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limited. The primary reason for this knowledge gap is 
that natural archives that both span the early Holocene 
period and offer information about terrestrial ecosystems 
with an annual resolution, such as tree rings, have been 
lacking from north-central Sweden where the last rem-
nants of the ice sheet lingered as late as ca. 9.2–9.5 kyr 
cal bp (Hughes et al. 2016; Stroeven et al. 2016). The 
late deglaciation of north-central Sweden makes it easy 
to assume that the region was covered by a continuous 
blanket of ice until at least 10 kyr cal bp and that ter-
restrial sources of proxy data such as pollen could be 
used for environmental reconstruction from ca. 9 kyr cal 
bp (Seppä et al. 2009; Mauri et al. 2015). For tree rings, 
the oldest dendrochronological time series (about 7.4 
kyr cal bp) from northern Fennoscandia comes from the 
northernmost part of the area that was deglaciated sev-
eral millennia earlier than the central part (Grudd et al. 
2002). Indeed, the absence of early Holocene tree rings 
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Our understanding about environmental conditions pre-
vailing in terrestrial ecosystems directly after the retreat 
of the Weichselian ice sheet in northern Fennoscandia is 
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Abstract
Environmental conditions for trees that established in central Fennoscandia shortly after the final retreat of the Weichselian 
ice sheet remain poorly understood. In this study we examine tree rings of five well-preserved Pinus sylvestris (Scots 
pines) that grew in the area in front of the retreating ice sheet in northern Sweden. They became buried in flood sediments 
deposited by a glacial outburst flood (jökulhlaup) about 9.5–9.9 kyr cal bp and the aim of our study was to search for infor-
mation regarding damage from fires and bioclimatic conditions in their ancient tree ring records. Our analysis, providing 
a glimpse into the local early Holocene environment in north-central Sweden, suggests that: 1, there were repeated fires 
(four fire events detected) during the early Holocene; and 2, bioclimatic conditions when the ancient pines were growing 
resembled those of modern sub-alpine pine woods. The latter is indicated by their patterns of tree ring growth (growth 
rate and variation), which were statistically similar to those of pines growing in sub-alpine woods with an open canopy, 
but different from pines in protected and managed boreal forests. Lower δ13C for the ancient latewood in comparison to 
pine wood from trees growing near the Scandinavian mountains before the 1850s were probably caused both by stomata 
fractionation due to lower atmospheric CO2 during the early Holocene and by the moist local environment created by the 
nearby ancient Ancylus lake, which preceded the Baltic Sea. Periods with cloudy and cold summers were also indicated 
by the occurrence of ‘false rings’. Finds of charred fragments of Calluna vulgaris (heather, ling), an understory shrub that 
can burn even with a relatively high moisture content, suggest that heath vegetation was crucial to make fire a reoccurring 
ecological factor in the area during the early Holocene.
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from the north-central part of the area covered by the for-
mer ice sheet seems unsurprising, given its late degla-
ciation. However, fragments of Picea abies (Norway 
spruce) and Pinus sylvestris (Scots pine) dating back to 
the late Weichselian glaciation have been found on pre-
sumed nunataks which protruded through the ice sheet 
in the Scandinavian mountains (Kullman 2008). Unfor-
tunately, the wood from these samples was too degraded 
for detailed dendrochronological analysis of tree growth. 
Other indications, suggesting that the arrival of trees 
directly followed the retreating ice margin in the central 
part of Fennoscandia during the early Holocene, come 
from studies detecting spruce DNA fragments in 10 kyr 
old sediments (Nota et al. 2022). It has even been sug-
gested from pollen records that tree taxa, such as Larix 
(larch) and Betula (birch), had colonized debris on top 
of the stagnant Weichselian ice sheet around the time of 
deglaciation (Zale et al. 2018).

The lack of well-preserved tree ring records from the 
early Holocene in Fennoscandia has led researchers to 
attempt the extraction of growth rates from charcoal 
located within archaeological deposits, but problems 
with shrinking during heating as well as unknown sample 
origins, from trunks or branches, made it difficult to com-
pare these tree ring analyses with those of modern speci-
mens (Carcaillet 2017). Findings from well-preserved 
tree rings from the first pioneer trees that established in 
front of the decaying ice sheet in northern Scandinavia 
could provide detailed information about bioclimatic 
conditions and possible fire regimes in this region. Here, 
the existence of fires seems indeed uncertain at this pre-
sumed early stage of vegetational succession, as insuf-
ficient amounts of burnable materials may have limited 
them. It takes decades for a burnable forest floor layer to 
form in mature boreal forests (Schimmel 1993; Schim-
mel and Granström 1997). While most studies seem to 
agree that a pine-birch woodland dominated the area 
in the centuries after the ice sheet retreated from cen-
tral Fennoscandia (Bergman et al. 2005), it is less cer-
tain when fire became an ecological factor in this early 
environment. Our limited knowledge of fire frequency 
and intensity in the early post-glacial landscape hampers 
our understanding of both early ecosystem dynamics and 
climate-driven fire regimes. Forest fires are a significant 
ecological factor that regulates the ecological dynamics 
as well as light and nutrient availability in boreal forests 
(Schimmel 1993; Schimmel and Granström 1997; Nik-
lasson and Granström 2000; Thonicke et al. 2001; Wardle 
et al. 2003; Zackrisson et al. 2004). Therefore, mimick-
ing natural fire frequency and intensity is a common aim 
of forestry management programs (Angelstam 1998).

Our knowledge of fire regimes in the post-glacial land-
scape is mainly based on the analysis of charcoal frag-
ments from lake sediments or peat. Charcoal found in 
dated lake sediments from southern Sweden suggests that 
local fire events started several millennia after deglacia-
tion (Hannon et al. 2018). In contrast, similar analyses 
in northern Sweden suggest that fires began when the 
degrading ice sheet was still present in the region (Car-
caillet et al. 2007, 2012). However, while the size of 
charcoal pieces in sedimentary or peat archives can be 
used to differentiate between local fires (large fragments) 
and regional fires (small fragments), tree ring analysis is 
the best technique to date local fire frequency with a high 
resolution (Lageard et al. 2000).

The overall purpose of this study was to assess the 
information on fire frequencies and bioclimatic condi-
tions preserved in the tree ring record of some uniquely 
well-preserved Pinus sylvestris trees which were buried in 
a massive flood deposit in northern Fennoscandia. Their 
age (ca. 9.6 kyr cal bp) suggests that they were grow-
ing near the last remnants of the degrading Weichselian 
ice sheet. We aimed to retrieve; 1, possible evidence of 
early fire regimes; and 2, information on bioclimatic con-
ditions for tree growth during the early formation of the 
woodland ecosystem by analysing the tree ring record. 
The latter was assessed using measurement of tree ring 
width and δ13C analysis of the latewood as a proxy for 
drought stress during the summer season.

Materials and methods

Site description

The study site (64°36”N, 18°42”E) is situated in north-
central Sweden within the municipality of Lycksele 
(Fig. 1a). The best estimates from deglaciation models 
(Hughes et al. 2016; Stroeven et al. 2016) suggest that 
this region was deglaciated ca. 9.9–10 kyr cal bp (Fig. 1b, 
c). However, Hughes et al. (2016) considered uncertain-
ties in their deglaciation data and suggested that the study 
area may have been under an ice sheet many kilometres 
from its edge as late as 10 kyr cal bp. Some models also 
propose deglaciation of the study site as late as 9.5 kyr 
cal bp (Parducci et al. 2012). The excavated pit was situ-
ated within a glaciofluvial or fluvial floodplain (Fig. 2a). 
The site is at ~ 218 m a.s.l. and several hundred metres 
from the present river course of the Umeälven (mean 
water level at 211 m).

In 1986, two Pinus sylvestris tree trunks ca. ~1.8 m 
long and with roots were excavated in a construction proj-
ect ca. 100 m from the excavation site (64°36’07,87”N, 
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18°42’20,57”E) and were taken to Skogsmuseet (the For-
estry Museum) in Lycksele and preserved there. In 2005, 
a ground penetrating radar (GPR) survey by Malå Geo-
science/RAYCON identified additional objects (poten-
tially trees) buried at 2–4 m depth at two nearby sites. 
We selected one of the most promising sites where our 
excavation revealed the presence of a fallen 12 m long 
P. sylvestris tree (Fig. 2a), with branches and bark still 
attached to the trunk (Fig. 2b). The tree (T1) was lying 
between depths of about 2.7 m (top) down to about 3.4 m 
(roots). We found large lenses of stones and silt within 
the roots of pine T1 and we assume that this glacial till 

was the original growth substrate. During the excavation, 
two additional pine trunks (T2 and T3), not previously 
detected by the ground penetrating radar, were found 
protruding from the sediment deposit (Fig. 2d, e). The 
deep burial (> 4 m) of these trunks made it impossible 
to retrieve the roots. The original fallen tree (T1) also 
had two evident fire scars (Fig. 2f). The setting and the 
vertical stratigraphy of the excavated 10 m deep deposit 
in which the trees were found is shown in ESM Fig. S1.

To study the formation of the deposit as well as the 
material in which the trees had grown, we used a Hypro 
GH8 percussion corer. Cores from a 10 m deep sediment 

Fig. 2 a, The excavated site with the fallen pine tree (T1), wrapped in 
plastic before its removal to Trädmuseet (Forest Museum) in Lycksele, 
visible in the centre (red arrow); b, Close up picture of the remaining 
branches of T1. Note that the tree bark was intact (but fell off upon dry-
ing) and there were no signs of deadwood beetles, which indicates that 
the trees were rapidly buried and sealed off from the soil surface; c, 
the disrupted roots of T1 still with embedded stones and inclusions of 

a silt-rich till, suggesting short distance transport of the fallen tree by 
water; d, the excavation, showing the positioning of a partly standing 
pine tree (T3, red arrow) situated near the fallen pine (T1); e, overview 
of the excavation sites where the positions and the tilting of the three 
pine trees found in the pit are shown with red arrows; f, two fire scars 
(injuries) at the base of T1 (two red arrows) from two separate points 
in time

 

Fig. 1 Location of the study site (red star on all maps); a, within Fen-
noscandia; b, in relation to the retreating Weichselian ice sheet in the 
study region around 10 kyr cal bp according to Hughes et al. (2016), 
with the relative uncertainty indicated by three possible situations: 
maximum extent (dashed black line), minimum extent (dotted black 

line) and most probable extent (white line); c, in relation to the mod-
elled deglaciation margins (yellow lines) between 10.4 and 9.7 kyr cal 
bp according to Stroeven et al. (2016). The maps in panels b and c are 
modified from Hughes et al. (2016) and Stroeven et al. (2016), respec-
tively. YD, Younger Dryas
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sub-alpine wood in Tjeggelvas nature reserve. The Lycksele 
chronology covers 470 years (1531–2000) and the Tjeg-
gelvas ones 332 years (1690–2021) for the site located in 
the forest zone at 475 m and 218 years (1803–2021) for the 
site located at the P. sylvestris treeline at 625 m. We also 
compared our dataset to tree ring data available from the 
Riksskogstaxeringen (Swedish National Forest Inventory) 
for managed forests in the Lycksele area covering 67 years 
(1946–2013).

Latewood δ13C values are a common proxy for drought 
stress due to the reduced photosynthetic discrimination 
against 13C in favour of 12C during drought periods (Eil-
mann et al. 2010). In P. sylvestris from north-central Swe-
den, increased δ13C in pine wood correlates with warm and 
dry summers with high atmospheric pressure (Seftigen et 
al. 2011). We sampled latewood for δ13C analysis from the 
longest individual time series (T1 and T2) with a Proxxon 
TBM 220 with a 0.1–0.3 mm drill bit and connected to a 
digital microscope with a 50× magnification. Sampled late-
wood was analysed for δ13C using an Isotope Ratio Mass 
Spectrometer, EA-IRMS.

Statistics

We compared growth rates and growth variability for the 
ancient wood samples with similar data from the more 
recent Tjeggelvas and Riksskogstaxeringen inventory data-
sets to search for modern analogues that matched our buried 
pine trees. We compared average growth rates (mm yr− 1) 
per wood sample and also the coefficient of variation (CV):

sequence were scrutinized for the main sedimentary lay-
ers (ESM) and plant macrofossils. Samples of plant mate-
rial from the sediment core which were used for dating 
are referred to as “macrofossil samples” in the following 
text, and dated wood samples from the buried trunks or 
branches as “megafossil samples”.

Radiocarbon dating

Radiocarbon dating was done by Beta Analytic Inc., Miami, 
Florida, using standard Accelerator Mass Spectrometry 
(AMS). All samples were dated using individual macrofos-
sils or wood from individual megafossils to avoid dating 
samples with remains of different ages, which is known to 
be a problem in this area (Zale et al. 2018). The AMS 14C 
dates were calibrated using BetaCal v. 3.21 (Table 1).

Dendrochronological analyses and comparison with 
modern tree rings

Tree ring analyses were done on the five P. sylvestris trees 
(N = 5), the three recently excavated tree trunks (T1-3), as 
well as the two found in 1986 that are preserved at Skogs-
museet (the Forestry Museum) in Lycksele (T4 and T5). 
Seven cores for tree ring analysis were extracted using a 
12 mm diameter increment borer mounted on a power drill, 
and in three cases a disc sample or ‘tree cookie’ was also 
taken. The samples were then prepared according to stan-
dard dendrochronological techniques (Baudet et al. 2020).

We compared our early Holocene tree ring dataset to 
three modern pine chronologies from sites in northern Swe-
den: one from a boreal forest in Lycksele and two from a 

Table 1 14C dates from the excavated pine trees (megafossils) and other macrofossils obtained from the studied deposit. T1-T5 refers to the indi-
vidual pine trunks describe in the text. The tree numbering indices referred to in the text are shown in brackets. The calibrated dates represent 
the 2σ uncertainty range. The 14C date of the innermost tree ring, which represents the oldest wood obtained from sample T5, is marked with *
Lab. ID Dated material Depth (m) 14C age (bp) Cal age, 2σ range (bp)
Megafossils
 452,578 Pine wood (T1) ca. 3 8,620 ± 30 9,595–9,535
 452,579 Pine wood (T2) ca. 3 8,590 ± 30 9,555–9,530
 452,580 Pine wood (T3) ca. 3 8,640 ± 30 9,655–9,645
 363,895 Pine wood (T4) ca. 5 8,740 ± 50 9,910–9,550
 363,894 Pine root (T5) ca. 5 8,660 ± 40 9,700–9,540
 560,138 Pine wood (T5)* ca. 5 8,690 ± 30 9,703–9,548
Macrofossils
 535,031 Vascular plant (stem) 3 8,590 ± 30 9,603–9,516
 535,033 Vascular plant (stem) 3.05 8,710 ± 30 9,747–9,551
 523,860 Betula spp. (wood) 3.1 8,530 ± 30 9,544–9,486
 535,030 Calluna vulgaris (stem) 3.15 8,640 ± 30 9,669–9,538
 535,029 Salix spp. (wood) 3.15 8,660 ± 30 9,679–9,544
 523,861 Calluna vulgaris (charred stem) 3.25 8,810 ± 30 10,120–9,694
 535,032 Vascular plant (stem) 3.3 8,610 ± 30 9,631–9,526
 478,857 Pinus sylvestris (wood) 4.2 8,720 ± 30 9,790–9, 552
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Environmental conditions inferred from the tree 
rings

The tree rings from the buried pines were very well pre-
served and indicated a highly variable growth history 
(Fig. 3a-c). Many rings displayed a latewood with irregu-
larities in colour and length and a ‘false ring’ suggesting 
short periods with a rapid reduction in growth, followed by 
a return to normal growth. Compression wood was com-
mon, but we detected no apparent disturbance from summer 
frost in the rings. However, besides occurrence of false rings 
from short periods of reduced growth, we noted the frequent 
presence of scattered narrow rings from years with slow 
growth, interspersed among wide rings from fast growth. 
Two of the trunks (T1 and T5) had two fire scars each, with 
19 (T1) and 20–23 (T5) years between the fires (return 
intervals), respectively. Judging by the encroachment wood 
grown over the damage and the surface of injury, the two 
fires separated by the 19 year gap had a rather moderate 
intensity, whereas the latest burning of T5 might have been 
of high intensity. The trees were 12 (T1) and 23 (T5) years 
old when the first fire occurred.

We compared growth rates and variation in growth (CV) 
of pines from the early Holocene with present day examples 
from woods and forests (protected sub-alpine birch woods, 
protected boreal forest and managed boreal forests). We 
found differences between these trees in terms of log growth 
rates (F4, 437=24.23; P < 0.001) and CV (F4, 437=25.84; 
P < 0.001). The post-hoc statistical test suggested that 
the buried pine trees were comparable to those growing 
in recent sub-alpine birch woods, but different from ones 
from modern boreal forests (Fig. 4). The growth rates of 
the buried trees were lower, but showed higher variation in 
growth between years than trees in protected and managed 
boreal forests. The δ13C of the latewood of the buried trees 
was lower (F2, 199=131.80; P < 0.001) than that of pine trees 
grown during ad 1730–1850 in central Sweden (Fig. 5). The 
differences between the two age classes remained when 
correcting the δ13C of the buried trees for the fractionation 
effect caused by the lower CO2 concentration in the atmo-
sphere during the early Holocene (F2, 199=51.18; P < 0.001).

CV =
Stdevringwidth

Meanringwidth

Here, Stdev ring width refers to the standard deviation (mm) 
of the whole tree ring sequence and Mean ring width is the 
average ring increment (mm) for the same sequence; hence, 
the coefficient of variation is a growth rate normalized for 
the variability in ring width. In addition, we tested for dif-
ferences in the δ13C values from the latewood of the buried 
pines and from trees growing in central Sweden, previously 
analysed by Seftigen et al. (2011). Differences between our 
buried tree trunks and modern pines were assessed using a 
one-way analysis of variance (ANOVA). Growth rates were 
log-transformed and residual ANOVA plots were visually 
inspected and evaluated to fulfil the assumption of normal-
ity. A Tukey’s range test was used to assess the significance 
of differences between groups. The following groups were 
tested: 1, pines growing in the valley at 475 m below the 
treeline in Tjeggelvas; 2, pines growing in sub-alpine birch 
woods near the treeline at 675 m in Tjeggelvas; 3, pines 
from a protected boreal forest in the study region (County of 
Västerbotten); 4, pines from managed boreal forests in the 
study region. All tests were done using IBM SPSS statistics 
v.28.

Results

In our sediment core from the flood deposit, the first occur-
rence of macrofossils (Calluna vulgaris, Salix spp., Betula 
spp. and Pinus sylvestris) was found at a depth of ~ 4.2 m 
and with an age ranging between 9.8 and 9.5 kyr cal bp 
(Table 1). Here, Calluna vulgaris (heather) was partly 
burned (charred). Many macrofossils were found in the 
deposit without any apparent chronological order. Grouped 
together with the wood samples from the museum (T4 and 
T5), the best age estimates (mean 14C age ± std. error) for 
the megafossils (N = 6) and macrofossils (N = 8) are 9.5–9.7 
and 9.6–9.8 kyr cal bp, respectively (Table 1).

Fig. 3 a, series of tree rings from the ancient Pinus sylvestris tree (T5) 
excavated from the Lycksele site; b, a series of tree rings from a P. 
sylvestris growing in Tjeggelvas nature reserve at 625 m.; c, a series of 

tree rings from a P. sylvestris growing in Tjeggelvas nature reserve at 
475 m. Note that the ancient tree in a shows a later period of increased 
growth compared to those currently growing at Tjeggelvas
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Holocene in southern Sweden, ranging between ca. 100 
years (Olsson et al. 2010) and ca. 300 years (Carcaillet et 
al. 2007). Nevertheless, a shorter mean fire return interval 
of 10–90 years, where variations are driven by site-specific 
conditions, has been observed in some unmanaged boreal 
pine forest stands (Zackrisson 1977; Engelmark 1984; 
Lageard et al. 2000; Ivanova et al. 2010; Ryzhkova et al. 
2022). With these lower estimates in mind, our inferred fire 
frequency during the early Holocene may also have direct 
analogues in modern boreal forests. We acknowledge that 
our limited number of samples makes it difficult to estimate 
how common such short fire return intervals were at a larger 
regional scale in the early Holocene environment. How-
ever, a return interval of few decades is mostly impossible 
to detect using the time resolution usually provided by lake 
sediment chronologies, so that charcoal from several fires 
with short return rates might seem to correspond to a single 
event.

Fire frequency and Holocene vegetation in Fennoscan-
dia are inextricably interlinked (Cui et al. 2013; Molinari et 
al. 2020), and it seems possible that the dominance of fire 

Discussion

Fire regimes in the pioneer post-glacial woodland

From the four fire scars found on the analysed pine trunks, 
it is evident that fire was an active factor in the landscape at 
a time where remnants of the degrading ice sheet was still 
present in north-central Sweden. The detection of past fires 
in these Scots pine tree rings from 9.5 to 9.7 kyr cal bp is, 
to our knowledge, the oldest direct evidence of such early 
fires in this region. Fire regimes during the early Holocene 
in northern Sweden have so far been inferred from indirect 
lines of proxy evidence from lake sediments, where charcoal 
size has been used to distinguish between local and regional 
fires (Carcaillet et al. 2007), so our findings are important 
for settling any uncertainties relating to early local fires.

Fire return intervals of 19–23 years for T1 and T5 are 
intriguingly short. Detailed studies using tree ring chronolo-
gies from boreal landscapes have suggested a typical fire 
return interval of 100–300 years before the start of mod-
ern forestry (Zackrisson 1977; Morgan et al. 2001). Stud-
ies using sedimentary archives to discover fire frequency 
have suggested similar fire return intervals during the early 

Fig. 5 Boxplot of the δ13C values for pine wood grown in central Swe-
den between 1730 and 1850 (pre-Suess effect) as determined by Sefti-
gen et al. (2011), compared to values for the early Holocene pine trees 
(T1 and T2, N = 131). Values for the ancient pine tree rings which have 
been corrected for the increased stomata fractionation due to lower 
CO2 concentration in the atmosphere during the early Holocene are 
also shown, on right panel. The latter correction is based on the isotope 
fractionation observed for Pinus contorta as a function of naturally 
elevated CO2 (Sharma and Williams 2009). Note that the latter study 
represents the most extensive, whole-ecosystem isotope fractionation 
experiment on natural elevated CO2 and Pinus sp. Box limits show 
the 25 and 75% quartiles and whiskers represent the 1.5QR. Different 
letters above the boxplots indicate statistically significant differences 
(p > 0.05) according to a Tukey post hoc test. Background colours 
show the general correlation between δ13C values and either cold/wet 
(blue) or warm/dry (pink) growth conditions

 

Fig. 4 Boxplots of tree ring growth rates (above) and variance in 
growth (below) for pines growing in four different modern environ-
ments, protected sub-alpine birch woodland, protected sub-alpine 
treeline, protected boreal forest and managed boreal forest, and early 
Holocene pine trees. The boxes show the 25 and 75% quartiles and 
whiskers represent the 1.5QR. Outliers are shown as black filled dia-
mond shapes. Similar letters above the boxplots indicate that data are 
not statistically different (p > 0.05) according to a Tukey post hoc test, 
and different letters represent significant differences between boxes. 
Note that the statistics provided for growth rates are based on log-
transformed data
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Williams 2009). Despite correcting for this fractionation, 
the ancient pine trees still have δ13C values ~ 0.6‰ lower 
than pine wood from the early 19th century. We note that 
pine wood growing near shorelines in northern Sweden has 
a -0.7‰ lower δ13C than from inland at comparable latitude 
(Esper et al. 2018). Therefore, we interpret the lower δ13C 
for the early Holocene pines to be a result of their growing 
environment near the lake shore, as the excavated site was 
part of the Ancylus lake shoreline following deglaciation 
(Björck 1995). This interpretation is in line with the occur-
rence of false rings in the tree ring record. Their presence 
suggests that cold and wet summers periodically suppressed 
growth, as such rings are usually interpreted as indications 
of periods with these conditions which are typical of more 
maritime climates (Nöjd and Hari 2001). Lower CO2 in the 
atmosphere in combination with growing near the shore of 
the Ancylus lake are the most likely causes of the low δ13C 
values in the early Holocene tree rings. However, we cannot 
exclude the possibility that lower δ13C in the ancient trees 
was to some extent caused by colder summers compared 
to the early 19th century. The observation of scarce narrow 
rings interspersed within a series of wider rings in our tree 
ring records indicate substantial drops in air temperatures 
during some summers (Cook and Kairiukstis 2013). Our 
interpretation of periodically colder summer temperatures 
is also supported by pollen records indicating 0–2 °C cooler 
summers in our study area around 9–10 kyr cal bp in com-
parison to the 21st century (Mauri et al. 2015). However, we 
emphasize that the inferred cooler climate may have been of 
very local character, as multiproxy reconstructions, based 
on pollen, chironomids and diatoms have suggested warmer 
summers in both the northern and southern parts of the Scan-
dinavian mountains around this time (Bigler et al. 2002; 
Paus and Haugland 2017). Nevertheless, it seems possible 
that remains of the stagnant ice sheet had a cooling impact 
on the local climate, as deglaciation maps of Fennoscandia 
predict that remnants of the ice sheet may have persisted in 
central Sweden until ca. 9.6 kyr cal bp (Hughes et al. 2016; 
Stroeven et al. 2016). Indeed, outburst floods from collaps-
ing ice-walled lakes together with meltwater from higher up 
in the Umeälven catchment are the most likely causes of the 
burial of the excavated trees. Floods of this type in the early 
Holocene have previously been described for river valleys 
in northern Sweden (Regnéll et al. 2019).

During the early Holocene, fire regimes are assumed 
to have been climatically controlled, as the inferred warm 
and dry climate would have favoured them (Olsson et al. 
2010). However, in our study area the frequent fires in the 
early Holocene occurred in an environment best described 
as a sub-alpine woodland with a moist climate influenced by 
the nearby Ancylus lake. A previous study has shown that 
forest fires in Fennoscandia are associated with conditions 

resistant trees such as P. sylvestris during the early Holo-
cene was at least partly caused by a high frequency of low 
intensity fires, for it is well-established knowledge that fires 
give pine a competitive advantage over other trees (Rog-
ers et al. 2015). Therefore, it seems plausible that frequent 
fires gave pine a competitive advantage over Picea abies 
(spruce) during the early Holocene, which may have played 
a role in the unexpectedly long time lag between the local 
establishment of spruce in Fennoscandia more than 10,000 
years ago and its main migration wave which occurred 
many millennia later (Nota et al. 2022). Moreover, forest 
fires vigorously stimulate nitrogen cycling in boreal for-
ests (Neary et al. 1999; Zackrisson et al. 2004), and if fires 
occurred every few decades, it seems likely that they were 
crucial for maintaining productivity in the early Holocene 
post-glacial landscape. This possible role of fire is important 
to highlight in this context, given that the trees in the study 
area are believed to have become established before the 
arrival of nitrogen fixing taxa such as Alnus (alder), which 
became established several thousand years later (Bergman 
et al. 2005; Kullman and Öberg 2015).

The occurrence of macrofossils of mosses, Betula and 
Pinus, which were detected in the flood sediments burying 
the pine trunks, is consistent with previous suggestions that 
a Betula-Pinus woodland with an open canopy established 
itself early at the south-western edge of the ice sheet in cen-
tral Sweden (Bergman et al. 2005; Berglund 2008), and that 
this type of woodland became established a millennium later 
in northern Fennoscandia (Sjögren and Damm 2019). Pines 
growing in sub-alpine birch woods with an open canopy also 
seem like the best analogue for the early Holocene pine tree 
rings. Statistically, the growth pattern in the tree ring record 
of these pines is comparable to that of pines growing in pro-
tected sub-alpine birch woods in the Scandinavian moun-
tains (Scandes). That is, the buried trunks showed a higher 
variation in ring growth than pine from modern boreal for-
est, suggesting a more variable growth environment in the 
early Holocene. Furthermore, the δ13C of the latewood of the 
ancient tree rings was clearly lower than the values of more 
modern analogues from central Sweden, where lower δ13C 
values are typically interpreted to represent lower summer 
temperatures or moister conditions (Hilasvuori et al. 2009; 
Seftigen et al. 2011; Esper et al. 2018). However, the early 
Holocene atmosphere contained only about 265 ppm CO2, 
while in the 1850s it was about 288 ppm (Flückiger et al. 
2002), and when the ancient trees were growing, the lower 
carbon dioxide concentration is expected to have caused 
increased stomata fractionation (O’Leary 1988). Estab-
lished regressions between atmospheric CO2 concentrations 
and fractionation for Pinus suggest that the ~ 22 ppm lower 
CO2 concentration during the early Holocene probably 
caused a 0.4‰ lower δ13C in the pine wood (Sharma and 
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