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Abstract 

Background Forest geneticists typically use provenances to account for population differences in their improve‑
ment schemes; however, the historical records of the imported materials might not be very precise or well‑aligned 
with the genetic clusters derived from advanced molecular techniques. The main objective of this study was to assess 
the impact of marker‑based population structure on genetic parameter estimates related to growth and wood 
properties and their trade‑offs in Norway spruce, by either incorporating it as a fixed effect (model‑A) or excluding it 
entirely from the analysis (model‑B).

Results Our results indicate that models incorporating population structure significantly reduce estimates of additive 
genetic variance, resulting in substantial reduction of narrow‑sense heritability. However, these models considerably 
improve prediction accuracies. This was particularly significant for growth and solid‑wood properties, which showed 
to have the highest population genetic differentiation  (QST) among the studied traits. Additionally, although the pat‑
tern of correlations remained similar across the models, their magnitude was slightly lower for models that included 
population structure as a fixed effect. This suggests that selection, consistently performed within populations, might 
be less affected by unfavourable genetic correlations compared to mass selection conducted without pedigree 
restrictions.

Conclusion We conclude that the results of models properly accounting for population structure are more accurate 
and less biased compared to those neglecting this effect. This might have practical implications for breeders and for‑
est managers where, decisions based on imprecise selections can pose a high risk to economic efficiency.
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Background
It is well known that the geographic ranges of tree spe-
cies have expanded and contracted several times during 
glacial and interglacial periods [1]. The contraction phase 
led to the isolation between refugial area and substan-
tial differentiation between populations [2]. During the 
postglacial period, as climatic conditions successively 
improved, expansions formed the secondary contacts 
between the migrating fronts, resulting in introgression, 
and in Fennoscandia, establishment of steep latitudinal 
and longitudinal clines for adaptive traits [3, 4]. Indeed, 
the new biotic and abiotic factors encountered during the 
glaciation cycles, resulted in new adaptations [5]. Indi-
vidual phenotypes are thus the result of a dynamic inter-
play between evolutionary and demographic processes 
[6, 7], which has resulted in the formation of specific tree 
species characteristics that may uniquely enable them to 
survive environmental changes.

Rapid changes in climatic conditions trigger new selec-
tive pressures on existing populations, which need to 
rapidly adapt to these changing conditions [8, 9]. Migra-
tion to more suitable habitats and phenotypic plasticity 
are regarded as short-term responses to these changes 
[10]. Nevertheless, long-term responses require adaptive 
capacity, which depends on the level of genetic variation, 
upon which selection can act [11]. Unravelling the fac-
tors underlying the adaptive traits is of particular inter-
est for evolutionary biologists, forest tree breeders as 
well as conservation geneticists [12], and to successfully 
achieve this; one useful approach is to investigate how 
phenotypic variation is partitioned within and among 
populations [13].

Common garden testing of populations, so-called prov-
enance tests, include broad genetic material represent-
ing a large proportion of a species’ natural distribution. 
This provides a great opportunity to dissect genetic vari-
ation within a species and to determine the responses of 
populations to changing climate conditions through phe-
notypic plasticity and genetic selection to the changes 
[14]. The presence of genetic variation within a popula-
tion implies that the trait variation is heritable, while 
among population variation (e.g.,  QST) can be the result 
of population demography. In general, these estimates 
provide important information on the ability of popula-
tions to respond to selection [15]. For instance, narrow-
sense heritability is a key population parameter which is 
defined as the proportion of phenotypic variation that 
is due to additive genetic variance, upon which selec-
tion can act [11], and therefore is widely used in genetic 
improvement schemes [12].

Norway spruce (Picea abies (L.) H. Karst.) is a dominant 
conifer species of major economic importance in northern 
Europe. In Nordic countries, Norway spruce is an essential 

source of raw material for the forest-based industry, 
mainly used either for construction purposes or for pulp 
production [16]. As such, the transfer and trade of Nor-
way spruce seeds and seedlings from other regions and 
countries was extensive in Southern Sweden already dur-
ing the  19th century because foresters observed that such 
materials were more productive than local provenances. In 
the 1940s, a large-scale Norway spruce breeding program 
was initiated in Sweden, by selecting trees with superior 
phenotype (plus-trees) for first-generation seed orchards 
[17]. And later, systematic genetic testing in the field con-
firmed that stands planted with materials of foreign origin 
indeed were more productive than the local provenances 
and appeared well adapted to the conditions in southern 
Sweden [18]. Therefore, to increase the stand productiv-
ity and overcome seed deficits, large quantities of Norway 
spruce seeds from central and south-eastern Europe were 
imported to southern parts of Sweden both before and 
during the age of tree breeding [19]. The geographic vari-
ation in the genetic make-up of introduced trees implies a 
strong population and admixture structure of base materi-
als in the breeding program. Recently, genome-wide data 
analysis, utilizing the base populations of the Swedish 
breeding program, has  revealed a more complex demo-
graphic history of the species, where three main genetic 
clusters had been described in Norway spruce: a northern 
domain in Fennoscandia and two southern domains in the 
Alps and Carpathians [20, 21]. Other studies of recurrent 
demographic migrations, followed by secondary interac-
tions indicated a fragmentation of Norway spruce into 
seven genetic clusters [22–24]: Northern Fennoscandia 
(NFE), Central and South Sweden (CSE), Russia-Baltics 
(RusBal), Northern Poland (NPL), Central Europe (CEU), 
Alpine (ALP), and Carpathian (ROM) domains. In south-
ern Sweden, a hybrid between CSE and ALP (CSE-ALP) 
has also recently been discovered [7].

A successful genetic improvement program depends 
on reliable estimates of additive genetic variance, nar-
row-sense heritability, and additive genetic correlations 
between traits [25]. Since domestication of most of for-
est trees is still in its early stage, the understanding of the 
effect of geographical differences among the plus-trees 
greatly affects the results of genetic evaluations, and in 
turn, subsequent generations of breeding. Although forest 
geneticists have widely adopted provenances to account 
for population differences in their improvement schemes, 
the historical records of such imported materials might 
not be very precise or well-aligned with the genetic clus-
ters derived from advanced molecular techniques.

Genetic parameters for growth and wood properties of 
Norway spruce have been extensively studied [16, 26, 27]. 
However, the effect of genetic clusters (hereafter popula-
tion structure) in genetic evaluations was not explicitly 
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estimated. Therefore, the main objective of this study is 
to elucidate the effect of population structure, retrieved 
from genome-wide DNA markers, on genetic parameter 
estimates, fitted as a fixed effect or excluded using two 
mixed-linear model alternatives. More specifically, this 
paper addresses the following objectives: 1) to evaluate 
differences in phenotypic and genetic performances of 
Norway spruce populations for growth and wood prop-
erties 2) to quantify the level of population differentiation 
 (QST), narrow-sense heritability ( h2 ), and additive genetic 
correlations (trade-offs) between growth and wood prop-
erties 3) To compare the predictive ability (PA) and pre-
diction accuracy (ACC) of models using random cross 
validation. The analysis was done using a large dataset of 
5,666 20-year-old trees from 524 half-sib families. Such 
investigation has practical implications for breeders and 
forest managers where, decisions based on imprecise 
selection of parameter estimates or wrong assumptions 
can pose a high risk to economic efficiency.

Result
Comparison of phenotypic and genetic performances 
across populations
Two different mixed models (model-A and model-
B) were tested to investigate the effect of population 

structure fitted as a fixed effect on genetic parameter 
estimates for different growth and wood properties. In 
models accounting for population structure (model-B), 
the effect of population structure was highly significant 
for all studied traits (p < 0.001), except for CELL and 
HEM (Table S1).

The performances of phenotypes and EBVs (using 
model-B only) across populations assessed for growth 
and solidwood properties are shown in Fig.  1. Such 
assessments for other studied traits are further included 
in supplementary materials (Fig. S1). Overall, popula-
tions showed greater differentiation based on the EBVs 
compared to the phenotypic values, suggesting that 
the variations among populations are primarily genetic 
rather than environmental. Nevertheless, in both per-
formance categories, southern populations, such as 
ALP, CEU and NPL, were the most productive ones 
(higher RWT, HI7, DBH12, DBH21, TRadW, TTangW, 
MFA, and NUMRES). In contrast, their solid wood 
properties (DENS, MOE, TWTH) were lower than 
those of northern populations, such as CSE. In gen-
eral, trees of CEU origin had the highest growth-related 
properties, while they had the lowest density-related 
properties. Such trends were particularly noticeable 
for EBVs. Trees of RusBal origin performed similarly 

Fig.1 Boxplots of phenotypic (A) and genetic (B) (EBVs of individuals obtained based on model‑B) performances of Norway spruce populations 
measured for growth and solidwood properties. Populations ordered by decreasing latitude from left to right on the x‑axis. Central and South 
Sweden (CSE, red), Russia‑Baltic (RusBal, olivegreen), Northern Poland (NPL, green), Central Europe (CEU, light blue), hybrids between CSE and ALP 
(CSE‑ALP, blue), and Alps (ALP, pink). Trait abbreviations are explained in Table 6
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to those of CSE origin, especially in terms of growth, 
whereas they had slightly lower DENS, FWT, FC and 
higher MOE (Fig. 1 and Fig. S1). No significant differ-
ences were observed among populations for chemical 
properties, except for LIG which was slightly higher for 
southern populations than CSE and RusBal (Fig. S1).

Generally,  QST values were higher for growth traits 
with the greatest estimates obtained for DBH21 (~ 0.13 
in Höreda and 0.20 in Erikstorp), which represent the 
highest genetic differentiation among populations, 
while  QST values for chemical wood properties were 
nearly zero (Fig. 2).  QST values for solidwood properties 
(0.03 to 0.05 in both trials) were generally higher than 
those observed for tracheid and resin properties with 
the greatest value obtained for TTWT and TTangW 
at ~ 0.03 (Fig. 2).

Quantitative genetic parameter estimates
Narrow‑sense heritability estimates
The most considerable difference between model-A and 
model-B, in terms of genetic parameter estimates, was 
the notable reduction of the additive genetic variance 
and the consequent reduction of narrow-sense herit-
abilities ( h2 ) observed in model-B, particularly for growth 

(Tables  1 and 2). For example, in Höreda, the additive 
genetic variance estimates for DBH21 and RWT were 
47% and 63% of the estimates derived from model-A, 
respectively. In Erikstorp, such proportions were 36% 
and 48%, respectively. Overall, h2 was reduced by about 
50% in Höreda and 65% in Erikstorp for DBH21. Simi-
larly, h2 for solidwood and some of tracheid properties 
were lower based on model-B. For instance, estimates 
for DENS, MOE, MFA, and TWTH decreased by 19.8%, 
23.4%, 15.5%, and 17.5%, respectively in Höreda, while 
in Erikstorp, they decreased by 18.2%, 21.4%, 11.4%, and 
15%, respectively. Nevertheless, reductions in h2 based 
on model-B were negligible for resin properties and h2 
estimates for chemical properties were very similar in 
both models.

Evaluation of models using k‑fold Cross‑validation
Predictive ability (PA) and prediction accuracy (ACC)  
of model-A and model-B were estimated through  5-fold 
cross validation. Despite the significantly lower additive 
genetic variances and h2 estimates obtained in model-B, 
this model resulted in higher PA and ACC for all stud-
ied traits in both trials, except for the marginally lower 
estimates obtained for chemical properties in Erikstorp 

Fig. 2 QST‑estimates for annual ring‑width (RWT), diameter measured at ages 21 and 12 (DBH21 and DBH12, respectively), height measured at age 
7 (HI7), modulus of elasticity (MOE), density (DENS), pilodyn (PILOD), microfibril angle (MFA), tracheid radial width (TRadW), tangential tracheid 
width (TTangW), tracheid wall thickness (TWTH), tracheid coarseness (TC), total number of resin canals (NUMRES), average area of resin canals 
(AVCAREA), resin Canal density (CANDENS), lignin (LIG), Cellulose (CELL) and hemicellulose (HEM) content at two progeny trials Höreda and Erikstorp
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(Table  3). The improvements in PA and ACC were par-
ticularly noticeable for growth, where ACC increased 
by 44%, 35%, and 26% for DBH21, DBH12, and RWT, 
respectively in Höreda and by 68%, 42%, and 44%, respec-
tively in Erikstorp. Correspondingly, improvements in 
ACC for DENS, MOE, and TWTH were 17%, 25%, and 
17%, respectively in Höreda and by 17%, 31%, and 15%, 
respectively in Erikstorp (Table 3).

Additive genetic correlations (trade‑offs) and genetic 
correlations between sites (G × E)
A subset of additive genetic correlations ( ra ) among dif-
ferent traits, based on both models, are presented in 
Table 4, whereas the complete set is given in supplemen-
tary materials (Table  S2). Additionally, the magnitude 
of ra was assessed separately for the two main popula-
tions underlying this study (CSE and ALP) and a subset 
of their results are shown in Table 5. As expected, MOE 
and DENS were negatively associated with growth traits 
across the models, ranging from -0.66 (between MOE 
and DBH21) to -0.74 (between RWT and DENS) based 
on model-A. However, the magnitude of correlation esti-
mates was lower based on model-B, ranging from -0.52 
(between MOE and DBH21) and -0.62 (between RWT 

and DENS), corresponding to about 21% and 16% reduc-
tion of growth and wood properties trade-offs, com-
pared to model-A (Table 4). Additionally, NUMRES and 
TRadW, which are positively associated with growth, 
showed negative genetic correlation with DENS, ranging 
from -0.50 to -0.65, respectively based on model-A, and 
from -0.42 to -0.58, respectively based on model-B. Addi-
tionally, ra between LIG and DENS was negative in both 
models, with a slight reduction (~ 3%) of the correlation 
based on model-B (Table  4). When the ra assessed for 
CSE and ALP separately, the most striking finding was 
the very high unfavourable correlation obtained between 
DBH21 and MOE for ALP (-0.83 ± 0.18) compared to CSE 
(-0.44 ± 0.12). Contrarily, ra between density and growth-
related properties (i.e., between DENS and RWT) were 
less unfavourable in ALP (-0.54 ± 0.12), compared to CSE 
(-0.66 ± 0.06) (Table 5).

As expected, Type-B genetic correlations across sites 
( rb ), representing the level of genotype by environment 
interaction (G × E) was low for wood properties, with 
rb ranging from 0.79 to 0.92 for solidwood and tracheid 
properties and from 0.91 to 0.99 for resin properties. Fur-
thermore, rb across sites were very high for growth prop-
erties in this study ( rb ~ 0.99 for HI, DBH12, and DBH21) 
based on both models, except for the lower correlation 

Table 1 Estimated genetic parameters for growth and wood properties in trial Höreda based on two mixed‑model approaches 
(model‑A and model‑B) excluding and including a fixed effect of population structure, respectively

σ
2
A

 additive genetic variance, σ 2
e  residual variance, h2

i
 narrow-sense heritability estimates (standard error of estimates in parenthesis)

Höreda

model-A model-B

Trait σ
2
A

σ
2
e h

2 Trait σ
2
A

σ
2
e h

2

DBH12 92.578 (12.996) 203.693 (12.117) 0.312 (0.042) DBH12 55.205 (10.737) 232.319 (10.874) 0.192 (0.036)

DBH21 308.773 (42.882) 599.653 (39.694) 0.339 (0.045) DBH21 145.287 (33.176) 723.673 (34.254) 0.167 (0.037)

HI7 1537.417 (194.117) 2488.117 (175.284) 0.381 (0.045) HI7 1283.008 (180.207) 2679.159 (167.396) 0.323 (0.043)

RWT 0.456 (0.049) 0.107 (0.041) 0.809 (0.076) RWT 0.288 (0.039) 0.234 (0.034) 0.551 (0.069)

PILOD 3.759 (0.462) 2.174 (0.401) 0.633 (0.070) PILOD 2.776 (0.406) 2.913 (0.366) 0.487 (0.066)

DENS 1414.590 (144.142) 151.082 (119.165) 0.903 (0.077) DENS 1069.350 (123.840) 410.860 (105.611) 0.722 (0.074)

MOE 2.196 (0.325) 2.382 (0.295) 0.479 (0.066) MOE 1.631 (0.292) 2.808 (0.275) 0.367 (0.063)

MFA 3.703 (1.034) 14.203 (1.045) 0.206 (0.057) MFA 3.105 (1.003) 14.651 (1.028) 0.174 (0.055)

TRadW 2.669 (0.296) 0.801 (0.250) 0.769 (0.074) TRadW 2.330 (0.277) 1.055 (0.238) 0.688 (0.073)

TtangW 1.015 (0.159) 1.290 (0.146) 0.440 (0.065) TtangW 0.904 (0.153) 0.897 (0.148) 0.397 (0.064)

TWTH 0.024 (0.002) 0.011 (0.002) 0.681 (0.072) TWTH 0.019 (0.002)  0.015 (0.002) 0.562 (0.069)

TC 406.816 (68.393) 613.229 (63.996) 0.398 (0.064) TC 383.576 (67.456) 631.353 (63.482) 0.377 (0.063)

NUMRES 33.566 (7.761) 87.851 (7.613) 0.276 (0.062) NUMRES 30.420 (7.628) 90.322 (7.548) 0.251 (0.062)

AVCAREA 12,238.63 (2250.014) 20,698.93(2127.098) 0.371 (0.065) AVCAREA 11,354.158 (2208.23) 21,369.810 (2442.938) 0.346 (0.065)

CANDENS 52.721 (11.963) 149.329 (11.733) 0.260 (0.057) CANDENS 39.792 (10.931) 159.102 (11.055) 0.200 (0.054)

CELL 0.236 (0.081) 0.715 (0.081) 0.249 (0.084) CELL 0.228 (0.081)  0.721 (0.081) 0.240 (0.084)

HEM 0.031 (0.013) 0.134 (0.014) 0.189 (0.082) HEM 0.030 (0.013) 0.135 (0.014) 0.183 (0.082)

LIG 0.103 (0.026) 0.186 (0.025) 0.357 (0.087) LIG 0.097 (0.025) 0.191 (0.024) 0.337 (0.087)
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obtained for RWT ( rb=0.77 and 0.60) based on model-
A and model-B, respectively. However, genetic correla-
tions between sites for chemical properties were much 
lower, ( rb ~ 0.45 for CELL and HEM, and 0.72 for LIG) 
(Table S2). Overall, model-B resulted in a slight, but neg-
ligible, reduction of rb for the studied traits, compared to 
model-A.

Discussion
It has been demonstrated how population and family 
structure can adversely affect accuracies of genomic 
predictions and response to selections in practical 
plant breeding schemes [28]. Likewise, incorporation 
of contemporary groups implemented directly in the 
pedigree or in the model as a fixed or random effect, 
was shown to improve model fitting and accuracy of 
breeding values in Douglas-fir [29]. To our knowl-
edge, this is the first quantitative genetic study to 
extensively examine the effect of marker-based popu-
lation structure in quantitative genetic evaluations for 
unbiased estimation of genetic parameters, utilizing 
a large data set retrieved from the Swedish Norway 
spruce breeding program.

In the current study, significant differences in phe-
notypic and genetic performances of populations were 

observed, except for chemical properties. Additionally, 
across-population variation in estimated breeding val-
ues (EBVs) of individuals was notably higher than those 
observed for phenotypes, indicating differences among 
populations is due to genetic factors. Trees originating 
from southern latitudes, for instance those from CEU 
and ALP, were taller and larger than trees originating 
from northern latitudes, when grown in southern Swe-
den. Such result is in line with previous reports and the 
practical breeding guidelines for Norway spruce, which 
indicates that trees from southern origins outperform 
local provenances [18, 30]. Previously, it has been sug-
gested that trees transferred to a higher latitude take 
advantage of longer photoperiods during growing sea-
son, and thereby have a higher growth rate than the local 
trees [31]. Contrarily, trees originating from higher lati-
tudes, such as CSE and RusBal had higher wood density, 
supporting the unfavourable association between low 
wood density and fast growth [32]; cheaper stem con-
struction (low wood density) will increase the rate of 
leaf deployment per total mass increment and therefore 
growth rate in height and diameter [33]. The among-
population genetic differentiation  (QST) for all studied 
traits was found to be highest for growth traits, espe-
cially at later ages (RWT, DBH12, DBH21), and secondly 

Table 2 Estimated genetic parameters for growth and wood properties in trial Erikstorp based on two mixed‑model approaches 
(model‑A and model‑B) excluding and including a fixed effect of population structure, respectively

σ
2
A

 additive genetic variance, σ 2
e  residual variance, h2

i
 narrow-sense heritability estimates (standard error of estimates in parentheses)

Erikstorp

model-A model-B

Trait σ
2
A

σ
2
e h

2 Trait σ
2
A

σ
2
e h

2

DBH12 144.117 (18.831) 235.604 (17.106) 0.379 (0.046) DBH12 72.496 (14.085) 289.447 (14.229) 0.200 (0.038)

DBH21 197.469 (37.468) 555.135 (36.588) 0.262 (0.048) DBH21 71.435 (26.931) 648.502 (30.298) 0.099 (0.037)

HI7 1326.204 (185.363) 2730.078 (172.451) 0.326 (0.043) HI7 883.436 (153.294) 3057.163 (152.214) 0.224 (0.038)

RWT 0.319 (0.048) 0.299 (0.043) 0.515 (0.073) RWT 0.154 (0.038) 0.422 (0.037) 0.267 (0.065)

PILOD 2.931 (0.539) 4.476 (0.507) 0.395 (0.069) PILOD 2.592 (0.524) 4.739 (0.499) 0.353 (0.068)

DENS 877.921 (113.879) 449.547 (99.470) 0.661 (0.077) DENS 694.502 (103.063) 587.734 (92.554) 0.541 (0.074)

MOE 1.931 (0.350) 2.819 (0.328) 0.406 (0.070) MOE 1.481 (0.323) 3.155 (0.311) 0.319 (0.067)

MFA 4.426 (1.393) 17.583 (1.412) 0.201 (0.062) MFA 3.898 (1.363) 17.965 (1.394) 0.178 (0.061)

TRadW 1.712 (0.227) 0.935 (0.199) 0.646 (0.078) TRadW 1.590 (0.220) 1.025 (0.194) 0.608 (0.077)

TtangW 0.951 (0.151) 1.005 (0.137) 0.486 (0.073) Ttang 0.897 (0.148) 1.045 (0.136) 0.461 (0.072)

TWTH 0.016 (0.002) 0.013 (0.002) 0.540 (0.073) TWTH  0.013 (0.002) 0.015 (0.002) 0.459 (0.071)

TC 316.083 (56.237) 454.171 (52.736) 0.410 (0.069) TC  299.292 (55.570) 466.891 (52.340) 0.390 (0.069)

NUMRES 42.782 (11.883) 101.805 (11.647) 0.295 (0.080) NUMRES 41.332 (11.769) 102.707 (11.565) 0.286 (0.079)

AVCAREA 7732.33 (2437.293) 22,818.36 (2423.491) 0.253 (0.078) AVCAREA 7999.531 (2471.36) 22,602.401 (2442.938) 0.261 (0.079)

CANDENS 48.423 (11.586) 103.229 (11.154) 0.319 (0.074) CANDENS 44.767 (11.611) 106.004 (11.265) 0.296 (0.074)

CELL 0.267 (0.090) 0.721 (0.089) 0.270 (0.089) CELL 0.279 (0.091) 0.712 (0.089) 0.281 (0.090)

HEM 0.036 (0.011) 0.093 (0.011) 0.282 (0.090) HEM 0.038 (0.012) 0.092 (0.011) 0.293 (0.092)

LIG 0.074 (0.030) 0.267 (0.030) 0.216 (0.087) LIG 0.077 (0.030) 0.264 (0.030) 0.225 (0.087)
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for solid wood properties (DENS, MOE, PILOD, and 
MFA). This implies a high level of local adaptive poten-
tial in traits related to productivity [34]. Nonetheless, 
 QST values were much lower for tracheid and resin prop-
erties, and mostly negligible for chemical properties. 
This is in accordance with one recent study that investi-
gated population differentiation and adaptation of Nor-
way spruce for different traits by comparing  QST and 
 FST [7]. The authors showed that the macroscopic trait 
of stem diameter, in contrast to its microscopic compo-
nents such as tracheid dimensions, is subject to diver-
gent selection that dates back before the Last Glacial 
Maximum. Similarly, another study reported  QST values 
being the highest for DBH in coastal Douglas-fir [29].

The primary goal in every tree improvement program 
is to maximize genetic gain in economically important 
traits, which can be estimated as a product of heritabil-
ity and selection differential [12]. In our study, narrow 
sense heritability estimates ( h2 ) obtained for growth 
and wood density were significantly larger based on the 
model ignoring the effect of population structure (model-
A) than those obtained based on the model incorporat-
ing population effect (model-B). When partitioning the 
estimated genetic variance into its components, we have 
observed that such upward bias in model-A is mostly 
absorbed by the additive genetic variance. We reason that 

model-B allows dissection of the total genetic variation 
into components that reside within and among popula-
tions, whereas in model-A the additive genetic variation 
within and among-populations are confounded. This 
implies that failing to account for the among-population 
variation as a separate effect, particularly for traits hav-
ing high  QST, such as growth-related properties in the 
current investigation, can result in overestimation of 
the additive genetic variance. This ultimately leads to 
the biased prediction of the response to selection if the 
selection is carried out within populations or even within 
families. Nevertheless, when the focus is placed on selec-
tion of the best model, most of these decisions are made 
towards enhancement of predictive accuracy, which is 
a measure of the reliability of EBVs and is used to pre-
dict the response to selection [35]. This accuracy can in 
practice be estimated by means of cross validations [36]. 
Among others, random cross-validation is a common 
approach to assess efficiencies or accuracies of the esti-
mated predictions in breeding schemes. Throughout the 
work we used 5-fold cross-validations to compare the 
models, measured as the correlation between predic-
tions and observations. Model-B resulted in considerably 
higher predictive ability and prediction accuracy, particu-
larly for growth and solidwood properties. It is notewor-
thy to mention that cross-validation results are consistent 

Table 4 Additive genetic correlation estimates among growth and wood properties based on model‑A and model‑B. (Standard errors 
of the estimates in the parentheses)

model-A model-B

Trait DBH21 DENS CANDENS CELL Trait DBH21 DENS CANDENS CELL

RWT 0.98 (0.01) ‑0.74 (0.03) ‑0.38 (0.08) ‑0.24 (0.11) RWT 0.96 (0.02) ‑0.62 (0.05) ‑0.13 (0.11) 0.18 (0.13)

MOE ‑0.66 (0.05) 0.90 (0.02) 0.31 (0.09) 0.60 (0.08) MOE ‑0.52 (0.09) 0.88 (0.03) 0.11 (0.10) 0.60 (0.08)

TRadW 0.54 (0.05) ‑0.65 (0.03) ‑0.22 (0.08) ‑0.23 (0.11) TRadW 0.51 (0.07) ‑0.58 (0.05) ‑0.08 (0.09) ‑0.19 (0.11)

TWTH ‑0.53 (0.06) 0.92 (0.01) 0.17 (0.09) 0.57 (0.10) TWTH ‑0.37 (0.09) 0.90 (0.01) 0.00 0.59 (0.10)

NUMRES 0.43 (0.08) ‑0.50 (0.07) 0.49 (0.08) ‑0.15 (0.14) NUMRES 0.40 (0.11) ‑0.42 (0.08) 0.70 (0.05) ‑0.13 (0.14)

LIG 0.32 (0.11) ‑0.62 (0.08) ‑0.16 (0.12) ‑0.98 (0.03) LIG 0.23 (0.14) ‑0.60 (0.08) ‑0.08 (0.13) ‑0.98 (0.03)

Table 5 Additive genetic correlation estimates among growth and wood properties based on northern (CSE) and southern (ALP) 
populations. (Standard errors of the estimates in the parentheses)

CSE ALP

Trait DBH21 DENS CANDENS CELL Trait DBH21 DENS CANDENS CELL

RWT 0.96 (0.03) ‑0.66 (0.06) ‑0.05 (0.20) ‑0.13 (0.17) RWT 0.99 (0.04) ‑0.54 (0.12) ‑0.06 (0.22) ‑0.42 (0.25)

MOE ‑0.44 (0.12) 0.91 (0.04) 0.06 (0.06) 0.60 (0.12) MOE ‑0.83 (0.18) 0.77 (0.10) 0.12 (0.24) 0.66 (0.17)

TRadW 0.66 (0.07) ‑0.65 (0.05) ‑0.10 (0.12) ‑0.19 (0.20) TRadW 0.33 (0.18) ‑0.38 (0.13) 0.05 (0.10) ‑0.04 (0.12)

TWTH ‑0.34 (0.11) 0.91 (0.01) ‑0.01 (0.10) 0.45 (0.14) TWTH ‑0.17 (0.21) 0.82 (0.05) 0.13 (0.21) 0.82 (0.21)

NUMRES 0.54 (0.12) ‑0.47 (0.10) 0.69 (0.08) ‑0.18 (0.20) NUMRES 0.32 (0.22) ‑0.38 (0.16) 0.66 (0.12) ‑0.36 (0.27)

LIG 0.17 (0.19) ‑0.59 (0.13) 0.04 ‑0.95 (0.04) LIG 0.40 (0.28) ‑0.67 (0.18) 0.02 (0.12) ‑0.99 (0.05)
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for both sites, thus supporting the notion that the appro-
priate modelling of population structure in genetic evalu-
ations has practical implications on the outcome of the 
selection process, and in turn, breeding program of Nor-
way spruce.

Genetic correlations measure the level of relation-
ship between two traits owing to genetic causes. Nega-
tive genetic correlations among desirable traits are often 
used as evidence for trade-offs and their investigation is 
important in understanding the evolutionary response of 
a trait as well as in designing effective breeding programs 
[37]. One of the major causes of trade-offs is antagonis-
tic pleiotropy, i.e., alleles that give rise to a high value for 
one trait and a low for the other. Another possible cause 
of trade-offs, although transient, is gametic phase linkage 
disequilibrium, which may occur when individuals from 
two populations with different gene frequencies inter-
mate, as a side effect of recent directional selection or 
by biased or limited sampling [38]. Nevertheless, genetic 
correlation is a complex population-specific genetic 
parameter, subject to be influenced by both allele fre-
quency and environmental changes [37].

In line with previous reports in several coniferous spe-
cies [39], additive genetic correlation estimates obtained 
for DENS and MOE with growth traits were negative 
across the models, indicating breeding for increased 
volume is achievable at the cost of decreased stem qual-
ity. Similarly, additive genetic correlation of lignin with 
density-related traits was unfavourable across the tested 
models, suggesting simultaneous improvement of trees 
for enhanced wood-quality and bioenergy production 
remains challenging in Norway spruce. Although the pat-
tern of correlations was similar across the models, their 
magnitude was slightly lower in model-B, suggesting that 
selections consistently performed within populations 
may suffer less from the growth-wood quality trade-offs, 
compared to mass selections conducted without pedigree 
restrictions. More specifically, additive genetic correla-
tions obtained in model-A are inflated as their variance 
is confounded with the variation residing among popu-
lations, and therefore, disentanglement of these effects 
in model-B resulted in the reduction of correlation 
estimates.

Our results similarly demonstrated that the magnitude 
of correlations can vary among populations. For instance, 
the unfavourable genetic correlation of growth with 
wood stiffness obtained for northern population (CSE) 
was only 50% of the one found for southern population 
(ALP), while the negative association of growth with 
wood density was weaker in ALP, compared to CSE.

Results of type-B genetic correlations revealed no evi-
dence of genotype by environment interaction (G × E) 
for growth and wood properties underlying this study. 

However, type-B correlations were moderate to low for 
chemical properties, an indication of low stability in 
the performances of genotypes across the two sites for 
these traits. In general, there are various spectroscopic 
techniques, such as near-infrared spectroscopy (NIR), 
that can be successfully applied for rapid assessment of 
“hard-to-measure” chemical composition of wood [40]. 
Although such techniques are highly advantageous, 
one of their drawbacks is that the predicted relation-
ship between wavelengths and the property of interest 
are based only on a subset of samples, derived from wet 
chemistry analyses [41] like the technique used in the 
current study. Correspondingly, the poor performance 
of chemical properties, in terms of non-significant dif-
ferences observed across populations, very low  QST esti-
mates, and high levels of G × E obtained in our study 
could be due to some extra noise affected prediction of 
the chemical properties. Future investigations should 
examine other spectroscopical methods along with dif-
ferent prediction and calibration models to determine 
whether the non-significant differences observed among 
populations for chemical properties has a biological or 
technical underlying factor.

Conclusions
In the current study, we examined the impact of marker-
based population structure on genetic parameter esti-
mates, utilizing a large data set retrieved from the 
breeding program of Norway spruce in Sweden, through 
two alternative models. Our findings show that there is 
a substantial genetic variation among populations, in 
terms of growth and wood properties. The model which 
accounts for population structure as a separate effect 
(model-B) results in substantial reduction of additive 
genetic variance, and subsequently, reduction of nar-
row-sense heritability estimates. However, prediction 
accuracies obtained based on this model were consider-
ably higher than the alternative model (model-A). This 
was particularly significant for growth and solid-wood 
properties, which showed to have the highest popula-
tion genetic differentiation  (QST) among the studied 
traits. Although the adverse genetic correlation between 
growth and wood properties remains as a constraint, the 
magnitude of correlations was slightly lower in model-
B. This suggests that selections consistently performed 
within populations may suffer less from the growth-
wood quality trade-offs, compared to mass selections 
conducted without restrictions in terms of population-
pedigree. Along with the lower accuracies obtained based 
on model-A, we may conclude that results of models 
neglecting effect of population structure are inaccurate 
and biased as the variation residing among populations 
is confounded with the additive genetic variance. This 
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might have practical implications for future Norway 
spruce breeding program and potentially for other spe-
cies when the breeding materials have heterogenous 
background.

Materials and methods
Experimental materials
This study utilized data from two large open-pollinated 
progeny trials of Norway spruce: S21F9021146 (Höreda) 
(57.61°N 15.04°E) and S21F9021147 (Erikstorp) (55.90°N 
13.93°E), located in southern Sweden. Both trials were 
established in the spring of 1990 by the Forestry Research 
Institute of Sweden (Skogforsk) and are a part of the 
breeding program of Norway spruce in southern Swe-
den. The genetic material in each trial originates from 
open-pollinated seeds collected from standing plus-
trees (trees with outstanding phenotype) within 112 
stands. Each experiment has a randomized incomplete 
block with single-tree plot design, divided into 20 and 23 
blocks, comprised of 1,373 and 1,375 half-sib families, 
in S21F9021146 and S21F9021147, respectively. More 
detailed information about trial characteristics is found 
in [26].

Phenotype measurements
Eighteen traits related to growth, wood quality (solid and 
tracheid properties), chemical composition and resin 
canal properties of wood were assessed in this study. 
Tree diameter at breast height (1.3 m above ground) was 

measured at ages 12 and 21 years (DBH12 and DBH21 
[mm], respectively) and tree height was measured at age 
seven (HI7 [cm]). Trees were also assessed for pilodyn 
penetration at age 22 years (PILOD [mm]), which offers 
an indirect measure of wood density [42]. A complete list 
of the measured traits, their abbreviations, and number 
of individuals and families representing them, is shown 
in Table 6.

SilviScan measurements
In 2010 and 2011, two 12-mm bark-to-pith increment 
cores were collected for analyses of radial variations of 
different traits at breast height from 5,666 trees, aged 
20–21 years, representing 524 half-sib families. The cores 
were drilled from the northern side of the stems, in paral-
lel and close to each other to allow joint evaluations of 
property data origination from the two cores. The same 
core was used for radial analyses of growth, solid, trac-
heid and chemical properties, all performed at Innventia, 
now RISE (Stockholm, Sweden).

High-resolution data were acquired with a SilviS-
can instrument [43] on pith-to-bark radial variations 
on traits important for solidwood properties (wood 
density (DENS [kg/m3]), modulus of elasticity (MOE 
[GPa]), microfibril angle (MFA [degree])); tracheid 
properties (radial tracheid width (TRadW [μm]), tan-
gential tracheid width (TTangW [μm]), tracheid wall 
thickness (TWTH [µm]), tracheid coarseness (TC 
[µg/m])); and ring width (RWT [mm]). The three ring 
segments, earlywood (EW), transition wood (TW) and 

Table 6 Summary of traits measured for this study

Measured Traits Traits category Abbreviations(unit) No. Families No. Trees

Diameter_age 12 Growth DBH12 (mm) 1370 9201

Diameter_age 21 Growth DBH21 (mm) 1370 7784

Height_age 7 Growth HI7 (cm) 1370 9338

Annual Ring width Growth RWT (mm) 524 5661

Pilodyn penetration Solidwood PILOD (mm) 524 5617

Density Solidwood DENS (kg/m3) 524 5617

Modulus of elasticity Solidwood MOE (Gpa) 524 5609

Microfibril angle Solidwood MFA (degree) 524 5617

Tracheid radial width Tracheid TRadW (μm) 524 5617

Tracheid tangential width Tracheid TTangW(μm) 524 5617

Tracheid wall thickness Tracheid TWTH (μm) 524 5617

Tracheid coarseness Tracheid TC (µg/m) 524 5617

Number of Resin canals Resin NUMRES 524 4873

Average area of resin canals Resin AVCAREA (μm2) 524 4873

Density of Resin canals Resin CANDENS (canal/cm2) 524 4873

Cellulose Chemical CELL (%) 524 3822

Hemicellulose Chemical HEM (%) 524 3818

Lignin Chemical LIG (%) 524 3822
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latewood (LW), were identified from the wood density 
variation within each ring [44].

Because area-weighted values (AWV) more accu-
rately represent the average properties of the wood the 
AWV for solid and tracheid properties was calculated 
and used in this study [45].

Chemical wood properties
Models for estimation of concentrations of wood 
chemical components (lignin (LIG), cellulose (CELL), 
and hemicelluloses (HEM) [%]) were developed from 
wood sampled from trees of similar origin. A set of 
40 annual rings selected with the aim of covering as 
much chemical variability in the wood as possible in 
the chemical concentrations was identified and cut 
out from the discs with one longitudinal x radial sur-
face of same orientation as the sides of the SilviScan 
sample strips. These sides, facing the side of the tra-
cheid, were scanned with a hyperspectral imaging 
near infrared camera (NIR, 960 – 2500 nm), provid-
ing spectra with 6 nm spectral resolution, and mean 
spectra for each sample (ring) were calculated. The 
samples were then analysed with chemical reference 
methods at MoRe Research (Örnsköldsvik, Sweden). 
The carbohydrates and lignin content for all samples 
were analysed by the SCAN-CM 71:09 and Tappi T222 
methods [46], respectively. With the SCAN-CM 71:09 
method, the different sugar monomers were obtained 
and from the monomer content, the percentage of cel-
lulose and hemicellulose were quantified, following 
the formula developed for softwoods [47]. The chemi-
cal ring mean data were associated with correspond-
ing NIR spectra and partial least squares multivariate 
models for estimation of the chemical concentrations 
were created and validated with the data. The SilviS-
can samples were then polished on the corresponding 
sides and scanned with the same NIR-camera at 30 µm 
radial resolution, and the variation in chemical com-
position was predicted for all samples. The chemical 
composition at each point in the sample was spatially 
matched to the physical characteristics as determined 
by SilviScan, using an algorithm designed for the pur-
pose, which allowed calculating ring-mean averages of 
the chemical composition. The coefficient of determi-
nation  (R2) and root mean square error of cross-vali-
dation (RMSEcv) for each model are given in Table S3.

Resin wood properties
Identification of the resin properties of wood was done 
using a learning-based model approach. Commonly, 
about 60 individual microscopy images are needed to 
cover a single SilviScan sample. A random sample of 

104 high-resolution images obtained from different Sil-
viScan analysis, were used to annotate, train, and test 
a neural network model to count the total number of 
resin canals (NUMRES) in each single microscopy image 
and the area of every resin canal, using the STARDIST 
method [48]. To validate the performance of the model, 
it was deployed to predict the number of resin canals in 
1634 individual microscopy images, corresponding to 25 
SilviScan samples that were not used for training. The 
actual number of resin canals in these 25 samples was 
also manually counted and compared with the model’s 
predictions, giving a coefficient of determination  (R2) of 
0.8905. The model was then applied to the samples in 
this study. Subsequently, resin canal density (CANDENS 
[canal/cm2]) of each sample was determined as NUMRES 
per unit area, while the average crosscut area of the resin 
canals (AVCAREA [μm2]) was determined by dividing 
the total area of the resin canals by NUMRES.

Population structure based on DNA markers
Population structure of the individuals derived from SNP 
genotyping of the 518 mother trees. The analysis of popu-
lation structure was applied on 399,801 noncoding SNPs 
with significantly linked sites removed (pairwise LD ≥ 0.2 
and FDR value ≤ 0.05). EIGENSOFT v6.1.4 was used 
to perform principal component analysis (PCA) on the 
reduced set of independent SNPs. Individuals of known 
origin were first grouped into seven major clusters. These 
individuals were then used as a training set in a ‘Ran-
dom Forest’ regression model. The first five components 
of the PCA analysis were used for model fitting to clas-
sify the unknown individuals into each of the seven clus-
ters. Fivefold cross‐validation was performed for error 
estimation [6, 22]. The half-sib families are categorized 
into seven genetic clusters as follows: Central and South 
Sweden (CSE), Russia-Baltics (RusBal), Northern Poland 
(NPL), Central Europe (CEU), Alpine (ALP), Carpathi-
ans (ROM), and hybrids between CSE and ALP (CSE-
ALP). The individuals belonging to the ROM cluster were 
excluded from the analysis, because this cluster was rep-
resented only by three half-sib families, whereas all other 
clusters comprised at least 10 families (Table S4).

Quantitative genetic parameters
Population structure can be fitted as either fixed or random 
effect in genetic evaluations using mixed-linear models [49]. 
In the current study, population structure was considered 
as a fixed term, although alternative attempts to model it as 
random term or as an intrinsic part of the pedigree yielded 
similar results (data not presented). The effect of population 
structure on estimated genetic parameters as well as esti-
mated breeding values (EBVs) was investigated through two 
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alternative models 1) population structure excluded from 
the model entirely (model-A) 2) all populations included 
in the model (model-B). Later, the accuracy and predictive 
performance of these two models were compared using a 
k-fold cross-validation based on all studied traits.

Variance and covariance components for the studied 
traits were estimated using univariate and bivariate mixed 
linear models implemented in the ASReml-R statistical 
package [50]. The fit of different models was evaluated 
using the Akaike Information Criteria (AIC) and loglikeli-
hood estimates and the optimal model was selected based 
on a compromise of model fit and complexity. The follow-
ing pedigree-based linear mixed (animal) model for joint-
site analysis of model-A and model-B was fitted, with the 
only difference that in model-A the effect of population 
structure was dropped from the model.

where Y  is the vector of observations on tree m from 
genetic cluster (population) l in block k at the site j , µ is 
overall mean,Pl,Sj , and Bk(j) are the fixed effects of popu-
lationl , site j , and block k within the site j , respectively. 
The variables Gm(l) and  SGjm(l) are the random additive 
genetic effects of individual m within populationl , and 
the random interactive effect of the site j and the individ-
ual m within the populationl , respectively, and ejklm is the 
random residual effect. Preliminary analyses indicated 
there was no significant population-by-site ( SPjl) effect 
for all traits, except for DBH12 and PILOD. Therefore, 
this effect was omitted from the model.

For the analysis and estimation of type-B genetic cor-
relation between sites, heterogeneous additive genetic 
variance ∼ MVN (0,G ⊗ I) and heterogenous error vari-
ance∼ MVN (0,R⊗ I) were included in the model.
G =

[
σ
2

a1
σa1a2

σa2a1 σ
2

a2

]
R =

[
σ
2

e1
0

0 σ
2

e2

]
where σ 2

ai and σai are the 

additive genetic variances and covariances, respectively; 
σ
2
ei is the error variance for each site; I is the identity matrix 

equal to the number of observations at each site and 0 indi-
cates no site–site error covariance.

Breeding values of individuals for model-B were calcu-
lated using genetic effect estimates obtained from equation 
one, as follows:

where µ̂, Ĝ, andP̂ are predicted mean, solutions of indi-
vidual tree and population effects, respectively. However, 
for model-A, the effect of population was not included.

For estimating type-A genetic correlation between dif-
ferent traits, bivariate analysis was conducted featuring a 
similar model setup as in Eq.  1, except that the genetic 
variance was considered as homogenous.

(1)
Yjklm = µ+ Pl+Sj+Bk(j) + Gm(l) + SGjm(l) + ejklm

(2)EBV
(lk) = µ̂+ Ĝm(l) + P̂l

The narrow-sense heritability ( h2i  ) for each trait, using 
variance components obtained from Eq. 1, was calculated 
as:

where σ̂ 2
A , σ̂ 2

p  are additive genetic and phenotypic vari-
ance components, respectively.

The additive genetic correlations between traits a1 and 
a2 ( r(a) ), using variance and covariance components from 
the bivariate analysis, were calculated as:

Type-B genetic correlations [51] of additive effects 
across sites, were calculated as follows:

where σa1,2 is the covariance between the additive effects 
of the same trait at different sites; σ 2

a1 and σ 2
a2 are esti-

mated additive variances for the same traits at differ-
ent sites. Standard errors for variance components and 
genetic parameters were estimated using the Taylor 
series expansion method.

Population differentiation of quantitative traits, rep-
resented by Qst index [52], was estimated following the 
mixed model (Eq. 1), except that effect of genetic cluster 
was considered as random and Qst was calculated as:

where σ 2
G is the variance of genetic cluster and other 

terms were defined above in Eq. 3.

Cross-validation for comparison of model performance
In this work we used a five-fold cross validation for all traits 
to compare predictive performance of the two model alter-
natives (model-A and model-B). The procedure consisted 
of dividing the dataset into five random folds of approxi-
mately equal size. Data in four folds were used for training 
the model (model development) and prediction of pheno-
types in the one remaining fold (the testing fold) that has 
the phenotypes set to missing. The prediction process was 
repeated five times until each fold had been used for once 
as test set. The performance of the models was assessed by 
predictive ability and prediction accuracy. Predictive abil-
ity (PA) was evaluated as the mean Pearson correlation of 

(3)h2i =
σ̂
2
A

σ̂
2
P

(4)r(a) =
σa1,2

σ
2
a1 × σ

2
a2

(5)r(B) =
σ̂a1,2√

σ̂
2
a1 × σ̂

2
a2

(6)QST =
σ̂
2
G

σ̂
2
G + 2σ̂ 2

A
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estimated breeding values (EBVs) of the individuals from 
the five replications with their observed phenotype ( y ). i.e., 
PA = cor

(
EBVs, y

)
 . Standard error of the correlations was 

computed using the following equation:

where σ is the standard deviation of the Pearson correla-
tions and n is the number of replicates. Additionally, 
ACC was estimated as the PA scaled by average square 
root of heritabilities obtained from each replication. i.e., 
ACC = PA√

h
2
i

.
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