llyas et al. BMC Plant Biology (2024) 24:611 BMC P|ant BIO'Ogy
https://doi.org/10.1186/512870-024-05314-y

. - . , . ®
Alleviating salinity stress in canola (Brassica ==

napus L.) through exogenous application
of salicylic acid
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Abstract

Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various
crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline
transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food
insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone

that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve
plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the nega-
tive effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1)
and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control)
and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design
used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot
and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased
up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh
weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased
levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic
antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), antho-
cyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e.
glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na™ ions and concomi-
tantly decreased the K+ and Ca?" absorption in canola plants. Overall, the foliar treatments of SA were quite effective
in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2
(Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ame-
liorating the negative effects of high salinity in canola plants.
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Introduction

With the enormous demand for growing various crops
and the rising controversies regarding the competition
between food and energy crops for agricultural land,
the utilization of agriculturally marginal lands is emerg-
ing as an attractive alternative, including salt-affected
wastelands and brackish-saline transitional lands [1,
2]. Salinity stress poses a significant threat to crop yields
and especially in arid and semiarid regions globally, with
a 10% annual increase. Projections indicate that by the
mid-twenty-first century, 50% of arable land could be
lost due to increasing salinity, emphasizing the urgent
need for effective mitigation strategies [3—5]. Currently,
high soil salinity is causing significant disruptions to agri-
cultural production on a global scale [6]. Salt stress sig-
nificantly decreases crop yields on infertile and partially
fertile lands, leading to a reduction of over 50% in stand-
ard yields. This reduction in crop productivity is primar-
ily attributed to the disruption of the plants’ nutritional
and water balance [7-10]. The ability of plants to with-
stand high salt levels is an intricate process, involving
various factors such as morphological, physiological, and
biochemical mechanisms [8, 10, 11]. Sodium (Na") and
chloride (CI7) ions create a high osmotic potential, lead-
ing to inadequate water and nutrient supply to roots and
causing cellular disruptions [8, 12, 13].

High salinity exerts a profound negative growth
effects on canola (Brassica napus L.) leading to smaller
plants and yield [6, 14]. This, along with osmotic stress,
collectively impairs the growth, development and over-
all survival of the plant uptake and homeostasis in plant
body [15, 16]. Mineral imbalances, such as excessive
Na™ accumulation at toxic levels, can disrupt the normal
metabolic processes within a plant’s body. These imbal-
ances lead to an elevated generation of ROS. In reaction
to increased ROS production, plants activate a range of
defense mechanisms, including the synthesis of both
enzymatic and non-enzymatic antioxidants [9, 14, 17].
Exposure to salt stress results in increased activity of
ROS scavenging enzymes such, as peroxidase, in plants.
This heightened enzyme activity leads to greater lignifica-
tion of plant tissues, ultimately restraining the growth of
the plant [3, 18, 19].

Canola, a member of the Brassicaceae family, is an
important and extensively grown crop globally. It holds
the second position, following soybean, in the cul-
tivation of oilseed crops for human consumption of
edible oil and animal feed in the world [20]. Although
widely recognized as a salt-resistant plant, its productiv-
ity and yield are lowered under high salinity conditions
[21]. Additionally, it was reported that canola cultivars
resistant to salt stress differ genotypically [22]. Can-
ola oil is a versatile ingredient used in salad oils, salad
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dressings, and margarines, and it also plays a role in cre-
ating organogels. Defatted canola, on the other hand,
has a wide range of food applications, including emul-
sifying, gelling, absorbing, stabilizing, thickening, form-
ing oleo gels, and enhancing texture. It is important to
note that while there are potential health benefits linked
to canola protein, further long-term human studies are
required to comprehensively validate these advantages
[23]. Considering the detrimental effects of salinity on
canola, such as an increase in sodium content and oxi-
dative damage and a decrease in potassium uptake and
seed yield [24]. It is imperative to explore strategies
aimed at mitigating the negative effects of salt-related
damage on the physiological characteristics and crop
yield of canola.

In tandem with the availability of resources and envi-
ronmental cues, plant ontogenic development is coor-
dinated and carefully regulated by various endogenous
growth regulators commonly known as phytohormones
or biostimulants [25-27]. These phytohormones play
crucial role in regulating various physiological and bio-
chemical processes that govern plant responses under
optimal and stress conditions [13, 28]. The involve-
ment of cytokinins, gibberellins, auxins, abscisic acid,
ethylene, strigolactones and brassinosteroids in growth
and development has been well documented [13, 25,
29-32]. Recently, various studies have highlighted
the role of phytohormones such as salicylic acid (SA),
and jasmonates in the plant responses toward abiotic
stresses [27, 29]. Specifically, the phytohormone SA is
a phenolic compound that controls plant growth and
development in both favorable and challenging envi-
ronments [29, 33]. More recently, it was discovered that
SA offers biological protection to plants against abiotic
stresses. This protective function was attributed to its
regulation of several essential physiological processes,
such as photosynthesis, proline metabolism, nitrogen
metabolism, glycine betaine biosynthesis, antioxidant
mechanisms, and the overall water status of the plant.
Consequently, SA is implicated in enhancing a plant’s
resistance to a range of abiotic stressors, including
ozone, metal exposure, UV-B radiation, extreme tem-
peratures, drought, and high salinity [25, 34]. Salicylic
acid functions as a signal sensor in plants, regulat-
ing their responses and protecting cells from harmful
effects like ion accumulation and cell death. It facilitates
important processes such as antioxidant defense, nitro-
gen metabolism, photosynthesis, and coping with water
stress. SA levels vary significantly among plant species
and in response to environmental challenges [35]. The
impact of naturally occurring SA levels in plants is asso-
ciated with their developmental stage and exposure to
external stimuli [36]. Additionally, applying exogenous
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SA treatment can enhance a plant’s resilience to vari-
ous stressors, such as salt, drought, heat, cold, and
heavy metals [37, 38]. Under abiotic stress conditions,
plants can trigger a sequence of gene expressions, some
of which are associated with SA-dependent activation.
These genes influence a range of biological processes,
such as the production of molecular chaperones, anti-
oxidants, and secondary metabolites [8, 11, 39].

Previous literature has indicated that the applica-
tion of SA significantly enhances stress resistance in
various crops under both saline and non-saline con-
ditions. It was hypothesized that SA can alleviate the
negative effects of salt stress on canola. This treatment
was expected to enhance canola growth, photosyn-
thetic pigment levels, antioxidant defense systems, and
nutrient absorption under saline and non-saline condi-
tions. Based on the hypothesis, the objective of present
study was to investigate the effects of SA in optimizing
the growth, photosynthetic activity, and antioxidant
defense system of canola during growth in high salinity
conditions.

Materials and methods

Experimental setup

An experiment was conducted at the Botanical Gar-
den, The Islamia University of Bahawalpur, to investi-
gate the effects of salinity on canola (Brassica napus L.)
through exogenous salicylic acid (SA) application. This
study was carried out from November-2022 to Febru-
ary-2023. Two canola varieties, namely Faisal (V1) and
Super (V2), were exposed to two levels of salinity i.e.
control and 200 mM NaCl. Salicylic acid was applied in
three different concentrations (0, 10, and 20 mM) via
foliar spray. Plastic pots with 8 kg of soil were utilized
for the growth experiment. In each pot, fifteen seeds
were sown, and after two weeks of germination, seven
plants were maintained after thinning. Salinity was
applied with regular intervals in the form of a solution
after 45 days of sowing. A foliar spray of SA was applied
after two weeks of salinity application. After three
weeks of SA application, data related to various growth
parameters, i.e., chlorophyll pigments, biochemical
characteristics, and antioxidant profiles were recorded.
The treatments were applied in the following order;
TO=Control+0 mM SA, Tl1=Control+10 mM SA,
T2=Control+20 mM SA, T3=200 mM NaCl+0 mM
SA, T4=200 mM NaCl+10 mM SA and T5=200 mM
NaCl+20 mM SA. All the experiments were done in
compliance with relevant institutional, national, and
international guidelines and legislation. High research
standards were maintained throughout the experiments
and following the various established scientific proto-
cols [13, 28, 40, 41].
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Soil analysis

Soil analysis was done at the Regional Agricultural
Research Institute, Bahawalpur. Soil sample were
obtained at 15 cm depth for analysis. The soil pH was
7.98 and electrical conductivity was 0.29 mS cm™’. In
addition to these physical attributes, organic matter
(0.63%), available phosphorus (32 mg kg™'), available
potassium (28 mg kg™'), saturated percentage (28%) and

texture (sandy loamy) were also examined.

Morphological parameters

Shoot and root lengths were measured using a measur-
ing scale. Additionally, the fresh weight of plant samples,
comprising both shoots and roots, was promptly deter-
mined upon harvesting using a digital weighing balance.
Subsequently, the samples underwent oven drying within
a temperature range of 65 °C. After two weeks of drying,
the dry weights of both shoots and roots were measured
using a digital balance.

Photosynthetic pigments
For determination of chlorophyll contents, 0.1 g leaf
sample were ground in 5 ml of 80% acetone. Sam-
ples were kept overnight and absorbance for each
sample was recorded at 663, 645, and 480 nm with
spectrophotometer [42].

Reactive oxygen species (ROS)

Hydrogen peroxide (H,0,)

The technique described by Velikova et al. [43], was
employed to measure hydrogen peroxide levels. Ini-
tially, 0.25 g of leaf sample was ground in 2 ml of 0.1%
TCA under chilled conditions. Following centrifugation
at 1500 rpm for 20 min, the supernatant was isolated.
Subsequently, a test tube was filled with 0.5 mL of phos-
phate buffer, 0.5 ml of leaf sample, and 1 ml of potassium
iodide solution (165.9 g potassium iodide in 1 L of dis-
tilled water). After careful vortexing, the absorbance was
recorded at 390 nm using a spectrophotometer.

Malondialdehyde (MDA)

Malondialdehyde levels were determined according
to Yagi (1982). Initially, 0.25 g of ground leaf sample
was added to 2 ml of 0.1% TCA solution (0.1 g TCA in
100 ml of distilled water). The supernatant was separated
after centrifuging at 1500 rpm for 20 min. A solution was
prepared by dissolving 20 g of TCA and 0.5 g of TBA in
100 ml of distilled water. In a test tube, 4 ml of the solu-
tion and 1 ml of the supernatant were added. The solu-
tion was then placed in a water bath at 95°C for 30 min.
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After removal from the water bath, it was allowed to
cool, and readings were taken at 532 and 600 nm.

Enzymatic antioxidants activities

Catalase (CAT)

The Chance and Maehly [44], method was employed
to measure CAT activity. Initially, 5 ml of phos-
phate buffer was added to 0.2 g of ground leaf sam-
ple. The solution was then centrifuged at 1500 rpm
for 20 min, followed by the perpendicular separation
of the supernatant. Subsequently, a cuvette was filled
with 0.1 ml of the sample, 1 ml of H,0,, and 1.9 ml
of phosphate buffer. At intervals of 0, 30, 60, and
90 s, the absorbance was measured at 240 nm using a
spectrophotometer.

Superoxide dismutase (SOD)

Superoxide dismutase activity was measured using the
method described by Giannopolitis and Ries [45]. Reac-
tion mixture contains 50 pL of nitroblue tetrozolium
(NBT), 50 pL of riboflavin, 100 puL of L-methionine, 250
uL of phosphate buffer, 100 pL of tritox and 150 pL of dis-
tilled water. The sample was exposed to light for 20 min,
and the absorbance was recorded at 560 nm using a
spectrophotometer.

Peroxidase (POD)

The Chance and Maehly [44], method was employed
to measure POD activity. A cuvette was prepared
with 0.05 ml sample extract, 7.5 ml phosphate buffer,
0.1 ml guaicol solution (335 pl H,O,+ 15 pl phosphate
buffer), and 0.1 ml H,O, solution (100 ul H,O,+20 pl
phosphate buffer). The absorbance was recorded
at 470 nm with spectrophotometer at 0, 30, 60, and
90-s intervals.

Non-Enzymatic antioxidants activities

Total phenolics

The amount of total phenolics was calculated in accord-
ance with Julkenen-Titto [46]. Leaf material (0.5 g) was
extracted using 10 mL of 80% acetone. One milliliter of
the supernatant was mixed with 5 mL of 20% Na,CO,
and 1 mL of Folin-Ciocalteu phenol reagent. Distilled
water was added to bring the total volume of the mix-
ture to 10 mL. The absorbance of reaction mixture was
recorded at 750 nm with spectrophotometer.

Flavonoids
According to Marinova et al, [47], flavonoid contents
were measured. A brief incubation at 25 °C was followed
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by the addition of 1 mL of the ethanol extract to 300 L of
NaNO;. Then, AIC1, (300 pL) was added, and the mix-
ture was left at room temperature for 5 min. The mixture
was further enhanced with 2 mL of NaOH (1 M), which
was allowed to cool at room temperature for 10 min. The
mixture’s volume was increased to 10 mL using distilled
water. The absorbance was observed at 510 nm through
spectrophotometer.

Ascorbic acid (AsA)

The amount of endogenous AsA was calculated accord-
ing to Mukherjee and Choudhuri [48], protocol. For
extraction, 0.25 g fresh leaf sample was crushed in 5 mL
of 6% trichloroacetic acid. 4 mL of the extract, 2 mL of
2% dinitrophenyl hydrazine in acidic medium and a drop
of thiourea in 70% ethanol were added. The mixture
was heated in a water bath for 15 min and then chilled
to room temperature. After cooling, 5 mL of 80% H,SO,
was added to the solution, which was then maintained
on ice at 0 °C. Absorbance was recorded at 530 nm with
spectrophotometer.

Total soluble sugars (TSS)

To measure the total soluble sugar, 0.5 g of fresh leaf
material was extracted using 80% ethanol. 100 mL of eth-
anol extract were combined with 3 mL of enthrone rea-
gent, which had been previously prepared in 72% sulfuric
acid. The mixture was then heated at 95 °C for 15 min.
The reaction mixture was allowed to cool at room tem-
perature for 30 min. The absorbance of the mixture was
measured at 620 nm using a spectrophotometer [49].

Total soluble proteins (TSP)

Bradford reagent was prepared to measure the total solu-
ble proteins. This reagent was made by mixing 1 L of dis-
tilled water with 100 ml of 85% phosphoric acid, 0.1 g of
brilliant blue, and 50 ml of 95% ethanol. The freshly made
reagent was filtered using filter paper three to four times.
Each test tube contained 5 ml of reagent and 0.1 ml of
leaf sample Absorbance was recorded at 595 nm by using
a spectrophotometer.

Anthocyanin

For the measurement of anthocyanin, in 0.2 g of crushed
leaf sample was mixed with 5 ml of acidified methanol.
Acidified methanol was prepared by mixing 120 mL of
methanol with 1 mL of HCIl. The samples were placed in
appropriately labeled test tubes, which were then trans-
ferred to a water bath at 50 °C for one hour. Afterward,
the test tube were removed, and the absorbance were
recorded at 535 nm using a spectrophotometer [50].
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Total free proline

Proline content was measured by crushing 0.25 g of fresh
leaf material in 5 ml of 3% sulfosalicylic acid, followed by
filtering the extract. One milliliter filtrate was retained
in a test tube containing 1 ml of acid ninhydrin and 1 ml
of glacial acetic acid, and then heated in a water bath for
90 min at 100 °C. The vortexing created two layers, and a
spectrophotometer was used to measure the absorbance
of the upper pinkish layer at 520 nm.

Glycine betaine (GB)

For glycine betaine determination, 0.25 g of fresh mate-
rial was extracted in 5 ml of distilled water. The extract
was centrifuged at 12,000 rpm for 15 min. 500 pl of the
resulting extract were added to a test tube along with
1 ml of 2 N H,SO, and 1 ml of the sample extract. After
adding 0.2 ml of potassium tri-iodide, the test tubes
were chilled for 90 min. To the ice-cooled test tubes, dis-
tilled water and 6 ml of 1, 2-dichloroethane were added,
respectively. Two distinct layers were created, and the
lower layer was used for measuring the absorbance at
365 nm with a spectrophotometer.

lon analysis of root and shoot (Na*, K*, Ca**)

Oven-dried samples (0.1 g) of the root and shoot
were kept in distinct, labelled conical flasks. Follow-
ing which, 5 ml of pure H,SO, were added to each
flask and covered overnight. The next day, the flasks were
placed on a hot griddle, and H,0, was gradually added
while heating the sample until the solution become trans-
parent. After cooling, the solution was filtered using filter
paper, and distilled water was added to maintain the vol-
ume up to 50 mL. The levels of Nat, KT, and Ca*" were
then measured using the flame photometer.

Statistical analysis

For statistical analysis, software (Statistic 8.1) was used.
A three-way analysis of variance (ANOVA) was used to
analyze the data. Microsoft Excel was used to create the
graphs. Radar analysis and correlation matrix were per-
formed by using R-studio version R-4.3.0 (R Develop-
ment Core Team 2021).

Results

Morphological parameters

The application of 200 mM NaCl (T3) considerably
affected the length of root and shoot, their fresh weights
and dry weights in both varieties. A considerable reduc-
tion recorded in root length, fresh weight and dry weight
(52, 47 and 52%) in V1 and (47, 42 and 47%) in V2. It is
also observed that under T3 salt stress decreased the
shoot length, fresh weight and dry weight in V1 (22, 50
and 40%) and V2 (13, 50 and 40%). However, exogenous
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application of SA (T5) increased the root length, fresh
weights and dry weights in V1 54%, 70% and 62% and
31%, 36% and 63% respectively in V2. Similarly, foliar
application of SA also enhanced the shoot length, fresh
weight and dry weight in V1 (49, 49 and 100%) and V2
(35, 38 and 100%) respectively (Fig. 1).

Photosynthetic pigments and ROS

The exposure of canola to 200 mM NaCl significantly
altered the levels of photosynthetic pigments (chloro-
phyll a, chlorophyll b, total chlorophyll, carotenoids)
and ROS (hydrogen peroxide and malondialdehyde) in
both varieties. There was a notable decrease in chloro-
phyll a, chlorophyll b, total chlorophyll and carotenoids
contents by 61, 65, 63 and 58% in V1 respectively; 59.8,
59.6, 59.7 and 55% in V2 under T3. Concomitantly, expo-
sure to NaCl stress (T3) increased the production of ROS
(H,O,, MDA) in V1 (48% and 49%) and V2 (43% and
55%). In contrast, SA (20 mM) application had a positive
effect and increased the chlorophyll a, chlorophyll b, total
chlorophyll and carotenoids in V1 (30, 61, 40 and 32%)
and V2 (21, 42, 28 and 22%) under T2. Foliar application
of 20 mM SA markedly reduced the hydrogen peroxide
and malondialdehyde by 18%, and 30% in V1 and 25%
and 24% in V2 (Fig. 2).

SOD, POD, CAT, TSP, TSS and flavonoids

High concentrations of NaCl (200 mM) had a signifi-
cant impact on superoxidase (SOD), peroxidase (POD),
catalase (CAT), total soluble proteins (TSP), total soluble
sugars (TSS) and flavonoids in both plant varieties (V1
and V2). SOD, POD, CAT substantially increased (63, 35
and 108%), (76, 30 and 88%) in V1 and V2 respectively
under stress conditions. Similarly, TSP, TSS and flavo-
noids slightly increased (46, 39 and 36%) in V1 and (42,
40 and 38%) V2 under saline conditions. However, the
application of SA increased the SOD, POD, CAT in V1
(41, 19 and 75%) and V2 (47, 16 and 56%) under both
stress and control conditions. SA (20 mM) also increased
TSP, TSS and flavonoids by (32, 22 and 26%) in V1 while
(28, 23 and 24%) in V2. Maximum increase recorded in
V2 under T5 (Fig. 3).

GB, proline, anthocyanin, ascorbic acid and phenolics

The levels of glycine betaine, proline, anthocyanin, ascor-
bic acid and phenolics increased after the application of
200 mM NacCl by 103, 48, 43, 32 and 49% in V1, whereas
(95, 56, 39, 35 and 35%) in V2. Salicylic acid (20 mM) was
applied foliarly that considerably enhanced the glycine
betaine, proline, anthocyanin in V1 (50, 32 and 25%) and
V2 (64, 41 and 28%). Similarly, ascorbic acid and pheno-
lics also enhanced by (23% and 27%) (17% and 21%) in V1
and V2 respectively. The highest value recorded under T5
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of canola under salt stress. The three replicates + SE is shown by the error bars above the means. For a parameter, means that share same letter
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and lowest value seen under TO. Hence, V2 sowed better
concentration as compared to V1 (Fig. 4).

Root and shoot ions

High concentrations of NaCl (200 mM) gave significantly
negative effects on root/shoot K™ and Ca** in both
anola varieties (V1 and V2) by (55, 58, 54 and 58%) and
(53, 56, 50 and 58%). On the other hand, application of

NaCl enhanced the Na* level in both root and shoot by
(51% and 54%) in V1 and (44% and 42%) in V2. However,
the negative effects of NaCl stress were mitigated by the
application of SA (20 mM). Salicylic acid positively influ-
enced on the root/shoot K* and Ca?* and increased the
ion concentration in V1 (25, 37 36 and 32%) and V2 (23,
23,27 and 25%), leading to decrease in root/shoot Na* in
both varieties (16, 21 and 14, 20%) respectively (Fig. 5).
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Radar analysis

The radar analysis presented the average observations of
all parameters studied under salt stress, including mor-
phological parameters, photosynthetic pigments, ROS,
enzymatic antioxidants, non-enzymatic antioxidants, and
salt ions (Fig. 6). According to the findings, the photo-
synthetic pigments of the canola plant increased under
treatment T2, followed by T1 and control, which led

to an increase in the morphological parameters of the
plant, including the root and the shoot. The treatments
T4 and T5 had the effect of reducing the photosynthetic
pigments, while simultaneously increasing the activ-
ity of both enzymatic and non-enzymatic antioxidants.
However, the morphological parameters of the root and
shoot were reduced. The plant ions (Na™) for root and
shoot have been increased under treatment T3, T4 and
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Fig. 3 Effects of salicylic acid (SA) on superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), total soluble proteins (TSP), total soluble
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T5 while (Ca?* and K*) have been increased under T1,
T2 and control conditions.

The correlation analysis revealed that the two types
of canola studied traits had a similar correlation trend.
Pearson’s correlation of antioxidants, non-enzymatic and
biochemical traits with plant morphological parameters
was analyzed for the two varieties of canola (Fig. 7). In
canola plants, a highly positive correlation was observed

between photosynthetic pigments (chlorophyll a, b, total
chlorophyll, and carotenoids) with morphological param-
eters (SL, SEW, SDW RL, REW, and RDW). Increasing
these attributes directly correlated with the yield plant
biomass and increased significantly (Fig. 7). A strong
negative correlation was found between ROS (H,O,,
MDA), enzymatic antioxidants (CAT, SOD, POD), non-
enzymatic antioxidants (AsA, Anthocyanin, TSS, TSP,
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Proline, GB, Phenolics, Flavonoids), with morphologi-
cal parameters of canola. Salt ions shows variation in
correlation as Ca and K ions for root and shoot showed
a positive correlation while the Na ion for root and
shoot showed a negative correlation with morphological
parameters of plants. The enzymatic antioxidants showed
a significant strong correlation with non-enzymatic

antioxidants (Fig. 7). Under salinity an increase in enzy-
matic and non-enzymatic antioxidant will cause a decline
in photosynthetic pigments (chlorophyll 4, b, total chlo-
rophyll, and carotenoids) which will directly cause a
decline in morphological parameters and decline in yield.
The MDA and H,O, showed a strong negative correla-
tion with all plant biomass attributes.
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Discussion

Globally, the saline soil is predicted to increase because
of insufficient rainfall, highly-saline irrigating water,
and poor agricultural management strategies, particu-
larly in semi-arid and arid zones where evapotranspira-
tion exceeds than precipitation [51]. In current study, it
was observed that parameters related to growth, includ-
ing the length of shoot and root, as well as the fresh

and dry weights of shoot and root, markedly decreased
under saline stress. Salinity hinders the development and
growth of plant by impressive constraints. One primary
mechanism contributing to these effects is osmotic stress
is first constraint which reduces the plant ability for
uptake of water. There are numerous events occurring in
the plant but this is considering as main event in plant
tissues that are under stress [52]. Lower water uptake
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conditions

immediately blocked the cell expansion that leads toward
the loss in turgor pressure [53]. Exogenous SA led to
enhanced growth parameters, including increased length
of the root and shoot, greater shoot fresh and dry weight,
and higher fresh and dry root weight. Salicylic acid helps
to reduce the harmful effects of salinity by controlling
photosynthesis through modulation of enzyme activ-
ity related to CO, fixation and enhancement of stomatal
conductance. It provides protection to plants cells against
oxidative stress by managing both antioxidant systems
i.e., enzymatic and non-enzymatic, and maintaining ion

homeostasis by regulating the movement of H* ions in
plant roots [54, 55].

Both canola varieties exhibited a substantial reduction
in photosynthesis-related pigments including chloro-
phyll a, chlorophyll b, total chlorophyll, and carotenoids
under salt stress. The decrease was attributed to the
breakdown of photosynthetic mechanism because chlo-
rophyllase enzyme activity increased that interrupts
the photosynthetic activity [56, 57]. All photosynthetic
pigments significantly increased in both canola varie-
ties by the application of SA. Exogenously applied SA
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plausibly restored the production of foliar photosyn-
thetic pigments under salinity as the phytohormone
improved homeostasis thereby giving cellular protec-
tion against salt-induced damage [58].

The concentration of reactive oxygen species i.e. MDA
and H,O, considerably increased under salt stress. The
formation of different types of ROS (H,0O, and MDA)
under salinity caused oxidative stress which violate the
membrane system (both cellular and organelle) and influ-
ence lipid peroxidation. Numerous factors ionic and
oxidative stress contribute to the generation and release
of ROS that restricts photosynthetic activity and cause
chlorophyll degradation [59]. SA considerably reduced
H,O, level by increasing antioxidant enzymes such as
SOD, POD and CAT, which plays crucial role in ROS
detoxification and maintenance of cellular redox homeo-
stasis under both saline and control environment. Foliar
applications of SA effectively reduced the increased levels
of hydrogen peroxide (H,0,) and preserved cell mem-
branes from oxidative harm. Salicylic acid achieved this
by functioning as antioxidants, directly scavenging H,O,,
and indirectly by stimulating the activity of antioxidant
enzyme [60].

In current study, the concentration of enzymatic
antioxidants such as CAT, POD, and SOD consider-
ably enhanced under salt stress. The notable increase in
enzymatic antioxidants is a plant’s adaptive response to
counteract ROS-induced oxidative damage. The main
scavenger of superoxide anion radical (O, ") is enzyme
SOD and its action produces O, and H,0O,. Additional
antioxidant enzymes like CAT and POD, then suppress
the generated H,0,. Enzymatic antioxidants compris-
ing POD and CAT detoxify ROS and metamorphose
H,0O, into water and molecular oxygen [61, 62]. The
enzymatic antioxidants, such as CAT, POD, and SOD
considerably increased in both canola varieties by the
application of foliar SA under both saline and control
conditions. Salicylic acid performs important role in
improving plant tolerance against stress by enhancing the
antioxidative defense system [63]. It influences the activ-
ity of antioxidant enzymes by decreasing the destructive
effects of ROS under saline stress [64, 65]. Foliar appli-
cations of SA efficiently diminish the high levels of H,O,
and protect cell membranes from oxidative destruction.
Because of its distinctive properties, SA prevents mem-
brane oxidation loss by acting directly as an antioxidant
to scavenge H,0, and indirectly by activating antioxidant
enzymes [66, 67].

The amount of TSP, as well as TSS, and endogenous
AsA significantly increased in both varieties under saline
conditions. The accumulation of osmolytes such as TSS,
TSP and endogenous AsA are one of the key physiological
indicators of salt tolerance in plants, which is considered
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an essential mechanism employed by many plants to cope
with salt stress [68, 69]. These compounds under salt
stress protects cells by balancing the osmotic potential
of the cytosol with that of the vacuole [70]. Salicylic acid
considerably increases TSS, TSP and endogenous AsA
under both salinity and control conditions. SA enhanced
the salinity tolerance by osmotic adjustment through
maintaining membrane stability and preserving enzyme
activity involved in osmolyte metabolism that are essen-
tial mechanisms which enable plants to safeguard their
tissues from damage thereby enabling uninterrupted
growth and development in saline environments [22, 71].

Secondary metabolites such as total phenolics, antho-
cyanin and flavonoids increased under salt stress. These
compounds are known for their key function in pre-
venting salt stress, which can lead to oxidative damage
in plants [72]. Phenolic compounds demonstrate anti-
oxidant properties by neutralizing free lipid radicals and
preventing the conversion of hydro peroxides into free
radicals. This enhanced antioxidant activity aids in the
detoxification of ROS, likely contributing to increased
resistance against salinity [73, 74]. Secondary metabolites
such as phenols, anthocyanin, and flavonoids consider-
ably increased by the exogenous use of SA under control
and salt stress in current experiment. SA acts as a sign-
aling molecule that triggers various defense mechanism
in plants. One of these mechanisms involves maintain-
ing membrane integrity and enzymatic action. These
secondary metabolites assist the plant in avoiding tissue
damage, scavenge harmful ROS thus improving the plant
defense system from various harmful effects of salinity
allowing for continuing development and progress under
challenging circumstances [75].

Our study demonstrated that under salt stress, proline
and glycine betaine increased in both varieties of canola.
The elevation of these compatible solutes and osmo-
protectant under salt stress reflects the plant’s adaptive
response to counteract salinity’s adverse effects. Proline
is essential for maintaining the stability of membranes
because it binds to membrane phospholipids, which
alters the hydrated layer around biological macromol-
ecules and aids in safeguarding cellular structures against
the disruptive effects of salt stress. Use of exogenous SA
improved the production of glycine betaine and proline
in varieties both saline and non-saline environments
[76]. Glycine betaine and proline have ability to scavenge
ROS production and resist salt stress. Glycine betaine
and proline have a potential to assist the plant in pre-
venting tissue damage as these two inhibit the produc-
tion of destructive ROS which contributes to the plant
defense system from various harmful effects of salinity
and allowing continued growth and development under
stressful conditions [77, 78].
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The substantial increase in root and shoot Na' and a
considerable decrease in potassium (K*) and calcium
(Ca*") ion under salinity was observed. The excessive
buildup of sodium (Na*) can be detrimental to vari-
ous aspects of plant health [79]. It disrupts the balance
of water and nutrient uptake, impairs metabolic pro-
cesses, disturbs ionic equilibrium, and hinders crucial
plant developmental processes, ultimately leading to
plant death [80]. Potassium and calcium play dynamic
osmoregulation functions, enzymes activation and cyto-
plasmic homeostasis maintenance [36]. Application of SA
cause significant reduction in root and shoot sodium ions
(Na*) and increased the K* and Ca”" ions. Maintaining
proper ion balance and cellular homeostasis is crucial for
plants to effectively cope with salt stress. Plants treated
with SA showed a significant decrease in sodium (Na™)
concentration and a notable increase in K* uptake. This
could be attributed to the combined influence of both
compounds in regulating nutrient uptake and maintain-
ing ionic stability in plants [81].

Conclusion

Under high salinity conditions, both canola varieties
experienced a decline in morpho-physiological and bio-
chemical attributes, including a notable reduction in
photosynthetic pigments and the accumulation of ROS.
Interestingly, the adverse effects of salt stress were miti-
gated by the application of SA as a foliar spray. Salicylic
acid treatment (10 mM and 20 mM) played a crucial role
in maintaining osmotic balance, facilitating nutritional
absorption and mineral ion uptake, and aiding in ROS
detoxification by promoting the production of enzymatic
and non-enzymatic antioxidants and osmolytes. The effi-
cacy of SA in alleviating the effects of salt stress has been
well established. Additionally, it was observed that vari-
ety V2 (Super canola) demonstrated greater resilience
to salinity stress compared to variety V1 (Faisal canola),
as evidenced by its lesser deterioration in morphologi-
cal features, antioxidant metabolism, and nutritional
absorption when subjected to SA application. Further
investigations should be conducted to explore the appli-
cation of SA using different methods in field settings on
a larger scale.
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