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A B S T R A C T   

Distance sampling and its statistically improved variant, T-square sampling, are important sampling methods in 
plant ecology. They have often been applied in the context of plant density estimations and are comparatively 
easy to implement, since they intuitively follow the nearest-neighbour principle and thus do not require the 
layout of sample plots. Previous research studying distance sampling suggested that T-square sampling may also 
lead to an improved estimation of spatial tree diversity indices. We simulated distance and T-square sampling in 
six large fully mapped forest areas for seven tree diversity indices of which some competed for the same diversity 
aspect, i.e. tree location (dispersion), tree species and tree size diversity. Our results demonstrated that both distance 
and T-square sampling are indeed robust methods for sampling spatial measures of tree diversity. The sample size 
required for a sampling error of 10% does not exceed 20% of the total number of trees in a sampling area. T- 
square sampling has the ability to adapt to different spatial patterns of tree locations and this ability is key to the 
way the method controls estimation bias. The sample size required for species mingling and size differentiation 
clearly depends on the underlying spatial tree pattern in the sampling area. With most diversity indices, sample 
size reductions between 0.06% and 40% could be achieved by the application of T-square sampling compared to 
traditional distance sampling. All other conditions being equal, we could identify the uniform angle index, the 
species mingling index and the size differentiation index as those diversity indices achieving lower sampling 
error values than their competitors. For tree density estimations the Diggle and Byth estimators performed best. 
Based on our results, T-square sampling can be considered a robust sampling method for spatial tree diversity 
indices that is easy to apply in the field.   

1. Introduction 

With ongoing climate change the monitoring of biodiversity is 
crucial to identifying the right time for counteracting the loss of species 
and diversity in forest ecosystems (Banks-Leite et al., 2020). In this 
context, spatial tree diversity indices are important, because they can be 
measured with comparatively little effort and can act as surrogate 
measures of biodiversity (Pommerening and Grabarnik, 2019). 

Non-spatial and spatial tree diversity indices do not necessarily need 
to be measured by mapping an entire plant population but can be 
collected on a sample basis which can considerably reduce the moni-
toring effort. The most common approach in forestry has been to 
combine tree diversity sampling with existing forest inventories. This 
strategy makes sense, because it requires little additional effort even if 

additional trees or tree variables need to be measured. In most cases, 
however, it is possible to simply use existing forest inventory data and to 
compute tree diversity indices from them without making any changes 
to the inventory protocols (Sterba, 2008; Motz et al., 2010). 

Another strategy is to apply specialised sampling methods with the 
sole objective to sample measures of tree diversity. For this strategy, 
straightforward methods are often preferred that can be applied rapidly 
and with comparative ease. In plant ecology, distance methods are 
particularly popular for their ease of application. They are also known as 
plot-less sampling methods (Krebs, 1999; Diggle, 2014), because there is 
no need to lay out sample plots, which saves time and effort. The term 
plot-less sampling method is also often applied to angle count sampling 
(Bitterlich, 1984). Distance sampling includes a variety of different 
methods including line/strip transect sampling, point transect sampling, 
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ordered distance and point quarter methods. Distance sampling has 
traditionally been used to estimate population density, i.e. the number 
of individuals per unit area, and to determine whether a spatial plant 
pattern is random, clustered or regular (Krebs, 1999). The focus of this 
study is on nearest-neighbour distance sampling. In plant ecology, 
typically two different kinds of distances are considered, distances (1) 
between sample points and nearest plants, and (2) between plants and 
their nearest neighbour plant. We have considered both types of dis-
tances in this study and extended the method to include a comparatively 
new possibility of using distance methods for the sampling of spatial tree 
diversity indices. This purpose has first been proposed by Füldner 
(1996) and Pommerening and Lewandowski (1996), and a modification 
of the distance method for sampling spatial diversity indices has been 
published by Hui and Albert (2004). 

A well-known draw-back of distance methods is the fact that this type 
of sampling favours isolated individuals, i.e. plants surrounded by more 
empty space than the average individual (Diggle, 2014). In the context 
of forest ecosystems, isolated individuals are usually trees that are larger 
than the average tree and the empty space surrounding them is, in 
ecological terms, often considered their specific “growing space”, which 
they use to draw resources from. The preference of such trees in sam-
pling can lead to biased estimations, as they are assigned a larger in-
clusion probability than smaller and less isolated trees (Pielou, 1977; 
Krebs, 1999). 

Besag and Gleaves (1973) proposed the T-square procedure for 
alleviating the problem related to the preferential selection of isolated 
individuals. This is a variant of the distance method introducing a 
constraint for the selection of plants nearest to a sample point as detailed 
in Section 2.2. The constraint ensures that isolated plants do not have a 
larger inclusion probability than other plants. In the past, the T-square 
method has been applied to estimating population density and to testing 
spatial plant patterns for complete spatial randomness (CSR). To our 
knowledge, T-square sampling has so far never been explored for esti-
mating spatial diversity indices. T-square and other distance-based 
methods for sampling spatial point patterns have recently been consid-
ered as a tool for surveying refugee camps and other unplanned human 
settlements (Bostoen et al., 2007; Diggle, 2014). 

Spatial diversity indices usually indicate three different aspects of 
plant diversity, i.e. location diversity (dispersion), species diversity and size 
diversity (Pommerening and Grabarnik, 2019). Several competing 
indices have been proposed for each of these three aspects. For practical 
and scientific reasons, it is interesting to learn how such competing 
indices perform in terms of sampling error relative to one another. The 
sampling performance of competing tree diversity indices helps under-
stand how they interact with specific sampling designs and provides 
decision support in practical sampling applications in terms of which 
index to prefer from a list of competitors (Pommerening and Stoyan, 
2008; Torquato, 2002). 

Based on the known benefit of T-square sampling in terms of miti-
gating the bias arising from the preference of isolated individuals in 
density estimations, our hypothesis was that this method is also likely to 
improve the estimation of spatial diversity indices. Accordingly, the 
objective of this study was to quantitatively examine the potential of T- 
square distance sampling for estimating spatial tree diversity indices in 
relation to the traditional distance sampling method carried out without 
bias control. We were particularly interested to learn (1) what factors 
drive the performance of the two methods, and (2) whether the per-
formance differs between competing diversity indices. Finally, (3) we 
intended to find out whether T-square distance sampling can be 
considered a robust sampling method that produces reliable estimates 
across different spatial patterns and diversity indices. 

2. Materials and methods 

2.1. Spatial tree diversity indices 

We selected seven different plant diversity indices measuring the 
diversity of plant location, plant species and plant size diversity 
(Table 1) in such a way that at least two of them compete with each 
other in terms of quantifying the same diversity aspect. The indices 
selected are often considered in the monitoring of tree diversity (Motz 
et al., 2010). 

The aggregation index of Clark and Evans (1954) is one of the earliest 
diversity indices quantifying the spatial pattern of plant dispersion. The 
index is very efficient and popular and is known to perform best in 
statistical tests for complete spatial randomness (CSR; Corral-Rivas 
et al., 2006). Observed mean first-neighbour distance, r̄(1), is divided 
by the mean distance of a plant pattern where the plant locations are 
completely random, Er(1), which requires information on population 
density (Eq. 1 in Table 1). Usually, the interpretation of R′ values is as 
follows: R′ > 1, if the pattern has a tendency to regularity (also termed 
overdispersal), R′ = 1, if it is completely random and R′ < 1, if there is 
clustering in a pattern (also termed underdispersal). In a practical 
sampling context, the index components r̄(1) and population density N 
are estimated as explained in Section 2.3. 

Like the aggregation index by Clark and Evans (1954), the uniform 
angle index (Eq. 2) describes the spatial pattern of plant locations, i.e. the 
dispersion of the k nearest neighbours around a subject plant. However, 
this index is based on angles between neighbouring plants. The uniform 
angle index gives the proportion of angles between neighbouring plants 
(either in clockwise or anti-clockwise direction) that are smaller than a 
reference angle α0 = 360◦

k+1 . For k = 4 neighbours α0 = 72◦ (80 gon), 
which is expected for regular point patterns. Small values of Wi near 
0 indicate that the plants in the vicinity of reference plant i are regularly 
dispersed (=overdispersed), whereas large values of Wi near 1 point to a 
clustered arrangement (=underdispersal) of the k neighbours of a sub-
ject plant (Aguirre et al., 2003). 

Corral Rivas (2006) introduced the mean directional index (Eq. 3) as 
an alternative to the uniform angle index and the aggregation index by 
Clark and Evans (1954). This index is based on the directions of the lines 
that point from the subject plant to its nearest neighbours. More pre-
cisely, the mean directional index is the length of the sum of k unit 
vectors pointing from the sample plant to its nearest neighbours. The 
index takes large values in the case of clustering (=underdispersal) and 
small ones in the case of regular (overdispersed) plant patterns. Under 
the conditions of a Poisson process the expected value of the mean 
directional index, ER, takes the value of 1.799 for k = 4 neighbours 
(Illian et al., 2008). Similar indices are used to describe animal move-
ments and angular dispersion in plant neighbourhood models (Richards 
et al., 2010; Dale and Fortin, 2014). 

Gadow (1993) defined spatial species mingling as the mean hetero-
specific fraction of plants among the k nearest neighbours of a subject 
plant i (Eq. 4 in Table 1). Due to the discrete nature of outcomes for a 
given k, there are only k+1 possible values Mi can take, i.e. 0/k, 1/k, …, 
k/k, where the number in the numerator denotes the number of neigh-
bours with a species different from that of plant i. All index values lie 
between 0 and 1. 

Hui et al. (2008) and Hui et al. (2011) proposed the species richness- 
weighted mingling index M′

i (Eq. 5 in Table 1) as an extension of the 
original mingling index by Gadow (1993) by merging the concept of 
species mingling with the concept of species richness. Accordingly, each 
Mi (from Eq. 4) is multiplied by the species richness si among the k 
nearest neighbours. Wang et al. (2021) amended the index definition by 
introducing term c (see Eq. 5 in Table 1) to ensure that the maximum 
number of species that are theoretically possible in a group of k+1 
plants is limited by the number of species present in a population or by 
the number of nearest neighbours, k. Both the species segregation and 

A. Pommerening et al.                                                                                                                                                                                                                         



Ecological Indicators 163 (2024) 111995

3

the richness-weighted mingling index are less dependent on overall 
population species richness than the original mingling index. Values of 
M′

i are generally smaller and take a larger range of different values than 
those of Mi. 

Gadow (1993) defined size differentiation (Eq. 6 in Table 1) as the 
mean ratio of smaller and larger plant sizes of the k nearest neighbours 
subtracted from one. Size differentiation produces continuous results 
between 0 and 1 and Ti increases with increasing average size difference 
between neighbouring plants. 

The size dominance index (Eq. 7 in Table 1) was introduced by Hui 
et al. (1998) and later refined by Aguirre et al. (2003). The index gives 
the proportion of the k nearest neighbours dominated by subject plant i. 
The index draws on similarities with the construction of the mingling 
index, thus transforming a continuous variable into a binary one and in 
analogy to the species mingling index also produces only k+1 possible 
Ui values. 

For each of these indices and each sampling replication, the means 
were estimated by pooling the index values of all sample trees using the 
general estimator introduced as Eq. (8) in Section 2.3. We used stem 
diameter (measured at 1.3 m above ground level) as a measure of tree 

size for m in Eqs. (6) and (7). All diversity indices were estimated for k =

4 nearest neighbours, the most commonly used value of k in the litera-
ture (Aguirre et al., 2003; Pommerening and Grabarnik, 2019), except 
for the aggregation index by Clark and Evans (1954) which only requires 
the consideration of the first nearest tree neighbour. 

2.2. Sampling methods 

Two nearest-neighbour distance methods were used in our simula-
tions, i.e. traditional distance and T-square sampling. Both of them are 
not limited to trees or plants in general, but can be applied in a wide 
range of contexts. We based both methods on systematic grids of sample 
points with a random starting point and random inclination where the 
sample points were the locations of grid points. Systematic sampling is 
known for its efficiency in field measurements, but also for reducing 
overall variance compared to simple random sampling (Motz et al., 
2010). First, we applied traditional distance sampling where the tree 
nearest to each sample point was selected as sample tree P according to 
Euclidean distance (Fig. 1). 

As an alternative, T-square sampling (Besag and Gleaves, 1973; 

Table 1 
Definitions of the spatial plant diversity indices used in this study.  

Eq. Name Diversity 
of 

Formula Variable definitions 

(1) Aggregation index (Clark 
and Evans, 1954) 

Location 
R′ = r̄(1)

Er(1)
r̄(1)– observed mean arithmetic distance between sample tree i and its first 
nearest neighbour; Er(1) = 1/(2 ×

̅̅̅̅
N

√
) with N – tree density. 

(2) Uniform angle index 
(Aguirre et al., 2003) 

Location Wi =
1
k
∑k

j=1
1
(
αj < α0

) αj are the angles between neighbouring trees in (anti-)clockwise direction;α0 =

360◦

k + 1 
(3) Mean directional index 

(Corral-Rivas, 2006) 
Location 

Ri =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(∑k
j=1cos αij

)2
+
(∑k

j=1sin αij

)2
√ αij is the angle pointing away from reference tree i to neighbours j and a 

reference bearing (e.g. due north). 

(4) Species mingling 
(Gadow, 1993) 

Species Mi =
1
k
∑k

j=1
1
(

speciesi ∕= speciesj

) 1(A) = 1, if A is true, otherwise 1(A) = 0 

(5) Weighted species 
mingling 
(Hui et al., 2011) 

Species M′
i =

1
k × c

∑k
j=1

1
(

speciesi ∕= speciesj

)
× si 

si– species richness among the k nearest neighbours of tree i; c = min(S,k + 1), 
where S – total species richness (either in the total population or at a specific 
sample point) 

(6) Size differentiation 
(Gadow, 1993) 

Size 
Ti = 1 −

1
k
∑k

j=1

min(mi,mj)

max(mi,mj)

mi– size of subject tree i, mj – size of neighbour j 

(7) Size dominance 
(Aguirre et al., 2003) 

Size Ui =
1
k
∑k

j=1
1
(
mi > mj

) See previous definitions  

Fig. 1. Schematic view of a T-square sample with trees represented by point locations: P is the nearest Euclidean tree neighbour of sample point O and Q is the T- 
square nearest tree neighbour of sample tree P. The angle OPQ must be at least 90◦ so that P is constrained to be in the hemisphere to the right of the vertical dashed 
straight line. Distance x is measured from sample point O to its nearest tree neighbour P whilst z, the T-square distance, is measured from sample tree P to its nearest 
T-square neighbour (Krebs, 1999; Diggle, 2014). 
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Krebs, 1999; Diggle, 2014; Zhang et al., 2022) was applied. With T- 
square sampling, the selection of the nearest Euclidean neighbour of a 
sample point O, i.e. sample tree P, has to satisfy the T-square criterion: 
The angle formed by points OPQ must be at least 90◦ (Fig. 1). Here Q is 
the nearest Euclidean neighbour of the potential sample tree P. If this 
condition is not met, the next closest Euclidean tree neighbour of sample 
point O is considered until one is found that satisfies the angular 
constraint. In the context of the traditional distance sampling method, 
the unconstrained distance between the sample tree and its first 
Euclidean neighbour is denoted r(1)i , and zi, also referred to as T-square 
distance, is the constrained distance of T-square sampling. If the first 
nearest neighbour of a sample point happens to satisfy the T-square 
criterion, zi = r(1)i . 

Once sample trees P were identified using both traditional distance 
sampling and T-square sampling, the four nearest Euclidean neighbours 
of each sample tree were determined in a second step and the diversity 
indices of Section 2.1 were calculated. With both sampling methods, the 
principle of selecting these neighbours of sample trees was the same, i.e. 
no further constraint was applied. 

2.3. Sampling simulations 

Sample sizes included 5, 10, 20, 30, …, 140, 150 sample trees and 
each of the 16 sample sizes was independently replicated 10,000 times. 
Each replication was based on a different grid of sample points with a 
different random starting point and grid inclination. Also, in each 
replication, the same sample points were used for both sampling 
methods, traditional distance and T-square sampling (Fig. 2), for more 
effective comparison. A minimum distance of 10 m between sample 
points and sampling area boundary was ensured in all simulations to 
reduce biased estimations due to spatial edge effects to a minimum. 

Following sampling and index calculation based on the selected 
sample trees, mean indices were calculated across all sample trees for all 
diversity indices but the aggregation index by Clark and Evans (1954), i. 
e. the sample tree arithmetic means of these indices constitute the 
estimators: 

Ŷ =
1
n

∑n

i=1
yi (8)  

Here, n is the number of sample trees, i.e. the sample size in absolute 
terms. For better comparison and generalisation we later divided n by 
the total number of trees in the sampling area and calculated a per-
centage sample size. yi is an arbitrary individual-tree spatial diversity 
index and Ŷ is the population estimator. For each diversity index of 
Table 1, Ŷ is estimated 10,000 times for each of the 16 sample sizes for 
both sampling methods. 

The estimation of the aggregation index by Clark and Evans (1954) 
proceeded in two steps. First, for each sample point, point-to-tree and 
inter-tree distances were recorded. These were required for two pur-
poses, (1) for estimating the mean of distance, r(1)i or zi, between sample 
trees and their first Euclidean neighbour (Fig. 1) as required by (Eq. 1 in 
Table 1) and (2) for estimating population density, N̂, which is also 
required by (Eq. 1 in Table 1). At each sample point, r(1)i and zi were 
recorded and the arithmetic mean, ̄r(1), was calculated for each sampling 
replication using Eq. (8). Following this, population density was esti-
mated for each sampling replication. Population density can be esti-
mated in at least three different ways; for more estimators see Zhang 
et al. (2022). For the traditional distance sampling method we studied 
two estimators. Köhler (1951) suggested the estimator 

N̂
(K)

=
n2

(
∑n

i=1
r(2)i +r(3)i

2

)2 (9)  

In Köhler’s estimator, r(2)i and r(3)i are the distances between sample tree i 
and its second and third Euclidean nearest neighbour, respectively. As 
an alternative, Diggle (1975) suggested estimator 

N̂
(D)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n

π
∑n

i=1x2
i
×

n

π
∑n

i=1

(
r(1)i

)2

√
√
√
√ (10) 

Fig. 2. Sampling area Rosalia (Austria), 170 × 164 m. A: Replication of a sampling simulation of the traditional distance sampling method. B: Replication of a 
sampling simulation of the T-square sampling method. Sample size n = 39. Black: Sample points. Red: Sample trees. Blue: k = 4 nearest neighbours for calculating 
the tree diversity indices of Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Here, xi is the distance between sample point and sample tree i and r(1)i is 
the distance between sample tree i and its first Euclidean nearest 
neighbour. We computed both estimators as part of simulating the 
traditional distance method and analysed their performances. 

For T-square sampling, Byth (1982) showed that the most robust 
estimator of population density was 

N̂
(B)

=
n2

2
∑n

i=1xi ×
̅̅̅
2

√
×
∑n

i=1zi
(11) 

In Eq. (11), all notations are as before and zi is the aforementioned T- 
square distance of sample tree i (see Fig. 1). We applied Eq. (11) only as 
part of the T-square sampling simulations. 

For evaluating the simulation results and as an expression of sam-
pling error we quantified relative RMSE defined as 

rRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m− 1

∑m
i=1(Ŷ i − Ŷ )2

+

(

1
m

∑m
i=1(Ŷ i − Ŷ )

)2
√
√
√
√

Ŷ
, (12)  

where Ŷ i is the ith estimated diversity index per replication (Eq. 8), Ŷ is 
the corresponding observed index estimated as the mean of all trees in 
the total sampling area, m = 10,000 is the number of simulated sam-
pling replications. In addition, we also calculated the relative bias as 

rBias =
∑m

i=1(Ŷ i − Ŷ )
mŶ

. (13)  

For better clarity of trends, both rRMSE and rBias were modelled using a 
power function (Eq. (14); O’Regan and Arvanitis, 1966), where both 
characteristics of Eqs. (12) and (13) are represented by symbol E: 

E = α0 × nα1 (14)  

Symbol n denotes sample size, α0 and α1 are model parameters. This 
model function was also applied for calculating the critical sample size 
required for rRMSE = 10%, see Sections 3.3 and 3.4. We used our own R 
code (R Development Core Team, 2023) and the R spatstat package 
(Baddeley et al., 2016) in these calculations. 

2.4. Study data 

We carried out sampling simulations in large, fully mapped tree 
sampling areas that provided a high diversity of different spatial pat-
terns (Table 2). 

The size of the sampling areas ranges from 1 ha (Tazigou) to 2.8 ha 
(Rosalia) and, related to size, the absolute number of trees, N, has a 
minimum of 269 trees at Clocaenog and a maximum of 2383 trees at 
Hirschlacke. Species richness is highest at Knysna (S = 20 species) and 
lowest at Hirschlacke (S = 5 species). The range of stem diameters is 
wide and similar in all six plots. It is lowest at Knysna and largest at 
Rosalia. The aggregation index by Clark and Evans (1954) indicated that 
Clocaenog, Hirschlacke, Knysna and Pen yr Allt Ganol have spatial tree 
location patterns that are close to complete spatial randomness. The 

trees at Rosalia are overdispersed (regular tree location pattern), whilst 
at Tazigou there is underdispersion (clustered tree location pattern). The 
values of the aggregation index were related to the mean distance be-
tween subject tree and first nearest neighbour, r̄. Highest species 
mingling exists at Knysna (M̄ = 0.82) and lowest at Hirschlacke (M̄ =

0.18). Stem-diameter differentiation is highest at Pen yr Allt Ganol (T̄ =

0.48) and lowest at Rosalia (T̄ = 0.30). 

2.4.1. Clocaenog forest area (Wales, UK) 
Clocaenog Forest lies on the southern side of the Denbigh moors, a 

relatively high dissected plateau rising to between 300 m and 500 m asl. 
The forest area (Tyfiant Coed plot 6 at 53◦ 04′ 56.79″ N, 003◦ 27′ 09.28″ 
W) included in this study is situated at an altitude of 350 m asl. The 
underlying solid geology is Silurian made up of slates, shales and grits. 
The soil is generally fine textured and often quite stony. Podzolic brown 
earth predominates where site drainage is sufficient. The climate is 
relatively harsh with cool temperatures and high rainfall. Rainfall is in 
excess of 1300 mm. The site was planted with Japanese larch (Larix 
kaempferi (LAMB.) CARR.) and lodgepole pine (Pinus contorta DOUGL. ex 
LOUD.) in 1932. Sitka and Norway spruce (Picea sitchensis (BONG.) CARR. 
and Picea abies L. KARST., respectively) colonized the forest area from 
adjacent stands in the late 1990s. Clocaenog forest area has size 98 ×
107 m and was surveyed in 2004. 

2.4.2. Hirschlacke forest area (Austria) 
The Hirschlacke forest area (48.64 N, 13.96 E) is situated in the 

northwestern corner of Austria, near the borders to the Czech Republic 
in the North and to Germany in the West at an elevation of 750 m asl. 
The main soil type is a gleyic cambisol. The mean annual temperature is 
6.7 ◦C and the mean annual precipitation has been recorded as 1146 
mm. When Hirschlacke was established as a research forest in 1977, the 
trees were 120 years old and dominated by Norway spruce. The forest 
also includes smaller proportions of silver fir (Abies alba MILL.) and beech 
(Fagus sylvatica L.). After 1977, the Hirschlacke forest area was treated 
by a combination of local, individual-based crown thinnings and target 
diameter harvesting (Reininger, 2000) for achieving a transformation to 
a complex-structured forest. After 40 years of treatment and observa-
tion, the Hirschlacke forest area is approaching a structure reminiscent 
of that which is typical of single-tree selection systems (Sterba, 2004). 
For the sampling simulation study, a 153 × 166 m large rectangular sub- 
plot and the data of the 2017 survey were used. 

2.4.3. Knysna forest area (South Africa) 
The Knysna forest area is part of the southernmost patches of the 

Afromontane forest in South Africa located south of the mountains be-
tween Humansdorp and Mossel Bay. Established in the Diepwalle State 
Forest in 1937, the Knysna forest area represents the largest indigenous 
forest complex in South Africa. The forest has been taken out of forest 
management in 1954 and is located to the north of the southern coastal 
town of Knysna (at about 33◦ 57′S, 23◦ 11′E). The forest area involves 25 
different species, the most frequent ones include ironwood (Olea capensis 
L. subsp. macrocarpa), kamassi (Gonioma kamassi E. MEY.) and real 
yellowwood (Podocarpus latifolius (THUNB.) R. BR. EX MIRB.). The study 

Table 2 

Area, number of trees, N, global species richness, S, minimum stem diameter, dmin, maximum stem diameter, dmax, aggregation index, R̄′, species mingling, M̄, stem- 
diameter differentiation, T̄, and mean distance between subject tree and first nearest neighbour, ̄r, in the six plots. The spatial indices were calculated from all trees in 
the sampling area without spatial edge correction as recommended for large tree populations by Pommerening and Stoyan (2006).  

Sampling area Area [ha] Number of trees,N S dmin[cm] dmax[cm] R̄′ M̄ T̄ r̄ 

Clocaenog  1.05 269 11  5.1  77.2  1.065  0.544  0.409  3.323 
Hirschlacke  2.54 2383 5  5.0  77.2  0.957  0.179  0.374  1.562 
Knysna  1.46 803 20  5.5  66.7  0.936  0.823  0.421  1.997 
Pen yr Allt Ganol  1.06 1190 11  1.9  65.0  0.999  0.599  0.477  1.492 
Rosalia  2.79 1048 7  10.0  85.0  1.208  0.450  0.304  3.115 
Tazigou  1.00 1040 12  1.0  66.0  0.765  0.591  0.450  1.186  
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area is situated at 517 m asl and the average annual maximum tem-
perature for the region is 19.2 ◦C whilst the average minimum is 11.1 ◦C. 
The mean annual precipitation may vary between 700 and 1230 mm 
(Gadow et al., 2016). A large sub-plot of size 130 × 120 m measured in 
1972 was included in this study. 

2.4.4. Pen yr Allt Ganol forest area (Wales, UK) 
Pen yr Allt Ganol (53◦ 06′ 25.60″ N, 003◦ 48′ 59.15″ W) is situated in 

Gwydyr Forest at an elevation of 230 m asl near the village of Betws y 
Coed (Snowdonia National Park, North Wales, UK). The main soil type is 
brown earth. Annual rainfall is in excess of 1200 mm. The mature stand 
consists of an overstorey formed by Scots pine (Pinus sylvestris L.) and 
Sitka spruce and was planted in 1931. Underneath the main canopy 
there is a rich understorey of mainly native broadleaved species; birch 
(Betula spp.) trees hold the largest proportion among them. Although 
originally managed the forest has been largely left to natural develop-
ment for the last 20–30 years. The Pen yr Allt Ganol forest area has a size 
of 104 × 102 m and the data of the 2001 survey were used in this study 
(Pommerening and Uria-Diez, 2017). 

2.4.5. Rosalia forest area (Austria) 
The Rosalia forest area (48.72 N, 16.17 E) is situated at 620 m asl in 

the Rosalia Mountains in the eastern part of Austria at the northern 
border between the federal states Lower Austria and Burgenland. The 
area is part of the university forest of the University of Natural Resources 
and Life Sciences, BOKU, and includes a mixture of mainly Norway 
spruce, Scots pine, European larch (Larix decidua MILL.) and beech. The 
main soil type is a podsolic cambisol. Mean annual temperature is 9.5 ◦C 
and mean annual precipitation has been recorded as 750 mm. Before 
1980 the forest area was managed as part of an agricultural estate with 
irregular, selective single-tree harvests which gradually gave rise to 
complex forest structure. Later on the ownership changed and the forest 
structure was simplified (Sterba, 2004). When the monitoring data were 
analysed in 1997, the forest was 98 years old with only a small cohort of 
young trees. For the simulation study, a 170 × 164 m large rectangular 
sub-plot and the data of the 1997 survey were used. 

2.4.6. Tazigou forest area (China) 
Tazigou Experimental Forest Farm (43◦05′–43◦40′ N, 

129◦56′–131◦04′ E) is located in Jilin Province, China. This area of 
secondary forest is situated on Laoyeling Mountain of the Changbai 
Mountain range. The elevation ranges from 300 m to 1200 m asl with 
annual rainfall ranging from 500 mm to 600 mm. The average annual 
temperature is 3.9 ◦C. The area has predominantly dark brown soil 
(humic cambisols) with a high natural fertility. The main tree species 
include Mongolian oak (Quercus mongolica FISCH. EX LEDEB.), Asian white 
birch (Betula platyphylla SUKACZEV), Korean pine (Pinus koraiensis SIEBOLD 

& ZUCC.), Ussuri popular (Populus ussuriensis KOMAROV), and Amur lime 
(Tilia amurensis RUPR.). The fully mapped 100 × 100 m plot included in 
this research is plot a at Tazigou as surveyed in 2013 (Wang et al., 2021). 

3. Results 

3.1. Sampling design performance by diversity indices 

A crucial element of the aggregation index by Clark and Evans (1954; 
Eq. 1 in Table 1), R̂′, accounting for tree location diversity is the tree 
density estimation (Eqs. (9)–(11). The estimator proposed by Köhler 
(1951; Eq. 9) has proved to be inappropriate in most inventory areas due 
to a considerable bias (Figs. S1-S5). The only exception was the esti-
mator’s performance at Tazigou (Fig. S6). Here rBias and rRMSE were 
considerably lower throughout the sample size range than in all other 
sampling areas. This was most likely related to the clustered dispersion 
of tree locations at Tazigou (Table 2). The most robust density estimator 
in nearly all six sampling areas was that proposed by Diggle (1975; Eq. 

10) using both the distance between sample point and sample tree and 
the distance between sample tree and the first neighbour (as part of the 
traditional distance method). Only at Rosalia (Fig. S5), where the ag-
gregation index indicated regular tree locations (Table 2), the T-square 
sampling density estimator proposed by Byth (1982; Eq. (11) apparently 
performed better than Diggle’s estimator. The T-square sampling esti-
mator performed best (with lowest rRMSE and rBias values) at Rosalia 
and worst at Tazigou. These sampling areas represent patterns with the 
most regular and most clustered tree locations, respectively, of all six 
sampling areas (Table 2). 

Both the mean directional index (Eq. 3 in Table 1), R̂, and the uni-
form angle (Eq. 2 in Table 1), Ŵ, can be considered robust alternatives 
to the aggregation index: In all six sampling areas the rRMSE curves 
quickly fell below a value of 0.2 and kept decreasing whereas the cor-
responding curves of the aggregation index decreased much less with 
increasing sample size (Figs. S1-S6). The results also show that the 
uniform angle index outperformed the mean directional index in all 
sampling areas, i.e. the associated rRMSE curves were markedly lower 
than those related to the mean directional index. Since both indices do 
not require tree density estimations, the differences in the rBias and 
rRMSE curves of the two sampling designs were small. The T-square 
sampling method, however, appears to have improved the results of 
both indices in most sampling areas (Figs. S1-S6). 

In most sampling areas, species mingling (Eq. 4 in Table 1), M̂, 
showed a more consistent performance than the weighted species 
mingling index (Eq. 5 in Table 1), M̂′. Due to its composite structure 
involving Eq. (4) and local species richness, most estimations of M̂′ were 
associated with a comparatively large and even with an increasing bias. 
An exception was the Hirschlacke sampling area, where it was the 
estimation of the traditional species mingling index,M̂, which led to a 
large bias. The T-square sampling estimator was often able to lower 
rRMSE and rBias of M̂ compared to traditional distance sampling, e.g. at 
Clocaenog (Fig. S1), Hirschlacke (Fig. S2), Rosalia (Fig. S5) and Tazigou 
(Fig. S6), however, the difference was comparatively small. 

When it comes to size inequality, stem-diameter differentiation, T̂, 
usually showed a better performance than diameter dominance, Û, with 
the exception of the Hirschlacke sampling area (Fig. S2), where the 
corresponding rRMSE curves were quite similar. Apart from the Clo-
caenog sampling area (Fig. S1), in all other five study areas T-square 
sampling resulted in slightly lower rRMSE curves for both competing 
indices compared to traditional distance sampling (Figs. S2-S6). 

3.2. Differences in the sample trees selected in the two inventory designs 

When considering the percentage of sample trees that differed be-
tween T-square and traditional distance sampling, ΔT, at any site and 
sample size, it is evident that this percentage can differ substantially 
between sampling areas (Fig. 3A). The highest number of ΔT = 36.7% 
was achieved at Rosalia and the lowest at Tazigou (ΔT = 23.7%). In all 
other sampling areas, ΔT was approximately 30%. Apart from very low 
sample sizes, this percentage was comparatively constant across sample 
sizes with only a slight increase (Clocaenog, Tazigou) or decrease 
(Knysna, Pen yr Allt Ganol). 

Intercept a of the linear relationship ΔT = a+b × n indicates the 
average percentage of sample trees that differ at any site between T- 
square and traditional distance sampling. Apparently, there was a strong 
correlation between aggregation index R̂′ and intercept a (Fig. 3B). This 
suggests that T-square sampling responds to and interacts with the 
spatial pattern of tree locations. ΔT is apparently very high in sampling 
areas with regular tree location patterns (Rosalia) and quite low in areas 
with clustered tree location patterns (Tazigou). In the other four study 
areas, the aggregation index has values around 1.0 (Table 2; Fig. 3B), i.e. 
the tree location patterns are close to complete spatial randomness. 
Apparently ΔT for such patterns is approximately 30%. 
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3.3. Dependence of critical sample size for rRMSE = 10% on spatial 
species and size patterns 

Interestingly, our analyses revealed that the sample size required for 
rRMSE = 10% in species mingling, M̂ (Eq. 4), and size differentiation, T̂ 
(Eq. 6), depends on how far removed the observed spatial species and 
size pattern of a sampling area is from the state of independent (random) 
species or size attributes, i.e. from a situation where any of these two 
attributes have no spatial correlation. We explored this relationship with 
the underlying spatial pattern using the species and the size segregation 
indices (Pommerening and Grabarnik, 2019, p. 132 and 141; Fig. 4). 
These indices are based on ratios where M̂ and T̂ are divided by the 
corresponding expected values accounting for random species and size 
dispersion. 

It turned out that the sample size required for rRMSE = 10% was 
usually not larger than 5 % when species and size segregation indices are 
near 0, i.e. when species and size attributes are independent (randomly 
dispersed). The larger the values of these segregation indices get the 
more there is a trend for the same species or the same sizes to be ar-
ranged in clusters and, as a consequence, the more the required sample 
size increases. In most cases, this increase happened exponentially, i.e. 

after a region of moderate increase the sample size would suddenly 
markedly increase. Only for size differentiation and traditional distance 
sampling a linear increase could be discerned (Fig. 4B). The different 
scales on the ordinates indicate that species mingling generally requires 
a much larger sample size than size differentiation. 

3.4. Critical sample size for rRMSE = 10% 

When calculating the sample size required for achieving rRMSE =
10%, it was obvious that the corresponding sample size required was 
comparatively low (Fig. 5). Across all indices and both sampling 
methods a sample size of n = 20% was sufficient in all sampling areas, 
often, however, much smaller numbers apply. Aggregation index (Eq. 1 
in Table 1) and species mingling (Eq. 4 in Table 1) were often among 
those indices that required larger sample sizes whilst uniform angle 
index (Eq. 2 in Table 1), mean directional index (Eq. 3 in Table 1) and 
differentiation index (Eq. 6 in Table 1) could be estimated accurately 
from smaller sample sizes. For all indices whose data points were situ-
ated below the 1: 1 line in the graphs of Fig. 5 it follows that the use of T- 
square sampling leads to lower sample sizes compared to the application 
of traditional distance sampling. 

This involved the majority of indices in all sampling areas. Domi-

Fig. 3. A: Percentage of sample trees that differ between traditional distance sampling and T-square sampling, ΔT, in the six sampling areas dependent on sample 
size. Each data point is a mean of 10,000 replications. The trend curves were modelled using Eq. (14). n – sample size in percent of the total number of trees in the 
sampling area. B: The linear relationship between the intercept a in ΔT = a+b × n and the aggregation index, R′, along with the corresponding 95%-confidence 

intervals. The coefficient of determination R̃
2 

was 0.91. 

Fig. 4. Critical sample size, n(D,T), required in traditional distance sampling and T-square sampling for achieving rRMSE = 10% (Eq. 12) calculated from Eq. (14) as 

n =
̅̅̅̅
α0
10

α1

√
over the species segregation index (A), Ψ = 1 − M

EM, and the size segregation index (B), Y = 1 − T
ET (Pommerening and Grabarnik, 2019, p. 132 and 141). EM 

is expected species mingling, ET is expected size differentiation. Black, blue – traditional distance sampling, red – T-square sampling. The trend curves were modelled 
using functions n(D,T) = a0 +ea1+a2×Ψ and n(D,T) = a0 +ea1+a2×Y along with the 95%-envelopes derived from the residuals through bootstrapping. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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nance index Û (Eq. 7 in Table 1) benefitted from T-square sampling in all 
sampling areas. The largest percentage gain that could be achieved 
through the application of T-square sampling was a 40% reduction in 
sample size (M̂ at Clocaenog), followed by 8% for R̂ at Tazigou and 7% 
for Û at Clocaenog. Our results indicated that T-square sampling can be 
considered a robust option that does not lead to any catastrophically bad 
consequences in the estimation of any of the seven diversity indices in 
any of the six sampling areas. 

4. Discussion 

Distance sampling and its modification, i.e. T-square sampling 
(Besag and Gleaves, 1973), play an important role in plant ecology 
(Krebs, 1999; Newton, 2007). More recently T-square sampling has been 
proposed for surveying refugee camps and other human settlements 
(Bostoen et al., 2007; Diggle, 2014) and it is likely that there are many 
more interesting applications. Spatial tree diversity indices have in the 
past performed remarkably well in studies involving distance sampling 
(Pommerening and Lewandowski, 1996; Pommerening, 1997; Kint 
et al., 2004) and this good performance suggested that T-square sam-
pling may lead to further improvements whilst at the same time 
reducing the potential bias arising from the preferential selection of 
isolated individuals to a minimum. 

Our results confirmed that T-square sampling has indeed a major 
influence on the estimation of population density. We found that the 

estimators suggested by Diggle (1975; Eq. 10) for traditional distance 
sampling and the estimator put forward by Byth (1982; Eq. 11) for T- 
square sampling are very reliable across different spatial patterns, 
whereas the forestry estimator proposed by Köhler (1951; Eq. 9) cannot 
be recommended for its unpredictable behaviour. In addition, the results 
shown in Fig. 3A suggest that T-square sampling is particularly effective 
in forests with regular (overdispersed) tree patterns, since ΔT is highest 
here and the corresponding density estimations are most accurate at the 
same time. 

Comparing the sampling performance of competing diversity indices 
in terms of traditional distance and T-square sampling was one objective 
of our study. The aggregation index by Clark and Evans (1954; Eq. 1 in 
Table 1) requires population density as input and additionally uses the 
distance between sample tree and first nearest neighbour. As such the 
aggregation index is a composite index similar to the weighted species 
mingling index (Eq. 5 in Table 1). The estimation of composite tree di-
versity indices is often associated with larger sampling errors than that 
of simple indices (Pommerening and Sterba, 2024). This was also 
confirmed in our study (Figs. S1-S6). It was interesting to see that the 
indices competing with the aggregation index, i.e. the uniform angle 
index (Eq. 2 in Table 1) and the mean directional index (Eq. 3 in 
Table 1), which generally do not involve population density estimations, 
can often be estimated from samples with a much lower sample size than 
that required for the aggregation index. This means that these two 
indices are robust alternatives to the aggregation index. Here again the 
uniform angle index outperformed the mean directional index, i.e. the 
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Fig. 5. Critical sample size, n(T), required in T-square sampling for achieving rRMSE = 10% (Eq. 12) over the same critical sample size, n(D), required by traditional 

distance sampling and calculated from Eq. (14) as n =
̅̅̅̅
α0
10

α1

√
. Sample size n is expressed in percent of the total number of trees in the sampling area. The tree diversity 

indices follow the notation of Table 1. For those indices where T-square sampling led to smaller values of rRMSE (Eq. 12) compared to traditional distance sampling, 
the reduction in sample size, n, is given in brackets. Indices for which the critical sample size exceeded 100% were excluded from the graphs. 
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associated rRMSE curves were markedly lower than those related to the 
mean directional index. In a similar way, the traditional species 
mingling index (Eq. 4 in Table 1) should be preferred in distance sam-
pling to the weighted species mingling index (Eq. 5 in Table 1). In terms 
of size diversity, the size differentiation index (Eq. 6 in Table 1) largely 
outperformed the size dominance index (Eq. 7 in Table 1) in our distance 
sampling simulations. This sampling performance provides strategic 
information useful for sampling planning. However, sampling perfor-
mance should not be confused with an index’ general ability to indicate 
spatial diversity patterns or with its statistical power. 

We were able to show that T-square sampling flexibly responds to the 
spatial pattern of tree locations in sampling areas (Fig. 3). As our dis-
cussion of different density estimators in Section 2.3 has shown, inter-
tree distances play a crucial role in density estimations and these depend 
on the spatial pattern of tree locations. In regular (overdispersed) pat-
terns, T-square sampling selects approximately 10% more sample trees 
that differ from those selected in traditional distance sampling (ΔT) 
compared to the situation of complete spatial randomness. In such 
patterns, the interaction between tree and sample point locations 
apparently leads to a large number of angles OPQ (see Section 2.2) that 
are smaller than 90◦. In clustered (underdispersed) patterns, T-square 
sampling selects approximately 10% less sample trees that differ from 
those selected in traditional distance sampling (ΔT) compared to the 
situation of complete spatial randomess. Here, the interaction between 
tree and sample point locations apparently leads to a large number of 
angles OPQ (see Section 2.2) that are larger than 90◦. The different 
percentages of differing sample trees, ΔT, are part of an interesting self- 
adaptation strategy of T-square sampling. As an alternative to T-square 
sampling for spatial diversity indices, Hui and Albert (2004) proposed a 
sampling design where the four nearest Euclidean tree neighbours of 
each sample point are considered sample trees and for each of these four 
the corresponding tree diversity indices are determined so that there are 
four index results per sample point. 

An important result of our study was finding evidence for the fact 
that the critical sample size for species mingling and size differentiation 
clearly depends on the degree to which trees of the same species or of the 
same size are arranged in spatial clusters (Fig. 4). Such segregation 
patterns are, in fact usually the more interesting cases rather than sit-
uations where both attributes are more or less randomly dispersed. 
However, when such clusters occur, the sample size required for rRMSE 
= 10% increases and, after passing a certain tipping point, sample size 
can dramatically increase. This illustrates how spatial forest structure 
interacts with sampling designs: The sampling error itself is also an 
expression of tree diversity and the more diverse a forest gets the larger 
the sample size has to be in order to achieve a certain sampling error 
(Pommerening and Stoyan, 2008). 

In a forestry context, it may be of interest to know how baseline 
forestry characteristics such as basal area per hectare, G, and quadratic 
mean diameter, dg, can be estimated in T-square sampling in addition to 
spatial measures of tree diversity. Since the estimation of tree density 
(number of trees per hectare, N) can be relied on when using either the 
Diggle or the Byth estimators (Eqs. 10 or 11), the quadratic mean 
diameter, dg, can be estimated by simply calculating this characteristic 
according to forest mensuration textbooks. Previous simulation studies 
have, however, shown that it is best to measure the stem diameters not 
only of the sample trees but also for the four nearest neighbours, i.e. five 
diameter measurements per sample point, and to calculate dg based on 
these measurements (Pommerening, 1997). G can then be retrieved 
through the well-known relationship 

Ĝ =
N̂ × π × d̂

2
g

4
(15) 

Our results have demonstrated that T-square sampling makes a small 
contribution to either decreasing the sample size (for a fixed rRMSE) or 
increasing the accuracy of distance sampling (for a fixed sample size). In 

other words, traditional distance sampling is a good method for esti-
mating most diversity indices and leads to only a small bias if any so that 
there is not much room for T-square sampling to make improvements. 
This performance of T-square sampling also implies that the preference 
of isolated individuals in distance sampling is apparently a minor issue 
in our context, which is of little consequence to spatial diversity indices 
unless they include measures of tree density. On the other hand, T- 
square sampling did actually improve the estimation performance of 
most spatial diversity indices in all our six sampling areas and never 
contributed to extremely bad estimations. In many situations, sample 
size reductions between 0.06% and 40% could be achieved by the 
application of T-square sampling (Fig. 5). As such our initial hypothesis 
is largely true. Therefore, T-square sampling can be considered a robust 
sampling method for spatial tree diversity indices. 

5. Conclusions 

Both traditional distance and T-square sampling are robust methods 
for sampling spatial measures of tree diversity that deliver reliable re-
sults when sampling no more than 20% of all trees in a sampling area. 
The estimators of distance sampling in conjunction with systematic grids 
of sample points particularly benefit from spreading the sample trees 
evenly across the whole sampling area and thus provide a good coverage 
of the forest (Pommerening, 1997; Kint et al., 2004). T-square sampling 
has the ability to adapt to different spatial patterns of tree locations. 
With most spatial patterns, T-square sampling is able to decrease sample 
size or increase accuracy of traditional distance sampling and has the 
added benefit of an in-built bias control. We could also show that rRMSE 
of species mingling and size differentiation clearly depends on the un-
derlying spatial pattern. When applying distance sampling, the uniform 
angle index (Eq. 2 in Table 1), the species mingling index (Eq. 4 in 
Table 1) and the size differentiation index (Eq. 6 in Table 1) can be 
recommended, because in terms of rRMSE and rBias they performed 
better across different spatial patterns than their competitors. For tree 
density estimations the Diggle and Byth estimators (Eqs. 10 and 11) can 
be relied on. 
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