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Abstract
Purpose of Review We aimed to summarize the evidence linking multi-purpose forest management (MPF) to bird nesting 
and fledging success in temperate and boreal forests and to identify outstanding research gaps. Forest birds are in decline 
worldwide, but an ongoing move from production-oriented management towards MPF, integrating biodiversity conservation 
with other uses, may help counteracting these trends. The effects of MPF on bird diversity and abundance are well-studied, 
but less is known about effects on bird demographics.
Recent Findings We retrieved 101 studies, reporting 342 outcomes of MPF for nesting and fledging success. Due to the het-
erogeneity of the studies, we opted for a systematic mapping approach, accompanied by vote-counting and narrative review. 
Studies covered 11 types of MPF and 151 bird species. The most frequently studied interventions were overstorey retention 
and prescribed burning, but research was markedly biased towards temperate North America. Most outcomes (79.5%) were 
non-significant, and studies often found that breeding success was driven by ecological processes at both broader and finer 
scales than management interventions. Thus, managing for breeding success likely requires complementary management 
actions at various scales. Nonetheless, significant positive and negative outcomes of MPF were also found, inclusively affect-
ing species of conservation concern, highlighting the variability and context-dependence of MPF effects.
Summary In order to foster effectiveness of MPF for forest birds, future research should focus on a set of under-researched 
interventions and regions, as well as on ecosystem-wide experiments accounting for functional links between bird abundance, 
demographics, nest predation, and food supply.

Keywords Nesting success · Fledging success · Nest predation · Evidence-based conservation · Systematic mapping

Introduction

Close to 31% of the global terrestrial surface is covered by 
forests, encompassing most of the worlds’ terrestrial biodi-
versity, and nearly half of that area consists of boreal and 
temperate forests [1]. Forest intactness is declining world-
wide [2], as are the populations of forest-dependent species 
[3], including birds [4], the most closely monitored taxo-
nomic group [5]. Abundance of boreal forest breeding birds 
has declined by more than 30% since 1970 in North America 

[6] and by 20% since 1980 in Europe [7], mostly due to the 
combined effects of climate change and rapid expansion of 
intensive forestry [8, 9]. In the temperate zone, declines are 
not as strong [6, 7], but a long history of human settlement 
and forest use has left little intact forest [10], and inten-
sification of timber extraction still plays a role in driving 
bird declines [11, 12]. Thus, a shift in forest management 
practices in temperate and boreal forests may contribute to 
revert such declines.

Production-oriented silviculture is characterized by a 
simplification of forest structure, leading to loss of biodi-
versity by filtering out taxa dependent on late-successional 
structures or naturally-disturbed areas [13–15]. One option 
to address this issue is to set aside areas of forest for natural 
development. This segregative approach is uniquely benefi-
cial to biodiversity if applied at large spatial scales [16, 17]. 
In addition, there is increasing societal interest in multi-pur-
pose forest management (MPF) approaches, also designated 

 * João M. Cordeiro Pereira 
 joao.cordeiro.pereira@wildlife.uni-freiburg.de

1 Chair of Wildlife Ecology and Management, University 
of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany

2 School for Forest Management, Swedish University 
of Agricultural Sciences, Box 43, 739 21 Skinnskatteberg, 
Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s40725-024-00216-6&domain=pdf


176 Current Forestry Reports (2024) 10:175–195

multi-functional, integrative [18], ecologically sustainable 
[19] or closer-to-nature forest management (as per EU For-
est Strategy for 2030, [20, 21]). MPF is defined as a set of 
practices that enable the provision of wood products along-
side other services, including biodiversity conservation, by 
restoring and maintaining forest ecosystem integrity [18, 
19]. It encompasses a broad array of practices, such as reten-
tion forestry [22], close-to-nature forestry [23], structural 
complexity enhancement [24], and natural disturbance-based 
forest management [25•], with a common denominator of 
bridging the biodiversity gap between fully-protected and 
intensively-managed forests [26]. Especially in the temper-
ate zone, where old-growth forests are rare and would take a 
long time to develop, MPF practices are an attractive option 
for conservation [16].

MPF practices have proven effective at increasing struc-
tural complexity of production forests [27, 28]. In several 
European countries, the implementation of close-to-nature 
forestry in recent decades is thought to explain a reversal 
in the negative trends of forest bird populations [29–31]. 
Nonetheless, no form of MPF has an univocally positive 
effect on bird abundance and diversity, but outcomes rather 
vary across species and functional groups [32, 33]. Thus, 
the implementation of multiple MPF types is likely neces-
sary to boost bird diversity at the landscape scale [34, 35]. 
For instance, species dependent on mature forests respond 
positively to retention of large living trees, tree patches and 
snags following harvesting [32, 36], whereas several special-
ized woodpeckers and ground or shrub-foraging species ben-
efit from the creation of open forest conditions, as through 
prescribed burns [37, 38]. However, most aforementioned 
research focuses on the responses of bird assemblages to 
MPF in terms of abundance, species richness, and composi-
tion, which do not necessarily reflect habitat quality [39]. In 
order to achieve its conservation goals, management should 
strive not only to create habitat where targeted species are 
temporarily abundant but also to create high-quality habitat, 
enabling those species’ long-term persistence [40].

Demographic parameters—e.g. annual adult survival, 
clutch size or nesting success—determine the long-term 
stability of bird populations, providing as a whole a bet-
ter measure of habitat quality than short-term abundance 
responses [40, 41•]. Unfortunately, as highlighted by [42, 
43] in their reviews of birds’ responses to timber manage-
ment and restoration plantings, very few studies have exam-
ined demographic responses. Nonetheless, there is evidence 
of standard forestry practices affecting nesting success (e.g. 
[44, 45]), potentially creating demographic sinks [46••]. 
Consequently, evaluating the effectiveness of MPF practices 
for bird conservation in a comprehensive manner implies 
measuring their demographic outcomes. Additionally, these 
data can inform predictive models of population dynamics 
under multiple management scenarios (e.g. [47, 48]), help 

in prioritization of conservation areas (as in [49]), and allow 
for detection of ecological traps (e.g. [50, 51]), i.e. situa-
tions where abundance of a species is decoupled from habi-
tat quality, due to a low-quality habitat attracting individuals 
[39]. Ecological traps are a risk especially in novel habitats, 
such as those created by silvicultural management [52, 53].

Among bird demographic parameters, nesting success—
the probability that at least one chick fledges from a nest 
[54]—is fairly easy to estimate and hence the most com-
monly evaluated [55, 56]. Alongside it, a more detailed met-
ric, fledging success—expressed either as number of fledg-
lings or proportion of eggs resulting in fledged young—is 
also often measured. Both metrics represent a sensitive point 
in the annual cycle of forest-breeding birds, since nestling 
growth is highly energy-demanding [57], and rates of nest 
loss, especially in passerines, can be very high [58], thus 
conditioning recruitment for the following breeding sea-
son [59, 60]. These demographic metrics may be affected 
jointly by multiple factors [61], such as food availability for 
nestlings [62], nest predation [63], parasitism [64] or brood 
parasitism [65]. However, it is nest predation that assumes a 
prominent role in limiting nesting success, particularly for 
open-cup nesters [63]. Direct control or exclusion of nest 
predators has proven an effective tool to boost populations of 
many bird species [66–68]. On the other hand, fledging suc-
cess can be strongly influenced by weather conditions, food 
availability and interactions of the two—individual nestlings 
are susceptible to starvation, as demonstrated in studies car-
rying out experimental food supplementation [57, 62], or 
observing phenological mismatches with food supply (e.g. 
[69]). Therefore, measuring nesting and fledging success is 
helpful to narrow down the ecological drivers of changes 
in bird population size, so management can be adjusted to 
directly address those drivers [70, 71].

The effects of forest structure on nest predation and, 
thus on nesting success, have been thoroughly investigated 
using artificial nests [72], although this method precludes 
conclusions about species-specific predator–prey interac-
tions [73, 74]. Timber harvests were for long hypothesized 
to increase nest predation, both due to creation of habitat 
edges at the stand scale and fragmentation of forests at the 
landscape scale [75], but it is yet unclear if partial harvest-
ing, a form of MPF, could produce similar outcomes. Mul-
tiple artificial-nest studies have even found nest predation 
to increase towards the forest interior [76, 77]. On the other 
hand, wherever MPF promotes more complex vegetation, 
this may reduce nest predation by ensuring improved nest 
concealment (e.g. [44]). As for the effects of MPF on nest-
ling food supply, studies have shown negative effects of par-
tial harvesting on food provisioning rates for some species 
(e.g. [78]), but no effect on food abundance for others (e.g. 
[79]), and prescribed burns reportedly increase abundance 
of spiders [80•], a key prey item for songbirds [81, 82]. 
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Still, it is unclear whether changes in food supply due to 
MPF practices translate into increased fledging success in 
contrast to intensively-managed stands. A growing body of 
evidence reveals declines in forest insect populations [83, 
84], but such declines may be countered by increasing forest 
structural complexity [83] and favouring native plant spe-
cies [85], with potential benefits for birds. Clearly, more 
evidence is needed from studies explicitly linking manage-
ment practices with demographic outcomes and their driv-
ers, especially through experimental approaches [43, 86, 87].

In this paper, we review the current evidence linking MPF 
practices in boreal and temperate forests to bird demograph-
ics, focusing on nesting and fledging success, and aiming to 
answer the following questions: (1) Do MPF practices result 
in improved nesting or fledging success outcomes for forest 
birds, when compared with more production-oriented man-
agement or with natural benchmarks? (2) How do outcomes 
vary across different forms of MPF? (3) What implications 
does this have for assessing habitat quality in MPF treat-
ments? (4) Which research gaps exist, regarding regions, 
management interventions, experimental designs and species 
covered? With this we strive not only to offer a summary of 
the available evidence, but also provide directions for further 
research, ultimately aiming to strengthen evidence-based 
management towards the conservation of forest birds.

Methods

Inclusion Criteria

For screening of studies resulting from database searches, 
we defined an a priori set of inclusion criteria, described 
below. We followed the PICO (Population-Intervention-
Control-Outcome) framework, adapted from evidence-based 
medicine methodology [88, 89].

The population of interest consisted of studies on forest-
inhabiting breeding birds conducted in boreal and temperate 
forests on either hemisphere, including peer-reviewed stud-
ies as well as the grey literature they may cite. We included 
four biomes [90]—(1) boreal forests/taiga, (2) temperate 
broadleaf and mixed forests, (3) temperate coniferous for-
ests and (4) Mediterranean forests, woodland and scrub—but 
also any smaller forest patches (e.g. riparian corridors) in 
neighbouring drier biomes (deserts or temperate grasslands 
and savannas). We defined forests as per FAO [91], thus 
including early-successional areas with potential to develop 
into forest. Studies may focus on one or more bird species, of 
which at least one must be a forest bird species, understood 
as nesting and foraging more than incidentally in forests over 
a significant portion of its range [33].

The treatments of interest were MPF interventions. We 
only included interventions modifying stand-scale forest 

structure and which are expected to offer a benefit for bio-
diversity when compared with production-oriented forestry, 
even if biodiversity conservation was not the primary man-
agement goal. This included direct interventions, e.g. creat-
ing canopy gaps by harvesting, but also indirect interven-
tions, e.g. exclusion from ungulate browsing, and passive 
interventions, e.g. avoiding thinning of understorey vegeta-
tion. Conversely, we excluded clearcutting (when compared 
against unharvested forests), control of silvicultural insect 
pests, direct control of nest predators, food supplementation, 
provision of nest boxes, modifications of landscape-level for-
est amount or configuration, and conversion of non-forest 
land to forest. We only included studies with experimental 
or quasi-experimental designs, i.e. where management inter-
ventions were treated categorically, controls were available, 
and treatment effects were separable from other measured 
covariates. So-called “natural experiments” (e.g. wildfires, 
storms, insect outbreaks) were excluded, as they may differ 
in their effects from anthropogenic modifications [50].

MPF interventions may be compared both against more 
production-oriented, “business-as-usual” management 
practices, or against stands that represent a target state or 
benchmark. We named these as alternative management 
(AM) and natural reference (NR) controls, respectively. 
Whereas the former provide information on the actual 
impact of MPF interventions, the latter inform how closely 
that impact approaches a desired scenario [92••]. NR con-
trols are not necessarily unmanaged forests but must not 
have been recently subjected to the MPF intervention or its 
more intensive alternative. The choice of which stand types 
are designated as AM or NR controls depends on the type 
of management intervention under study and is described in 
detail in Table 1.

Lastly, we included studies reporting on two response 
variables—nesting success and fledging success, as defined 
in the “Introduction” section. Studies must have conducted a 
statistical test of the difference in these parameters between 
the treatment and control. Other demographic parameters, 
such as clutch size or annual adult survival, did not fall under 
the scope of this review. Nesting or fledging success meas-
urements may have been obtained from natural nests or nest 
boxes, but we excluded studies using artificial eggs or quail 
eggs.

Database Search and Article Screening

We built one search string with 39 terms, having in mind 
the scope and inclusion criteria of this review: (*bird* OR 
avian) AND (forest* OR woodland*) AND (experiment* OR 
manipulat* OR remov* OR reduct* OR control* OR addit* 
OR supplement* OR creat* OR enrich* OR retain* OR 
promot* OR restor* OR improv* OR conserv* OR manag* 
OR prescrib* OR legac* OR treatment OR intervention OR 



178 Current Forestry Reports (2024) 10:175–195

Ta
bl

e 
1 

 D
es

cr
ip

tio
n 

of
 1

1 
M

PF
 c

la
ss

es
 in

to
 w

hi
ch

 w
e 

gr
ou

pe
d 

th
e 

re
vi

ew
ed

 s
tu

di
es

, i
nc

lu
di

ng
 th

e 
co

ns
er

va
tio

n 
go

al
s 

as
so

ci
at

ed
 w

ith
 th

es
e 

m
an

ag
em

en
t t

yp
es

 a
nd

 a
 d

es
cr

ip
tio

n 
of

 th
e 

ex
pe

ri-
m

en
ta

l c
on

tro
ls

 a
pp

lic
ab

le
 to

 e
ac

h 
(a

lte
rn

at
iv

e 
m

an
ag

em
en

t c
on

tro
l, 

A
M

, o
r n

at
ur

al
 re

fe
re

nc
e 

co
nt

ro
l, 

N
R

)

M
PF

 in
te

rv
en

tio
n 

cl
as

s
(n

o.
 o

f s
tu

di
es

)
D

es
cr

ip
tio

n
C

on
se

rv
at

io
n 

go
al

s
A

M
 c

on
tro

l
N

R
 c

on
tro

l

Re
ta

in
in

g 
ov

er
sto

re
y

(3
7 

stu
di

es
)

Re
te

nt
io

n 
of

 o
ve

rs
to

re
y 

co
m

po
-

ne
nt

s—
si

ng
le

 tr
ee

s, 
tre

e 
pa

tc
he

s 
an

d/
or

 st
rip

s—
in

 th
e 

co
ur

se
 o

f t
re

e 
ha

rv
es

tin
g 

op
er

at
io

ns
, i

nc
lu

di
ng

 
sh

el
te

rw
oo

d 
cu

ts
 a

nd
 c

on
ve

rs
io

n 
fro

m
 e

ve
n-

ag
ed

 to
 tw

o-
ag

ed
 o

r 
si

ng
le

-tr
ee

 se
le

ct
io

n 
ha

rv
es

ts

In
 la

nd
sc

ap
es

 d
om

in
at

ed
 b

y 
ev

en
-

ag
ed

 st
an

ds
 a

nd
 c

le
ar

cu
tti

ng
, r

et
en

-
tio

n 
pr

ac
tic

es
 a

im
 to

 e
ns

ur
e 

ec
o-

sy
ste

m
 c

on
tin

ui
ty

 a
cr

os
s h

ar
ve

sti
ng

 
cy

cl
es

 (“
lif

eb
oa

tin
g”

), 
th

er
eb

y 
lim

iti
ng

 n
eg

at
iv

e 
im

pa
ct

s o
n 

sp
e-

ci
es

 re
lia

nt
 o

n 
m

at
ur

e,
 c

lo
se

d-
ca

n-
op

y 
fo

re
st 

[2
2]

, w
hi

lst
 a

ls
o 

cr
ea

tin
g 

m
or

e 
he

te
ro

ge
no

us
, u

ne
ve

n-
ag

ed
 

fo
re

st 
st

an
ds

, o
n 

w
hi

ch
 m

an
y 

fo
re

st 
sp

ec
ia

lis
ts

 d
ep

en
d 

[2
3]

St
an

ds
 w

ith
 h

ig
he

r i
nt

en
si

ty
 o

f 
ha

rv
es

tin
g 

(o
fte

n 
re

ce
nt

 c
le

ar
cu

ts
), 

or
 re

ge
ne

ra
te

d 
ev

en
-a

ge
d 

st
an

ds
 

fo
llo

w
in

g 
cl

ea
rc

ut
tin

g

U
nh

ar
ve

ste
d 

fo
re

st,
 a

t l
ea

st 
as

 o
ld

 a
s 

on
e 

ha
rv

es
tin

g 
ro

ta
tio

n 
in

te
rv

al

Re
st

or
in

g 
fir

e
(1

9 
stu

di
es

)
U

se
 o

f p
re

sc
rib

ed
 b

ur
ns

 to
 e

m
ul

at
e 

a 
na

tu
ra

l d
ist

ur
ba

nc
e 

re
gi

m
e,

 w
hi

ch
 

m
ay

 in
vo

lv
e 

bu
rn

in
g 

ap
pl

ie
d 

w
ith

 
a 

sp
ec

ifi
c 

fr
eq

ue
nc

y,
 e

xt
en

t a
nd

 
se

as
on

al
ity

 (e
.g

. g
ro

w
in

g-
se

as
on

 
bu

rn
s)

 a
nd

 m
ay

 b
e 

co
m

pl
em

en
te

d 
by

 th
in

ni
ng

 o
pe

ra
tio

ns

In
 la

nd
sc

ap
es

 w
ith

 h
ist

or
ic

al
ly

-
su

pp
re

ss
ed

 n
at

ur
al

 d
ist

ur
ba

nc
e 

re
gi

m
es

, o
n 

w
hi

ch
 fi

re
s h

ad
 

or
ig

in
al

ly
 p

la
ye

d 
an

 im
po

rta
nt

 ro
le

 
[1

09
], 

pr
es

cr
ib

ed
 b

ur
ni

ng
 a

im
s a

t 
re

cr
ea

tin
g 

an
d 

m
ai

nt
ai

ni
ng

 o
pe

n-
ca

no
py

 o
r s

av
an

na
 c

on
di

tio
ns

, 
he

nc
e 

be
ne

fit
tin

g 
ta

xa
 th

at
 a

re
 

de
pe

nd
en

t o
n 

se
m

i-o
pe

n 
ha

bi
ta

t, 
m

an
y 

of
 w

hi
ch

 a
re

 o
f c

on
se

rv
at

io
n 

co
nc

er
n 

[1
10

, 1
11

]

St
an

ds
 e

ith
er

 w
ith

 a
 h

ist
or

y 
of

 fi
re

 
su

pp
re

ss
io

n 
or

 o
f p

re
sc

rib
ed

 b
ur

ns
 

th
at

 d
ev

ia
te

 fr
om

 a
 n

at
ur

al
 d

ist
ur

-
ba

nc
e 

re
gi

m
e 

in
 th

ei
r f

re
qu

en
cy

, 
ex

te
nt

 o
r s

ea
so

na
lit

y 
(e

.g
. d

or
m

an
t-

se
as

on
 b

ur
ns

), 
re

su
lti

ng
 in

 a
 m

or
e 

lim
ite

d 
im

pa
ct

St
an

ds
 in

 u
nm

an
ag

ed
 re

se
rv

es
, n

at
u-

ra
lly

 d
ist

ur
be

d 
by

 fi
re

 o
r o

th
er

 a
ge

nt
s 

(e
.g

. i
ns

ec
t o

ut
br

ea
ks

), 
or

 o
th

er
w

is
e 

cl
os

er
 to

 a
 n

at
ur

al
 d

ist
ur

ba
nc

e 
re

gi
m

e

Th
in

ni
ng

 o
ve

rs
to

re
y

(1
3 

stu
di

es
)

U
se

 o
f m

ec
ha

ni
ca

l t
hi

nn
in

g 
of

 th
e 

ov
er

sto
re

y 
to

 e
m

ul
at

e 
a 

na
tu

ra
l 

di
stu

rb
an

ce
 re

gi
m

e,
 o

fte
n 

as
 a

 su
r-

ro
ga

te
 fo

r fi
re

Sa
m

e 
as

 a
bo

ve
, f

or
 re

sto
rin

g 
fir

e
Sa

m
e 

as
 a

bo
ve

, f
or

 re
sto

rin
g 

fir
e

Sa
m

e 
as

 a
bo

ve
, f

or
 re

sto
rin

g 
fir

e

Re
ta

in
in

g 
un

de
rs

to
re

y
(1

0 
stu

di
es

)
Re

fr
ai

ni
ng

 fr
om

 h
ig

h-
in

te
ns

ity
 

th
in

ni
ng

 o
f f

or
es

t u
nd

er
sto

re
y,

 
pa

rti
cu

la
ry

 w
ith

 h
er

bi
ci

de
 u

se
; 

al
te

rn
at

iv
el

y,
 p

ro
te

ct
in

g 
th

e 
un

de
r-

sto
re

y 
fro

m
 h

ig
h 

le
ve

ls
 o

f b
ro

w
si

ng
 

or
 g

ra
zi

ng
 (e

.g
. t

hr
ou

gh
 fe

nc
in

g 
or

 
di

ve
rs

io
na

ry
 fe

ed
in

g)

U
nd

er
sto

re
y 

re
te

nt
io

n 
ai

m
s t

o 
co

un
-

te
r t

he
 p

ot
en

tia
lly

 n
eg

at
iv

e 
eff

ec
ts

 
of

 h
ig

h-
in

te
ns

ity
 th

in
ni

ng
 (e

.g
. f

or
 

bi
om

as
s h

ar
ve

sts
, [

11
2]

), 
ex

ce
ss

iv
e 

br
ow

si
ng

 [1
13

] o
r g

ra
zi

ng
 [1

14
] 

on
 fo

re
st 

ta
xa

 d
ep

en
de

nt
 o

n 
th

is
 

ve
ge

ta
tio

n 
la

ye
r

St
an

ds
 su

bj
ec

te
d 

to
 a

 h
ig

he
r i

nt
en

si
ty

 
of

 th
in

ni
ng

 th
ro

ug
h 

m
ec

ha
ni

ca
l 

or
 c

he
m

ic
al

 m
ea

ns
, o

r t
o 

a 
hi

gh
er

 
in

te
ns

ity
 o

f g
ra

zi
ng

/b
ro

w
si

ng

St
an

ds
 w

he
re

 u
nd

er
sto

re
y 

ha
s n

ot
 

be
en

 th
in

ne
d,

 o
r h

as
 b

ee
n 

le
ft 

un
gr

az
ed

 o
r w

ith
 lo

w
-in

te
ns

ity
 

br
ow

si
ng

 fo
r s

ig
ni

fic
an

tly
 lo

ng
er

 
th

an
 in

 M
PF

 tr
ea

tm
en

t

Th
in

ni
ng

 u
nd

er
st

or
ey

(5
 st

ud
ie

s)
Pa

rti
al

 c
le

ar
in

g 
of

 u
nd

er
sto

re
y 

ve
ge

ta
tio

n,
 in

cl
ud

in
g 

re
m

ov
al

 o
f 

no
n-

na
tiv

e 
sh

ru
b 

sp
ec

ie
s

U
nd

er
sto

re
y 

th
in

ni
ng

 a
im

s t
o 

be
ne

fit
 

ta
xa

 d
ep

en
de

nt
 o

n 
a 

lig
ht

ly
-d

is
-

tu
rb

ed
 u

nd
er

sto
re

y 
la

ye
r, 

ot
he

rw
is

e 
ab

se
nt

 d
ue

 to
 e

nc
ro

ac
hm

en
t b

y 
no

n-
na

tiv
e 

ve
ge

ta
tio

n 
(e

.g
. [

11
5]

), 
fir

e 
su

pp
re

ss
io

n 
or

 a
bs

en
ce

 o
f n

at
u-

ra
l b

ro
w

si
ng

/g
ra

zi
ng

 [1
16

]

St
an

ds
 w

ith
 d

en
se

r u
nd

er
sto

re
y 

th
an

 
ex

pe
ct

ed
 in

 th
e 

pr
es

en
ce

 o
f n

at
ur

al
 

di
stu

rb
an

ce
s, 

or
 in

va
de

d 
by

 n
on

-
na

tiv
e 

sh
ru

b 
sp

ec
ie

s

St
an

ds
 w

ith
 a

 n
at

ur
al

ly
-d

ist
ur

be
d 

un
de

rs
to

re
y,

 o
r w

hi
ch

 h
av

e 
no

t b
ee

n 
in

va
de

d 
by

 n
on

-n
at

iv
e 

sh
ru

b 
sp

ec
ie

s



179Current Forestry Reports (2024) 10:175–195 

Ta
bl

e 
1 

 (c
on

tin
ue

d)

M
PF

 in
te

rv
en

tio
n 

cl
as

s
(n

o.
 o

f s
tu

di
es

)
D

es
cr

ip
tio

n
C

on
se

rv
at

io
n 

go
al

s
A

M
 c

on
tro

l
N

R
 c

on
tro

l

Re
st

or
in

g 
tre

e 
sp

ec
ie

s c
om

po
si

tio
n

(5
 st

ud
ie

s)
C

on
ve

rti
ng

 st
an

ds
 to

 a
 m

or
e 

na
tu

ra
l 

an
d 

si
te

-a
da

pt
ed

 tr
ee

 sp
ec

ie
s 

co
m

po
si

tio
n,

 b
y 

fa
vo

ur
in

g 
na

tiv
e 

sp
ec

ie
s o

r s
pe

ci
es

 w
ith

 a
 lo

w
er

 
pr

od
uc

tio
n 

va
lu

e 
(e

.g
. d

ue
 to

 sl
ow

 
gr

ow
th

)

In
 m

an
ag

ed
 fo

re
st 

la
nd

sc
ap

es
 w

he
re

 
fo

re
str

y 
ha

s f
av

ou
re

d 
ce

rta
in

 tr
ee

 
sp

ec
ie

s (
of

te
n 

fo
rm

in
g 

m
on

oc
ul

-
tu

re
s)

, i
t i

s e
xp

ec
te

d 
th

at
 re

sto
rin

g 
a 

m
or

e 
na

tu
ra

l, 
si

te
-a

da
pt

ed
 sp

ec
ie

s 
co

m
po

si
tio

n 
w

ill
 in

cr
ea

se
 th

e 
bi

o-
di

ve
rs

ity
 v

al
ue

 o
f f

or
es

ts
 a

nd
 th

ei
r 

re
si

lie
nc

e 
in

 th
e 

fa
ce

 o
f c

ha
ng

in
g 

di
stu

rb
an

ce
 re

gi
m

es
 [2

3]

St
an

ds
 d

om
in

at
ed

 b
y 

on
e 

or
 m

or
e 

sp
ec

ie
s t

ha
t a

re
 fa

vo
ur

ed
 fo

r t
he

ir 
pr

od
uc

tio
n 

va
lu

e,
 o

f c
om

pa
ra

bl
e 

ag
e 

to
 M

PF
 tr

ea
tm

en
t

St
an

ds
 w

ith
 a

 n
at

ur
al

 tr
ee

 sp
ec

ie
s 

co
m

po
si

tio
n,

 o
f c

om
pa

ra
bl

e 
ag

e 
to

 
M

PF
 tr

ea
tm

en
t

Sa
lv

ag
e 

w
ith

 re
te

nt
io

n
(4

 st
ud

ie
s)

Re
te

nt
io

n 
of

 li
vi

ng
 tr

ee
s a

nd
 sn

ag
s 

in
 th

e 
co

nt
ex

t o
f s

al
va

ge
 lo

gg
in

g 
op

er
at

io
ns

, f
ol

lo
w

in
g 

m
aj

or
 d

ist
ur

-
ba

nc
es

 (w
ild

fir
es

, w
in

dt
hr

ow
s o

r 
in

se
ct

 o
ut

br
ea

ks
)

Sa
lv

ag
e 

lo
gg

in
g 

ne
ga

tiv
el

y 
aff

ec
ts

 
va

rio
us

 ta
xa

 re
lia

nt
 o

n 
he

av
ily

-
di

stu
rb

ed
 fo

re
sts

, a
nd

 re
te

nt
io

n 
pr

ac
tic

es
 h

av
e 

th
e 

po
te

nt
ia

l t
o 

lim
it 

th
at

 im
pa

ct
 [1

17
]

Fu
lly

 sa
lv

ag
e-

lo
gg

ed
 st

an
ds

, o
r 

ot
he

rw
is

e 
m

or
e 

in
te

ns
iv

el
y 

lo
gg

ed
 

th
an

 th
e 

M
PF

 tr
ea

tm
en

t

St
an

ds
 th

at
 re

m
ai

n 
un

lo
gg

ed
 fo

llo
w

-
in

g 
a 

m
aj

or
 d

ist
ur

ba
nc

e

Bu
ffe

ri
ng

 e
dg

es
(3

 st
ud

ie
s)

C
re

at
in

g 
a 

m
or

e 
co

m
pl

ex
 sh

ru
bb

y 
ec

ot
on

e 
on

 fo
re

st 
ed

ge
s (

in
cl

ud
in

g 
cl

ea
rc

ut
 e

dg
es

), 
th

ro
ug

h 
bo

rd
er

-
ed

ge
 c

ut
s, 

pl
an

tin
g 

or
 p

as
si

ve
 

m
ea

ns

M
or

e 
co

m
pl

ex
 a

nd
 g

ra
du

al
 e

dg
e 

ha
bi

ta
ts

 a
re

 e
xp

ec
te

d 
to

 b
e 

of
 

hi
gh

er
 q

ua
lit

y 
fo

r b
ird

s t
ha

n 
th

e 
ab

ru
pt

 e
dg

es
 ty

pi
ca

lly
 fo

un
d 

in
 

fr
ag

m
en

te
d 

la
nd

sc
ap

es
 [1

18
]

A
br

up
t f

or
es

t e
dg

es
G

ra
du

al
 fo

re
st 

ed
ge

s f
or

m
ed

 b
y 

na
tu

ra
l d

ist
ur

ba
nc

es
 o

r e
da

ph
ic

/
hy

dr
ol

og
ic

al
 c

on
di

tio
ns

Re
st

or
in

g 
hy

dr
ol

og
y

(2
 st

ud
ie

s)
Re

sto
rin

g 
a 

na
tu

ra
l fl

oo
di

ng
 re

gi
m

e 
in

 a
llu

vi
al

 o
r p

ea
tla

nd
 fo

re
sts

, b
y 

bl
oc

ki
ng

 a
rti

fic
ia

l d
ra

in
ag

e 
sy

ste
m

s 
or

 re
m

ov
in

g 
da

m
s a

nd
 b

er
m

s

Th
es

e 
in

te
rv

en
tio

ns
 a

im
 to

 re
ve

rt,
 a

t 
le

as
t p

ar
tia

lly
, t

he
 im

pa
ct

s o
f f

or
es

t 
dr

ai
na

ge
 a

nd
 st

re
am

 re
gu

la
riz

a-
tio

n 
on

 e
co

sy
ste

m
 d

yn
am

ic
s [

11
9]

, 
an

d 
co

ns
eq

ue
nt

ly
 im

pr
ov

e 
ha

bi
ta

t 
qu

al
ity

 fo
r s

pe
ci

es
 re

lia
nt

 o
n 

hi
gh

 
w

at
er

 ta
bl

es
 o

r r
eg

ul
ar

 e
pi

so
de

s o
f 

flo
od

in
g 

(e
.g

. [
12

0]
)

A
llu

vi
al

 o
r p

ea
tla

nd
 fo

re
sts

 in
 w

hi
ch

 
flo

od
in

g 
ha

s b
ee

n 
su

pp
re

ss
ed

 b
y 

dr
ai

na
ge

 o
r d

am
m

in
g

U
nm

an
ag

ed
 st

an
ds

, s
ub

je
ct

ed
 to

 u
na

l-
te

re
d 

flo
od

in
g 

re
gi

m
es

C
re

at
in

g 
de

ad
 w

oo
d

(1
 st

ud
y)

A
ct

iv
e 

cr
ea

tio
n 

of
 sn

ag
s i

n 
pr

od
uc

-
tio

n 
fo

re
sts

, b
y 

m
ec

ha
ni

ca
l m

ea
ns

 
(e

.g
. t

op
pi

ng
 c

er
ta

in
 tr

ee
s d

ur
in

g 
ha

rv
es

tin
g)

St
ru

ct
ur

al
 c

om
pl

ex
ity

 e
nh

an
ce

m
en

t, 
su

ch
 a

s b
y 

ac
tiv

el
y 

cr
ea

tin
g 

de
ad

 
w

oo
d,

 a
im

s a
t a

cc
el

er
at

in
g 

th
e 

de
ve

lo
pm

en
t o

f l
at

e-
su

cc
es

si
on

al
 

fe
at

ur
es

 in
 p

ro
du

ct
io

n 
st

an
ds

, 
th

er
eb

y 
cr

ea
tin

g 
ha

bi
ta

t f
or

 ta
xa

 
th

at
 a

re
 o

th
er

w
is

e 
de

pe
nd

en
t o

n 
ol

d-
gr

ow
th

 fo
re

sts
 [2

4]

C
le

ar
cu

t s
ta

nd
s, 

w
hi

ch
 m

ay
 c

on
ta

in
 

re
ta

in
ed

 o
r c

re
at

ed
 sn

ag
s a

t a
 

lo
w

er
 d

en
si

ty
 a

nd
/o

r w
ith

 a
 m

or
e 

di
sp

er
se

d 
di

str
ib

ut
io

n 
th

an
 in

 th
e 

M
PF

 tr
ea

tm
en

t

St
an

ds
 w

ith
 h

ig
h 

am
ou

nt
s o

f 
na

tu
ra

lly
-fo

rm
ed

 d
ea

d 
w

oo
d

O
th

er
s

(7
 st

ud
ie

s)
In

te
rv

en
tio

ns
 th

at
 c

an
no

t b
e 

at
tri

b-
ut

ed
 to

 a
ny

 o
f t

he
 c

at
eg

or
ie

s a
bo

ve
, 

as
 th

ey
 a

ffe
ct

 m
ul

tip
le

 fo
re

st 
la

ye
rs

 
an

d 
co

m
bi

ne
 m

ul
tip

le
 to

ol
s (

e.
g.

 
gr

az
in

g 
an

d 
se

le
ct

iv
e 

th
in

ni
ng

, 
[1

21
])

Va
ria

bl
e

Va
ria

bl
e

Va
ria

bl
e



180 Current Forestry Reports (2024) 10:175–195

retention OR silvicult*) AND (food* OR feed* OR forag* 
OR predat* OR “nest* site*” OR “nest supply” OR “nest 
availability”) AND (“nest* success” OR “breeding suc-
cess” OR productiv* OR fledg*ing* OR offspring OR sur-
vival). MPF is a term with very broad definitions, and many 
relevant studies do not include it in their title, abstract or 
keywords. Likewise, terminology about individual MPF 
practices is varied and often inconsistent. For this reason, 
instead of including “multi-purpose forest management” or 
any specific practice in our search string, we used a set of 
verbs which maximizes search sensitivity whilst sacrificing 
specificity, as suggested by [93]. Furthermore, we did not 
include geographical terms in our search string, but filtered 
out studies outside of temperate and boreal biomes during 
the subsequent screening process.

Using the aforementioned search string, we ran a topic 
search (i.e. title, abstract and keywords) on the Web of Sci-
ence Core Collection and eight other Web of Science data-
bases (BIOSIS Citation Index, BIOSIS Previews, Current 
Contents Connect, Data Citation Index, KCI-Korean Journal 
Database, Russian Science Citation Index, SciELO Citation 
Index and Zoological Record), on 15 December 2021. We 
searched for additional studies on the Conservation Evi-
dence database (https:// www. conse rvati onevi dence. com/ 
data/ studi es), which was purposefully built to gather evi-
dence about the effectiveness of management actions [94], 
on 15 June 2022. We filtered the search on Conservation 
Evidence using the following criteria: category “Forest” or 
“Birds”; habitat “Forest & Woodland”; threat “Natural sys-
tems modification”, “Biological resource use” or “Other”; 
action type “Land/water management”, “Land/water pro-
tection”, “Species management” or “Other”. We applied no 
filters for keywords or countries. Searches on both databases 
were repeated once more on 22 November 2023, to capture 
recently published studies.

After removing duplicate results, search hits were then 
screened against the inclusion criteria, first by reading the 
title, then the abstract or summary, and when necessary by 
reading the full text. Each of these steps resulted in a por-
tion of the search hits being excluded, until we reached a 
set of relevant studies. Whenever there was doubt about 
whether to exclude a study based on the title or abstract, we 
adopted a conservative approach and retained it for the next 
step of screening. Lastly, we expanded that set of studies by 
screening all studies citing them in the Web of Science Core 
Collection (forward search), as well by screening their bibli-
ographies (backward search), and adding any relevant hits. 
This citation-based search method (“citation chasing” or 
“snowballing”), though not widely in use, is recommended 
to supplement a database search [95, 96], and it provided us 
with relevant grey literature which is not captured by Web of 
Science searches. Citation chasing is especially effective at 
detecting semantically-connected studies when the topic of 

interest contains inconsistent terminology [95, 97], as is our 
case. When we found more than one study on the same study 
area and species, with overlapping datasets, we kept only the 
study with the largest dataset. The full screening workflow, 
with the number of publications considered on each step, is 
presented on Fig. 1, as a PRISMA flowchart [98], designed 
with R package “DiagrammeR” [99, 100].

Data Extraction and Summarization

We analysed studies following a systematic mapping 
approach [101, 102], which prioritizes building a compre-
hensive summary of the state of evidence, knowledge gaps 
and knowledge clusters in a broad topic of interest—as are 
different management actions and their effects on forest birds 
(e.g. [92••])—over a purely quantitative analysis of a nar-
rower set of studies. From each study, we extracted all bib-
liographical information and study area coordinates, which 
we assigned to the biomes defined by [90]. As a taxonomy 
is lacking for MPF interventions, we classified the inter-
ventions analysed in each study using an ad hoc approach, 
based on their conservation goals, on which vegetation 
layers were most affected and which tools were employed 
(e.g. harvesting or fire). We provide a description of each of 
these classes on Table 1. Based on the intervention under 
study, we checked which type of control was used (AM, 
NR or both) and which experimental design the study fol-
lowed—before-after (BA), control-impact (CI) or with both 
comparisons (BACI).

Next, we extracted all relevant outcomes reported in each 
study. Each study may contain multiple outcomes, defined as 
the response of a single bird species or an aggregate of spe-
cies to a given MPF intervention in comparison with a given 
control (AM or NR), measured by a given response type 
(fledging or nesting success). For each outcome, we noted if 
the outcome of the MPF practice was statistically significant 
(at α = 0.05), and if significant we noted the direction of the 
effect. We then obtained the frequencies of non-significant, 
negative and positive reported effects for each MPF inter-
vention type, grouping them by control type and response 
type, and plotted these summaries with R and package 
“ggplot2” [103]. We opted for this vote-counting approach to 
summarize study outcomes, rather than for a meta-analysis, 
because studies were very heterogenous in nature, including 
several understudied management types, and did not always 
report the necessary data for a meta-analysis (as in [92••]). 
However, vote-counts do not take into account variations in 
sampling effort and overall study validity across studies [95]. 
In order to carry out a critical appraisal of study outcomes, 
in particular identifying whether non-significant effects may 
be explained by lack of statistical power, we extracted for 
each outcome a metric of sampling effort—the number of 
monitored nests per year and per treatment. The literature 

https://www.conservationevidence.com/data/studies
https://www.conservationevidence.com/data/studies
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suggests a minimum sample size of 20 nests per year and 
per treatment to estimate nesting success [104]. We then 
tested whether increasing sampling effort is linked with an 
increasing proportion of significant effects, using a logistic 
generalized linear mixed model (GLMM) with R package 
“lme4” [105], taking study identity as a random factor.

Interpretation of vote-counts may be further compli-
cated by pooling of effects from varying numbers of stud-
ies and species subjected to the same MPF intervention, as 
well as by the varied habitat requirements of those species. 
Therefore, in order to put study outcomes into context, we 
extracted information on the species associated with each 
outcome, namely to which nesting and feeding guild they 
belong (according to Birds of the World, [106]), and whether 
they are species of conservation concern, i.e. with a threat 
status in global [107] or relevant national and subnational 
red lists (e.g. NatureServe status, for the USA and Canada, 
[108]). Lastly, we noted down for each study if other vari-
ables, such as abundance or clutch size, were measured, as 
well as any explanations that the authors proposed for the 
reported breeding success outcomes, especially concerning 
nest predators and food supply for nestlings. If abundance 
outcomes were available, we also recorded whether the 

direction of MPF effects on species’ abundances matches 
that of breeding success.

Results

We identified 101 relevant studies (Appendix S1). The 
search on Web of Science yielded 5339 hits, which were nar-
rowed down to 67 relevant studies after screening (Fig. 1). 
We then added 4 relevant studies from the Conservation 
Evidence database and 30 studies resulting from backwards 
and forwards citation searches (after excluding duplicates). 
The earliest studies were published in 1990, and since then 
an average of 3.5 studies were published per year, reaching 
a maximum of 9 in 2011 (Fig. 2). Studies were published 
in 31 indexed peer-reviewed journals, besides one study in 
conference proceedings, one technical report, one doctoral 
dissertation and one study in a non-indexed journal. Out of 
the 97 studies, 55 were published in just five journals: Forest 
Ecology and Management (19 studies), Journal of Wildlife 
Management (12), Condor/Ornithological Applications (9), 
Conservation Biology (8) and The Wilson Bulletin/The Wil-
son Journal of Ornithology (7).

Fig. 1  Literature screening workflow, indicating numbers of studies identified, excluded and retained at each step (drawn with R package “Dia-
grammeR” [100]). Numbers in brackets refer to follow-up search on 22 November 2023
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Studies were geographically concentrated in North Amer-
ica (Fig. 3), with only 13 studies in Europe, and none found 
in temperate or boreal regions of Asia, Oceania, Africa or 
South America. As for the distribution of studies across 
biomes, nearly half (46 studies) took place in temperate 
broadleaf & mixed forests, followed by temperate conifer 
forests (31), and much fewer in boreal forests (5) and Medi-
terranean forests (5). More than half of the reviewed studies 
only compared MPF outcomes against an alternative man-
agement control (53 studies), whilst 32 studies only used 
a natural reference control and 16 used both control types. 
Only 16 studies made use of a before-after control-impact 
(BACI) study design, and all others but one used a control-
impact design. As a whole, 151 bird species are covered 
(Appendix S2), but nesting or fledging success outcomes 
are reported at single-species level for only 95 of them, and 
57 studies report outcomes for only one species. Among all 
species covered, there are 118 songbirds from 23 families 

(Parulidae being best represented), 17 woodpeckers, 4 hum-
mingbirds, 4 Galliformes, 3 raptors and 5 species from other 
groups.

We classified the MPF interventions covered by the 
studies into 11 types (Table 1). The most frequent inter-
vention type was retaining overstorey (37 studies), followed 
by restoring fire (19) and thinning overstorey (13). Four 
types were represented by less than five studies: creating 
dead wood (1), restoring hydrology (2), buffering edges (3) 
and salvage logging with retention (4). Additionally, MPF 
types were not represented equally across different biomes 
(Fig. 4). For instance, studies on the effects of overstorey 
retention took place mainly in temperate broadleaf and 
mixed forests, whereas studies on the effects of restoring 
fire, overstorey thinning and understorey retention took 
place mainly in temperate conifer forests and temperate 
conifer savannas. The 101 reviewed studies reported 354 
management outcomes, each study reporting between 1 

Fig. 2  Publication dates of stud-
ies included in this review (last 
search on 22 November 2023)

Fig. 3  Geographical distribution of studies included in this review, colour-coded by biome [90]
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and 14 outcomes (listed in Appendix S1). Nesting success 
was much more often reported than fledging success, with 
260 and 94 outcomes respectively. The most ubiquitous 
measure of nesting success was the daily nest survival rate, 
measured using the Mayfield method [122]. The two spe-
cies with the highest number of reported outcomes were the 
great tit (Parus major, 14 outcomes) and the wood thrush 
(Hylocichla mustelina, 13 outcomes). The proportion of out-
comes found for each nesting guild varied according to the 
MPF intervention under study, but ground-nesting species 
were generally underrepresented, especially in regards to 
overstorey retention (Appendix S3). Sampling effort ranged 
from 0.2 to 184.8 (median = 10.7) nests per year and per 
treatment. The proportion of significant outcomes (posi-
tive or negative) was not significantly related with sampling 
effort (logistic GLMM, likelihood ratio test χ2 = 0.6057, 
p = 0.436, Appendix S4).

When contrasting MPF practices against alternative man-
agement practices (AM), the most frequent outcome was a 
non-significant effect on nesting and fledging success (199 
of 239 outcomes, 83%, upper panel of Fig. 5), and for each 
intervention type individually. This remained true (40 of 49 
outcomes) when including only outcomes based on a high 
sampling effort (> 20 nests monitored per year and sampling 
unit, Appendix S5). We found 26 positive effects (11%) of 
MPF on nesting or fledging success when compared with 
AM, covering seven intervention types, and 14 negative 
effects (6%), covering six intervention types (upper panel 
of Fig. 5). Four species of conservation concern—Siberian 
tit (Poecile cinctus), Bachman’s sparrow (Peucaea aestiva-
lis), white-headed woodpecker (Leuconotopicus albolar-
vatus) and golden-winged warbler (Vermivora chrysop-
tera)—showed higher breeding success in MPF treatments. 
Two others—cerulean warbler (Setophaga cerulea), prairie 
warbler (Setophaga discolor)—, as well as a group contain-
ing hooded warbler (Setophaga citrina) and worm-eating 

warbler (Helmitheros vermivorum), showed instead a lower 
breeding success in MPF treatments. The full list of spe-
cies for which positive and negative effects were reported is 
in Appendix S6. Overstorey retention showed a lower fre-
quency of positive effects (2 of 51) compared with restoring 
fire (11 of 55). Four intervention types—overstorey reten-
tion, understorey retention, edge buffering and restoring 
hydrology—showed either non-significant or positive effects 
on breeding success, whereas three intervention types—
understorey thinning, dead wood creation and others—
showed either non-significant or negative effects. Out of the 
239 comparisons with AM controls, 117 were accompanied 
by abundance data (Appendix S7). In 6 of those instances, 
concerning 5 species, MPF resulted in both higher breed-
ing success and higher abundance. In 3 cases, concerning 2 
species (cerulean warbler and northern cardinal, Cardinalis 
cardinalis), there was indication of an ecological trap, with 
higher abundance but lower breeding success in MPF treat-
ments. For one species, the wood thrush, MPF (prescribed 
burning) resulted in lower abundance but higher breeding 
success, compared to the AM control.

When contrasting MPF practices against natural refer-
ences (NR), the most frequent outcome was a non-significant 
effect on nesting and fledging success (84 of 114 outcomes, 
74%, lower panel of Fig. 5). This remained true (16 of 22 
outcomes) when including only outcomes based on a high 
sampling effort (Appendix S5). Reported outcomes compared 
with NR controls were few for most MPF types, except for 
retaining overstorey, retaining understorey and salvage with 
retention, and did not exist for three types—buffering edges, 
restoring hydrology and creating dead wood. Non-significant 
effects were the most frequent outcome for overstorey reten-
tion (57 of 73) and retention in salvage logging (15 of 17), 
but not for understorey retention. In the case of overstorey 
retention, a non-significant effect on breeding success was 
often accompanied by a significant increase in abundance in 

Fig. 4  Distribution of reviewed 
studies across 11 MPF types, 
colour-coded by biome [90]
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MPF treatments, compared to NR controls (20 of 46 instances, 
Appendix S7). We found 21 negative effects (18%) in com-
parison to NR, encompassing seven intervention types, and 10 
positive effects (9%), covering only two intervention types—
overstorey retention and understorey retention. As for species 
of conservation concern, these were reported to have either 
lower (8 outcomes) or similar (non-significant, 15 outcomes) 
breeding success in MPF treatments than in NR controls. The 
full list of species for which positive and negative effects were 
reported is in Appendix S6. Three species, two of them of 
conservation concern—yellow-bellied sapsucker (Sphyrapicus 
varius), olive-sided flycatcher (Contopus cooperi) and house 
wren (Troglodytes aedon)—showed evidence of an ecological 
trap, with decreases in breeding success in MPF treatments 
concurring with an increase in abundance. Another species, 
the California towhee (Melozone crissalis) showed the oppo-
site pattern, with higher density in NR controls (long-ungrazed 
forest) but higher nesting and fledging success in the MPF 
treatment (a moderately-grazed area).

Discussion

Effects of MPF on Nesting and Fledging Success

Our review indicates that demographic responses of forest 
bird species to different MPF practices in temperate and 
boreal forests are mixed and highly context-dependent. 
We found multiple cases where MPF led to increases in 
breeding success, several of which referred to species 
of conservation concern. In contrast, we also identified 
negative effects and several instances where MPF cre-
ated ecological traps. Despite that, non-significant effects 
were the most frequently reported outcome, and this was 
remarkably consistent across management types, control 
types and responses analysed. This must be interpreted 
with caution, due to the small sample sizes of most studies 
and associated low statistical power. Still, we showed that 
non-significant effects remained dominant at larger sample 

Fig. 5  Number of reported negative, non-significant, and positive 
outcomes on nesting success and fledging success (indicated by nest 
and fledgling icons), when contrasting MPF practices with alterna-
tive management controls (upper panel) or with natural reference 
controls (lower panel), discriminated by MPF intervention classes 
(slate-blue labels on top): retaining overstorey (Ret over), restoring 

fire (Rest fire), thinning overstorey (Thin over), retaining under-
storey (Ret under), restoring tree species composition (Rest tree), 
salvage with retention (Ret salv), restoring hydrology (Rest hyd), 
creating dead wood (Cre dw), buffering edges (Buf edg), thinning 
understorey (Thin under) and others (Other)
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sizes and that positive and negative effects can be of suf-
ficient magnitude to be detected with small sample sizes. 
Therefore, our results do suggest that stand-level MPF 
practices frequently lead to neutral or small-magnitude 
effects on bird breeding success. Given the contribution 
of low productivity levels to the declining populations of 
many forest species [112, 123, 124], this highlights a need 
for complementary management solutions (e.g. [125]) or 
further adaptation of MPF practices, in order to effectively 
boost breeding success and fulfil long-term commitments 
towards forest biodiversity conservation (e.g. [126]).

Studies showing non-significant responses to MPF often 
identified other factors with a significant influence on nest-
ing and fledging success, pointing the way for management 
actions that may be more effective at increasing bird pro-
ductivity. Several studies proposed that retention practices 
should focus on retaining favoured nesting substrates or 
high-quality foraging microhabitats for targeted species (e.g. 
[127–129]), acting on smaller-scale features than usual for 
MPF. Also for grassland birds, nest survival has been found 
to be more strongly affected by fine-scale habitat than by 
patch-level management actions [130]. Other reviewed stud-
ies showed that nesting success was rather driven by pat-
terns of nest predation and brood parasitism at larger spatial 
(e.g. forest fragmentation, in [131]) and temporal scales (e.g. 
tree masting cycles, in [132]). In landscapes with high forest 
cover, levels of predation may be low across the landscape 
(e.g. [133]), and harvest gaps do not provide comparable 
anthropogenic subsidies to generalist predators [134] and 
brood parasites [135] as does the proximity to farmland and 
urbanized areas. Conversely, in highly-fragmented forests, 
landscapes may be saturated with generalist predators and 
brood parasites, so that nest success remains overall low, 
regardless of local management (e.g. [136]). Moreover, in 
a structurally complex forest environment, where multiple 
predator guilds are present, MPF may result in composi-
tional turnover of the nest predator assemblage, but not nec-
essarily in overall increases in nest predation [127], as seen 
for Bachman’s sparrows in the context of overstorey thinning 
[137••]. This possibly explains why prescribed burns lead 
to lower increases in nest survival in forests than in simpler 
grassland environments [66]. Manifestly, effects of MPF 
on nest predation and nesting success are contingent on the 
identity of prey and predators, and future nest monitoring 
studies should ascertain nest predator identities, e.g. through 
camera trapping [138].

When positive effects of MPF on nesting success were found, 
in comparison with alternative management controls, this was 
attributed to a change not only in nest predator abundances (e.g. 
[139, 140]), but also in the accessibility of nests to predators 
(e.g. [141–143]). For instance, standard thinning practices have 
been shown to reduce nesting success for boreal forest species 

through reduced nest concealment [43, 101], and understorey 
retention may counteract that effect, an idea which is supported 
by two of the reviewed studies [142, 143]. Also the restoration 
of flooding regimes was shown to increase the nesting success of 
prothonotary warblers (Protonotaria citrea), a floodplain forest 
indicator species, thanks to decreased accessibility of flooded 
areas to raccoons (Procyon lotor), their main nest predator [141]. 
Furthermore, although none of the reviewed studies investigated 
this link, MPF may alter the behaviour and habitat selection 
of nest predators [144], thereby affecting bird nesting success. 
That is a topic worthy of further investigation, again requiring 
knowledge of nest predator identities.

Regarding positive effects of MPF on fledging success, 
several studies on parid species linked that outcome with 
an improved food supply for nestlings. For the Siberian 
tit, a specialist of mature forests, overstorey retention was 
linked to both higher abundances and higher fledging suc-
cess, in comparison with intensively-managed stands, and 
this was likely driven by insect availability [145]. Also great 
tits showed increased feeding activity and fledging success 
in low-browsing areas in Norway [146]. Both studies are 
consistent with previous evidence of bottom-up forces driv-
ing the abundance and richness of boreal forest songbirds 
[147, 148]. Fledging success of great tits was also increased 
where conifer plantations were enriched with broadleaf trees 
[149], and where exotic or resource-poor native trees were 
replaced by insect-rich native tree species [150]. Both stud-
ies included data on food supply, supporting the assertion 
that tree species identity is more important than tree diver-
sity in providing food for nestlings. In fact, many foliage-
gleaning birds exhibit foraging specialization on less com-
mon, early to mid-successional broadleaf tree species with 
high arthropod densities [151, 152].

As for negative effects of MPF on nesting and fledging suc-
cess, these were accompanied in several cases by increases in 
abundance, indicating ecological traps (e.g. [127, 153, 154]). 
MPF treatments may create such situations due to a combina-
tion of attractive foraging conditions with lack of safe nest-
ing sites and high accessibility to brood parasites [127, 155]. 
Nonetheless, it has been proposed that management measures 
that consider fine-scale habitat quality (e.g. retaining beech 
trees with heart rot, for yellow-bellied sapsuckers [127]) can 
help disarm ecological traps. Negative effects can also arise 
from the fact that MPF interventions have diverse and some-
times opposing goals (e.g. overstorey retention vs. oversto-
rey thinning or prescribed burns), targeting different species 
groups, so that any form of MPF risks producing negative 
impacts on non-targeted species. Among the reviewed stud-
ies, the negative effects of prescribed burns concerned pri-
marily ground-nesting species, likely affected by reduction 
of nest concealment through fire [66]. Fire and fire-surrogate 
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treatments are known to produce conservation trade-offs for 
sensitive forest interior species [139, 156, 157] and our results 
reinforce the need for complementary management strategies 
at the landscape scale, in order to minimize such trade-offs. 
Lastly, short-term decreases in breeding success following 
MPF treatments may not reflect longer-term outcomes. For 
instance, removal of non-native understorey vegetation can 
force birds to nest in exposed locations, decreasing nest sur-
vival, before native vegetation can fully recover [158], even if 
native shrubs are ultimately safer nesting sites [159].

Surprisingly, multiple reviewed studies found higher 
nesting or fledging success in MPF treatments than in natu-
ral reference controls (e.g. [128, 160–162]). In the context 
of understorey retention, this suggests that certain shrub-
nesting species, otherwise expected to benefit from a denser 
understorey, are well-adapted to moderate disturbance of 
that layer [163]. In the case of overstorey retention, these 
positive effects reveal that unharvested stands may be inad-
equate benchmarks, as they carry the legacy of previous 
management [164], and in such cases birds may actually 
benefit from small-scale harvests mimicking natural gap 
formation processes [165].

Implications for Habitat Quality

Even when MPF practices do not affect bird breeding suc-
cess, that does not necessarily translate into ineffectiveness 
of MPF in improving habitat quality for birds. In multi-
ple reviewed studies, abundance was measured concur-
rently with breeding outcomes, and the former increased in 
response to MPF interventions. There is also an ample body 
of literature linking various MPF practices with increased 
abundances of targeted bird species (see Introduction). This 
hints that abundance is often limited by factors other than 
breeding success, and thus abundance can be a suitable indi-
cator for changes in habitat quality with MPF treatments. For 
instance, no positive effects were reported for salvage with 
retention, dead wood creation and restoration of traditional 
Mediterranean silvopastoral systems (in MPF category “oth-
ers”) on nesting or fledging success, but these interventions 
primarily targeted cavity-nesting birds, which have high 
levels of nest survival [63]. Instead, populations of cavity-
nesters are limited by the scarcity of suitable nesting sites in 
production forests [33], an issue which the aforementioned 
types of MPF help minimizing (see both reviewed studies 
[121, 166], and others, e.g. [117, 167, 168]). In [169], pro-
tecting the understorey from overbrowsing provided more 
nest sites for orange-crowned warblers, thereby increas-
ing their density (Leiothlypis celata), despite no change in 
nesting success. Birds may also respond to increased food 
abundance in MPF treatments through denser packing of 
territories, rather than increased productivity [170, 171], 
in line with the concept of an ideal free distribution [172]. 

Moreover, in the case of overstorey retention, although nest-
ing success and abundance may be reduced after harvesting, 
this form of management remains a preferable alternative to 
clearcuts, in which nesting habitat for closed-forest special-
ists is entirely missing [173, 174].

Although we focused on nesting and fledging success, 
other demographic metrics should not be overlooked when 
judging the effects of MPF on habitat quality for forest birds. 
For example, post-fledging survival may be strongly limited 
by food supply and predation, and limit in turn population 
growth [175], whilst being also responsive to habitat man-
agement [176]. Among our reviewed studies, [177] noted 
that partial harvests may produce a demographic trade-off 
for wood thrushes, boosting post-fledging survival even 
when nesting success is reduced. Also [178] found that 
burning and overstorey thinning resulted in improved body 
condition of pied flycatcher (Ficedula hypoleuca) nestlings, 
despite no significant change in fledging success. Food avail-
ability can also condition reproductive investment, expressed 
as number of broods or clutch size [179]. Hence, future 
demographic studies should incorporate various aspects of 
the annual cycle of forest birds, to obtain a full picture of 
their response to MPF interventions.

Research Gaps

In the course of this review, we identified a set of prominent 
research gaps. Eight MPF types were covered by less than 
10 studies each (Table 1), representing priorities for future 
research. For example, as natural disturbances are on the rise 
in European forests [180], it is especially relevant to develop 
salvage logging practices which safeguard biodiversity and 
forest resilience [181]. Also restoration of hydrological 
regimes is increasingly applied as a tool to recover boreal 
forest peatlands (e.g. [182]) and temperate floodplain forests 
[183], a particularly species-rich habitat [184]. Additionally, 
the better-studied practices of prescribed burning and over-
storey thinning have mostly been evaluated in the context 
of temperate conifer forests and pine savannas, but fires and 
other large-scale natural disturbances play an increasingly-
recognized role in temperate broadleaf forests [185, 186], 
thus warranting further research in that biome.

As for the bird species covered, ground-nesters were under-
represented in the studies we reviewed. Ground-nesting birds 
dependent on closed-canopy forests may be particularly sensi-
tive to changes in nest predation driven by harvest gaps and 
associated change in ground cover [174, 187]. Besides, in our 
review we noted negative outcomes of prescribed burning for 
non-targeted ground-nesting birds. Hence, future research on 
the effects of overstorey retention and prescribed fire should 
prioritize this bird guild. As for the studied response variables, 
nesting success was much more often measured than fledging 
success. High nesting success, as that shown by cavity-nesters 
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[188], may sometimes not be a good indicator of fledging suc-
cess. Cavity-nesters show lowered fledging success in salvage-
logged areas [189•], but is yet unclear to what degree retention 
practices could minimize these effects. Studies on fledging suc-
cess would also be warranted when creating forest edge buffers, 
given their potential to improve foraging conditions [190].

Studies were patently biased towards temperate North 
America, a pattern also found in previous systematic reviews 
on retention forestry practices [32] or on restoration suc-
cess [191]. This is perhaps the result of the pioneering role 
of the USA in implementation of MPF practices, such as 
retention harvests [22] and prescribed burns [109], along-
side the establishment of long-term, nation-wide research 
networks to evaluate these practices, such as the US Forest 
Service Experimental Forests [192], the Fire and Fire Sur-
rogate Study [193] or the Collaborative Forest Landscape 
Restoration Program [194]. However, this bias implies that 
current research is out of step with worldwide implementa-
tion of MPF practices, and more demographic studies are 
needed in other parts of the world. Managed forests cover 
large swathes of Europe and Asia [195], and increasingly so 
in boreal regions [9]. MPF practices, under the designation 
of close-to-nature forestry, and more recently retention for-
estry, are widely implemented in Europe [196], Japan (e.g. 
[197]) and in temperate regions of South America [198]. 
In the fire-prone forests of Australia, the use of prescribed 
burns is well-established [199] and previous research has 
examined their effects on bird assemblages (e.g. [200]), but 
has stopped short of examining demographic responses.

Studies also showed several methodological limitations. 
Nest-finding is more time-consuming than standard bird 
surveys, and precise estimates of breeding success require 
frequent visits (i.e. every 2–4 days) until chicks fledge [56]. 
Finding nests of certain species may be especially difficult, it 
may involve disturbance risks for threatened species, and the 
number of available nests depends on territory density. This 
implies that breeding success can only be compared between 
habitats where the species is nesting, and larger nest search 
areas are needed where densities are lower, so as to ensure 
sufficient sample size. Moreover, the time and cost of nest 
monitoring prevent researchers from achieving high sample 
sizes, that would enable higher statistical power, and from 
collecting data from multiple independent sites—incurring 
the risk of pseudoreplication, and thus limiting reliability 
and reproducibility of findings. One option to ensure suf-
ficient sample sizes is to aggregate nest data within bird 
functional groups (e.g. nesting guild), as done in several 
reviewed studies. That approach, however, obscures intra-
guild variation across species in their responses to manage-
ment [201]. Another promising alternative is to use repro-
ductive activity indices (e.g. [202]), as implemented in two 
studies we reviewed [203, 204], or even behavioural obser-
vations alongside point count surveys [205]. Still, caution 

is needed with these approaches, due to low detectability of 
relevant behaviours in forest habitats [206], and local valida-
tion with nest monitoring data is still recommended.

Adaptive management provides unique opportunities 
for demographic studies, as research can take advantage of 
large extents of forests undergoing management changes [71, 
92••]. Nonetheless, adaptive management studies still suf-
fer from short durations [207], and only a few of the studies 
we reviewed covered more than 10 years after intervention. 
Only longer-term monitoring can assess the effect of retain-
ing structures across harvesting rotations, or detect time-
lagged responses of nest predators. Studies covering large 
spatial and temporal scales would also facilitate the use of 
BACI experimental designs—which were uncommon in 
the reviewed studies but provide the best-quality evidence 
[86]—and improve the chance of finding adequate natural 
references (as in [178]). Indeed, more than half of the studies 
did not include natural references as controls, and especially 
for prescribed burns and overstorey thinning, control stands 
under natural disturbance regimes (e.g. [208]) are lacking.

Conclusions and Management Implications

The studies we reviewed reveal that, whilst stand-level MPF 
practices appear to have limited effects on the nesting and 
fledging success of boreal and temperate forest birds, this 
may be attributed to a mismatch between the scale of man-
agement and the scale at which ecological processes act, 
especially nest predation. Other tools, such as landscape-
level planning (e.g. [209]), predator control [66], and fine-
scale provision of specific microhabitats (e.g. [127, 210]) 
should complement MPF in order to boost productivity for 
species of conservation interest. MPF practices can still 
contribute to improve habitat quality for birds in managed 
forests, but abundance and other demographic metrics are 
potentially better-suited indicators of habitat quality at that 
scale than nesting or fledging success. Nonetheless, for par-
ticular species and intervention types, including species of 
conservation concern, we found evidence of positive breed-
ing success outcomes. With this review, we offer an anno-
tated list of studies from which practitioners may glean valu-
able information for their specific management scenarios. 
Moreover, several biomes, intervention types and species 
groups were underrepresented in the reviewed studies. The 
lack of context-specific research is a recognized obstacle for 
the implementation of conservation measures by practition-
ers [211]. Thus, we also call for continued development of 
locally-relevant studies on the effects of MPF on bird demo-
graphics, focusing on the set of research gaps we identified.

There is still insufficient evidence as to how MPF practices 
could be combined and upscaled, given the varying benefits 
of different MPF types for different sets of species, possible 
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trade-offs for non-targeted species, and the economic costs 
associated with long-term application of management pre-
scriptions. Furthermore, management decisions are strongly 
driven by the intuitive knowledge of practitioners [211], which 
may condition which practices they are willing to implement, 
i.e. the “knowing-doing gap”, and ultimately which practices 
are studied. Researchers themselves are in a unique position 
to develop innovative management approaches [212], testing 
the boundaries of current management traditions (e.g. [28]). 
Therefore, we argue for the need of ecosystem-wide experi-
mental studies, focused on species of conservation concern, 
where management actions are tested across spatial scales, 
and which combine abundance measures, demographics and 
functional links with nest predators and food resources (see 
[213•]), if possible also quantifying the associated economic 
costs (see [35]). The advancement of sustainable forest man-
agement depends on both innovative experimental approaches 
and context-specific studies on current practices, so MPF can 
fully deliver on its conservation promises.
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