplankton growth due to the low nutritional value of the latter in warming 
waters (Diehl et al. 2022). Generally, a shift in the edibility of phytoplankton 
communities induced by warmer water brings a higher proportion of uneaten 
individuals, whose energy is not transferred to consumers. For instance, 
cyanobacteria tend to dominate phytoplankton assemblages in warm nutrient-rich 
environments (O’Neil et al., 2012). As some of those taxa are not edible and even 
toxic, a lower proportion of individuals are eaten and the result is that less of the 
energy produced at the base of the food web is converted into biomass at higher 
trophic levels. 

Another response of aquatic ecosystems to changes in temperature occurs on a 
temporal scale, as changes in the seasonal timing of biological events (phenology). 
This can lead to a temporal mismatch between consumers and their resources 
(Almén and Tamelander, 2020). For instance, in seasonal climates phytoplankton 
blooms tend to occur during spring following increased light availability (Almén 
and Tamelander, 2020), whereas their heterotrophic consumers grow relatively 
slowly owing to a slower metabolism in the colder waters that are still warming from 
winter (Irigoien et al., 2005). This means phytoplankton can bloom and outgrow 
consumers with the arrival of spring sunlight, whereafter the bloom is terminated 
by zooplankton grazing. However, the growth and rate of development of 
zooplankton grazers is increasing with rising temperatures (Vijverberg, 1980) 
owing to an increase in respiration, resulting in a higher demand for carbon 
consumption (Lefébure et al., 2013). This accelerated growth may lead to 
premature consumption of desirable phytoplankton before they can proliferate 
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during blooms, reducing carbon fixation by photosynthetic phytoplankton and 
therefore diminishing energy available for the zooplankton grazer community 
(Dickman et al., 2008). This can, in turn, lead to higher grazer mortality and 
therefore less energy available for predators at higher trophic levels dependent on 
these grazers as food resources (Hairston and Hairston, 1993). 

2.1.3 Interactions among Abiotic Variables 
It is clear that variation in nutrient and light availability (Dickman et al. 2008), and 
potentially temperature, may partly explain the variation in energy transfer 
efficiency between trophic levels in different ecosystems. However, the additive 
effects of different abiotic factors alone cannot explain the large variation in energy 
transfer between food webs (Eddy et al., 2021). Instead, there may be interactive 
effects among these, as well as between these and other factors. The two-way 
interaction between nutrient and light availability is complex but is still the most 
studied (Berglund et al., 2007; Dickman et al., 2008). An example is the effects of 
light supply on energy transfer efficiency from primary producers to herbivores, 
which appears to depend on whether or not producers are nutrient limited (Urabe et 
al., 2002). As for interactions with temperature, because temperature influences 
metabolic rates in ectotherms, we might expect interactive effects with other 
variables as the ability to cover costs for maintenance may also vary with nutrient 
demand and availability. However, the role of interactive effects in general, and 
those including temperature specifically, on energy transfer efficiency remain 
understudied and inconclusive (Lefébure et al., 2013; Lesutiene et al., 2014; Baruch 
et al., 2023). Given recent findings that suggest changes in carbon use efficiency 
and increased costs for body growth under warming (Barneche et al. 2021), the way 
in which warming waters may influence energy transfer efficiency may be key to 
understand and predict the effects of climate change on aquatic food webs. 

2.2 Food Web Structure 
Food webs are dynamic networks of energy flow, determined by feeding 
interactions among organisms and their environment. As such, every food web is 
unique in its structure and composition. The most prominent differences among 
food webs lie in the number of trophic levels, connectivity and strengths of trophic 
interactions. Below I outline how such differences in food web structure may 
contribute to differences in how efficiently energy flows through food webs. 
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2.2.1 Number of Trophic Levels and Size-dependent 
Interactions 

Energy is lost every time a consumer eats its prey (Polis and Strong, 1996; Berglund 
et al., 2007; Armengol et al., 2019); therefore the number of trophic levels in a food 
web significantly impacts FWE (Dickmann et al. 2008). It is generally suggested 
that the number of trophic levels in food chains is constrained by productivity and 
basal resource availability, ecosystem size or the combination (Williams and 
Martinez, 2004, Post 2002). Other theories and observations suggest that in food 
webs characterised by low levels of size structure, where the predator is not larger 
than their prey, there are limited benefits for carnivores eating other carnivores, 
especially when there is an abundance of herbivores as prey (Hastings and Conrad, 
1979). For example, lions hunting large mammals on the African savannah. In these 
food webs, the number of trophic levels is often limited to three. However, most 
aquatic food webs are size-structured (Cohen et al., 1993) where predators are 
larger than their prey. In these food webs, the number of trophic levels often 
exceeds three. Even in food webs with a similar number or trophic levels, food webs 
are often highly variable in connectance (the number of realised links in a food web, 
Dunne, 2005; van Altena et al., 2016) and interaction strength (how frequently 
trophic interactions occur; Wootton and Emmerson, 2005). These characteristics 
both contribute to how energy flows through food webs. 

Given spatial and temporal overlap, the strength of aquatic predator-prey 
interactions is often mediated by body size (Brose et al., 2006; DeLong, 2014).  For 
a long time it was thought that a population’s mean body size followed a pattern 
across geographic ranges, with body size increasing with increasing latitude. This 
is called Bergmann’s rule (Bergmann, 1847), and appears to remain valid for birds 
and mammals and for some (e.g. some zooplankton taxa, Evans et al. 2015) but not 
all other groups (Meiri and Dayan, 2003). While body size in aquatic populations 
may not be driven by latitude alone, individual body size is partly driven by external 
pressures including temperature, oxygen availability, mortality and escpecially 
food availability (Ahti et al., 2020). The primary driver of variability in an 
individual's body size, however, stems from ontogenetic development, which is 
dependent on the amount of energy consumed. Throughout an individual’s 
ontogeny, body size is ultimately governed by the interplay between food 
consumption, energy expenditure, and the allocation of net surplus energy toward 
somatic growth relative to reproduction (de Roos and Persson 2013). 

The significance of body size extends beyond individual organisms, and influences 
community dynamics (de Roos & Person 2013) and food web responses to climate 
change (Gårdmark & Huss, 2020). Body size therefore potentially plays a part in 
explaining the efficiency of energy transfer, considering that interaction strengths 
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play a pivotal role in determining energy flows (Fig. 2). A highly connected web is 
likely to enhance energy transfer due to increased predation opportunities, while 
stronger interactions lead to more prey consumption. However, high connectivity 
alone does not guarantee high FWE, especially with weak interaction strengths. 
Similarly, strong interactions in a less connected web may result in mediocre FWE 
(Fig. 2). The efficiency of energy transfer within aquatic ecosystems is therefore 
shaped by size-dependent dynamics of predator-prey interactions, in conjunction 
with food web structure and environmental factors. For instance, if aquatic prey 
grow faster in warmed environments, they might outgrow the size at which they are 
vulnerable to size specific predation (Rudolf and Roman, 2018). 

2.2.2 Community Composition 
The species composition of aquatic communities can both be influenced by (e.g. 
through constraining the number of trophic levels; Dickman et al., 2008) and 
influence FWE. Shifts in community composition have important implications for 
the transfer of energy through food webs, most notably because some species are 
more edible and nutritious and of suitable size as prey than others. For instance, 
during warm and eutrophic conditions, it is typical that cyanobacteria proliferate 
phytoplankton communities in aquatic environments (O’Neil et al., 2012). 
Cyanobacteria can potentially divert productivity into alternate food web pathways, 
such that it is not available to higher trophic levels (Hansson et al., 2013). This is 
because cyanobacteria often produce allelochemicals that deter feeding (Nagle and 
Paul, 1998), as well as some species being toxic which sometimes causes mortality 
in aquatic organisms (O’Neil et al., 2012). Changes in the species composition of 
predators can also have inferences on the transfer of energy through food webs, due 
to changes in feeding specialisations, size-dependant interaction strengths and 
metabolism (Barnes et al., 2010; Rall et al., 2010; Vucic-Pestic et al., 2011), all of 
which affect net energy efficiency at the individual level and therefore biomass 
production. Climate change is altering the diversity and composition of aquatic 
communities across the globe (Fujiwara et al., 2019; Zarco-Perello et al., 2020; 
Pawluk et al., 2021; Palacious-Abrantes et al., 2022), which is inevitably altering 
the overall and relative biomass, nutrition and edibility of each trophic level. In 
response, FWE is likely to change too. 
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Figure 2. A conceptual schematic demonstrating how energy flowing through different pathways 
can still result in the same trophic transfer efficiency (TTE) and food web efficiency (FWE). 
Comparing (a) a food web with strong interactions and low connectance and (b) a food web with 
weak interactions and high connectance. 

=
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3. The Effect of Climate Change on Drivers 
of Energy Transfer Efficiency 

3.1 Consequences of Warming 
The consequences of warming on aquatic food web biomass distributions, and 
especially on FWE, remains unresolved. Primary production is generally predicted 
to increase with warmer environments (Richardson and Schoeman, 2004; 
O’Connor et al., 2009). When the effects of predation are stripped away, however, 
warming is thought to decrease the carrying capacity of phytoplankton (Shurin et 
al., 2012; Atwood et al., 2015; Bernhardt et al., 2018; Kwiatskoweski et al., 2019). 
This can explain why the ratio of heterotroph to autotroph biomass has been shown 
to increase under experimental warming (Fig. 3; Muren et al., 2005; O’Connor et 
al., 2009). However, considering that the calorie requirements of heterotrophs are 
higher when subject to a warmer environment (Brown et al., 2004; O’Gorman et 
al., 2012; Deutsch et al., 2022), warming may not always favour heterotrophs. 
Nevertheless, it is apparent that given a higher proportion of heterotrophs to 
autotrophs, there will be a higher proportion of autotrophs being consumed. 
Providing the increased metabolic costs of a warmer environment does not 
outweigh the increased consumption of primary producers, this will result in a 
higher TTE at this trophic linkage. To complicate matters more, we must also 
consider that a rise in temperature can affect organisms and food webs in other ways 
by directly affecting the physiology of organisms. To understand the consequences 
of warming on aquatic biomass distributions and energy flows through food webs, 
it is therefore important to consider the interplay between changes in primary 
production, predator-prey dynamics and the physiological responses of individuals. 
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Figure 3. A conceptual schematic of effects of temperature on autrotrophs (A) and heterotrophs (H) 
and the ratio between them (H / A ratio). Redrawn and modified from O’Connor et al. (2009). 

As waters become warmer, the poleward migration of mobile species that seek 
cooler water (Pinsky et al., 2020; NOAA, 2022) is leading to shifts in species 
diversity and community composition. For those species that cannot migrate, owing 
to either immobility or a physically restricted environment, increased temperature 
can decrease species diversity, as certain species are unable to withstand warmer 
temperatures (Antão et al., 2020). Accordingly, we see shifts in community 
composition toward warm water species also at high latitudes (Fossheim et al., 
2015). To predict how changes in species diversity because of warming will affect 
FWE, we need to understand the relationships between species diversity and the 
processes that control FWE. One prediction is that a decrease in species diversity 
may translate to a decrease in the number of trophic levels and less linkages 
between trophic levels, as observed by Svensson et al. (2017). While there are 
examples that warming can decrease food web connectivity (O’Gorman et al., 
2012), it remains unclear how altered connectivity, specifically due to warming-
induced shifts in species diversity, affects FWE. 

In addition to changes in taxonomic composition, warming-induced changes in 
body size distributions of aquatic organisms can affect trophic interactions and 
consequently energy flow within aquatic food webs. Several studies suggest that 
warming reduces mean body size in aquatic organisms (Horne et al. 2015), 
including several examples with fish (Lema et al., 2019; Ahti et al., 2020), but also 
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increases juvenile body growth and overall size-at-age (Huss et al., 2019; Lindmark 
et al. 2023). It is therefore clear that warming can result in substantial changes in 
how fish grow and develop, and therefore in whole fish population and community 
size distributions. Considering that trophic interactions in aquatic systems are 
largely driven by body size and associated morphological constraints (Schneider et 
al., 2012,  de Roos and Person 2013), shifts in size distributions are likely to alter 
the way in which energy flows through food webs. For instance, the strong size-
dependency of predator-prey interactions suggest that an alteration in the relative 
size of predators and prey organisms will change the strength of that trophic 
interaction. Although it seems intuitive that strengthened trophic coupling would 
increase FWE, it can also increase the reliance of energy to reach higher trophic 
levels through a single pathway. If such a major trophic coupling collapses, the 
effect on top predators, such as those targeted in fisheries, would be greater than in 
a food web where the energy reaching top trophic levels is channelled through 
several pathways (Fig. 2). Theoretical models have indeed predicted an increased 
risk for such a collapse of top predators in aquatic systems under warming due to 
shifts in size-dependent predator-prey interactions (Lindmark et al., 2019, Thunell 
et al. 2021). 

In addition to shifts in the timing of seasonal events, spatial distribution, species 
composition and size distributions, rising environmental temperatures may also 
affect energy flows through food webs in other indirect ways. One example is the 
expected release of ammonia from sediment under warming (Sanz-Lazaro et al., 
2015), which coupled with the predicted rise in rainfall and therefore transport of 
compounds into waterways is likely to contribute to the rise of nutrients in 
waterways (IPCC 2023). This could set in motion a cascade of negative effects in 
the form of simultaneous eutrophication and darkening of waters, potentially 
lowering the efficiency in which energy flows through aquatic food webs. 

Finally, the direction and magnitude of change caused by climate warming will vary 
regionally, one example being that warming will melt permafrost at high latitudes, 
releasing trapped DOC that may flow into waterways (Zimov et al., 2006). At lower 
latitudes, concentrations of DOC in lakes are instead predicted to fall as droughts 
intensify and streams dry up (Schindler  & Eby, 1997). Consequently, climate 
change will continue to drastically affect the drivers that control FWE. However 
we currently largely lack research on how FWE responds to these changes at both 
regional and local scales. 
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3.2 Consequences of Increase Carbon and Nutrient 
Loading 

In addition to warming, climate change can indirectly increase nutrient loading in 
waters across the globe through changes in land use, precipitation and terrestrial 
productivity (Sinha et al., 2017). This affects both the supply of nutrients, such as 
nitrogen and phosphorous, and the supply of coloured carbon derived from the 
terrestrial environment, leading to humification and eutrophication. Hummification 
is the formation of humus produced by decomposition of dead organic matter both 
in land and in water. 

Land use change is altering the amount of water, nutrients and carbon that is 
entering waterways, e.g. as the ground becomes less permeable through 
urbanisation, afforestation or areas being deforested and with land being used for 
agricultural purposes (Kritzberg, 2017). Climate change is generally increasing the 
frequency and severity of storm events and heavy precipitation around the globe, 
although this varies spatially (IPCC, 2023). Overall, these processes are acting 
together to change surface run off, which at high latitudes is increasing the amount 
of organic matter entering waterways, including coloured carbon (de Wit et al., 
2016; Kritzberg et al. 2020). This is related to an increase in the severity and 
frequency of humification, leading to browning (de Wit et al., 2016 and sometimes 
eutrophication (Karpowicz et al., 2020) of water bodies. Karpowicz et al., 2020 
reported TTE from phytoplankton to zooplankton as low as 0.001%, owing to very 
high (“eutrophic”) abundances of phytoplankton and blooms of the large-celled 
flagellate Gonyostonum semen under high humification, which is generally inedible 
for most (at least smaller) species of zooplankton due to its large body size and 
other physical adaptations (Johansson et al. 2013). Hence, under high input of 
organic matter rich in humic substances, the efficiency of carbon transfer between 
phytoplankton and zooplankton may decline (Karpowicz et al., 2020). 

Organic matter brought by increased surface runoff can favour microbial 
production in aquatic ecosystems (Jansson et al. 2008), potentially altering the 
efficiency of carbon transfer and therefore affecting higher trophic levels. Microbial 
production may be favoured because an increase in terrestrially derived organic 
matter means bacteria are no longer as reliant on organic carbon compounds from 
phytoplankton. Some consider this will reduce pelagic production at higher trophic 
levels, as there are more trophic couplings through the bacterial pathway (fig. 1; 
Blomqvist et al., 2001; Berglund et al., 2007; Jansson et al., 2007). However, the 
pathway of carbon transfer is highly variable across food webs so this might not 
always be true (Lefebure et al., 2013). Whether an increase in the fraction of 
microbial production because of surface runoff decreases FWE may therefore 
depend on the individual food web in question. 
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In addition to the loading of organic carbon in aquatic ecosystems altering the 
relative importance of the bacterial energy pathways, the composition of 
macronutrients in water can also influence energy transfer (e.g. carbon vs. nitrogen; 
Peacock et al. 2022). Furthermore, atmospheric CO2 concentrations are expected to 
rise significantly (IPCC, 2023), which can lead to altered C:N:P ratios of 
phytoplankton and potentially affect the efficiency by which carbon is converted to 
organismal biomass (van de Waal, 2010). Redfield’s famous ‘Redfield ratio’ 
(Falkowski and Davis, 2004) suggests that the elemental composition of plankton 
reflects that of their environment. As atmospheric CO2 levels rise, so will the 
concentration of carbonic acid in the ocean and lakes (Doney et al., 2009). This is 
because of an increase in the gradient between atmospheric CO2 and dissolved 
carbon in the water, causing carbon to diffuse from air to water. As a result, it is 
likely that C:N:P ratios of phytoplankton will be higher as these organisms will 
have a more ready supply of carbon. Considering the theory of ecological 
stoichiometry, which predicts that this will reduce the efficiency of converting 
carbon to new biomass (Schindler and Eby, 1997; Elser et al., 2000; Sardans et al., 
2021), it is likely that FWE will decrease providing all else is equal. 

As outlined above, the consequences of climate-induced changes in carbon and 
nutrient loading on aquatic food webs is likely to affect energy flows. How and to 
what extent, however, is likely to depend heavily on specific ecological contexts. 
For instance, an increase in nutrient loading to aquatic ecosystems can lead to shifts 
in microbial and pelagic production. Whether or not this shift reflects a change in 
stoichiometry, or the relative contribution of the microbial versus autotrophic 
production, the result is a change in how efficiently energy flows from basal 
producers to higher trophic levels. 
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4. The Necessity of Resolving Energy Flow 
Efficiency in Aquatic Ecosystems 

The efficiency of energy transfer in aquatic food webs under climate change is a 
pressing problem to resolve, influenced by many ecological and physiological 
factors. Environmental drivers, including nutrient and light availability, 
temperature, and their interactions, are likely to play a significant role in shaping 
how efficiently energy flows through food webs under climate change. 

For example, climate induced warming can lead to increased metabolic costs and 
shifts in community composition, phenology, and body size, all of which can affect 
energy flows in food webs. Similarly, climate induced changes in precipitation are 
affecting nutrient and light availability, which influence microbial and autotrophic 
primary productivity and stoichiometry. In turn; these changes can affect the 
efficiency of energy transfer between trophic levels. Even more, the interplay 
between these abiotic factors are largely unresolved.  

The effects of climate change on FWE are likely to be region-specific due to 
significant biotic variation between food webs, namely large variation in species 
composition, locally adapted species, and differences in the number of trophic 
levels. In addition, there are temporal differences in the rate of warming versus 
nutrient loading and changes in light availability between regions. Additionally, 
these variables might interact to determine energy transfer efficiency based on their 
relative change. Also the assumption that warming affects all individuals of a 
population equally is a simplification that can bias predictions of the biological 
impacts of climate change, including predictions concerning energy transfer 
efficiency. 

In summary, the efficiency by which energy flows through aquatic food webs is a 
dynamic and region-dependent process influenced by a wide range of biotic and 
abiotic factors. The future of aquatic ecosystems and the services they provide, such 
as fish biomass production, depends on our ability to understand and mitigate the 
challenges posed by climate change. As global warming incessantly alters aquatic 
ecosystems, it is crucial to overcome major knowledge gaps in our understanding 
of how changes in temperature, nutrient loading and light availability interact to 
affect energy flows through food webs.  
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