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Abstract: The high mountain forests on Earth are characterized by sharp environmental heterogeneity,
high species endemism, and unique phenotypic adaptations. Yet, global warming is jeopardizing this
ecosystem as no other as some forests may have nowhere to go beyond the mountain’s summits. One
of the most human-endangered high-elevation ecosystems is the Polylepis forest. Despite its vulnera-
bility, forecasting climate reactions in this distinctive high mountain forest type remains a formidable
challenge. Therefore, in this study, we modeled climate change responses of high-elevation allopatric
Polylepis sericea and P. quadrijuga (Rosaceae) in the northern Andes. The analysis took into account
VIF-prioritized bioclimatic variables for near-to-present and future (2081–2100 MPI-ESM1-2-HR) condi-
tions. Model selection was carried out following the AUC scores of 12 MaxEnt and six machine learning
algorithms. Predictive power reached 0.97 for MaxEnt’s model fc.H_rm.1 (H-1). Results indicate a
moderate vulnerability of P. sericea, with a 29% loss of area in the trailing edge, due to climate change
for the period 2081–2100. On the other hand, P. quadrijuga is likely to experience even larger distribution
losses, up to 99%, for the same period. The findings of this study suggest that P. quadrijuga, as compared
to P. sericea, exhibits a restricted ability to maintain the corresponding habitat requirements in the face
of climatic change. Higher niche specialization of P. quadrijuga in the environmentally heterogeneous
Eastern Cordillera contrasts with the more generalist nature of P. sericea in the topographically less
complex Central Cordillera. In addition to climate change, this trend may be exacerbated by the detri-
mental effects of agriculture, mining, and an expanding rural population, which represent significant
human-driven pressures yet to be modeled in the northern Andean highlands. Yet, based on previous
studies, the historical population dynamics during the past glacial cycles suggests that range shifts could
play a more significant role at deeper time scales than previously forecasted in the species’ reaction to
climate change. Additionally, Polylepis forests may be able to endure at the current locations via local
adaptation and plasticity, major drivers of the phenotypic variation in long-lived trees, counteracting
the vulnerability scenario under a niche conservatism hypothesis. Ultimately, the modeling procedure
employed in this study provides insights into the potential effects of climate change on Polylepis forests
70 years from now. Oncoming studies may consider alternative responses inherent to the gene pool
of the species and the interaction with edaphic and biotic agents. We advocate for the application of
comparable estimations in other high-elevation tree communities found at the tree line.

Keywords: P. sericea; P. quadrijuga; niche conservatism; species range shifts; migration potential;
in situ adaptation; sub-Páramo; Neotropics; northern Andes; species distribution model; extinction
at the trailing edge; uncolonized leading edge

1. Introduction

One of the most pressing inquiries in recent biological conservation studies is to assess
the impact of climate change on tree communities [1] and their subsequent cascade response
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on multiple ecosystem services [2]. The majority of research concerning reactions in alpine
ecosystems to shifting climatic patterns presupposes that populations would migrate to
higher elevations in order to match their ideal habitat conditions [3,4]. In certain instances,
there may also be migration to lower elevations as a result of competitive release [5]. When
range shifts capacity is limited due to biological, dispersal, or geographical constraints [6],
adaptation could facilitate the persistence of populations in the face of new environmental
conditions. The significance of plasticity and local standing adaptation in long-lived tree
species is likely due to the fitness advantage of genotypes that exhibit multiple, even
antagonistic, phenotypic responses during their lifespan [7,8]. Anyhow, it is possible that
species may lack sufficient intrinsic adaptive potential, especially in secluded and endemic
populations, as to effectively respond to the rapid rate of climatic change [9]. Consequently,
forecasting climate change’s impact in tree species requires examining future gaps in the
distribution of the species [10].

High-elevation (as per [11]) forests at the tree line and the sub-Páramo grasslands [12,13]
in the American tropics (i.e., Neotropics) are vulnerable to climate change [14–16] given
its restricted area [17]. This ecosystem, situated at elevations ranging from around 3000
to 4000 m, is characterized by a waving tree line that mingles grasslands with embedded
forest patches. Notably, a significant proportion of these species are endemic [18,19]. Such
endemics have emerged over the past five million years, since the Andean uplift, as dis-
tinctive adaptations to the challenging conditions found in the region [20], which include
low temperature [21], frost damage [22,23], osmotic stress (e.g., drought and flooding),
depleted carbon dioxide levels, impoverished soil layers, and extreme UV radiation [24].
Exceptional specialization among plant groups in these high-elevation habitats, known as
“sky islands” [25], has been attributed [26,27] to the Pleistocene glacial cycling that occurred
over the past 2.4 million years [28]. Glacial cycles resulted in what is known as the “species
pump hypothesis” [29], recurrent periods of both spatial isolation (i.e., allopatry) and con-
nectivity (i.e., sympatry) among high-elevation populations that reiteratively enhanced
allopatric divergence and reinforced the reproductive barriers that originally arose from
ecological divergence across habitats [30]. Varying population distributions in concert with
historical glacial cycles suggests limited in situ persistence and significantly constrained
habitat preferences, favoring range changes through migration [31–33]. Yet, there is still a
need to further investigate if the high-elevation Neotropical forests can effectively persist or
migrate upwards at the fast pace of climate change [34].

Tree diversity in high-mountain Andean forests is limited to around 11 families, the
Rosaceae and Asteraceae being dominant [35], and the Polylepis forest (Rosaceae) one of
the few arboreal communities above the tree line [36]. This makes the genus Polylepis
the most dominant and iconic in the high-elevation Neotropical forests. It consists of
approximately 28 to 33 species, which have not yet been defined accurately [37]. They
comprise of small trees and shrubs, distributed along the Andean mountains, from northern
Venezuela to the north of Chile and northeast Argentina. In Colombia, there are three
allopatric species: P. sericea Wedd., P. quadrijuga Bitter, and P. incana Kunth. Polylepis sericea
is the species with the largest distribution range in the northern Andes, exhibiting notorious
morphological heterogeneity. This species can be found in the southern part of Colombia,
on the borders with Ecuador, as well as in the northern part of the Central and Western
Cordilleras, at elevations that are above 2800 m, reaching up to 4000 m above sea level. On
the other hand, P. quadrijuga is a species endemic to Colombia [37] and is found mainly in
the Eastern Cordillera, with smaller populations in the Central and Western Cordilleras.
Discouragingly, previous research targeting the latter species predicted a significant loss
of suitable habitat due to climate change [38]. Finally, P. incana is rarely mentioned in
Colombia, as it is represented by small populations in the southern Colombian Andes [39],
and therefore will not be discussed further as part of this study.

Two main drivers may explain the persistence of Polylepis forests in environments with
extreme conditions [40]. First, isolated populations could be preferably associated with
creeks that allow the entry of hot air, acting as a damper to low temperatures. Alternatively,
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anthropic pressures may have exerted a strong pressure on the species, generating the
current distribution in secluded areas. Regardless of the ultimate cause of the species
distribution, a common denominator is that the Polylepis forests tend to be in environments
that exhibit a high degree of heterogeneity [40]. For instance, some populations are adapted
to damp depressions in high valleys, dry exposed slopes, and even outside forested areas
near the Páramo grassland [37]. As a result, these populations are exposed to a diverse
array of micro-climatic variables across different elevations and regions [41]. The presence
of diverse local habitats [42] could potentially offer favorable sites for species to migrate in
close proximity to their existing patches [43]. In parallel, ecological specialization evolved
to a narrow range of environmental variables and may, in turn, limit populations’ responses
to novel challenges. Thus, the impacts of microhabitat variability on the species’ reactions
to climate change are not straightforward, mostly in long-lived high-elevation trees with
restricted areas for seed establishment.

Unveiling possible outcomes for the species would then contribute to a better under-
standing of the climate effects in the endangered high mountain forests. As part of this task,
it is paramount to assess the vulnerability of Polylepis spp. by contrasting their present and
future distributions. Based on this, the goal of this study was to quantify the responses to
climate change of P. sericea and P. quadrijuga by comparing their current distribution with
the projected coverage in the decades 2081–2100, assuming niche conservatism and range
shifts. This work will help in forecasting the long-term reactions to environmental change
of high-elevation forests in the Neotropics, precisely where the largest impacts of climate
pressures have been theorized [44,45].

2. Materials and Methods
2.1. Study Area and Data Compilation

Two different platforms were used to comparatively compile data for P. sericea and
P. quadrijuga species: (1) Global Biodiversity Information Facility or GBIF, an international
organization and, in turn, a data network with the aim of providing free information on
any type of existing biological data (https://www.gbif.org/ accessed on 1 May 2024), and
(2) BIEN or Botanical Information and Ecology Network (https://bien.nceas.ucsb.edu/
bien/ accessed on 1 May 2024). The latter is a computer-based technology that seeks to
understand the impact of climate change on plant diversity, through a collaborative network
that has been shaped by disaggregated teams of botanical researchers [46]. GBIF initially
provided 837 observations, of which 527 belonged to P. sericea and 310 to P. quadrijuga. A
total of 176 observations were obtained from the BIEN database, out of which 134 were
for P. sericea and the remaining 42 for P. quadrijuga. A data management process was
carried out, in which duplicate or identical data were initially removed from both acquired
databases, followed up by the exclusion of data without georeferencing. Finally, a filter
was created for P. sericea to only retain observations made in Colombia. This step was
not carried out for P. quadrijuga because it has only been recorded in Colombia, leaving
unique observations for the Eastern Cordillera in the Colombian Andes (Figure 1). The
final number of records per species was 33 for P. sericea and 72 for P. quadrijuga (Table S1),
after respectively depurating nine and ten multiple occurrences within the same 1 km2

pixels (the original distance classes before this sieving step ranged from 0.0002 to 704.1 km
for P. sericea, and from 0.0013 to 462.9 km for P. quadrijuga). The above sampling intensity
mitigated potential biases arising from distributions characterized by a limited number
of input points [47], particularly for taxa that are presumed to be uncommon [48] (like
P. incana), that is, those species that possess less than 10 original records [49]. In addition,
modeling algorithms such as MaxEnt advise utilizing a minimum of 30 occurrence points
for forecasting robust species distribution models [50].

Meanwhile, near-to-present bioclimatic data were obtained from the WorldClim
repository [51], from a 30-year historical archive. The space resolution chosen was 30 s,
which is approximately equivalent to pixels of 1 km2. A total of 19 bioclimatic variables
were retrieved (enlisted here https://www.worldclim.org/data/bioclim.html accessed on

https://www.gbif.org/
https://bien.nceas.ucsb.edu/bien/
https://bien.nceas.ucsb.edu/bien/
https://www.worldclim.org/data/bioclim.html
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1 May 2024), all of which are exclusively estimated from precipitation and temperature. Ad-
ditionally, mean precipitation (mm), and mean, maximum, and minimum temperature (◦C)
were retrieved from the same platform as boundary bioclimatic conditions. Subsequently,
future values of bioclimatic variables were gathered with environmental projections for the
period 2081–2100, also at a resolution of 30 s. We focused on the period 2081–2100 because
we were interested in long-term effects, besides the fact that the long generation time of
Polylepis spp. would obscure interpretations at shorter time frames. The obtained projected
data belonged to the German-developed model MPI-ESM1-2-HR [52]. This scenario simu-
lates climate change using historical data [53], and has been recommended for the northern
Andes [54] because it exhibits reasonable forecasts of the seasonality in the region [55].
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Figure 1. Geographical representation of the sampling area. Distribution map of P. sericea and
P. quadrijuga in Colombia. Red and blue dots respectively denote P. sericea and P. quadrijuga.

2.2. Prioritization of Bioclimatic Variables

The prioritization of environmental factors controls the complexity of models used
for climate sensitivity evaluations [56]. Therefore, the minimization of collinearity [57],
sample bias [58], and the improvement of variable selection [59] are desirable. Collinearity
denotes a strong association between two or more predictor variables, which can lead
to instability in the estimate of parameters [60]. A proxy to determine collinearity is the
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Variance Inflation Factor (VIF), which is the square of the multiple correlation coefficient
resulting from regressing a predictor variable against all other predictor variables [61].

Thus, variable selection was conducted by retaining those with VIF < 10, as per the
usdm package [62] in R v.3.3.1 (R Core Team). Pairwise Pearson correlation scores (r) across
all variables were drawn using the same software. This way, an optimum set of climatic
variables was selected to minimize collinearity. Additionally, the absolute correlation
coefficients (r) among these variables were inspected. As a result, a subset of the original 19
variables was considered to be non-collinear and was included in subsequent modeling
analyses for each species (P. sericea and P. quadrijuga). Ad hoc addition of other variables
(e.g., Thornthwaite aridity index) was solely based on technical criteria.

2.3. Potential Niche Distribution Modeling

The climate sensitivity of P. sericea and P. quadrijuga was modelled independently by
comparing the current and projected future datasets gathered in the previous step. This
analysis was conducted under the assumption of niche conservatism, which implies that
range shifts would occur via selection, extinction, and migration. The modeling effort
was further enhanced by incorporating modern advancements in artificial intelligence,
specifically through machine learning methods such as Maximum Entropy (MaxEnt) and
other sophisticated algorithms. These tools allow for a deeper comparative understanding
of species distribution changes, enabling the prediction of habitat suitability under varying
climate scenarios with greater accuracy and detail.

Potential niche distribution modeling was first carried out by the Maximum Entropy
algorithm [50,63,64] that employs maximum entropy and Bayesian inference techniques to
estimate probability distributions of occurrences [63]. This approach was executed by the
R-function MaxNet (https://github.com/mrmaxent/maxnet accessed on 1 May 2024) from
the R-package ENMeval [65], and included the optimization of transformations (L = linear,
Q = quadratic, H = hinge, P = product, and T = threshold) of the original predictor variables
(“feature classes”). Each taxon was subjected to an average of 10,000 pseudo-absences in a
500 km buffer zone, following [65]. Fourfold cross-validation was used for each duplicated
run, with a total of 500 iterations, according to previous standardizations [66], entailing a
testing of 25%. Model validation used Area Under the Curve (AUC), an inclusive metric
for evaluating relative performance across 12 models built with the same data [65]. We
computed and evaluated AUC as a potential source of deception, an approach already
demonstrated by other authors [67,68].

On the other hand, six supervised machine learning approaches were explored to
model the potential niche distribution. They included Random Forest (RF) [69], Gradient
Boosting Modeling (GBM) [70], Logistic Model (Log) [71], Naïve Bayes (NB) [72], Linear
Discriminant Analysis (LDA) [73], and the K-Nearest Neighbors algorithm (KNN) [74,75].
All machine learning approaches were carried out using the R-package Caret [76]. Each
machine learning algorithm was optimized in the main hyperparameters from 500 iterations
using repeated cross-validation with a testing of 20%.

The best forecast among all MaxEnt and machine learning models was independently
selected for P. sericea and P. quadrijuga following AUC scores. For each case, ten split-sample
models were executed following previous calibrations [77]. The binary reclassification
of presence, with a threshold of >90%, was performed, as advised [78], and the average
value over several repeats was then recorded for each individual instance. The analytical
technique was executed on the historical dataset spanning the years 1970 to 2000. However,
in order to forecast alterations in the distribution of P. sericea and P. quadrijuga, we utilized
the trained models to project onto existing locations where the species is now found, taking
into account the prevailing climate conditions. These projections were carried out for
the years 2081–2100, as retrieved from the previous section, using the predict function of
the R-package raster [79]. The projection maps were retrieved and summarized using a
personalized R-script with the ggplot R-package [80].

https://github.com/mrmaxent/maxnet
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The maps were subsequently aggregated to recreate the likelihood of present and
future existence of P. sericea and P. quadrijuga across the geographical space. Maps of
each climate change scenario (current vs. future) were faced per species in order to assess
the climate sensitivity of Polylepis forests. Alterations in the projected distribution areas
of Polylepis spp. were suggestive of regions where the likelihood of presence was either
reduced or enhanced as a result of climate change.

3. Results
3.1. Prioritization of Bioclimatic Variables

Only variables that presented a VIF score below 10 were retained to minimize multi-
collinearity due to variables highly correlated with many others. The optimization left seven
informative bioclimatic variables, non-correlated among them (Figure 2), for P. sericea: Bio3,
Bio4, Bio8, Bio14, Bio15, Bio18, and Bio19 (as named in the original WorldClim platform),
and eight for P. quadrijuga: Bio3, Bio4, Bio7, Bio8, Bio14, Bio15, Bio18, and Bio19, besides
the boundary bioclimatic conditions [i.e., mean precipitation (mm), and mean, maximum
and minimum temperature (◦C)] (Figure S1).
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B

Figure 2. Correlograms of bioclimatic variables for the current distributions of (A) P. quadrijuga and
(B) P. sericea. Cells are colored according to the absolute Pearson’s correlation score, as mark in the
gradient to the right of each subpanel. Non-significant correlations under Holm’s test appear as
strikethrough, yet still depicted for the reader’s traceability. Variables are sorted according to the hclust
function from R in order to maximize groupings and visualize more straightforward concerted tendencies
in the among-variables correlations. Variables’ names are according to WorldClim (https://www.
worldclim.org/data/bioclim.html accessed on 1 May 2024) as follows: Bio1: annual mean temperature,
Bio2: mean diurnal range (mean of monthly (max temp—min temp)), Bio3: isothermality (bio2/bio7)
(×100), Bio4: temperature seasonality (standard deviation × 100), Bio5: max temperature of warmest
month, Bio6: min temperature of coldest month, Bio7: temperature annual range (Bio5–Bio6), Bio8:
mean temperature of wettest quarter, Bio9: mean temperature of driest quarter, Bio10: mean temperature
of warmest quarter, Bio11: mean temperature of coldest quarter, Bio12: annual precipitation, Bio13:
precipitation of wettest month, Bio14: precipitation of driest month, Bio15: precipitation seasonality
(coefficient of variation), Bio16: precipitation of wettest quarter, Bio17: precipitation of driest quarter,
Bio18: precipitation of warmest quarter, and Bio19: precipitation of coldest quarter. Additionally, prec:
mean precipitation (mm), tavg: mean temperature (◦C), tmax: maximum temperature (◦C), and tmin:
minimum temperature (◦C) are also depicted as boundary bioclimatic conditions.

https://www.worldclim.org/data/bioclim.html
https://www.worldclim.org/data/bioclim.html
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3.2. Model Accuracy

Traditional MaxEnt software conceded a satisfactory inspection of the 12 models’
accuracy, including prediction area and omission rate as per AUC scores (Figure 3A,B,
Table S2), even when contrasted with machine learning models (Figure 3C,D). In each case,
the blue bar shows the model match to the training data, and the green one indicates the
model fit to the test dataset. For the case of P. quadrijuga, all MaxEnt models presented
a fairly high predictive power (up to 0.97 for model fc.H_rm.3, abbreviated as H-3). For
P. sericea, the tendency was slightly shifted but still showed good predictive power (up
to 0.953 for model fc.H_rm.1, abbreviated as H-1). In both cases, the MaxEnt preferred
alternative exceeded AUC scores in the machine learning testing, indicating an adequate
signal in terms of information content. Thus, these modeling approaches were consistently
implemented in the following downstream pipeline for P. sericea and P. quadrijuga.
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Figure 3. Summary runaway plots (i.e., horizontal bar plots) of omission rate charts as synthetized by
the AUC score for different modeling approaches with near-to-present bioclimatic variables. Graphs for
(A) P. quadrijuga and (B) P. sericea using various parametric combinations of the MaxEnt algorithm, and
graphs for (C) P. quadrijuga and (D) P. sericea using machine learning alternatives. Parametric combina-
tions of the MaxEnt algorithm relied on the optimization of transformations (L: linear, Q: quadratic,
H: hinge, P: product, and T: threshold) of the original predictor variables (“feature classes”) using
the R package ENMeval [65]. The six supervised machine learning approaches include: RF: Random
Forest [69], GBM: Gradient Boosting Modeling [70], Log: Logistic Model [71], BY: Naïve Bayes [72], LDA:
Linear Discriminant Analysis [73], and KNN: K-Nearest Neighbors algorithm [74,75]. Red diamonds
mark the preferred alternatives according to the AUC in the testing (green horizontal bars).
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3.3. Presence Probability

The estimated presence probabilities matched expected present-day areas (Figure 4).
Version May 9, 2024 submitted to Journal Not Specified 3 of 5
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Figure 1. 2.Figure 4. Presence probability of suitable conditions for the establishment of Polylepis spp. Presence
probability (>90%) for: (A) P. quadrijuga with near-to-present bioclimatic variables, (B) P. quadri-
juga given predicted bioclimatic scores for the years 2081–2100, (C) P. sericea with near-to-present
bioclimatic variables, and (D) P. sericea given predicted bioclimatic scores for the years 2081–2100.
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Presence probability maps show that both P. sericea and P. quadrijuga, given the current
bioclimatic data, exhibit high probability (>0.9) of suitable conditions for their establishment
in the expected areas (Figure 4A,C). However, suitable areas dramatically change for the
predictions of the 2081–2100 period. While for P. sericea the probable area reduced by 29%
(current distribution totalizing 12,062 km2, Figure 4C vs. predicted future distribution of
8558 km2, Figure 4D), the absolute probability decreased radically for P. quadrijuga, so much
that it was difficult to find probability scores greater than 0.1 in future projections (current
distribution totalizing 5624 km2, Figure 4A, vanished in the future scenario, Figure 4B).
Area loss for the latter was estimated to be 99%, as expected for species in the Andes due to
a decrease in the optimal area for their establishment and growth.

In order to interpret more thoroughly the species range shifts, we summarized the
presence probabilities > 0.9 across the altitudinal gradient (Figure 5). The current dis-
tribution for P. quadrijuga using near-to-present bioclimatic variables was centered at a
median of 3592 m a.s.l. (Figure 5A) without any shifts due to its disappearance (99% lost
area). On the other hand, the current distribution for P. sericea based on near-to-present
bioclimatic variables was centered at a median of 3629 m a.s.l. with a progressive shift of ca.
200 m towards 3828 m a.s.l. according to the predicted bioclimatic variables for the years
2081–2100 (Figure 5B). Interestingly, the latter range shift did not imply the colonization
of novel habitats at higher elevations, but rather the disappearance of populations at the
lowest edge of the current species distribution. In other words, this pattern was consistent
with extinction at the trailing edge as supposed to colonization of the leading edge. Such
trend was also observable when the near-to-present and predicted future distributions
were overlapped within the same map (Figure 6). The latter graphical depiction also
suggested abundance of novel suitable habitats for P. sericea in the northeast corner of the
Eastern Cordillera (i.e., the highlands of Almorzadero, El Cocuy, and Pisba), and to a lesser
extent in the southerner Sumapaz complex, both of which are currently major hotspots for
P. quadrijuga (Figures 1 and 4A). Another apparently suitable area for P. sericea, yet still
non-colonized, is located in Sierra Nevada, an isolated sea-level massif in northern coastal
Colombia with no connection to the Andean range.
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Figure 5. Summarized range shifts of suitable conditions for the establishment of Polylepis spp. across
the altitudinal gradient. Presence probability (>90%) for: (A) P. quadrijuga and (B) P. sericea given
near-to-present bioclimatic variables (purple distribution) and predicted bioclimatic scores for the years
2081–2100 (green distribution). Dotted lines mark means in each case. While P. quadrijuga may go extinct,
the range shift for P. sericea (in (B)) does not indicate the colonization of the leading edge, which is a
higher elevation; instead, the lost areas at the lowest edge of the current species distribution are consistent
with extinction at the trailing edge (i.e., only purple bars in (B) without overlap with the green bars).
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Figure 6. Summarized range shifts of suitable conditions for the establishment of P. sericea. Dark blue
shaded areas indicate the potential presence probability (>90%, 8558 km2) of P. sericea given predicted
bioclimatic variables for the years 2081–2100, while the surrounding red zone corresponds to lost
areas (3504 km2, 29%) from the current distribution (12,062 km2, Figure 4C) as modeled with near-to-
present bioclimatic variables. The red areas also correspond to extinction at the trailing edge. The
northeast corner of the Eastern Cordillera is currently inhabited by P. quadrijuga (Figures 1 and 4A),
and therefore corresponds to a novel suitable habitat for P. sericea.
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Water deficit in the creeks and microhabitats where the water-sensitive Polylepis forests
establish could imply a reduction in the distribution range of the species. In this case, a de-
crease in the presence and density of trees could negatively affect even more the availability
of water, i.e., the snowball effect. This dependency is suggested in Figure 7, in which the
Thornthwaite aridity index taken from the ENVIREM (Environmental Raster for Ecological
Modeling) repository was included ad hoc in the estimation of the current probability
of distribution for both P. sericea and P. quadrijuga. The inclusion of a baseline with the
Thornthwaite aridity index reinforced the previous predictions, with a loss of suitable
microhabitats for the species development due to an imminent temperature increase, which
would raise evapotranspiration and decline the system’s water stock.
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Figure 7. Presence probability maps including the Thornthwaite aridity index of suitable conditions
for the establishment of Polylepis forests. Presence probability (>90%) for (A) P. quadrijuga and
(B) P. sericea using near-to-present bioclimatic variables after including Thornthwaite’s aridity index
as an ad hoc variable targeting explicit eco-physiological constraints.

4. Discussion
4.1. Range Losses Are Expected Mostly for P. quadrijuga Forests

At the biological level, P. quadrijuga appears to be more vulnerable to climate change
than P. sericea. A significant reduction is predicted in the distribution area of P. quadrijuga,
namely a decrease in the likelihood of finding suitable areas. Under controlled conditions,
studies have shown a loss of diversity with increasing scores for climatic variables such as
temperature, which proves to be a determining factor in this type of predictions [81]. For
the particular case of Polylepis ssp., several biovariables retained in the analysis were related
to temperature. Raised temperature can create conditions like a warmer atmosphere, which
could in turn cause greater evapotranspiration, and thus more severe droughts and heat
episodes [82]. Yet, warmer temperatures, along with improved edaphic conditions and soil
water availability, could also boost diversity [4] and tree growth in a temperature-limited
ecosystem [83,84]. Each of these scenarios causes distinct effects on the trees’ development
(phenology) and growth (resource acquisition) [85,86].
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Increased temperature will also cause habitat shifts in an elevational gradient, more
dramatically for P. quadrijuga than for P. sericea. Habitat shifts will in turn cause a movement
of microclimates [87,88], generating a displacement of species and a decrease in areas
available for their establishment [89]. This would result in a reduction in the area of
microhabitats that currently provide shelter to P. quadrijuga, a more specialized species
locally adapted to the intrinsic climate heterogeneity and topographic complexity (as per
ruggedness and connectivity [28]) of the Eastern Cordillera. These losses have already been
observed since the last glacial episode to the present, during which approximately 62% of
the original Polylepis forest area was lost in the northern Andes [40]. Meanwhile, P. sericea
seems more resilient to variations, a likely byproduct of its generalist adaptation to the less
climate-variable, and perhaps more recently colonized, Central Cordillera.

It is anticipated that there will be significant declines in the distribution of P. quadrijuga
forests by the year 2100, which aligns with previous modeling studies that estimated a loss
of suitable area for the species between 76.4% and 98.5% [38]. This phenomenon, commonly
referred to as thermophilization, involves the gradual reduction of cold mountain habitats
and their associated organisms [90]. Similar trends have been reported for other high-
elevation tropical species [14], for which it is projected that by 2070, there will be significant
decreases in the suitable area and notable upward changes [16]. Despite our projection
being conducted over a longer time frame and in a different, larger research region, the
overall findings indicate a consistent trend for specialized Neotropical high-elevation
ecosystems, and therefore are mutually supportive. Furthermore, our work advanced these
findings by including the responses of the related species P. sericea, which in contrast will
exhibit range shifts by extinction only at the trailing edge (lowest range of the current
species), while persisting at the leading edge without further colonizing it.

The exclusion by this study of comparable climate sensitivity predictions at the
Polylepis forests of the Ecuadorian Cordilleras was due to the challenges associated with
gathering and comparing data from different national territories, given contrasting un-
derlying rural pressures and conservation measures. Still, it is crucial to examine similar
methods in the Ecuadorian high-elevation forests [15] in order to obtain a more thorough
understanding of the impacts of climate change on high Andean Polylepis forests located
north of the Huancabamba depression, which serves as a major biogeographical barrier for
plant species adapted to high elevations [91].

The occurrence of range shifts is contingent upon the underlying principle of niche
conservatism, while also being influenced by the inherent dispersion and establishment
capacity of the taxonomic groups. In species characterized by restricted seed dispersal,
such as Polylepis spp., alternative plant recruitment mechanisms for migration could play
a crucial role [92]. For example, the sporadic movement of pollen would likely be less
restricted compared to the distribution of seeds. Alternatively, transgressive ecotypes
with niche requirements within the trailing and leading edges could act as bridges for
migration [17,93]. In the context of long-lived tree species like Polylepis spp., novel eco-
types [94] and intermediate instances of habitat connectivity [28] may offer opportunities
for migration beyond contemporary geographic and ecological barriers.

Certain exogenous drivers have the potential to challenge the assumption of niche
conservatism by providing organisms with the capacity to successfully inhabit and establish
themselves in novel environments. For example, previous studies [95,96] have examined
the interactions between high-elevation shrub species and soil types across mountain
microhabitats. These findings suggest that underground plant–soil interactions and physio-
logical adaptations may potentially serve as pre-adaptations for facilitating a broader range
expansion of high-elevation plants [97]. Environmentally driven plastic responses can also
keep [84] and expand the range of suitable climates [98]. Thus, complementing this mod-
eling effort with biotic masks, increasing CO2 effects [85], eco-physiological estimations,
and edaphic factors [83,99] is a crucial avenue of study for more accurate monitoring and
prediction of climate change sensitivity in mountainous ecosystems [83,100].
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4.2. Alternative Responses of Polylepis Forests to Climate Change

Despite the pessimistic scenario from the previous section, unforeseen alternative
responses of P. quadrijuga forests to climate change may prove beneficial, as already pre-
dicted for P. sericea. For instance, species diversity within and around the Polylepis forests
could offer a mechanism to mitigate the negative impacts of climate change through the
enhancement of positive biotic interactions [101,102]. These interactions include ecological
facilitation [103,104] and adaptive introgression [105–107]. Anyhow, the aforementioned
positive impacts may also be counteracted by the occurrence of equally unforeseen dis-
tribution losses in the Polylepis forests due to the so-far-unaccounted-for incidence of
mining [108], agriculture, and rural population density [109], all regarded as the main
post-conflict anthropogenic hazards in the northern Andean highlands [110], especially
in the Eastern Cordillera where the specialized P. quadrijuga sits, to a lesser extent in the
Central Cordillera where the more plastic P. sericea settles [14].

A more suitable scenario for the dynamically evolving Polylepis forests would involve
ecotypes within the same geographic area. Despite displaying divergence in microhabitat
preferences, dissimilar ecotypes could be capable of exchanging adaptive genetic varia-
tions through gene flow and introgression [107,111]. The phenomenon of gene swapping
resulting from porosities in taxa/ecotypes boundaries has two implications: (1) taxa that
are considered uncommon due to their limited number of records may exhibit a larger
effective size in terms of standing adaptive variation, and (2) it is possible for sympatric
lineages to exhibit coordinated responses to climatic changes.

Another strategy for the in situ persistence of Polylepis spp. populations is the lever-
aging of standing local-scale adaptive variation, identified as a key factor contributing
to the remarkable ecological diversity observed in the Neotropical high-elevation ecosys-
tems [12,20]. Populations may possess inherent standing genetic diversity naturally se-
lected for adaptation to current variations in the environment at a microhabitat scale. In
mountainous regions characterized by significant heterogeneity, the impact of local-scale
environmental factors on genetic diversity and morphological variation has been well
documented [19]. The underlying ad hoc hypothesis in this regard for further testing by
oncoming studies is that the diverse range of climatic conditions, such as those found in
the Eastern Cordillera where P. quadrijuga is located, could result in sufficient heritable
polygenic phenotypic variation [112], which may in turn serve as pre-adaptation [113] to
the novel selection pressures brought by climate change [114].

Finally, Assisted Gene Flow (AGF) [115,116], assisted forest migration, and provenance-
guided restoration [117,118] may help in matching standing species and ecotypes to pre-
dicted future environments [119]. For instance, our models suggest an unexplored yet
suitable habitat for P. sericea in the northeast corner of the Eastern Cordillera (i.e., Al-
morzadero, El Cocuy, and Pisba), now a major hotspot of P. quadrijuga characterized by
high-elevation summits (up to 5410 m) flanking the deep (1100 m) and topographically
intricate Chichamocha inter-Andean canyon. Based on this, optimized seed sourcing [120]
of P. sericea may sustain an ecological replacement strategy [121] trying to equalize the
ecosystem function jeopardized by the disappearance of P. quadrijuga [122].

A possible limitation of our study is that these ad hoc scenarios are contingent upon
the availability of data at the micro-scale level. The lack of accessibility and usability
of bioclimatic data at a spatial resolution below 1 km2 fails to account for the influence
of micro-environmental factors on local-scale genetic adaptation [123]. The significance
of this phenomenon is particularly pronounced in forested mountain ecosystems, where
microhabitats can function as refugia [124,125], like those found near the tree line as a
result of ongoing landform processes [17,93,126]. The establishment success of Polylepis spp.
provenances may depend on certain habitat characteristics at a local scale (as demonstrated
in European Beech [127]), which are often not accounted for in SDMs [128], an addi-
tional reason to try incorporating biotic masks, dispersal dynamics [129], and germination
rates [130].
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As a closing caution note, SDMs, as the one implemented here in MaxEnt, may be
limited in terms of model complexity, performance and selection [131], data availability
and sampling bias [58] (e.g., survivorship bias due to the extensive use of Polylepis forests
as rural cooking fuelwood during the Colonial and Early Republic periods), mechanistic
lag responses [132,133], and the accuracy of the MPI-ESM1-2-HR forecast (despite that
it reasonably predicts seasonality across the northern Andes [45]). They may also fall
short in accurately modeling local-scale properties including water availability, and micro-
topographic, geomorphic, and edaphic features [99], as well as the presence and distribution
of other organisms, such as competitors and facilitators [134]. For instance, microsite
variables can modify soil conditions that affect successful tree recruitment at the tree
line. As a consequence of these phenomena, SDMs may demonstrate a significant degree
of uncertainty [135] and a lack of validation when applied at smaller scales within the
environmentally complex high-elevation forests. Nonetheless, we are still able to prospect
below possible avenues to bridge these caveats as part of future studies.

4.3. Perspectives

The different models show a good ability to estimate the probability of occurrence of
Polylepis spp. Still, these models may present improvements by inserting variables that can
determine the current and future distribution of the species. One of these may be the current
land use, specifically with regard to the pressures on high mountain ecosystems [108,109].
Others could be edaphic features [99], dispersal dynamics [129], germination probabili-
ties [130], biotic masks, and eco-physiological variables, such as evapotranspiration in-
dexes [114], which can further describe the characteristics of the species’ ecological niche as
shown by the ad hoc inclusion of the Thornthwaite evapotranspiration aridity index. The
latter has proven to be a promising index to model how the temperature rise would increase
evapotranspiration, and thus decrease the amount of water balance in the system [136,137],
matching previous predictions of microhabitat suitability for water-intensive species such
as Polylepis. Other repositories could in turn be explored (e.g., edaphic databases [99]),
specially targeting additional Polylepis species across the Andes.

Furthermore, future modeling efforts must try to accommodate the alternative re-
sponses described in the previous section. Specifically, the ability of forests in high moun-
tain settings to endure in the face of climate change is mostly influenced by variations at
the local scale, namely in microhabitats. As an illustration, the presence of environmental
gradients has the potential to provide migrants from favorable habitats in close proximity
to the existing places [43]. Consequently, this phenomenon might significantly influence
the adaptive responses of high-elevation tree species to the effects of warming [124]. Fur-
ther collection of localized environmental data is necessary [138], since existing climate
databases do not provide the necessary level of detail to accurately depict the variability of
forest microhabitats. The influence of topographic and soil characteristics on the differentia-
tion of microhabitats within Polylepis forests, and the impact of diversity patterns and biotic
interactions with other endemic and sympatric tree and shrub species, as well as herbivores,
pests, and pathogens, has been largely overlooked by climatic models [139]. In addition to
high-resolution climate data, it is paramount to systematically consider eco-physiological
and ecological adaptive traits at local scales in natural surveys and controlled trials (e.g.,
common gardens) as field validation of the predictive models.

Overall, this study has predicted that P. quadrijuga forests are likely to face large
distribution losses, an opposing trend to the one forecasted for P. sericea. In other words,
P. quadrijuga has a limited ability to maintain its current habitat requirements in the face
of climate change, while P. sericea may be able to partially persist in its current areas
with a modest extinction in the trailing edge. A causal constraint for the persistence and
migration potential of P. quadrijuga may be its higher niche specialization, likely evolved as
a response to the topographic and microhabitat complexity found at the Eastern Cordillera.
Meanwhile, the more generalist P. sericea, found at the less environmentally heterogenous
Central Cordillera, may respond more plastically to changing conditions.
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Despite the vulnerable forecast for P. quadrijuga given niche conservatism and range
shifts, in situ standing adaptation, plasticity, and trans-generational epigenetic inheri-
tance [140,141] could still counteract detrimental effects. Anyhow, these results inform on
the vulnerability status of the species, their local conservation priorities, and potential seed
sourcing for provenance-assisted restoration. Yet, whether P. quadrijuga will manage to ef-
fectively withstand by its own unfavorable changing climatic conditions, or be ecologically
replaced by P. sericea, must remain untold for the time being.

5. Conclusions

• Polylepis quadrijuga depicts a restricted ability to maintain its current distribution in
the face of short-term climate change, with a limited potential for range shifts.

• On the other hand, P. sericea forests could persist in their current ranges despite
moderate vulnerability in the trailing edge.

• Contrasting species responses via range shifts to climate change may be due to higher
niche specialization of P. quadrijuga, a strategy likely favored by divergent selection
in the environmentally and topographically complex Eastern Cordillera, while a
generalist response of P. sericea is expected from a species that faced less heterogenous
landscape as the one found in the Central Cordillera of the northern Andes.

• The current analytical pipeline is applicable to other montane forest tree species in
the tropics, and would benefit by the inclusion of additional variables concerning
dispersal dynamics, germination probabilities, explicit eco-physiological indices, as
well as high-resolution environmental, edaphic, and biotic masks.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/f15050811/s1. Table S1. Georeferencing for the occur-
rences of P. quadrijuga and P. sericea; the final number of records per species being 33 for P. sericea and
72 for P. quadrijuga, after respectively depurating nine and ten multiple occurrences within the same
1 km2 pixels; Table S2. Summary performance statistics for P. sericea and P. quadrijuga distribution
models implemented in MaxEnt with 12 parametric combinations each, as depicted in Figure 3A,B;
Figure S1. Marginal response curves of the bioclimatic variables utilized to build the training datasets
of the species distribution models for (A) P. quadrijuga and (B) P. sericea.
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