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A B S T R A C T   

Forest phenology, as a sensitive indicator of a forest’s response to climate change and variability, has long been 
monitored using remote sensing, yet has seldom been interpreted or validated with spatially compatible, 
community-level field phenological observations. In temperate deciduous forests, multiple spring phenological 
phases are critical for modeling carbon storage and biogeochemical cycles. The simultaneous detection of all 
these critical phenological phases at the community level remains a long-standing challenge. To tackle these 
challenges, the objective of this study is to develop a novel satellite-field phenological bridging framework for 
characterizing all key spring phenological phases of a fragmented deciduous forest using multi-scale satellite 
time series. The framework consists of four key components: deep learning-based spatiotemporal image fusion, 
satellite-based forest phenology modeling, satellite-based forest phenological metric extraction, and field-based 
forest community phenological characterization. With the devised framework, we extract a total of 24 satellite 
phenological metrics of Trelease Woods, a forest fragment near Urbana, IL, USA. From weekly field phenological 
observations of 148 canopy trees of 15 common species of the forest community, we devise three summative field 
phenological indices to characterize community-level phenological states in spring. Under the satellite-field 
bridging framework, events during each key spring forest phenological phase (i.e., bud swell, budburst/leaf-
ing out, leaf expansion, and leaf maturity) are successfully detected using the fusion imagery (MAE from 1.1 to 
2.9 days and bias from -2.4 to 1.5 days). However, the satellite detection of the earliest field events may be 
influenced by understory plants, soil background, and snow. The subsequent multi-scale, satellite phenological 
analysis underscores the importance of taking into account spatial scale and representation from both satellite 
and field phenological perspectives in building corresponding bridging relationships. Among the extracted 
pheno-metrics, bridging the threshold-based metrics to field phenological indices results in the highest accuracy 
(MAE less than 3 days and bias less than 2 days). The strong agreement among the field indices demonstrates the 
effectiveness of our field phenological surveying approach in generating community-wide forest phenological 
representation. Our study innovatively scales up the field phenological observations from the individual trees to 
the species to the community level, and the devised framework enables accurate retrieval of all key phenological 
events of community-wide, spring canopy development of the forest fragment.   

1. Introduction 

As a sensitive indicator of climate and environmental change, 
vegetation phenology has been widely studied to understand ecosystem 
functions and biosphere-atmosphere interactions under the changing 

environment (Chmielewski and Rötzer, 2001; Fitchett et al., 2015; 
Kramer et al., 2000; Parry, 2007; Piao et al., 2019; Xie et al., 2015). This 
seasonal dynamic of vegetation plays a critical role in regulating 
ecosystem carbon-energy-water cycling, predicting ecosystem changes 
at local to global scales, as well as assessing biosphere response and 
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feedback to the climate system (Caparros-Santiago et al., 2021; Gun-
derson et al., 2012; Peñuelas et al., 2009; Richardson et al., 2013; Tang 
et al., 2016; White et al., 2005). Over the past half century, the warming 
trends of climate have shifted vegetation phenological timing (e.g., 
earlier spring and extended growing season) in many temperate forest 
regions (Badeck et al., 2004; Cleland et al., 2007; Linderholm, 2006; 
Menzel and Fabian, 1999), with significant implications for ecosystem 
productivity (Keenan et al., 2014; Richardson et al., 2010), surface en-
ergy balance (Richardson et al., 2013; Schwartz and Crawford, 2001), 
biogeochemical cycling (Keenan et al., 2014; Piao et al., 2007; White 
et al., 1999), disturbance regimes (Dukes et al., 2009), trophic in-
teractions (Both et al., 2009; Post et al., 2008), and species ranges 
(Chuine, 2010; Chuine and Beaubien, 2001). To characterize forest 
ecosystem response to a changing world, monitoring forest phenological 
dynamics over space and time is crucial. 

Remote sensing has been increasingly utilized for spatially explicit 
monitoring of forest phenology at large scales, owing to its repeated 
viewing, synoptic coverage, and consistent measurement (Berra and 
Gaulton, 2021; Delbart et al., 2006; White et al., 2014). The satellites 
with high temporal resolutions (e.g., daily revisiting frequency), such as 
Advanced Very High Resolution Radiometer (AVHRR), Moderate Res-
olution Imaging Spectroradiometer (MODIS), and Visible Infrared Im-
aging Radiometer Suite (VIIRS), have been conventionally employed to 
characterize vegetation phenological transition dates (e.g., start of 
growing season) via the time series of vegetation index (VI) (Ahl et al., 
2006; Diao, 2019a; Hmimina et al., 2013; Liu et al., 2015; Xiao et al., 
2006; Zhang et al., 2003, 2017). The characterization of vegetation 
phenology usually involves the preprocessing of satellite VI time series 
to remove outliers and off-season vegetation cycles (Hird and McDer-
mid, 2009; Zeng et al., 2020), fitting of preprocessed time series via 
mathematical functions (e.g., double logistic function, asymmetric 
Gaussian function, harmonic function, and wavelet function) (Atkinson 
et al., 2012; Beck et al., 2006; Jonsson and Eklundh, 2002; Sakamoto 
et al., 2005), and retrieval of phenological transition dates via pheno- 
metric extraction methods (e.g., threshold-based methods, curve 
feature-based methods, and pheno-network methods) (Diao, 2019a, 
2019b; Tan et al., 2010; Zeng et al., 2020; Zhang et al., 2003; Gu et al., 
2009; White et al., 2009). Under the phenological characterization 
scheme, several vegetation phenological products (e.g., VIPPHEN 
phenology product, MODIS land cover dynamics product, and VIIRS 
land surface phenology product) have been developed, further 
improving our understanding of vegetation phenological dynamics 
under climate change and environmental disturbance (Didan and Bar-
reto, 2016; Ganguly et al., 2010; Zhang et al., 2018). Yet the charac-
terized phenology from these satellites is usually at coarse spatial 
resolutions (e.g., 500 to 5600 m), with multiple land covers (e.g., forest, 
agriculture, and water body) as well as mixture of tree species of distinct 
phenology possibly in one pixel, which makes the characterization of 
forest phenology challenging, particularly in heterogenous and frag-
mented landscapes. The advent of higher spatial resolution (i.e., 30 m) 
Harmonized Landsat Sentinel-2 (HLS) opens up new opportunities to 
retrieve phenology of a forest community (Bolton et al., 2020; Moon 
et al., 2021), e.g., the integrated timing of phenological events among 
individuals and species within a forest community. Given frequent cloud 
cover and rainy conditions accompanying temperate forest green-up in 
spring, the unavailability of HLS images can be a significant limiting 
factor. The limited satellite images during spring, particularly in critical 
phenological transition windows, make it challenging to characterize 
community-level forest phenological dynamics and interpret satellite 
characteristic phenology in the context of field-observed forest pheno-
logical events. 

The bridging of satellite- and field-based spring phenological mea-
sures of forest communities has been a long-standing challenge in 
remotely sensed phenological validations (Berra and Gaulton, 2021; 
Donnelly et al., 2022). The vegetation phenology estimated by remote 
sensing is fundamentally different from that observed at ground level. In 

contrast to field-observed phenological phases (e.g., bud burst and leaf 
unfolding phases) that have clear organismal changes with biophysical 
significance, the satellite-derived phenology is based mostly on the 
characterization of temporal variation in remotely sensed observations 
of surface greenness that may have equivocal biophysical meaning 
(Henebry and De Beurs, 2013; Schwartz, 2003). Also the timing of a 
phenological phase detected from different remote sensing data, pre- 
processing approaches, and pheno-metric extraction methods may 
vary extensively (Diao, 2020; Diao and Li, 2022; Schwartz et al., 2002; 
White et al., 2014, 2009). For instance, differences of up to 2 months 
between the timing of satellite-derived start of season (SOS) and that of 
ground phenology have been observed over broad regions of North 
America, due to the variety of pheno-metric extraction methods utilized 
(White et al., 2009). The intrinsic discrepancies between satellite- and 
field-phenological measures raise the challenge in interpreting and 
validating forest community phenology retrieved by remote sensing. 

Studies seeking to validate remotely sensed forest spring phenolog-
ical measures with field-based observations vary in terms of methodol-
ogy and quality of community-based data of field measurements (Berra 
and Gaulton, 2021; Schwartz and Hanes, 2010). Field methods for 
studies of temperate forests include using 1) Phenocam near-surface 
camera observations (Klosterman et al., 2014; Richardson et al., 2018, 
2009); 2) National Phenology Network (NPN) providing crowd-sourced 
information (Peng et al., 2017); and 3) direct field observations by one 
individual (Fisher and Mustard, 2007; Liang et al., 2011, 2014). Some 
field studies are less accurate because they sample a limited area and 
number of trees (or tree species) due to the scope of the camera or the 
labor-intensive nature of season-long observations. Studies are limited 
by the number of phenological phases (mostly budburst/leafing out in 
spring) compared, by a study site with a range in elevation and complex 
topography, and by including non-homogeneous forests (e.g., mixed 
deciduous and evergreen species). Others lack a forest census to enable 
weighting of a phenological phase of each tree species by its relative 
basal area or crown size. The lack of appropriate field representation of 
forest phenology at the community level creates a major barrier to un-
derstanding what satellite phenological measures represent. Intensive 
systematic and representative field phenological observations of tree 
species of known relative basal area or crown size within a forest com-
munity are necessary to compare satellite- and field-based phenological 
measures at the community level. Ideally, the entire span of spring forest 
phenological phases (e.g., bud swell, bud burst, leaf expansion, and leaf 
maturity) are incorporated, as these phases together are critical to 
quantify a forest’s phenological development rate and have important 
implications for ecosystem functions, including carbon storage and 
biogeochemical cycling (Donnelly et al., 2017). 

The overarching goal of this study is to develop a novel satellite-field 
phenological bridging framework for characterizing a diversity of spring 
phenological phases of a fragmented deciduous forest using multi-scale 
satellite time series. Using Trelease Woods, a deciduous forest fragment, 
as the case study, we specifically aim to 1) fuse multi-scale satellite 
imagery to retrieve a wide range of satellite phenological metrics of the 
fragmented forest, 2) quantify community-level field phenological 
progress of the forest with intensive field phenological observations, and 
3) bridge the remotely sensed and field-based phenological measures at 
the community level for all key forest spring phenological phases. 

2. Study area and data 

2.1. Study area 

The 12-ha study site is the North half of Trelease Woods, a 24.5 ha 
temperate deciduous mature forest fragment near Urbana, Illinois (IL), 
USA (40o09’ N, 88o10’ W) (Fig. 1). The fragment has been protected and 
managed as a natural area owned by the University of Illinois since 
1915. It is embedded in an agricultural landscape dominated by corn 
and soybeans. Immediately adjacent to the site is restored prairie on N, 
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E, and S aspects, and a road on the W. Topography is uniform with 
elevation varying by < 5 m. Among the 20 canopy tree species, the 
dominant species based on basal area are Acer saccharum Marsh., Celtis 
occidentalis L., and, until recently, Fraxinus americana L. The study 
period for monitoring spring phenology ranges from 2016 to 2020. 

2.2. Remote sensing data 

Taking into account the forest’s fragmentation and size of our study 
site, we acquired the HLS images (tile 16TCK) covering the spring 
phenological period (i.e., images from day of year [DOY] 1 through 250) 
from 2016 to 2020. The HLS data are generated via the harmonization of 
Landsat 8 and Sentinel-2 data, which comprises imagery atmospheric 
correction, cloud masking, spatial co-registration, bidirectional reflec-
tance distribution function (BRDF) adjustment, band pass adjustment, 
and temporal compositing (Claverie et al., 2018). The HLS data have a 
30-m spatial resolution and 2-3 days temporal revisiting frequency. To 
ensure the quality of HLS image time series, the pixels contaminated by 
water, snow/ice, cloud, and cloud shadow in the study site are masked 
based on corresponding quality control layers. Only HLS images with 
more than 90% clear pixels of the study site are selected for further 
analysis. Due to the frequent cloud cover and rainy conditions in spring, 
the availability of HLS images during critical phenological transition 
periods is quite limited (Table S1), which makes it challenging to 
retrieve forest phenology with HLS data. As a result, we further fuse the 
HLS images (Table S1) with MODIS images to generate temporally dense 
fusion imagery with daily temporal revisiting frequency and 30-m 
spatial resolution. 

The MODIS images for generating the fusion data are acquired from 
the MODIS MCD43A4 nadir BRDF-adjusted reflectance product (tile 
h11v04 and h11v05; version 6.1). This BRDF-adjusted product removes 
view angle effects using a semi-empirical BRDF model to retrieve the 
nadir surface reflectance, which can eliminate the influence of BRDF on 
leaf phenology detection (Galvão et al., 2011). It has 500-m spatial 
resolution with daily temporal resolution. For each date, the surface 
reflectance is temporally composited using all the images acquired from 
both Terra and Aqua during its 16-day compositing period in terms of 
image quality, temporal distance, and spatial coverage, which also di-
minishes the influence of atmospheric noise and cloud contamination. 
The MODIS MCD43A4 observations contaminated by snow are further 
removed using the snow layer of the MODIS MOD10A1 product (i.e., 
Terra Snow Cover Daily Global 500m product). The satellite observa-
tions that have significantly higher or lower values than neighboring 
observations (i.e., beyond three standard deviations of reflectance) are 
also masked. The pre-processed MODIS images are bilinearly resampled 
to the spatial resolution of HLS (30 m), and the resampled MODIS and 

HLS images are further spatially aligned. The blue, green, red, near- 
infrared (NIR), and two shortwave-infrared (SWIR) bands from both 
MODIS and HLS images are employed in the fusion process. Two vege-
tation indices, normalized difference vegetation index (NDVI) and 2- 
band enhanced vegetation index (EVI2), widely used in analyzing 
vegetation seasonal dynamics, are further calculated from the fusion 
imagery to build the time series for the following phenological analysis. 

Given the size of the fragmented forest of our study site, we further 
assess multi-scale satellite time series (i.e., 500-m, 250-m, and 30-m 
scales) for characterizing spring phenology of the forest community. 
Specifically, we utilize the pre-processed MODIS MCD43A4 data for 
retrieving forest phenology at the 500-m scale; the study site is con-
tained within one pixel of the MODIS MCD43A4 imagery. At the 250-m 
scale, we acquire the 8-day MODIS MOD09Q1 Terra surface reflectance 
product (version 6.1) for the study site. It is temporally composited using 
the corresponding images during the 8-day composite period in terms of 
cloud cover, solar zenith angle, and atmospheric interference. The ob-
servations contaminated by snow, cloud, and cloud shadow are elimi-
nated using the corresponding quality control layers. The MODIS 
MOD09Q1 pixels totally within the study site are utilized; they occupy 
about two-thirds of the study area. For the 30-m scale, we further 
compare the forest community phenology characterized from the 
MODIS-HLS fusion data with that from the HLS-wise data, to assess the 
role of image fusion in phenological monitoring of the forest fragment. 
Given the limited availability of HLS data, the partially cloud-free HLS 
and Landsat 7 images of the study site are also utilized to construct time 
series for phenological monitoring under the HLS-wise scenario. 

2.3. Field phenological observations 

Phenological observations were made on 148 individual canopy 
trees located haphazardly and selected to include the 15 most common 
species, representing 96.3% of total basal area of trees > 22.9 cm 
diameter at breast height (DBH) (Table S2). Relative basal area for living 
species is adjusted as Fraxinus americana and F. pennsylvanica died dur-
ing the study period. Sample size varies among species (mean = 9 in-
dividuals per species; range = 1-18). 

The predominant phenological status of each canopy tree was 
determined by the same observer (CKA) using binoculars weekly from 
mid-February-June from 2016-2020. On a given census date, the 
phenological event recorded represented an appraisal of the tree crown 
as a whole (i.e., the predominant status of all developing vegetative 
units). Within each of three vegetative ‘phases’ (i.e., bud swell, bud-
burst/leafing out, and leaf expansion), DOY was noted for three ‘events’ 
(i.e., when 1/3, 2/3, and 3/3 of the development phase was completed). 
The 10th event, DOY of leaf maturity, was also estimated as follows. The 

Fig. 1. (a) The location of study site in Illinois, USA. (b) The surrounding environment of the forest fragment study site. The green point in (a) and the dashed 
rectangle in (b) denote the study site. 
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mean number of days per species from DOY of end of leaf expansion to 
DOY of leaf maturity, based on observations in 1995-1999, was added to 
DOY of end of leaf expansion for each individual in each species in each 
study year of 2016-2020. DOY of these 10 phenological ‘events’ was 
used in analyses (Table 1). If not directly observed because of changes in 
the speed of development, an estimate of DOY, based on linear inter-
polation between DOYs with observations, was made for each non- 
observed event. 

Daily temperature data for the study period at the Champaign, IL 
Weather Station (3S), 8 km SW of the study site at nearby Champaign, 
were collected by the National Weather Service Cooperative Observer 
Program (US-COOP, https://www.weather.gov/coop/) and data were 
obtained through the Midwestern Regional Climate Center (http:// 
mrcc.purdue.edu/). 

3. Methods 

To characterize the community-level spring phenology of the frag-
mented deciduous forest, the satellite-field phenological bridging 
framework devised in this study consists of four key components: deep 
learning-based spatiotemporal image fusion (Section 3.1.1), satellite- 
based forest phenology modeling (Section 3.1.2), satellite-based forest 
phenological metric extraction (Section 3.1.3), and field-based forest 
community phenological characterization (Section 3.2) (Fig. 2). 

3.1. Satellite-based forest community phenological characterization 

3.1.1. Deep learning-based spatiotemporal image fusion 
In this study, we employ the hybrid deep learning-based image 

fusion model to create fusion imagery with daily temporal resolution 
and 30-m spatial resolution through blending MODIS and HLS images 
(Yang et al., 2021). As a spatiotemporal image fusion model, the hybrid 
deep learning model is chosen in this study due to its advantages in 
robustly modeling different levels of temporal reflectance changes 
among the images in fragmented landscapes. On each prediction date, 
the model generates the fusion image using the corresponding MODIS 
image on that date and two paired MODIS-HLS images of adjacent dates, 
with an image pair being the MODIS and HLS images obtained on the 
same date. 

The hybrid deep learning model synthesizes two deep learning 
structures: super-resolution convolutional neural network (SRCNN) and 
long short-term memory (LSTM) (Fig. 3). The SRCNN includes three 
convolutional components: feature extraction, non-linear mapping, and 
reconstruction. Feature extraction of SRCNN learns salient spatial and 
texture features from MODIS images with convolution operations, 
generating the coarse MODIS feature maps (i.e., the first hidden layer). 
Non-linear mapping of SRCNN leverages convolution operations to map 

the spatial features of MODIS images to corresponding features of HLS 
images, and produces the fine HLS feature maps (i.e., the second hidden 
layer). Also, the satellite sensor-induced spectral reflectance differences 
are taken into account in non-linear mapping. Reconstruction of SRCNN 
restores spatially-degraded details in the MODIS images with convolu-
tion operations and constructs the super-resolution (SR) images at the 
HLS scale. Using MODIS-HLS image pairs as the training data, the 
SRCNN model can harmonize the spectral reflectance of MODIS and HLS 
images, while rebuilding degraded spatial structures and details of 
MODIS images in the resulting SR images. The LSTM includes two LSTM 
layers, each containing 100 LSTM units, to learn temporal and pheno-
logical changing patterns from a sequence of images for predicting the 
fusion image. Each LSTM unit includes a memory cell and three gates (i. 
e., input gates, forget gates, and output gates) for regulating the learning 
process. The gating structures help selectively retain or remove memory 
information in the LSTM unit over time. Following the two LSTM layers, 
a dropout layer is devised to overcome the overfitting of the model, and 
a fully connected layer is employed to predict the fusion imagery. 
During the training process, the LSTM model learns phenological 
changing patterns from the SR image sequence produced by the SRCNN. 
By leveraging these learned temporal phenological patterns, the LSTM 
model then constructs the final fusion image on the prediction date with 
corresponding HLS images during the prediction process. The descrip-
tion of the workflow of the model is in Supplementary Text S1, and the 
detailed settings of the model structure and parameters can be found in 
our previous study (Yang et al., 2021). 

The hybrid deep learning model can effectively characterize the 
spatial relationship between MODIS and HLS images, as well as tem-
poral evolving patterns in spectral reflectance of a sequence of images. 
With its capability in predicting varying levels of phenological dynamics 
in fragmented landscapes, the model is suited for constructing fusion 
images of our fragmented study area when the forest is experiencing 
rapid phenological changes in spring. Utilizing the hybrid deep learning 
model, we construct 30-m fusion images on a daily basis for our frag-
mented forest study site, spanning DOY 1-250 from 2016 to 2020. We 
then retain only the fusion images of relatively high quality in consid-
eration of the source image quality (i.e., MODIS and HLS image), the 
temporal distance between image pair and prediction dates, and the 
spatial and temporal fusion coherency and representation. With the 
retained fusion images, we calculate the community-average NDVI and 
EVI2 of our forest study site. The community-average NDVI and EVI2 
time series are utilized to model the fragmented forest spring phenology 
and retrieve corresponding phenological metrics from the satellite 
perspective. 

3.1.2. Forest phenology modeling 
For both NDVI and EVI2, the satellite time series are first scrutinized 

visually to remove outliers whose values are drastically different from 
those of adjacent observations. After the visual assessment, we employ a 
night filter to eliminate the anomalous observations lower than a certain 
threshold (a threshold of 0.2 for NDVI and 0.1 for EVI2 based on cor-
responding off-season values) (Filippa et al., 2016). Those anomalously 
low values are usually caused by limited light conditions or residual 
atmospheric interferences. Then we utilize a spline filter to remove the 
spurious or abnormal observations outside the predetermined residual 
boundary via recursive spline smoothing and residual computation. 
Specifically, we fit the satellite time series with a cubic smoothing spline 
function and calculate the residuals between the fitted and observed 
values. The satellite observations with the residuals outside the 
boundary of μ ± 3σ (μ and σ denote the mean and standard deviation of 
the residuals, respectively) are flagged as spurious observations and thus 
are discarded. This spline filter is utilized iteratively to remove those 
spurious observations until no outlier is detected. Both the night and 
spline filters are devised to improve the quality of satellite time series by 
removing outliers, possibly due to source image quality (i.e., MODIS and 
HLS image), residual atmospheric interferences, and data fusion. 

Table 1 
The number, code, and description of 10 phenological events used in analyses.  

Phenology 
Number 

Code Description 

1 B1 Bud Swell (bud is 1/3 of final size before it bursts) 
2 B2 Bud Swell (bud is 2/3 of final size) 
3 B3 Bud Swell (bud is final size) 
4 E1 Bud Burst (bud has burst; first leaf tips visible beyond 

bud scales) 
5 E2 Leafing Out (individual leaf blade and stem visible) 
6 E3 Leafing Out (individual leaf blade and stem visible; 

leaf unfolding) 
7 F1 Leaf Expansion Begins (leaf fully unfolded and 1/3 of 

final size) 
8 F2 Leaf Expansion (leaf is 2/3 of final size) 
9 F3 Leaf Expansion Ends (leaf is final size but not final 

color) 
10 M Leaf Maturity (leaf is hardened with final deep green 

color)  
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Following the night and spline filters, any gaps in the satellite time series 
are filled using linear interpolation. 

After pre-processing satellite (NDVI or EVI2) time series, we utilize 
the Beck logistic-based model to fit the time series for tracking the spring 
leaf phenological trajectory of the forest community (Eq. (1)) (Beck 
et al., 2006). The Beck model is selected owing to its enhanced capability 
in capturing rapid spring phenological changes and diminishing the 
influence of off-season abnormal observations, as well as the pheno-
logical implications of its model parameters (Diao, 2020; Diao and Li, 
2022; Zhang et al., 2003). 

f (t) = mbase +(mmax − mbase) •
1

1 + e(− n1*(t− n2) )
(1)  

where t is the date of year and f(t) is the fitted VI value at time t. mbase 

and mmax denote the initial background and peak VI values, respectively. 
n1 is the increase rate of the fitted curve at the curve inflection point (n2). 
The initial background VI value is calculated as the median VI value of 
clear observations during the vegetative dormant phase before the 
beginning of season. To minimize the adverse influence of abnormal 
observations, particularly due to cloud, snow, and/or ice, the VI values 
lower than the initial background VI value are substituted with the 
background value. The other parameters of the Beck model are esti-
mated with iterative non-linear least squares. 

3.1.3. Forest phenological metric extraction 
After fitting the satellite time series with the Beck model, we employ 

four pheno-metric extraction methods to retrieve a range of satellite 
phenological metrics. The pheno-metric extraction methods include 

Fig. 2. The satellite-field phenological bridging framework for monitoring community-level spring phenological events of the fragmented deciduous forest.  

C. Diao et al.                                                                                                                                                                                                                                    



ISPRS Journal of Photogrammetry and Remote Sensing 211 (2024) 83–103

88

threshold-, derivative-, curvature-, and Gu-based methods (Fig. 4) (Fil-
ippa et al., 2016; Gu et al., 2009; Zeng et al., 2020; Zhang et al., 2003). 

As one of the most widely used pheno-metric extraction methods, the 
threshold-based method extracts the phenological metrics using the 
absolute or relative thresholds of satellite time series. Compared to ab-
solute thresholds (e.g., VI being 0.5), relative thresholds (e.g., VI being 
50% of curve amplitude) have been found to be more robust and 
perform better across ecosystems and land cover types, and are thus 
utilized in this study (Berra and Gaulton, 2021; White et al., 1997; Zeng 
et al., 2020). Given a diversity of field phenological phases (e.g., bud 
swell, budburst/leafing out, leaf expansion, and maturity) considered in 
this study, we extract a variety of satellite phenological metrics using 
extensive relative thresholds, ranging from 5%-95% of curve amplitude 
with an interval of 5%. This range provides a total of 19 threshold-based 
metrics during the spring season. 

Three curve feature-based pheno-metric extraction methods (i.e., 
curvature-, derivative-, and Gu-based methods) are also utilized for 
phenological metric retrieval via the distinct curve characteristics 
(Fig. 4). The curvature-based method is employed to retrieve two 
phenological metrics, namely Greenup and Maturity, according to the 
change rate of curvature of satellite time series. Specifically, Greenup 
and Maturity metrics are extracted based on the dates of the first and 
second local maxima of the change rate of curvature, respectively. The 
derivative-based method is used to retrieve the start of the season (SOS) 
metric, using the maximum of the first derivative of satellite time series 
in spring. The Gu-based method is employed to extract another two 
phenological metrics, namely Upturn and Saturation, based on the curve 
intersections. The Upturn metric is retrieved via the intersection of the 
recovery line and the baseline. The recovery line is tangent to the Beck- 
fitted curve at the maximum of the first derivative of the satellite time 
series, and the baseline is a horizonal line with its value being the initial 
background VI value. The Saturation metric is retrieved via the 

intersection of the recovery line and the max line, and the max line is a 
horizontal line with its value being the maximum VI value. These curve 
feature-based phenological metrics are characteristic of distinct curve 
properties caused by noticeable changes in leaf biochemical content (e. 
g., chlorophyll content) and/or biophysical structures, usually stemming 
from leaf phenological changes. 

In total, we retrieve 19 threshold-based phenological metrics (i.e., 
5%-95% thresholds with an interval of 5%) and five curve feature-based 
metrics (i.e., curvature-based Greenup and Maturity, derivative-based 
SOS, and Gu-based Upturn and Saturation). This diverse set of satellite 
metrics characterize the forest community phenological development 
remotely, and will be compared with the field community phenology 
indices (Section 3.2) for satellite-field phenological bridging of all the 
critical spring phenological phases (i.e., bud swell, budburst/leafing out, 
leaf expansion, and maturity events) at the community level. 

3.2. Field-based forest community phenological characterization 

Three summative field indices are calculated separately for each year 
to quantify community-level phenological states throughout canopy 
development in spring. These field indices take into account the 
phenological variations both within and between species, together with 
species composition and relative basal area, for scaling up the pheno-
logical observations from the individual trees to the species to the 
community level. In each index, the contribution of a given species is 
considered proportional to its relative basal area, based on a complete 
census of all trees >22.9 cm at 1.4 m height in the N half of Trelease 
Woods in 2005 (J. Edgington, unpublished data). 

1. DOY-based field community phenology (DOY-FCP). Using the event 
status for each individual, we calculate the mean event status per species 
for each day with a change in event status, weight it by its relative basal 
area, and then sum for all species for each day with a change in event 

Fig. 3. Schematic of the hybrid deep learning model with structures of super-resolution convolutional neural network (SRCNN) and long short-term memory (LSTM) 
models. Detailed description of the workflow of the model is in Supplementary Text S1. 
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status (Eq. (2)). 

ES(community,DOY) =
∑B

b=1

[∑Tb
tb=1ES(tb,DOY)

Tb
*RBA(b)

]

(2)  

where ES(community,DOY) is the event status of community on a given 
DOY. B is the total number of species and Tb is the total number of in-
dividuals of species b. ES(tb,DOY) is the event status of the individual tb 
of species b on a given DOY. RBA(b) is the relative basal area of species b. 

This comprehensive method utilizes both observed and estimated 
event days to generate one community value per day (i.e., ES(community,
DOY)) for the duration of spring phenology. DOY-FCP results from a 
sequential aggregation of data: 1) Event status for each individual tree of 
a given species is aggregated to a mean event status of that species on a 
given DOY. 2) Each species’ mean event value is multiplied by its rela-
tive basal area to yield that species’ relative event status; 3) all species’ 
relative event values are added together to yield the event status of the 
forest community. With DOY-FCP, a logistic curve is further generated to 
represent phenological development of the community in detail 
throughout spring. 

2. Event-based field community phenology (Event-FCP). Using the first 
day for each of 10 events for each individual, we calculate the mean day 
per species for each event, weight it by a species’ relative basal area, and 
then sum for all species for each of 10 events (Eq. (3)). Values between 
weekly census days arise because of estimation of days for events not 
directly observed. This method generates one simplified, summative 
value for the community for each event. 

DOY(community,ESX) =
∑B

b=1

[∑Tb
tb=1DOY(tb,ESX)

Tb
*RBA(b)

]

(3)  

where DOY(community,ESX) is the community DOY of event X (X ranges 
from 1 to 10). B is the total number of species and Tb is the total number 
of individuals of species b. DOY(tb,ESX) is the DOY of the individual tb of 
species b reaching the event X. RBA(b) is the relative basal area of 
species b. 

Comparable to DOY-FCP, Event-FCP also results from a sequential 
aggregation of data: 1) DOY for each individual tree of a given species is 
aggregated to a mean DOY of that species for a given event. 2) Each 
species’ mean DOY value is multiplied by its relative basal area to yield 
that species’ relative DOY; 3) all species’ relative DOY values are added 
together to yield community-level DOY for that event. Both DOY-FCP 
and Event-FCP are community-level field phenological indices to char-
acterize the variability in canopy phenology events of the forest com-
munity in the study area. These indices incorporate both intra- and inter- 
specific phenological variation, along with species composition and 
relative basal area, for generating community-wide forest phenological 
representation. Each of these two types of field community phenology 
indices then is compared to the corresponding satellite-derived pheno-
logical metrics. 

3. Canopy-level closure and understory shading estimates (Canopy 
Leafing-Light Index). We further characterize community-wide canopy 
development based on canopy light transmission to the understory, 
dominated by Asimina triloba and saplings of Acer saccharum and Aes-
culus glabra in the study site. Under-canopy light levels are related to 
visible phenology of canopy trees (Schwartz et al., 2013). This Canopy 

Fig. 4. Satellite phenological metric extraction using (a) threshold-based method, (b) derivative-based method, (c) curvature-based method, and (d) Gu-based 
method. For the threshold-based method, only five thresholds (i.e., 10%, 30%, 50%, 70%, and 90% threshold [TRS]) are shown for illustration purposes. 
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Leafing-Light Index has daily values from the perspective of an indi-
vidual sapling in the understory, based, in part, on events from the 
beginning of bud burst (E1) through end of full expansion (F3) of canopy 
trees. It starts with Begin Bud Burst (E1), not Begin Bud Swell (B1), as 
initial calculations showed that the bud swell phase of canopy trees does 
not change canopy light transmission. This index is estimated from 
ground-based observations of canopy tree phenology which are aggre-
gated to the community level and matched to observations at sapling 
heights of the proportion of above-canopy irradiance transmitted to the 
understory (I/Io, where I = irradiance reaching understory individuals 
and Io = irradiance in the open) (Augspurger et al., 2005). The Canopy 
Leafing-Light Index adds a new perspective to the exploration of what 
biophysical characteristics of phenology can be captured by remote 
sensing. It represents the perspective of seasonal changes in understory 
light availability due to canopy closure above. 

Calculating the index is a four-step process. First, ground-level solar 
radiation measurements at 1- or 3-minute intervals are summed to total 
daily solar radiation from a nearby NOAA Surface Radiation Budget 
(SURFRAD) site. Second, a baseline estimate is developed that is the 
same every year to account for light interception by branches and 
trunks. Wintertime I/Io values are fit to a function with a maximum at 
the summer solstice and minimum at the winter solstice, and symmet-
rical around the summer solstice to account for changes in trunk and 
branch light interception due to seasonal changes in sun angle. Third, 
contributions of different leafing events (i.e., E1 through F3) to shading 
are estimated by optimizing the fit of aggregated canopy phenology (I/ 
Io values). Event-specific estimates are iteratively improved to reach a 
near-optimal estimate for each event. Fourth, the interception of light by 
trunks and branches is combined with leafing phenology to determine 
daily total percentage interception of incoming solar radiation. The 
relative basal area-weighted functions of each species are then summed 
on each census day to create a community-wide canopy function that 
summarizes the state of the entire forest’s canopy from the first day of 
bud burst (E1) to the last day of leaf expansion (F3). Interpolation is used 
to fill in days lacking observations. Full details of this process are 
described in Augspurger and Salk (in review). 

3.3. Accuracy assessment 

To evaluate the performance of the hybrid deep learning model in 
generating the fusion imagery, we compare the fusion results with cor-
responding HLS images on the HLS image acquisition dates. Specifically, 
root mean square error (RMSE), erreur relative global adimensionnelle 
de synthese (ERGAS), and spectral angle mapper (SAM) are used as the 
accuracy metrics, as these spectral-based metrics have high correlation 
to the accuracy of reconstructed phenology (Yang et al., 2021; Zhu et al., 
2022). RMSE quantifies the band-specific mean spectral reflectance 
difference between the fusion and corresponding HLS images. ERGAS 
accommodates the spectral reflectance difference across bands, as well 
as the resolution difference between MODIS and HLS images to quantify 
the mean spectral reflectance difference between the fusion and corre-
sponding HLS images across bands, with a lower value indicating more 
comparable fusion results (Eq. (4)). 

ERGAS = 100
Rh

Rl

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=1

[
RMSE(L̂n)

2

μn
2

]√
√
√
√ (4)  

where Rh and Rl are the spatial resolutions of HLS and MODIS images, 
respectively. N is the number of bands. L̂n is the estimated spectral 
reflectance of band n, and μn is the mean reflectance of band n. 

SAM assesses the mean spectral reflectance similarity between the 
fused and corresponding HLS images across bands via spectral angels 
(Eq. (5)). The spectral reflectance of each pixel of imagery is represented 
as an N-dimensional spectral vector (N is the band number of imagery), 
and the mean spectral angle between the fusion and HLS reflectance of 

all the pixels in the N-dimensional space is then calculated as SAM. 
Similar to RMSE and ERGAS, a lower SAM value denotes more spectrally 
similar fusion results with less spectral distortion. As red and NIR bands 
are used for deriving NDVI and EVI2, the fusion accuracy metrics are 
calculated using these two bands. 

SAM =
1
M

∑M

m=1
arccos

∑N
n=1

(
L̂

n
mLn

m

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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(
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n
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)2∑N
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(
Ln

m

)2
√ (5)  

where M is the number of pixels in the fusion image and N is the number 
of bands. L̂

n
m and Ln

m denote the reflectance of pixel m in band n of the 
fusion and HLS images, respectively. 

To assess the performance of the Beck model in fitting the VI satellite 
time series derived from the fusion imagery, we calculate the difference 
between fitted and observed VI values using RMSE. The community- 
level satellite-field phenological bridging relationship of the frag-
mented forest is assessed using mean absolute error (MAE) and bias. 
Specifically, the timing of each field phenological event of the forest 
community is compared with that of all the satellite metrics using MAE 
and bias during the study period; the satellite metric with the smallest 
MAE and bias is then bridged to the corresponding field event. MAE 
quantifies the mean absolute difference between the satellite pheno- 
metrics and field community phenology metrics during the study 
period, while bias measures the mean difference of the satellite-field 
metric pairs accordingly. 

To further evaluate the potential of extending the community-level 
satellite-field phenological bridging relationship to the tree crown 
level, we locate seven large individual trees, with each occupying a large 
portion of a pixel in the fusion imagery. These trees include four Quercus 
macrocarpa (bur oak) trees and three Quercus rubra (red oak) trees, 
randomly distributed across the study site; they are among the largest 
trees with observed phenology in the field. We evaluate the accuracy of 
the satellite-field phenological bridging relationship derived at the 
community level for those seven large individual trees of all study years, 
using MAE and bias. 

To assess the impact of multi-scale satellite imagery (i.e., 500-m, 
250-m, and 30-m scales) on community-level phenological bridging, 
we also calculate the MAE and bias between field and corresponding 
satellite phenological metrics derived under 500-m MODIS, 250-m 
MODIS, MODIS-HLS fusion, and HLS-wise scenarios, and compare the 
accuracy metrics across scenarios accordingly. 

4. Results 

4.1. Field phenological characterization of forest community 

Based on DOY-FCP, mean Begin Bud Burst (E1) for the five years was 
DOY 115 (April 25); the range among years was DOY 107 (April 17) to 
DOY 124 (May 4). Mean Full Leaf Expansion (F3) was DOY 140 (May 
20); the range was DOY 133 (May 13) to DOY 147 (May 27). Timing 
varied among years as spring development, from Begin Bud Burst (E1) 
through Full Leaf Expansion (F3), ranged from 15 - 30 days. Speed of 
development between phenological events was faster from Begin Bud 
Burst (E1) to End Leafing Out (E3) (mean 6.3 days) than from Begin Leaf 
Expansion (F1) to Full Leaf Expansion (F3) (mean 14.0 days). 

Much intra- and inter-specific variation in phenology exists in the 
field observations (Fig. 5). This variation is obscured when mean values 
are calculated, then weighted by basal area and summed for all species 
to generate the indices. For example, variation among all individuals, 
regardless of species, is noticeable, as a mean of 50 days among the five 
years exists between the DOY of first and last trees to reach Full Leaf 
Expansion (F3); the range is from 38 days in 2018 to 56 days in both 
2016 and 2017. Also, e.g., based on Event-FCP, on the DOY in 2016 
when the typical tree reaches Full Leaf Expansion (F3), only 29.1% of 
individuals are at F3; 39.9% are at earlier events, and 31.0% are at Full 
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Leaf Maturity (M). Therefore, even when the community is considered to 
have reached Full Leaf Expansion (F3), more than a third of individuals 
still have not reached that event, while nearly a third have previously 
completed this development. This variation contributes to the discrep-
ancy between ground- and satellite-observations. 

The community phenology development from the field perspective, 
based on the DOY- FCP index, can be modeled well via a logistic curve 
(Fig. 6). The logistic curve holds the biophysical inference as a ‘growth 
curve’ (Liang et al., 2011). The RMSE between the observed and fitted 
FCP values ranges from 0.159 to 0.351 for the five years. This strong fit 
provides support for using the same type of curve for the satellite time 
series fitting, as is widely used in previous remotely sensed phenological 
studies (Klosterman et al., 2014; Liang et al., 2011; White et al., 2014; 
Zhang et al., 2003). 

Phenological development, as measured by field observations, varies 
considerably among the five study years (Fig. 7a). Development is fastest 
for all events in 2017, slowest for early events in 2018, and slowest for 
late events in 2020. These differences among years in phenological 
development are related to differences among years in February-May 
temperatures (Fig. 7b). Year 2017 has a very warm February and the 
earliest start of bud swell. Years 2016, 2017, and 2019 have different 
March temperatures, the same quite warm April temperatures, and 
different May temperatures. Although they have differing starting and 
ending phenology, these three years have an equivalent rate of devel-
opment through April. The laggard Year 2018 is the second coolest 
March and coolest April, but is very warm in May when it very quickly 

finishes leaf development. Year 2020 has the second warmest March, but 
then the second coolest April and coolest May. That year has a rapid 
start, but very slow development thereafter. 

The three field-based indices of canopy phenological development 
are in strong agreement overall (Fig. 8). One exception is with the final 
event 10, Full Leaf Maturity (M). A mean day of 10 in Event-FCP is al-
ways earlier than the day based on DOY-FCP that requires that all in-
dividuals reach full maturity in order to have a value of 10. DOY-FCP is a 
data-intensive index and reflects actual observations made. Event-FCP 
is, in a sense, a ‘summary’ of DOY-FCP and collapses the data 
observed and reduces the ‘noise’ of the DOY-FCP index. The excellent 
alignment between the DOY-FCP and Event-FCP makes it reasonable to 
use the simplified Event-FCP (orange squares in Fig. 8) for making the 
comparisons below with satellite-based phenological metrics. Specif-
ically, six key phenological events during spring, namely Begin Bud 
Swell (B1), Begin Bud Burst (E1), End Leafing Out (E3), Begin Leaf 
Expansion (F1), End Leaf Expansion (F3), and Leaf Maturity (M), are 
selected to be compared with satellite-based measures. 

In general, temporal patterns for the Canopy Leafing-Light Index, 
reflecting shade in the understory, are similar to the canopy develop-
ment curves, except they are slower to increase in the early days, 
especially in years 2017 and 2020, and stabilize at slightly lower values 
than the canopy development readings. These discrepancies are 
explained by the assumptions of the Canopy-Leafing-Light Index. This 
index starts with Begin Bud Burst (E1), not Begin Bud Swell (B1) as do 
the other two aggregation methods, because it is assumed that the three 

Fig. 5. Variation among field observations in species’ mean (+/- 1 standard deviation) day of year (DOY) of five key spring phenological events for 2016-2020. The 
standard deviation indicates the intra-specific variation in DOY for each species. The order of species is based on their relative basal area (highest at far left; lowest at 
far right). See Table S2 for common name, scientific nomenclature, abbreviation, and relative basal area for each species. 
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events observed during Bud Swell (B1-B3) by canopy trees do not change 
light interception below. Likewise, this index never reaches a value of 
10.0 because it is assumed that even at Full Leaf Expansion (F3), 100% 
of light is not intercepted. Otherwise, the curve is in reasonable align-
ment with the other two indices and is a good summation of seasonal 
changes in shading in the understory due to vegetation above. Given the 
similar temporal patterns among Event-FCP, DOY-FCP, and Canopy 
Leafing-Light Index, we will use only Event-FCP as the community-level 
field phenological measure to be compared with corresponding satellite 

phenological metrics in subsequent analyses. 
Considerable differences occur among years in the mean DOY of six 

key phenological events (Fig. 9). The earliest phenology for all events is 
in 2017 with its early spring warmth, while events through Begin Leaf 
Expansion (F1) are the latest in 2018 with a cool spring. Differences 
among years decrease as later events occur. The pattern is quite similar 
among years for Full Leaf Expansion (F3) and Leaf Maturity (M) as the 
rate of late leaf development is relatively consistent among years. The 
natural inter-annual variation provides a strong test of the validity of 
satellite observations over years varying in phenological development. 

4.2. Satellite-based phenological characterization of forest community 

4.2.1. Spatiotemporal image fusion 
With the hybrid deep learning model, the fusion imagery is gener-

ated for the study site throughout the spring season from 2016 to 2020. 
The fusion images are visually comparable to the corresponding HLS 
images on the HLS image acquisition dates, including the color tone 
(spectral similarity), texture, and spatial patterns of different land cover 
types (e.g., forest, agriculture, water, and urban land cover types) 
(Fig. 10). By contrast, the MODIS images are more blurred and spatial 
patterns of land covers can hardly be captured. Our study site, with its 
relatively small size, cannot be observed in the MODIS imagery. 
Through the spatiotemporal image fusion, the spectral details and 
spatial patterns of our study site can be recovered in the fusion imagery 
with distinct boundaries and color tones from surrounding prairie and 
agricultural fields, demonstrating the capability of the fusion model in 
capturing the rapid spring phenological change of the forest community 
among the imagery in this fragmented and heterogeneous landscape. 

We further evaluate the performance of the fusion results using 
RMSE, ERGAS, and SAM (Table 2). These metrics are calculated based 
on the valid pixels of cloud-free HLS images (Table S1) and corre-
sponding fusion images before DOY 200 for all study years. DOY 200 is 
selected as the cut-off date as the forest community went into the mature 
phenological phase before this date during the study period. For the 
study years, the average RMSEs for both red and NIR bands are below 
0.026, with corresponding standard deviations mostly less than 0.01. 

Fig. 6. Temporal pattern of phenological development during spring in each of five study years, based on field observations, calculated as the index DOY-based field 
community phenology (DOY-FCP). A dot represents the mean value on each day with an event change. The index ranges from 0 – 10; each number represents a 
unique phenological event (see Table 1). The observations are fit via a logistic curve; the root mean square error (RMSE) of the fit is in the upper left. 

Fig. 7. (a) A comparison among the five study years of the temporal pattern of 
phenological development during spring. Each curve represents the logistic fit 
to the observations in Fig. 6. (b) Mean of mean daily temperature (◦C) for each 
month, February through May, in each year of 2016-2020. 
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The average ERGAS values are between 0.4 and 0.875, and the average 
SAM values are about 0.032. These evaluation metrics demonstrate the 
good performance of the hybrid deep learning model in generating the 
fusion imagery in the heterogenous landscapes, in the context of rele-
vant existing fusion studies in the region (Yang et al., 2021). The fusion 
images are further scrutinized to retain only the images of relatively 
high quality in consideration of the source image quality (i.e., MODIS 
and HLS image), the temporal distance between image pair and pre-
diction dates, and the spatial and temporal fusion coherency and rep-
resentation. The community-average NDVI and EVI2 time series are then 
generated from the retained fusion images for forest phenology 
modeling. 

4.2.2. Satellite phenological metric 
The Beck logistic curves demonstrate a strong fit to both fused 

community-average NDVI and EVI2 observations of phenological 

development in all years (Fig. 11). The RMSE values between the fused 
observed NDVI and fitted NDVI range from 0.022 to 0.048 for the five 
years. Similarly, the RMSE values between the fused observed EVI2 and 
fitted EVI2 range from 0.017 to 0.041 for the five years. The strong fit for 
both NDVI and EVI2 indicates the potential of these indices for moni-
toring forest phenology and capturing its seasonal variation. Compara-
ble to field phenological observations, the satellite-derived fitting curves 
show fastest phenological development of forest community in 2017, 
and slowest development for early phenological events in 2018. Overall, 
these results demonstrate that the Beck model is appropriate for use in 
tracking phenological development at the study site. 

The Beck logistic curves for fused community-average NDVI and 
EVI2 correspond well to the patterns of the Event-FCP during spring 
(Fig. 12). Given both NDVI and EVI2 fitted with logistic curves, as well 
as the similar temporal patterns between Event-FCP and DOY-FCP, the 
logistic fitted DOY-FCP curves are also shown in Fig. 12 for easier 
comparison. In each year, the field fitted DOY-FCP curve is a tighter fit to 
the corresponding NDVI curve than to the EVI2 curve. The EVI2 curve 
slightly delays the NDVI curve in each year. Its delay is partly because 
EVI2 is less sensitive to the early bud/leaf phenology development with 
its design to suppress the canopy and soil background signal. Therefore, 
in the following analyses, NDVI is used to compare phenological 
development with Event-FCP. 

Several phenological metrics are extracted from the community- 
average NDVI fitted curves and compared with Event-FCP (Fig. 13). 
The satellite phenological metrics include threshold-based metrics 
(10%, 30%, 50%, 70%, and 90% shown in Fig. 13), curvature-based 
metrics (Greenup and Maturity), Gu-based metrics (Upturn and Satu-
ration), and derivative-based metric (Der-SOS). The derived phenolog-
ical metrics from the NDVI fitted curves overlap with specific field-based 
phases. The 10% threshold, Gu-Upturn, and curvature-Greenup 
approximate the field B1-B3 phase; 30% and 50% thresholds and Der- 
SOS approximate the field E1-E3 phase; 70% threshold approximates 
the field F1-F3 phase; the Gu-Saturation, curvature-Maturity and 90% 
threshold approximate the field Leaf Maturity DOY. 

Besides the satellite phenological metrics calculated from the 

Fig. 8. A comparison using normalized values of the three field-based indices for phenological development of the community during spring in each year 2016-2020. 
Also shown is the logistic curve fit to the dots representing the observed DOY-FCP. 

Fig. 9. Based on the Event-based field community phenology (Event-FCP) 
index, a comparison among the five study years in the mean DOY for each of six 
key phenological events: Begin Bud Swell (B1), Begin Bud Burst (E1), End 
Leafing Out (E3), Begin Leaf Expansion (F1), End Leaf Expansion (F3), and Leaf 
Maturity (M) (see Table 1). 
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community-average NDVI fitted curves (diamond points in Fig. 14), we 
also calculate the mean and standard deviation of each satellite 
phenological metric derived from all the pixels in the study site using the 
fusion data (Fig. 14). Like community-wide field phenological measures, 
the satellite phenological metrics also exhibit large inter-annual varia-
tion in terms of both average NDVI-derived DOY and mean DOY of all 
the pixels in the study site. Among the years, the satellite-derived met-
rics are the earliest in 2017 with its early warm spring. The satellite 
metrics in early spring (e.g., curvature-Greenup, 10% threshold, Gu- 
Upturn, and 30% threshold) are much delayed in 2018 with its rela-
tively low spring temperatures. Similar inter-annual patterns are found 
for satellite metrics corresponding to the same field phenological phase 
(e.g., 10% threshold, Gu-Upturn, and curvature-Greenup for the field 
budswell phase; 30% and 50% thresholds and Der-SOS for the field 

budburst/leafing out phase). For most satellite metrics, the community- 
average NDVI-derived DOY is close to the corresponding mean DOY of 
all the pixels in the study region, and is thus utilized in the subsequent 
satellite-field phenological comparison analysis. 

4.3. Bridge satellite- and field-based phenological measures 

Each of six key field phenological events (B1, E1, E3, F1, F3, and M) 
of the forest community during spring is compared to a range of satellite- 
derived phenological metrics derived from four pheno-metric extraction 
methods. Each of these six field events is best matched by a specific 
satellite-derived metric in terms of MAE and bias (Fig. 15; Table 3). 
Specifically, the field events Begin Bud Swell (B1), Begin Bud Burst (E1), 
End Leafing Out (E3), Begin Leaf Expansion (F1), and End Leaf Expan-
sion (F3) are best approximated by the 10%, 30%, 45%, 60%, and 85% 
thresholds of NDVI time series, respectively. Leaf Maturity (M) corre-
sponds well to the curvature-Maturity metric. With the extensive 
thresholds (5%-95% thresholds with an interval of 5%) tested in this 
study, most field events are best aligned with specific thresholds. The 
inter-annual variation in field phenological events is also captured well 
by the corresponding satellite phenological metrics, such as the earlier 
start of almost all the events in 2017 and the delayed start of several 
events (B1, E1, E3, and F1) in 2018. 

We further assess the accuracy of field-observed events estimated by 
the best matching satellite-derived phenological metrics for the study 

Fig. 10. For selected DOYs in 2019, the images from Moderate Resolution Imaging Spectroradiometer (MODIS) and Harmonized Landsat Sentinel-2 (HLS) satellites 
and corresponding fusion image examples from the hybrid deep learning model. The 12-ha study site is indicated by the yellow rectangle. The contaminated pixels in 
HLS images are masked in black. 

Table 2 
Accuracy of fusion results (mean ± standard deviation) by the hybrid deep 
learning model before DOY 200 from 2016-2020.  

Year RMSE of Red RMSE of NIR ERGAS (2 band) SAM (2 Band) 

2016 0.014 ± 0.007 0.022 ± 0.011 0.875 ± 0.451 0.034 ± 0.011 
2017 0.014 ± 0.008 0.026 ± 0.014 0.846 ± 0.570 0.031 ± 0.005 
2018 0.007 ± 0.001 0.013 ± 0.002 0.400 ± 0.049 0.032 ± 0.001 
2019 0.009 ± 0.002 0.012 ± 0.004 0.454 ± 0.061 0.032 ± 0.007 
2020 0.012 ± 0.008 0.022 ± 0.015 0.763 ± 0.482 0.030 ± 0.011  
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years using MAE and bias (Table 3). Comparable to Fig. 15, the field- 
based phenological measures are well bridged to corresponding satel-
lite metrics. The MAE ranges among events from 1.1 - 2.9 days, with 
standard error ranging from 0.4 - 1 day. Field B1, E1, F1, and F3 are 
earlier than their corresponding satellite metrics by 0.02 - 1.5 days, 
while Field E3 and Leaf Maturity are later by 0.06 and 2.4 days, 
respectively. The standard errors of bias for all the events are less than 
1.5 days. As curve feature-based metrics (curvature-based Greenup and 
Maturity, Gu-based Upturn and Saturation, and derivative-based SOS) 
have been widely used in satellite-based phenological studies, we 
further estimate their corresponding best matching field events from 
Table 1 (Fig. 16). 

Specifically, curvature-Greenup, Gu-Upturn, derivative-SOS, Gu- 

Saturation, and curvature-Maturity best correspond to the field events 
Begin Bud Swell (B1), Middle Bud Swell (B2), End Leafing Out (E3), End 
Leaf Expansion (F3), and Leaf Maturity (M), respectively. The MAE 
ranges among events from 2.1 - 3.1 days, with standard error around 1 
day (Table S3). The satellite metrics Greenup, Upturn, and Maturity are 
earlier than corresponding field events by 2.4 - 3.0 days. Der-SOS and 
Saturation are later than corresponding field ones by about 2 days. 
Similar to Fig. 15, the inter-annual phenological patterns of field events 
of the forest community can be captured by corresponding satellite 
curve-feature metrics. 

Using the best matching satellite phenological metric for each key 
field phenological event, we also assess the satellite-field phenological 
bridging relationship for seven large individual trees for the study years; 

Fig. 11. The Beck logistic fitting to both fused community-average normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2) 
observations with RMSE calculated for each study year. 

Fig. 12. A comparison of normalized values of the satellite-fitted community-average NDVI, EVI2, and field-based DOY-FCP and Event-FCP for each study year.  
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each tree occupies a large portion of a pixel. In general, field phenology 
of large individual trees can be estimated well from the community- 
derived satellite-field bridging relationship (Fig. 17). The field event 
and corresponding satellite metric dates are mostly aligned along the 1:1 
line, with correlation coefficient r about 0.56 - 0.81. For large trees, the 
MAE among events ranges from 3.2 to 7.0 days (Table 4). Specifically, 
the field events E1, E3, and F1 can be estimated with relatively high 
accuracy (MAE around 3 - 4 days, bias around -0.7 - 1 day, and r around 
0.68 - 0.81). The early field event B1 is more subject to the influence of 
understory vegetation (i.e., herb species and tree saplings) and soil 
background. The weak signal of budswell is also more difficult to be 
detected with remote sensing. At the end of spring, the transition from 
leaf expansion (F3) to maturity (M) also becomes harder to capture by 

satellite imagery compared to the earlier phases (e.g., leaf out and early 
leaf expansion phases), partly due to more subtle changes in tree leaf 
status, canopy structure, and spectral response. The variation in DOY of 
the field events F3 and M among selected individual trees are more 
difficult to characterize, with larger estimation errors (MAE around 5 - 7 
days, negatively biased by 2 – 6 days, and r around 0.56 – 0.58). 

4.4. Impact of multi-scale satellite imagery on phenological bridging 

With our study site being a fragmented forest, we assess the impact of 
satellite imagery of varying spatial and temporal resolutions on the 
satellite-field phenological bridging relationship. For each study year, 
the NDVI time series of the forest community derived from different 

Fig. 13. The position of derived phenological metrics from NDVI fitted curves, overlapped with field Event-FCP phenological phases for each study year. The satellite 
phenological metrics include threshold-, curvature-, derivative-, and Gu-based metrics. Vertical bars represent field observed Event-FCP phases. 

Fig. 14. The inter-annual variation in satellite-derived phenological metrics. Each bar indicates the mean value of phenological metrics derived from all the pixels of 
the study site using the fusion data; the error bar is the corresponding standard deviation. The diamond point denotes the phenological metric generated from the 
community-average NDVI fitted curve, which is close to the mean of the corresponding pixel-based phenological metric. 
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satellite products vary greatly (Fig. 18). The NDVI temporal pattern 
from 500m MODIS data is consistently delayed compared to that of 
other satellite data (i.e., 250m MODIS, HLS-wise, and fused data). This 
delayed pattern is mostly attributable to the mixture of land covers 
within the pixel, which contains not only the forest community, but also 
the surrounding prairie and agricultural fields. Compared to the forest 
community, the phenological development of both prairie and agricul-
tural fields is much delayed, with emergence dates of agricultural fields 
around middle-late May for the study years. With only the forest con-
tained in the pixel of 250m MODIS, its phenological patterns are 
different from those of 500m MODIS and are more comparable to those 
of fused data. Yet the pixel of 250m MODIS represents only a portion of 
the forest community and the NDVI phenological patterns of 250m 
MODIS exhibit varying degrees of congruence with those of fused data 
across years. This varying relationship is caused mostly by the difference 

Fig. 15. The difference in DOY for the best match between six field-observed events versus corresponding satellite-derived phenological metrics.  

Table 3 
The accuracy of field-observed events estimated by the best matching satellite- 
derived phenological metrics (from Fig. 15), as measured by MAE and bias. A 
negative value for bias indicates the field measure of the event is later than the 
satellite estimate.  

Field 
Measure 

Corresponding 
Satellite Metric 

MAE 
(days) 

Standard 
Error (MAE; 
days) 

Bias 
(days) 

Standard 
Error (Bias; 
days) 

Field B1 TRS10 2.86 0.37 0.02 1.48 
Field E1 TRS30 1.08 0.59 0.64 0.73 
Field E3 TRS45 2.1 0.46 -0.06 1.15 
Field F1 TRS60 2.1 0.86 1.5 1.13 
Field F3 TRS85 2.66 0.58 0.38 1.44 
Field M Maturity 2.42 0.98 -2.38 1.01  

Fig. 16. The difference in DOY for the best match between satellite curve feature-based metrics versus corresponding field-observed events (from Table 1).  
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in species composition and abundance with the change of pixel 
coverage. Compared to the fused data, the NDVI phenological patterns 
of HLS-wise data are more fluctuating, possibly due to contamination 
from residual atmospheric interference, cloud, cloud shadow, and snow. 

The satellite-field phenological bridging relationship across scales is 
assessed further using MAE and bias (Table S4 and Fig. 19). For all field 
events, the fused data achieve the smallest MAE (1.1 to 2.9 days) and 
bias (-2.4 to 1.5 days), followed by HLS-wise data (MAE: 2.8 to 6.5 days; 
bias: -4.6 to 4.0 days). The 500m MODIS data yield the largest error and 
bias due to the heterogeneous landscape covered by the pixel. For most 
events, the 500m MODIS satellite phenological metrics are delayed by 
over 3 weeks compared to corresponding field events, indicating the 
negative effect of the mixed pixel on satellite phenological extraction 
accuracy. For the 250m MODIS data, the MAE ranges from 4.4 to 19.3 
days and bias from -11.4 to 19.2 days. The field events E1, E3 and F1 can 
be detected with smaller errors compared to the early (B1) and late (F3 
and M) events in spring, yet the overall relatively large errors of 250m 
MODIS data indicate that the satellite phenological detection accuracy 
can be degraded when the forest community is not entirely covered by 
the pixels. 

5. Discussion 

The remote sensing-based phenology studies have largely expanded 
the scope of traditional phenology observations by enabling high- 
frequency and large spatial coverage phenological monitoring which 
may not be feasible by direct field observations (Berra and Gaulton, 
2021; Ganguly et al., 2010; Zhang et al., 2018). The phenological 
monitoring using different sensors at multiple scales facilitates the 
characterization of spatio-temporal phenological patterns and dynamics 
across the globe, improving our understanding of large-scale pheno-
logical responses to climate change and environmental disturbance, 
feedbacks to the climate system, and impacts on ecosystem structures 
and functions (Piao et al., 2019; Tang et al., 2016; White et al., 2009). 
The fusion of satellite imagery of varying resolution characteristics 
further enhances the phenological characterization towards finer spatial 
and temporal scales (Liang et al., 2014; Tian et al., 2024). However, the 
existing remotely sensed phenological studies are mostly conducted at 
the landscape scale with a pixel possibly mixed by different land covers 
or tree species of distinct phenology, and may have large uncertainties in 
detecting phenological events at forest community levels, particularly in 
heterogenous and fragmented landscapes (Donnelly et al., 2022; Fisher 
and Mustard, 2007). The differences among satellite sensors, spectral 
indices, and algorithms utilized to monitor phenology can produce very 
different results (Berra and Gaulton, 2021; White et al., 2014). Also 
remotely sensed phenology may have equivocal biophysical meaning 
and is challenging to be validated by ground phenological observations 
due to the scale mismatch in measurement (Donnelly et al., 2022). In 
temperate deciduous forests, multiple phenological phases (e.g., bud 
swell, bud burst/leafing out, leaf expansion, and leaf maturity) are 
critical for understanding the forest phenological development timing 
and duration, and their response to climate change in spring. These 
phenological phases, affected by a variety of environmental factors, 
have important implications for carbon storage and biogeochemical 
cycling, yet have seldom been studied simultaneously in satellite and 
field phenological comparison studies (Donnelly et al., 2017). Through 
developing a novel satellite-field phenological bridging framework, this 
study eases the challenges of previous studies and contributes to a more 
explicit understanding of the relationship between satellite-derived 

Fig. 17. For six phenological events, the relationship between DOY for field-data vs. satellite-derived metrics of all study years for selected pixels of seven large trees, 
each occupying a large portion of a pixel. 

Table 4 
The accuracy of satellite-field phenological bridging relationship for seven large 
individual trees of all study years (from Fig. 17), as measured by MAE and bias. A 
negative value for bias indicates the field measure of the event is later than the 
satellite estimate.  

Field 
Measure 

Corresponding 
Satellite Metric 

MAE 
(days) 

Standard 
Error (MAE; 
days) 

Bias 
(days) 

Standard 
Error (Bias; 
days) 

Field B1 TRS10 5.63 0.62 1.86 1.10 
Field E1 TRS30 3.17 0.44 1.00 0.68 
Field E3 TRS45 3.23 0.50 -0.71 0.73 
Field F1 TRS60 4.03 0.55 -0.60 0.88 
Field F3 TRS85 5.11 0.62 -2.31 1.00 
Field M Maturity 7.00 0.82 -6.03 1.02  
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phenological metrics and field phenological observations of a frag-
mented temperate deciduous forest for a diversity of phenological 
phases during the spring season. It also innovatively scales up the field 
phenological observations from the individual trees to the species to the 
community level, and underscores the importance of taking into account 
spatial scale and representation from both satellite and field phenolog-
ical perspectives in building corresponding bridging relationships. 

To remotely retrieve spring phenology of the fragmented forest, we 
devise several key components in the phenological bridging framework, 
including deep learning-based spatiotemporal image fusion, satellite- 
based forest phenology modeling, satellite-based forest phenological 
metric extraction, and field-based forest community phenological 
characterization. The monitoring of fragmented forest phenology re-
quires satellite observations with both high spatial and temporal reso-
lutions, the acquisition of which remains a significant hurdle in remotely 
sensed phenological studies due to the sensor resolution tradeoff. The 
frequent cloud cover and rainy conditions during spring phenological 
development largely reduce the availability of HLS observations of the 
study site. A paucity of HLS images during critical phenological transi-
tion periods led to both larger MAE and bias for all phenological events 
in this study, despite phenological curves being generated. The uncer-
tainty of phenological detection has been over two weeks in previous 
studies due to the limited availability of temporal observations around 
transition periods, indicating the importance of data quality as well as 
temporal distributions of satellite observations (Gao et al., 2020; Tian 
et al., 2024; Zhang et al., 2017, 2009). Despite being temporally more 
frequent, the 500m MODIS data yield much larger detection errors (e.g., 
over 3 weeks) for most phenological stages, due to the forest fragmen-
tation and mixture with surrounding prairie and agricultural fields. The 
landscape heterogeneity, with a patchwork of the forest and other land 
cover types, makes the phenological detection difficult to be bridged to 
field phenological observations, as also suggested by previous studies 
(Donnelly et al., 2022; Elmore et al., 2016). The 250m MODIS data, on 
the other hand, capture phenological development of only a portion of 
the forest community, in which species composition and relative basal 
area may vary. 

Fig. 18. NDVI time series of the study site using MODIS products at 500m (MODIS MCD43A4) and 250m (MOD09Q1) resolutions, original HLS-wise data, and fused 
data for each of the study years. The Beck-fitted NDVI curves from fused data are also shown. 

Fig. 19. The mean absolute error (MAE) and bias of satellite-field phenological 
bridging relationship using satellites of various spatial and temporal resolutions 
(i.e., 500m MODIS, 250m MODIS, HLS-wise, and fused data). 
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The hybrid deep learning model, with its demonstrated capability of 
fusing satellite imagery of varying spatial and temporal resolutions, is 
employed in the devised framework to generate temporally dense fusion 
data at 30-m spatial resolution. By integrating SRCNN for spatial rela-
tionship modeling and LSTM for temporally evolving feature learning, 
the hybrid deep learning model has been found advantageous in 
capturing rapid phenological changes among the imagery (Yang et al., 
2021). The fusion data enable the reconstruction of high-quality 
phenological development trajectories of forest community in spring. 
Together with forest phenology modeling and phenological metric 
extraction, a range of satellite phenological metrics (i.e., threshold-, 
derivative-, curvature-, and Gu-based metrics) are extracted for the 
study years, which greatly expands limited phenological retrievals in 
previous studies (mostly field budburst/leafing out events) and is critical 
for satellite-field phenological bridging (Berra and Gaulton, 2021; Kang 
et al., 2003; Schwartz and Hanes, 2010). Compared to curve feature- 
based pheno-metric extraction methods, the threshold-based method 
achieves higher accuracy in retrieving most of target field events, partly 
due to the comprehensive and extensive thresholds (5%-95% thresholds 
with an interval of 5%) considered in this study for characterizing 
variation in spring canopy greenness. The target field events B1, E1, E3, 
F1 and F3 are best bridged to 10%, 30%, 45%, 60%, and 85% thresholds 
of NDVI time series, respectively, with high accuracy (MAE and bias less 
than 3 days). The M field event is more accurately bridged to the 
curvature-based Maturity metric with MAE and bias around 2 days. The 
inter-annual variation of these field events is well captured by the cor-
responding satellite events. With the wide use of curve feature-based 
metrics, these metrics are further bridged to corresponding best 
matching field events with relatively high accuracy achieved (MAE and 
bias around 2-3 days). Specifically, the curvature-based Greenup and 
Gu-based Upturn metrics approximate the field events B1 and B2, 
respectively. The derivative-based SOS corresponds to the field event 
E3. The Gu-based Saturation and curvature-based Maturity metrics 
connect with the field events F3 and M, respectively. The satellite 
detection of early field events (e.g., B1) may be subject to the influence 
of understory plants, soil background, and snow. From 2016 to 2020, 
understory herbs of Trelease Woods emerged on average around DOY 98 
(standard deviation: 4.7 days), which is earlier than or around the 
budswell phase of forest community phenological development (Aug-
spurger and Zaya, 2020). The subtle phenological changes of budswell 
also are more difficult to capture by satellite imagery, compared to other 
phenological phases. Due to the challenge in bridging satellite and field 
phenological measures, previous studies have been focused mainly on 
detection of the budburst/leafing out phase at the landscape level, 
which has been found to connect with the 20-30% threshold of vege-
tation index (e.g., NDVI) time series (Berra and Gaulton, 2021; Bórnez 
et al., 2020; Kowalski et al., 2020). With the devised satellite-field 
phenological bridging framework, our study not only corroborates the 
limited bridging relationship of previous studies, but also expands 
substantially the scope of satellite detection to all the critical spring 
phenological events at the forest community level. Additionally, the 
bridging relationships of all the critical events are successfully extended 
to seven large trees, with each occupying the majority of a pixel, indi-
cating the strong potential of the devised framework in conducting 
phenological detection of individual trees at the crown level, given 
adequate spatial and temporal resolutions of satellite imagery (Zhao 
et al., 2023). 

The ground phenological observations that are representative of the 
variability in phenology events of the forest community are essential for 
evaluating the accuracy of satellite-based phenological retrieval. How-
ever, the community-level forest phenological observation remains a 
great challenge due to the heterogeneity in phenological development of 
tree species as well as species composition within a community (Fisher 
et al., 2006; Polgar and Primack, 2011). The different phenological 
response of individual trees to environmental conditions (e.g., temper-
ature, photoperiod, and soil moisture) can lead to large intra-specific 

and inter-specific phenological variation of the forest community, 
which necessitates the systematic and consistent field observations of all 
the key phenological events for a large number of trees of diverse species 
with relative basal area surveyed (Donnelly et al., 2017; Vitasse et al., 
2009). Such phenological information is key to scaling up for measuring 
the community-level forest phenology, but has seldom been collected in 
previous studies. With 10 spring phenological events of 148 haphazardly 
selected individual canopy trees of 15 common species observed via a 
consistent monitoring protocol, we innovatively generate three 
community-level field phenological indices: DOY-FCP, Event-FCP, and 
Canopy Leafing-Light index. The strong agreement between DOY-FCP 
and Event-FCP indicates the effectiveness of our field phenological 
surveying approach in capturing community-wide phenological varia-
tion and characterizing corresponding forest phenological development 
trajectory. Both field- and satellite- phenological observations of the 
forest community throughout canopy development are modeled using 
the logistic function with a strong fit, which facilitates the comparison of 
phenological curves generated in-situ with those from satellite imagery. 
Compared to EVI2, NDVI time series shows better alignment with the 
field FCP, due partly to the early phenological events (e.g., early bud/ 
leaf development events) considered in the field phenological moni-
toring protocol and the reduced sensitivity of EVI2 to these early events, 
with EVI2 being designed to suppress the soil background signal (Gao 
et al., 2020; Huete et al., 2002). Under-canopy light levels have been 
found to be related to visual phenological observations of canopy trees 
in previous studies (Schwartz et al., 2013). Our study further extends the 
canopy light transmission analysis from the canopy tree level to the 
community level and generates the Canopy Leafing-Light index. The 
temporal patterns of the Canopy Leafing-Light Index are generally 
comparable to those of the two FCP indices, yet with the delayed start in 
early spring. It takes into account both the state of the entire forest’s 
canopy and canopy closure-induced shading in the understory. This 
canopy index may further help with the study of understory phenology 
in response to canopy closure and light interception. 

Despite the significant value of the devised framework in bridging all 
critical field and satellite spring phenological events at the forest com-
munity level, the study’s framework also has limitations. One limitation 
stems from the spatial extent of field phenological observations. 
Although systematic tree phenological observations that are represen-
tative of community-wide forest phenological variation are essential to 
bridge satellite-field phenological measures at the community level, the 
field phenological observations of our study site may not capture the 
diverse phenological development patterns of forests of varying species 
compositions and richness across habitats and microclimates. Field 
phenological efforts similar to our study over extended regions of 
diverse forest characteristics are important in the future to further 
evaluate the community-level satellite-field phenological bridging 
relationship. Such efforts may also benefit from the incorporation of 
phenological observations via citizen science/crowdsourcing initiatives 
(e.g., US NPN) and Phenocam near-surface cameras across diverse 
ecosystems and regions (Peng et al., 2017; Richardson et al., 2018), for 
which more rigorous designs of tree phenological monitoring repre-
sentative of community-wide canopy development would be needed. 
Another limitation lies in the uncertainty associated with the detection 
of the earliest field phenological events (e.g., budswell). In our study 
site, the emergence of understory herbs and/or saplings in early spring 
may complicate the phenological signal collected via remote sensing. It 
would be beneficial in the future to evaluate the devised framework and 
assess the influence of understory on forest phenological detection under 
varying densities of understory herbs and/or saplings. Despite the focus 
on spring phenology, our devised framework could further be extended 
to autumn phenology of the forest community in future studies for 
building corresponding satellite-field phenological bridging relation-
ships, which can enhance our understanding of forest phenological re-
sponses under the changing climate (Xie et al., 2018). 
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6. Conclusions 

In this study, we develop a novel satellite-field phenological bridging 
framework to characterize a variety of key spring phenological events at 
the community level for a fragmented forest, using multi-scale remote 
sensing imagery. The framework encompasses deep learning-based 
spatiotemporal image fusion, satellite-based forest phenology 
modeling, satellite-based forest phenological metric extraction, and 
field-based forest community phenological characterization. By fusing 
the satellite imagery of varying resolution characteristics, the deep 
learning-based fusion model reconstructs temporally dense satellite time 
series at 30-m spatial resolution for tracking the community-level forest 
phenological dynamics in spring. Along with forest phenology modeling 
and pheno-metric extraction, a multitude of satellite phenological 
metrics (i.e., threshold-, curvature-, derivative-, and Gu-based metrics) 
are retrieved. With the phenology of a large number of trees of diverse 
species of a forest community being observed in-situ, we devise three 
summative field indices (i.e., DOY-FCP, Event-FCP, and Canopy Leafing- 
Light Index) to quantify community-level phenological states 
throughout canopy development in spring. Through bridging satellite 
and field measures, the framework successfully detects all critical spring 
forest phenological phases (i.e., bud swell, budburst/leafing out, leaf 
expansion, and leaf maturity) at the community level, yet the detection 
of the earliest phenological events may be subject to the influence of 
understory vegetation. Compared to curve feature-based metrics, the 
threshold-based metrics achieve higher accuracy in phenological 
detection. The multi-scale satellite-derived phenology analysis further 
indicates the importance of satellite imagery fusion in retrieving the 
phenology of fragmented forests in heterogeneous landscapes, particu-
larly when forest green-up is under cloud cover and rainy conditions. 
This study innovatively scales up the field phenological observations 
from the species to the community level, and broadens the scope of 
phenological monitoring from limited events to all the critical ones of 
the forest community. The community-level bridging of satellite and 
field metrics for the key spring phenological events can be used to assess 
forest phenological responses to climate change and weather extremes. 
The diversity of monitored events can also help evaluate the rate of 
forest phenology progression and the duration of each phenological 
phase, facilitating the understanding of forest phase-specific phenolog-
ical response to environmental changes, and improving models of 
carbon-water-energy cycling. 
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