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Abstract: In an agricultural system, finding suitable watering, pesticides, and soil content to provide
the right nutrients for the right plant remains challenging. Plants cannot speak and cannot ask
for the food they require. These problems can be addressed by applying intelligent (fuzzy logic)
controllers to IoT devices in order to enhance communication between crops, ground mobile robots,
aerial robots, and the entire farm system. The application of fuzzy logic in agriculture is a promising
technology that can be used to optimize crop yields and reduce water usage. It was developed
based on language and the air properties in agricultural fields. The entire system was simulated
in the MATLAB/SIMULINK environment with Cisco Packet Tracer integration. The inputs for the
system were soil moisture sensors, temperature sensors, and humidity sensors, and the outputs were
pump flow, valve opening, water level, and moisture in the sounding. The obtained results were the
output of the valve opening, moisture in the sounding, pump flow rate, outflow, water level, and
ADH values, which are 10.00000013 rad/s, 34.72%, 4.494%, 0.025 m3/s, 73.31 cm3, and 750 values,
respectively. The outflow rate increase indicates that water is being released from the tanks, and the
control signal fluctuates, indicating that the valve is opening.

Keywords: multi robot system; IOT device; smart agriculture system; intelligent controller

1. Introduction

Farmers need to adapt to the shifting demands of the environment as well as those of
regulators, consumers, food processors, and retailers. The effects of soil erosion, biodiversity
loss, and climate change are all becoming more and more of a burden, as are consumer
preferences for food and worries about its production. Furthermore, the natural world, in
which farming interacts with plants, pests, and diseases, continues to provide difficulties.
Even if there are many solutions available in modern agriculture, the results vary because
every farm is different in terms of the amount of water needed, the kind of soil, the
temperature, and the humidity [1]. For these reasons, farmers are looking for technology
that can solve the issues facing agriculture today. For farmers, a highly promising solution is
to integrate Internet of Things devices with intelligent controller algorithms in agricultural
systems. The Internet of Things (IoT) has revolutionized the agricultural sector by providing
farmers with real-time data on crop health, soil moisture, and nutrient levels. These data
can be used to optimize crop yield, reduce water usage, and minimize the use of pesticides
and fertilizers. IoT sensors can be used to monitor the health and well-being of livestock,
optimize feeding schedules, detect illness, and improve breeding programs. Automated
irrigation systems can be used to monitor soil moisture levels and weather patterns to
optimize irrigation schedules, which can help reduce water usage and improve crop
yield [2].
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Many researchers have spent their time on the application of IoT devices in agriculture
without considering the application of different controllers in agriculture to date. Further-
more, to sustain the health of the farm and maintain mass productivity, it is necessary to
implement intelligent controller algorithms such as fuzzy logic, adaptive, model predictive,
and so on into an agriculture system in order to enhancement the communication between
faming system. The nature of agriculture structure requires flexibility, ease of implemen-
tation, robustness, and interpretability. Among the intelligent controllers, a fuzzy logic
controller is the best fit to address the nature of agriculture structure requirements. The
reason is that it works with imprecise inputs, does not require an accurate mathematical
model, and can handle nonlinearity. It enables advanced fuzzy logic to control a pump’s
switching time according to user-defined variables, whereby sensors are the main aspect
of and contributor to the system [3]. It introduces an innovative irrigation time control
system for smart farming that leverages fuzzy logic to regulate the timing of irrigation in
crop fields, effectively curbing water wastage while ensuring that crops receive neither too
little nor too much water. A smart greenhouse system based on an IoT and fuzzy inference
system can create an automatic microclimatic condition that optimizes the conditions of
plant growth through the use of IoT sensors and actuators that automate the controlling of
weather factors to enhance the plant growing process. A smart farm system can optimize
water usage for agriculture. The system implements an open loop fuzzy logic control
system using a Mamdani control system. The inputs to the fuzzy logic control system are
adapted from a humidity sensor, temperature sensor, and the flux sensor in the field [4,5].

The purpose of this research is to improve automation systems in the agricultural
industries by integrating intelligent controllers with Cisco Packet Tracer. As a result
of Internet of Things devices being integrated into the system, farmers can now easily
determine their current farming situation. The rest of this paper is organized as follows:
Section 2 carries out a literature review, and Section 3 presents mathematical models of the
system. The results and a discussion are presented in Section 4, and conclusions are drawn
in Section 5.

2. Literature Review

Smart agriculture systems can be traced back to the mid-1980s, when research into au-
tomated fruit harvesting systems began in Japan, Europe, and the United States. Impressive
advances have been made since then in developing systems for use in modern agriculture.
To date, agriculture systems have utilized different technologies such as precision farming,
hydroponics, aquaponics, robots, temperature and moisture sensors, aerial images, GPS
technology, and vertical farming [6]. The most popular applications of artificial intelligence
in the agriculture industry are in three major categories: agricultural robots, predictive
analytics, and crop and soil monitoring. Computer vision and deep-learning algorithms
are used to process data captured by drones and/or software-based technology to mon-
itor crops. Farmers use technology daily. Automated drones already monitor fields and
collect data on crops. Agricultural robots are being developed to carry out the fieldwork.
Robots have successfully planted, tended, and harvested crops. In order to realize the full
potential of the IoT, there is a need to integrate ubiquitous smart devices and cloud-based
applications [7,8]; a combined IoT framework with a cloud at the center gives the flexibility
of dividing associated costs in the most logical manner and is also highly scalable. In the
combined framework, sensing service providers can join the network and offer their data
using a storage cloud; analytic tool developers can provide their software tools; artificial
intelligence experts can provide their data mining and machine learning tools useful in
converting information to knowledge; and computer graphics designers can offer a variety
of visualization tools [9–12]. An agricultural management method supported by technology
monitors, assesses, and evaluates the requirements of specific fields and crops. The focus
of these efforts is on robotics, which includes sensors, aerial images, and sophisticated local
weather forecasts, as well as Big Data and advanced analytics capabilities. This results
in reduced environmental impact, financial savings, and optimized fertilizer utilization.
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Using data and information technologies to optimize intricate farming systems is known
as smart farming. Smart farming does not place as much emphasis on exact measuring or
differentiating between or within individual animals, as it does with PA. The emphasis is
more on data application and access—that is, how to make intelligent use of the information
gathered. Farmers can obtain real-time data regarding the state of the soil and plants, the
terrain, the climate, the weather, the utilization of resources, labor, and funding [13,14]. By
using mobile devices like smartphones and tablets, farmers now possess the knowledge
necessary to base their judgments on factual information rather than gut feeling. Regular
use of web-based data platforms in conjunction with Big Data analysis, internal and exter-
nal farm networking, and precision and smart farming techniques is common. Products
for IoT-enabled smart agriculture are made to automate irrigation systems and use sensors
to monitor crop areas. Consequently, farmers and related brands may conveniently and
remotely check agricultural conditions. Agriculture currently uses a variety of technologies.
Therefore, to determine the degree of technology employed in the system, it is necessary to
identify and compare the various technologies. For simplicity, this is compared in Table 1.

Table 1. Smart flatform comparison to date [15,16].

Technologies Goals
Business

Processing
Module

Alarm
Notification

Module
Data Control Communication

Protocol

Posting On
Social

Networks and
Public Data

APOLLO
Controlling
crop growth

and conditions

Applicable, VRI
estimation

module
Applicable

Applicable,
crop growth

monitoring and
crop yield
estimation

Not applicable Not applicable

SMART AKIS Management
Information Not applicable Not applicable

Applicable,
flexible and

adaptive
platform of

smart farming
technologies

Not applicable Applicable

SIG AGRO
ASESOR

Crop SIG
Manager

Applicable,
VRF and VRI

modules
Applicable Applicable Not applicable Applicable

Agrivi

Applicable,
Plan, monitor
and analyze

crop activities

Applicable,
crop seasons

and pest
monitor alert

Applicable

Applicable,
crop data and

inputs cost
management

Not applicable Not applicable

Smart
Water-Saving

Intelligent
irrigation

programmer
with sensory
connectivity

Not applicable Not applicable
Applicable, soil
moisture data

acquisition

Applicable,
private protocol Not applicable

PLATEM PA

Applicable,
Management
Information

with an
intelligent VRF
and VRI Open

Data, Farm-
ers/Providers

and Social
network

Applicable,
business rule
engine based

on data
acquisition and
historical data

Applicable,
notification
module in

multimedia
platform

Applicable,
historical data
acquisition is

represented in
graphs and

downloaded
files

Communication
protocol

Implemented
based on open

standard
protocol in VRF

and VRI
devices

Farmers and
providers

access on-line
forums to post

results, crop
failures, alerts,

crop yield,
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Researchers are using a variety of technologies in agriculture systems, including
machine learning, remote sensing, image processing, sensor networks, and so on, to boost
agricultural productivity. In order to gain insights, it is necessary to compare the controller
algorithms used in agricultural systems. The comparison is based on how easily it can be
automatically tuned during operation, as demonstrated in Table 2.

Table 2. Comparison of control algorithms in smart agriculture applications [15–17].

Controller Algorithms Advantages Disadvantages Applicable in Smart
Agriculture?

PID Simplicity, applicability, and
reliability Long tuning time Yes, recommended

P Easy to implement Long settling time, steady state
error Partially, recommended

PD Easy to stabilize, faster
response than just P controller

Can amplify high frequency
noise Partially, recommended

PI No steady state error Narrower range of stability Partially, recommended

MPC
Works effectively within

constraints of the real actuator
which are relatively narrow

Depends on complex algorithm
that needs longer time than the

other controller
Recommended

LQR Simplicity, robustness,
and flexibility

Only requires the knowledge of
the system dynamics and the
desired cost function. It does

not depend on the initial
conditions, disturbances, or
uncertainties of the system

Recommended

Fuzzy logic
Flexibility, ease of

implementation, robustness,
and interpretability

Dependence on human
expertise, difficulty in tuning,

limited accuracy and
computational complexity

Best recommended

Slide mode

Fast dynamic response,
insensitivity to variations in

plant parameters and external
disturbance.

Chattering, which is a very
high-frequency oscillation of the

sliding variable around the
sliding manifold

Recommended

Backstepping

Can accurately track the
desired trajectory or setpoint,

ensuring that the system
behaves as intended

The high gain observed is
needed to avoid full
state measurement

Recommended

Adaptive Improves performance
and robustness

High cost is produced and the
process is very complex. Recommended

Machine learning

Improved accuracy, cost
reduction, scalability,

increased efficiency, data
dependency, computational

resources, sampling

Needs high training Recommended

3. Mathematical Models of the System

Figure 1 demonstrates how the overview of the present work begins with the collection
of related works and the identification of issues. Following accurate problem acquisition,
mathematical models of the agricultural tanks are created. Appropriate control algorithms
are developed based on the mathematical models. The complete system is then be tested
and simulated. After integrating the models with Cisco Packet Tracers and simulating
again, if the test result validates the requirements, the findings are received and discussed.
The procedure is repeated until the intended outcome is achieved. If the tested results are
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not validated by the requirements, which are checked against the mathematical model, the
procedure is repeated.
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3.1. Working Principles of Smart Agriculture

From Figure 2, it can be understood that agriculture can be a field as suitable as
industry for the application of automation. Addressing the issues in the agricultural sector
is challenging because crops are unable to communicate their emotions. Furthermore,
humans are unaware of all the requirements that plants have. Farmers’ extensive and
protracted experience offers partial, but not complete, comprehension. The use of the
Internet of Things in smart agriculture would help with issues like industry 4.0 agriculture
using artificial intelligence and machine learning concepts, and IOT smart farming [18]. It
aids in issue solving, goal keeping, improvement, categorization, and disease prediction in
agricultural systems. Intelligent controllers (fuzzy logic controllers) would receive reference
parameters (input) such as temperature, humidity, and soil moisture. The controller would
then estimate the necessary specification and send it to the agricultural system. The Internet
of Things is integrated into the agricultural system, allowing farmers to receive messages
and quickly understand any issues. The reference settings would be modified for the farmer
based on the need [19,20]. Fuzzy logic controller algorithms would be used to make the
decision and carry out the action itself if the farmers were not given the proper system
parameters. On the other hand, industrial processes can be designed by modules to apply
specific robots to specific tasks, whereas the complex tasks of agriculture sometimes cannot
be split into simple actions.
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3.2. Mathematical Models of the Water Reservoir Tank Level, and Its Opening Valve

As shown in Figure 3, when considering a tank that has fluid flowing in (input) and
fluid flowing out, we define the output as depth in the tank. Now, the research questions
could be:
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How does the depth depend upon the inflow and outflow?
How does the outflow depend upon the depth?
In order to answer the questions, it must be understood that the outflow will depend

upon the pressure in the tank (which depends upon the depth and density) and a constant
linked to the pipe shape [21].

fout = Rρgh (1)

Equation (1) represents the outflow models; the rate of the change of the depth will
depend on the cross-sectional area, the difference between flow in and out.

dV
dt

= A
dh
dt

= fin − fout (2)
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A
dh
dt

+ Rρgh = fin (3)

Observations from inflow Equation (3) show that the time constant depends on the
resistance (pipe opening) of the outlet pipe and the cross-sectional area.

A
Rρg

dh
dt

+ h =
1

Rρg
fin (4)

Gain depends on the resistance (pipe opening) of the outlet pipe:

T =

{
A

Rρg
K = 1

Rρg
(5)

It was noted that the resistance to flow is actually 1
Rρg . If the cross-sectional area is

increased, the time constant increases. If the resistance to flow K is increased, the time
constant and steady state gain also increase. We ignore the impact of density and gravity.
This marks the end of the mathematical models for inflow and outflow models. To adjust the
system automatically and fulfill the objective, it is necessary to look at the control strategy.

This model works with inaccurate and hazy data. This is based on degrees of truth
and is a glaring oversimplification of the real-world issues, as it includes only water tanks,
which are a component of an agricultural system. For the time being, fuzzy logic control
works well because some parameters are unknown.

3.3. Fuzzy Logic Control Design

Fuzzy logic is a mathematical method for representing vagueness and uncertainty in
decision making. It allows for partial truths, where a statement can be partially true or
false, rather than fully true or false. Fuzzy membership is a concept in fuzzy logic that
assigns a degree of membership to an element in a set. The degree of membership is a
value between 0 and 1, where 0 indicates that the element is not a member of the set, and
1 indicates that the element is a full member of the set [15]. There are different types of
membership functions that can be used to model fuzzy sets, as represented in Table 3.
While fuzzy logic has many advantages, there are also some disadvantages to using it. One
of the main disadvantages is that it can be difficult to design a fuzzy system that accurately
models a complex system. Fuzzy systems can also be computationally expensive to run,
especially if they involve a large number of rules or membership functions. Additionally,
fuzzy systems can be difficult to interpret, especially if they involve a large number of rules
or membership functions [22].

Table 3. Comparison of fuzzy memberships.

Specification of the Membership Comparisons of the Memberships Level of Estimating Probability

Singleton membership function
This assigns a membership value of 1 to a

specific value of x. It is useful when the set has
a single element [15].

Good

Triangular membership function

This is one of the most widely used
membership functions. It is used to model sets
that have a triangular shape. The membership
value increases linearly from 0 to 1 and then

decreases linearly from 1 to 0 [16].

Better

Trapezoidal membership function
This is similar to the triangular membership

function, but it has a flat top. It is used to
model sets that have a trapezoidal shape [17].

Better

Gaussian membership function
This is used to model sets that have a

bell-shaped curve. It is often used in statistics
to model normal distributions [18].

Excellent
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Table 3. Cont.

Specification of the Membership Comparisons of the Memberships Level of Estimating Probability

Sigmoidal membership function
This is used to model sets that have an

S-shaped curve. It is often used in artificial
neural networks [19].

Better

Generalized bell membership function

This is a generalization of the Gaussian
membership function. It is used to model sets
that have a bell-shaped curve, but with more

flexibility [17].

Best

Z-shaped membership function This is used to model sets that have a Z-shaped
curve. It is often used in control systems [18] Better

Based on the comparison hits, a Gaussian membership function was selected for this
work [23].

F(x, σ, c) = e−
(x−c)2

2σ2 (6)

Figure 4 depicts the conventional layout of a fuzzy logic controller. Before going
into the main control block, the inputs which were crisp values produced by the feedback
error and change in error were conditioned by multiplying by constant gains using a
preprocessor. The fuzzification block matches data with criteria of rules and transforms
input data into degrees of membership functions. The Mamdani-type inference engine took
the rule-based commands as input, calculated the degree of capability of the used rules,
and produced a fuzzy set for the defuzzification block, which took the fuzzy output data
and produced crisp values. Through the use of the centroid defuzzification approach, the
outputs of the fuzzy sets were transformed into crisp values [24,25].
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3.3.1. Membership Function Assignments

The membership assignment for temperature is displayed in Figure 5. Temperature
regulation would be based on function. Low is represented in black, normal is presented in
red, and high is represented by blue, which have been assigned to the values. The Gaussian
function is used to represent the function. While probability was represented by the vertical
axis, the horizontal axis was expressed in degrees Celsius.
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Figure 6 shows the membership assignment for humidity. Function would be the
basis for controlling humidity. The values have been given as low, represented in black,
normal, presented in red, and high, represented in blue. The function is represented by
the Gaussian function. The horizontal axis was given in mass per cubic meter, whilst the
vertical axis denoted probability.
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The membership assignment for humidity is displayed in Figure 7. The foundation for
regulating soil moisture would be function. Three values have been assigned to the values:
low, which is represented in black, normal, which is presented in red, and high, which is
represented by blue. The Gaussian function is used to represent the function. The vertical
axis represented probability, and the horizontal axis was expressed in mass per cubic meter.
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Figure 8 shows the membership assignment for opening the valve. Function would
be the cornerstone for controlling the valve’s opening. Wet is represented by blue, cold is
shown in red, moderate is presented in black, hot is demonstrated in purple, and dry is
presented in green. The function is represented by the Gaussian function. Probability was
represented by the vertical axis, while degrees were shown by the horizontal axis.
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Figure 8. Fuzzy membership function for opening valve.

As shown in Table 4, the fuzzy logic designs were determined by the language rules.
Z stands for zero response, P1 shows positive small, which means the valve would be
open slightly, N2 signifies negative large, which means the valve is completely closed,
and P2 indicates positive large, which means the valve is fully opened and the water is
discharging.
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Table 4. Rule design for IOT device.

Temperature
Opening Valve

Wet Cold Moderate Dry

Low N2 Z P1 P2

Normal Z Z P1 P2

High P2 P1 Z P2

Figure 9a,b demonstrate how these rules base their control efforts on a number of
if–then statements regarding (e) and (De). Specifically, if the error is equivalent to the values
for temperature (TV), humidity (HV), and soil moisture, then control (c) is changed to open
the valve (OV). The system was tuned and experiments were conducted to identify the
number of these if–then statements. It is simple to repeat the procedure by adjusting the
input numbers with the aid of the vertically positioned red line. It adjusts itself prudently.
The yellow color in Figure 9a indicates the face of the input parameters, while the blue
color in Figure 9b shows the output parameters.
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Plotting the first output variable against the first two input variables, the fuzzy logic
rule surface provides the output surface for the fuzzy inference system. The midpoints
of each input variable’s corresponding range are used as reference values for the other
input variables in fuzzy systems with three inputs. As a result, Figure 10 shows the
smoothness of the control signal change and offers the rule surface that corresponds to the
rules. Figure 10 shows the fuzzy numbers with the lightness change caption and colors
representing the least and greatest uncertainty levels. and was greatly impacted by the
work, which offered approaches for visualizing data with uncertainty based on variations
in saturation, brightness, and/or intensity. The hue of the map indicates the degree of
uncertainty with respect to the lower values. The color-coded map illustrates the degree of
uncertainty towards the higher numbers.

IoT 2024, 5, FOR PEER REVIEW 12 
 

 

variables in fuzzy systems with three inputs. As a result, Figure 10 shows the smoothness 
of the control signal change and offers the rule surface that corresponds to the rules. Fig-
ure 10 shows the fuzzy numbers with the lightness change caption and colors representing 
the least and greatest uncertainty levels. and was greatly impacted by the work, which 
offered approaches for visualizing data with uncertainty based on variations in saturation, 
brightness, and/or intensity. The hue of the map indicates the degree of uncertainty with 
respect to the lower values. The color-coded map illustrates the degree of uncertainty to-
wards the higher numbers. 

 
Figure 10. Fuzzy logic rule surface. 

The aim of this controller design is to enhance communication between ground mo-
bile robots, aerial vehicles (quadcopters), and farming fields. In order to achieve the goals 
of this work, this section provides a case study for the intelligent fuzzy logic controller 
and formulations of air properties in agricultural fields. Figure 11 shows that the compo-
nents consist of three inputs: soil moisture sensors, temperature sensors, and humidity 
sensors. The fuzzy logic controller then receives signals from the three inputs in order to 
control the pumps and valve opening conditions. As the valve opens, input fills the water 
tank. The filled water levels are measured by water level sensors and flow rate sensors, 
which send feedback to the fuzzy logic controller. Based on the feedback signals, the fuzzy 
logic controller automatically adjusts the input signals and then sends them to the respec-
tive outputs. 

Figure 12 shows the working principles of the IoT implementation in the agriculture sys-
tem. The system starts up and initializes, then collects data from the agricultural fields. It then 
prints whether the soil moisture (SM) is less than 27%, in which case the sprinkler turns on, or 
if the soil moisture (SM) is greater than 27%, in which case the sprinkler turns off. 

Figure 10. Fuzzy logic rule surface.

The aim of this controller design is to enhance communication between ground mobile
robots, aerial vehicles (quadcopters), and farming fields. In order to achieve the goals
of this work, this section provides a case study for the intelligent fuzzy logic controller
and formulations of air properties in agricultural fields. Figure 11 shows that the compo-
nents consist of three inputs: soil moisture sensors, temperature sensors, and humidity
sensors. The fuzzy logic controller then receives signals from the three inputs in order
to control the pumps and valve opening conditions. As the valve opens, input fills the
water tank. The filled water levels are measured by water level sensors and flow rate
sensors, which send feedback to the fuzzy logic controller. Based on the feedback signals,
the fuzzy logic controller automatically adjusts the input signals and then sends them to
the respective outputs.

Figure 12 shows the working principles of the IoT implementation in the agriculture
system. The system starts up and initializes, then collects data from the agricultural fields.
It then prints whether the soil moisture (SM) is less than 27%, in which case the sprinkler
turns on, or if the soil moisture (SM) is greater than 27%, in which case the sprinkler
turns off.
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3.3.2. Case Study for the Intelligent Fuzzy Logic Model

These rules can be used to create a fuzzy logic-based system that can control a pump’s
switching time according to user-defined variables, whereby sensors are the main aspect
of and contributor to the system. The proposed system can help automate irrigation
and reduce water consumption and watering time [15–19]. Here are some fuzzy rules
for temperature, humidity, soil moisture, and soil acidity as input and output in a smart
agriculture system:

• Temperature:
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◦ If the temperature is low, then the output is cold;
◦ If the temperature is normal, then the output is moderate;
◦ If the temperature is high, then the output is hot.

• Humidity:

◦ If the humidity is low, then the output is dry;
◦ If the humidity is normal, then the output is moderate;
◦ If the humidity is high, then the output is wet.

• Soil Moisture:

◦ If the soil moisture is low, then the output is dry;
◦ If the soil moisture is normal, then the output is moderate;
◦ If the soil moisture is high, then the output is wet.

• Soil Acidity:

◦ If the soil acidity is low, then the output is basic;
◦ If the soil acidity is normal, then the output is neutral;
◦ If the soil acidity is high, then the output is acidic.

These rules can be used to create a fuzzy logic-based system that can control a pump’s
switching time according to user-defined variables, whereby sensors are the main aspect of
and contributor to the system. The proposed system can help automate farms and reduce
water consumption and watering time.

3.3.3. Formulation of the Air Properties in the Agricultural Field

It was assumed that the opening of the valve, moisture in the sounding, pump flow
rate, and water levels during the valve’s operation would be taken into account. However,
other factors were not considered in the work. Based on this assumption, the following
parameters would be formulated as follows [20]:

Moisture in sounding (%) =

√
γp
ρ

∗ 100 (7)

where γ is the constant ideal ratio, p is the pressure sound in the system, and ρ is the specific
density of the air.

Outflows(Q) =
π ∗ D2 ∗ n ∗ H

4 ∗ g
(8)

where D is the diameter of the reservoirs, n is the number of moles, H is the head of the
water in the field.

Pumps flow (rpm) = GPM (9)

where gallons per minute (GPM) is the flow rate.

Valve opening = Q proportional to Area × Sqrt of DP (10)

where DP is the pressure drop across the valve.

4. Results and Discussion

The purpose of this research article was to create an Internet of Things (IoT) weather
station that also incorporated a soil moisture monitoring component. The device is intended
to notify the user when the moisture content of the soil drops below a certain value. To
notify the user that the moisture content of the soil is too low, sprinklers, which correspond
to the three soil moisture sensors, will turn on. The initial idea was to feed all of these data
onto a server designed to handle IoT projects and then plot the data continuously. From
Table 5, it was understood that IoT devices (temperature sensors, ADH sensors, and water
vapor per kg) are used as inputs for the fuzzy logic control. The outputs are rotations of
the pumps, moisture in the sounding, water level sensors, outflow, and valve opening. Of
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these output parameters, valve opening is constant throughout the process, while the input
parameters vary.

Table 5. Simulation results of the IOT application in smart agriculture system.

Input Parameters Output Parameters

Temperature
(Celsius)

Water Vapor
per Kg ADH Values

Water Level
Sensors

(cm3)

Moisture in
Sounding

(%)

Pump Flow
(%)

Outflow
(Q/s)

Valve
Opening

(rad/s)

27 10 750 73.31 34.72 4.494 0.025 0.5

20 10 500 48.88 45.87 3.275 0.025 0.5

10 10 300 29.33 84.75 1.424 0.025 0.5

0 0 50 4.888 555.5 6.718 0.025 0.5

0 20 50 4.888 1111 6.718 0.03082 0.5

40 10 1000 97.75 23.92 4.008 0.025 0.5

Table 6 presents the comparison between the previous results [2–4] and the current results.

Table 6. Comparison of previous work and current work.

Specification Parameters Current Work Previous Work [2–4]
Change (%) (Current

Work over
Previous Work)

Rise time (s) 0.8 1.2 33.3

Settling time (s) 0.012 1.04 98.8

Peak time (s) 0.13 1.2 89.2

Temperature (Celsius) 27 27 0

ADH values 750 750 0

Moisture in sounding (%) 34.72 30 15.7

Pump flow (%) 4.494 3.5 28.4

Outflow (Q/s) 0.025 0.025 0

Valve opening (rad/s) 0.5 0.33 51.51

Figure 13 demonstrates the water levels in the fields. The vertical axis indicated the
water level in mega metric cube (Mm3), whereas the horizontal axis showed the time in
hours. At the beginning, it slowly increases since the amount of water required by the field
was not much. It increases slowly until about 9.8 h, after which it dramatically increases,
indicating that the field requires more water. Too much water in agricultural areas can
affect how the soil functions, hinder plant growth, and increase the risk of nutrient runoff.
Too little water, on the other hand, can have devastating effects on crops and their ability
to take up nutrients from the soil. Intensive groundwater pumping for irrigation depletes
aquifers and can lead to negative environmental externalities, causing significant economic
impact on the sector and beyond.

As seen in Figure 14, valve opening is a term used in irrigation to describe the degree to
which a valve is open or closed. It is typically expressed as a percentage, with 0% indicating
that the valve is completely closed and 100% indicating that the valve is completely open.
The valve opening determines the amount of water that flows through the valve and into
the irrigation system. By adjusting the valve opening, the controller can control the amount
of water that is delivered to their crops. For this case, its opening slowly increases, because
the level of the water discharge flow rate is directly proportional to the product area and
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the drop in pressure. The water level has a minimum of 10 m3, meaning that when the
valve is opened, the water level will likewise gradually rise from 10 m3.
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Figure 14. Valve opening mechanism.

As shown in Figure 15, in the IoT, a controller effort is a term used to describe the
amount of torque or force that is applied to a pump and valves in order to achieve a desired
performance. Controllers are defined by the type of control input and the type of output
they use to drive the pump and valves. For example, a flow rate controller accepts flow
rate commands as input and produces torque (effort) commands as output.
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Figure 16 represents the discharge of water in the agricultural fields. It means that
flow rate discharge is the volume of water that flows through a pipe or channel per unit of
time. In the agricultural sector, flow rate discharge is an important parameter for irrigation
systems. It is used to determine the amount of water that is delivered to crops automatically,
and to ensure that the farm system is operating properly.
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Figure 16. The discharge rates.

As shown in Figure 17, errors related to water level grow proportionately. An inaccu-
racy characterized as a proportional error depends on how much the water level variable
changes. Thus, the relationship between the change in water level and the change in
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time (hours) is straightforward. Time (hours) divided by water level always equals the
same constant, since this change is always of an equally quantifiable quantity. A statistic
that shows how much a water levels sample percentage is expected to deviate from the
proportion in the overall proportion that constitutes the standard error of a proportion.
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After the controller design was finished, it was implemented in Cisco Packet Tracer
with integrated MATLAB/SIMULINK environments. Figure 18 shows the real-time flow
of data packets during the simulation. The fuzzy logic intelligent controller is the home
gate connected to the IoT backend server. The IoT connection enables users to check the
status of the IoT parameters such as temperature, humidity, and soil moisture from an IoT
browser homepage. The IoT browser homepage shows a list of the smart devices, allows
visualization of their status, and permits remote interaction with the devices. Logical
interaction between smart devices can be set while connected to the IoT main homepage.
Interactions between devices are based on set conditions, such as starting a chiller when the
temperature of a particular unit needs to be lowered or reducing oxygen supply to a boiler
in order to reduce fire tube temperatures. The central control PC, manager smartphones,
and tablets, which are connected to the local central office wireless LAN (WLAN), can
connect to the dedicated IoT homepage via a browser in order to monitor all connected IoT
devices. Cisco Packet Tracer has a feature with the possibility to switch from real-time to
simulation mode. The first mode enables the possibility to create the underlying network,
connect IoT devices, and define IoT backend logic. However, only in the simulation mode,
it was possible to validate that the network communication layer really happened between
the devices. In the simulation mode, it was possible to simulate packet traffic between
nodes and devices in order to check the connectivity, routing protocols, and other network
logic. This mode helped to physically visualize and troubleshoot any kind of network, for
example, setting up pings or more complex packages between nodes.
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5. Conclusions

This study aimed to incorporate an Internet of Things (IoT) agricultural system that
monitors soil moisture, temperature, and humidity as input parameters and automatically
opens the valve as an output. In order to achieve these goals, a wide range of pertinent
research papers were looked into to determine the current problems. One of the problems
was the difficulty of having valves in agricultural fields that open automatically. Based on
well-founded concerns, mathematical models of agricultural tanks were created. Fuzzy
logic controllers were designed using the mathematical models that were provided. It was
determined to create fuzzy logic controllers by utilizing the language-based membership
function. Fuzzification of fuzzy language started next, and was followed by rule evaluation
and defuzzification. Next, a fuzzy logic surface and fuzzy logic rules were created. When
the fuzzy logic system was complete, it was all transferred to a mathematical model of
a water tank to watch how the controller functioned. After that, Cisco Packet Tracers
were used to integrate the entire system within the MATLAB environment. Sprinklers
that correspond to the three soil moisture sensors activate, and the gadget notifies the user
when the soil moisture content falls below a predetermined threshold. After being loaded
onto a server built to handle IoT devices, the data are continually plotted. The field’s water
requirement rises gradually for approximately 9.8 h before sharply increasing, suggesting
that the field needs more water. In agricultural settings, an excess of water can disrupt soil
structure, impede plant development, and raise the possibility of nutrient runoff. Crops
and their capacity to absorb nutrients from the soil can suffer greatly from inadequate
watering. Aquifers are depleted, and adverse environmental externalities may result from
intensive groundwater pumping for agriculture, which has a substantial financial impact
on the industry and beyond. In agriculture, “valve opening” refers to the extent to which
a valve is open or closed. A percentage is usually used to represent it, where 0% denotes
a fully closed valve, and 100% denotes a fully opened valve. The amount of water that
passes through the valve and enters the agricultural system is determined by the valve
opening. Farmers can regulate how much water is applied to their crops by changing the
opening of the valve. The amount of torque or force supplied to a pump and valves to
accomplish a specified performance is referred to as the controller effort in the Internet of
Things. The kind of control input and output that a controller uses to operate the pump
and valves characterizes the controller. For instance, a flow rate controller generates torque
(effort) commands as an output after receiving flow rate commands as input. Flow rate
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discharge is a crucial agricultural system element in the agriculture industry. It is used to
figure out how much water is automatically applied to crops and to make sure the farm
system is running smoothly. Smart gadgets are linked to the IoT backend server through
a house gate. Through the IoT connection, users can remotely interact with the devices
and check their status from the homepage of an IoT browser. While linked into the IoT
main portal, smart device interactions can be configured logically. Device interactions are
dependent on predetermined parameters. For example, a chiller may be started when
a certain unit needs its temperature dropped, or the oxygen supply to a boiler may be
reduced to lower fire tube temperatures. All linked IoT devices may be monitored by the
central control PC, management cellphones, and tablets by connecting them via a browser
to the specific IoT site. One characteristic that makes integrating MATLAB/Simulink
with Cisco Packet Tracer possible is the ability to transition between simulation and real-
time mode. It is feasible to confirm that the network communication layer between the
devices actually occurred in the simulation mode. To examine network logic, routing
protocols, and connectivity between nodes and devices, a packet tracer simulation can be
performed. This mode facilitates the physical visualization and troubleshooting of any type
of network, including the configuration of more intricate packages or pings between nodes.
It was discovered that the optimal outcome came from combining the Cisco Packet Tracer
with the MATLAB environment. If agricultural temperature, humidity, and soil moisture
content were all effectively controlled, as well as if water tanks could open on their own,
these outcomes would occur. Farmers and crops would be in communication at the same
time. Consequently, in comparison to earlier research studies, the suggested intelligent
control system is the most appropriate with IoT gadgets for the implementation of smart
farm systems.

Author Contributions: S.A.F.: Visualization, Writing—original draft, Writing—review & editing,
Conceptualization, Data curation, Formal analysis, Investigation, Methodology, and Software; G.G.:
Validation, Funding acquisition, and project management; H.M.A.S: Supervision, Writing—review & edit-
ing, checking technical parts. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAO. The Future of Food and Agriculture: Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations:

Rome, Italy, 2018.
2. von Braun, J.; Afsana, K.; Fresco, L.O.; Hassan, M.H.A. Science for transformation of food systems: Opportunities for the UN

Food Systems Summit. In Science and Innovations for Food Systems Transformation; Springer: Berlin/Heidelberg, Germany, 2023;
p. 921.

3. Hopkins, I.; Farahnaky, A.; Gill, H.; Danaher, J.; Newman, L.P. Food neophobia and its association with dietary choices and
willingness to eat insects. Front. Nutr. 2023, 10, 1150789. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC103
69065/ (accessed on 26 November 2023). [CrossRef] [PubMed]

4. Tambo Tene, S.; Kohole Foffe, H.A.; Adebo, O.A.; Tantoh Ndinteh, D.; Tsopbeng Tsopzong, A.B.; Kenfack, J.O.; Kengne Kamdem,
M.H.; Klang, J.M.; Womeni, H.M. Application of the response surface methodology (RSM) in the optimization of the fluidizing
and sweetening capacities of sprouted flours of two maize varieties (Atp-Y and Coca-sr). Cogent Food Agric. 2023, 9, 2279724.
[CrossRef]

5. Lee, T.Y.; Reza, M.N.; Chung, S.O.; Kim, D.U.; Lee, S.Y.; Choi, D.H. Application of fuzzy logics for smart agriculture: A review.
Precis. Agric. 2023, 5, 1.

6. Sairoel, A.; Gebresenbet, G.; Alwan, H.M.; Vladmirovna, K.O. Assessment of Smart Mechatronics Applications in Agriculture: A
Review. Appl. Sci. 2023, 13, 7315.

7. Vijay Anand, R. Energy Efficient Cluster Head Using Modified Fuzzy Logic with WOA and Path Selection Using Enhanced
CSO in IoT-Enabled Smart Agriculture Systems. Available online: https://www.researchsquare.com/article/rs-2946945/latest
(accessed on 26 November 2023).

8. Benyezza, H.; Bouhedda, M.; Kara, R.; Rebouh, S. Smart platform based on IoT and WSN for monitoring and control of a
greenhouse in the context of precision agriculture. Internet Things 2023, 23, 100830. [CrossRef]

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369065/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369065/
https://doi.org/10.3389/fnut.2023.1150789
https://www.ncbi.nlm.nih.gov/pubmed/37502726
https://doi.org/10.1080/23311932.2023.2279724
https://www.researchsquare.com/article/rs-2946945/latest
https://doi.org/10.1016/j.iot.2023.100830


IoT 2024, 5 78

9. Pradana, F.G.P.; Sarno, R.; Triarjo, S. Development of Smart Farming Control System based on Tsukamoto Fuzzy Algorithm. In
Proceedings of the 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE),
Jakarta, Indonesia, 16 February 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 348–353. Available online: https://ieeexplore.ieee.
org/abstract/document/10127754/ (accessed on 26 November 2023).

10. Adli, H.K.; Remli, M.A.; Wan Salihin Wong, K.N.S.; Ismail, N.A.; González-Briones, A.; Corchado, J.M.; Mohamad, M.S. Recent
Advancements and Challenges of AIoT Application in Smart Agriculture: A Review. Sensors 2023, 23, 3752. [CrossRef] [PubMed]

11. Masood, F.; Khan, W.U.; Jan, S.U.; Ahmad, J. AI-enabled traffic control prioritization in software-defined IoT networks for smart
agriculture. Sensors 2023, 23, 8218. [CrossRef] [PubMed]

12. Obi Reddy, G.P.; Dwivedi, B.S.; Ravindra Chary, G. Applications of Geospatial and Big Data Technologies in Smart Farming. In
Smart Agriculture for Developing Nations; Pakeerathan, K., Ed.; Advanced Technologies and Societal Change; Springer Nature:
Singapore, 2023; pp. 15–31. [CrossRef]

13. Sharma, R.P.; Dharavath, R.; Edla, D.R. IoFT-FIS: Internet of farm things based prediction for crop pest infestation using optimized
fuzzy inference system. Internet Things 2023, 21, 100658. [CrossRef]

14. Atheeswaran, A.; Raghavender, K.V.; Chaganti, B.L.; Maram, A.; Herencsar, N. Expert system for smart farming for diagnosis of
sugarcane diseases using machine learning. Comput. Electr. Eng. 2023, 109, 108739. [CrossRef]

15. Shamshiri, R.R.; Mahadi, M.R.; Ahmad, D.; Bejo, S.K.; Aziz, S.A.; Ismail, W.I.W.; Che Man, H. Controller design for an osprey
drone to support precision agriculture research in oil palm plantations. In Proceedings of the 2017 ASABE Annual International
Meeting, Spokane, WA, USA, 16–19 July 2017; pp. 2–13.

16. Carlos, C.B.; Sendra, S.; Lloret, J.; Tomas, J. A smart decision system for digital farming. Agronomy 2019, 9, 216.
17. Pati, R.K.; Paikray, H. Application of Artificial Intelligence in Fuzzy Logic for Crop Management in Agriculture. Available online:

https://www.journal-dogorangsang.in/no_4_Book_21/191.pdf (accessed on 26 November 2023).
18. Purwoko, J.T.; Wingardi, T.O.; Soewito, B. Smart Agriculture Water System Using Crop Water Stress Index and Weather Prediction.

CommIT Commun. Inf. Technol. J. 2023, 17, 61–70. [CrossRef]
19. Umam, F.; Dafid, A.; Cahyani, A.D. Implementation of Fuzzy Logic Control Method on Chilli Cultivation Technology Based

Smart Drip Irrigation System. J. Ilm. Tek. Elektro Komput. Dan Inform. 2023, 9, 132–141.
20. Alex, N.; Sobin, C.C.; Ali, J. A Comprehensive Study on Smart Agriculture Applications in India. Wirel. Pers. Commun. 2023, 129,

2345–2385. [CrossRef]
21. Manikandan, R.; Ranganathan, G.; Bindhu, V. Deep Learning Based IoT Module for Smart Farming in Different Environmental

Conditions. Wirel. Pers. Commun. 2023, 128, 1715–1732. [CrossRef]
22. Karunathilake, E.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in

precision agriculture. Agriculture 2023, 13, 1593. [CrossRef]
23. Alakananda, M.; Vangipuram, S.L.T.; Bapatla, A.K.; Bathalapalli, V.K.V.; Mohanty, S.P.; Kougianos, E.; Ray, C. Everything you

wanted to know about smart agriculture. arXiv 2022, arXiv:2201.04754.
24. Junfang, Z.; Liu, D.; Huang, R. A Review of Climate-Smart Agriculture: Recent Advancements, Challenges, and Future Directions.

Sustainability 2023, 15, 3404.
25. Gupta, A.; Nahar, P. Sandpiper optimization algorithm with cosine similarity based cross-layer routing protocol for smart

agriculture in wireless sensor network assisted internet of things systems. Int. J. Commun. Syst. 2023, 36, e5514. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://ieeexplore.ieee.org/abstract/document/10127754/
https://ieeexplore.ieee.org/abstract/document/10127754/
https://doi.org/10.3390/s23073752
https://www.ncbi.nlm.nih.gov/pubmed/37050812
https://doi.org/10.3390/s23198218
https://www.ncbi.nlm.nih.gov/pubmed/37837048
https://doi.org/10.1007/978-981-19-8738-0_2
https://doi.org/10.1016/j.iot.2022.100658
https://doi.org/10.1016/j.compeleceng.2023.108739
https://www.journal-dogorangsang.in/no_4_Book_21/191.pdf
https://doi.org/10.21512/commit.v17i1.8435
https://doi.org/10.1007/s11277-023-10234-5
https://doi.org/10.1007/s11277-022-10016-5
https://doi.org/10.3390/agriculture13081593
https://doi.org/10.1002/dac.5514

	Introduction 
	Literature Review 
	Mathematical Models of the System 
	Working Principles of Smart Agriculture 
	Mathematical Models of the Water Reservoir Tank Level, and Its Opening Valve 
	Fuzzy Logic Control Design 
	Membership Function Assignments 
	Case Study for the Intelligent Fuzzy Logic Model 
	Formulation of the Air Properties in the Agricultural Field 


	Results and Discussion 
	Conclusions 
	References

