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Abstract 

Background Prioritisation of chemical pollutants is a major challenge for environmental managers and decision‑
makers alike, which is essential to help focus the limited resources available for monitoring and mitigation actions 
on the most relevant chemicals. This study extends the original NORMAN prioritisation scheme beyond target 
chemicals, presenting the integration of semi‑quantitative data from retrospective suspect screening and expansion 
of existing exposure and risk indicators. The scheme utilises data retrieved automatically from the NORMAN Database 
System (NDS), including candidate substances for prioritisation, target and suspect screening data, ecotoxicological 
effect data, physico‑chemical data and other properties. Two complementary workflows using target and suspect 
screening monitoring data are applied to first group the substances into six action categories and then rank the sub‑
stances using exposure, hazard and risk indicators. The results from the ‘target’ and ‘suspect screening’ workflows can 
then be combined as multiple lines of evidence to support decision‑making on regulatory and research actions.

Results As a proof‑of‑concept, the new scheme was applied to a combined dataset of target and suspect screen‑
ing data. To this end, > 65,000 substances on the NDS, of which 2579 substances supported by target wastewater 
monitoring data, were retrospectively screened in 84 effluent wastewater samples, totalling > 11 million data points. 
The final prioritisation results identified 677 substances as high priority for further actions, 7455 as medium priority 
and 326 with potentially lower priority for actions. Among the remaining substances, ca. 37,000 substances should 
be considered of medium priority with uncertainty, while it was not possible to conclude for 19,000 substances due 
to insufficient information from target monitoring and uncertainty in the identification from suspect screening. A high 
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degree of agreement was observed between the categories assigned via target analysis and suspect screening‑based 
prioritisation. Suspect screening was a valuable complementary approach to target analysis, helping to prioritise 
thousands of substances that are insufficiently investigated in current monitoring programmes.

Conclusions This updated prioritisation workflow responds to the increasing use of suspect screening techniques. 
It can be adapted to different environmental compartments and can support regulatory obligations, includ‑
ing the identification of specific pollutants in river basins and the marine environments, as well as the confirmation 
of environmental occurrence levels predicted by modelling tools.

Keywords Contaminants of emerging concern, Retrospective suspect screening, Chemical prioritisation, 
Environmental risk assessment, NORMAN Database System

Graphical Abstract

Background
Prioritisation of chemicals is of primary importance for 
environmental managers and decision-makers, both for 
defining priority actions for pollution prevention and 
control, and for allocating resources to address existing 
knowledge gaps in a cost-effective way. In the context 
of European and national legislation related to chemi-
cals, monitoring data could be used more systemati-
cally and effectively for this purpose. However, given the 
large number of chemicals suspected to be present in the 
environment, data availability and data quality are limit-
ing factors in the decision-making process [1]. The lack 
of knowledge on chemical exposure to humans and the 
environment is also recognised by the European Com-
mission and Member States of the European Union (EU) 
in several policy documents and action plans [2].

The EU Chemicals Strategy for Sustainability towards 
a toxic-free environment was adopted by the European 

Commission in October 2020 [3] as part of the imple-
mentation of the Green Deal. It proposes a clear road-
map and timeline to tackle the current knowledge gaps 
and make chemicals legislation more effective for the safe 
and sustainable use of chemicals. One area of particular 
importance is the innovative use of chemical monitoring 
and hazard data to provide decision-makers with multi-
ple lines of evidence for the identification of substances 
associated to specific chemical groups, endpoints (e.g. 
endocrine disruption, neurotoxicity, persistency), uses 
and sources that must be tackled as a priority.

The NORMAN network has pursued a similar vision 
since 2005, with the development of a number of inter-
connected databases which form the NORMAN Data-
base System (NDS; https:// www. norman- netwo rk. com/ 
nds/) for the systematic collection of data on environ-
mental monitoring, physico-chemical and hazard prop-
erties and quality targets to support the identification of 

https://www.norman-network.com/nds/
https://www.norman-network.com/nds/
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relevant contaminants of emerging concern (CEC) in dif-
ferent environmental media. The prioritisation of chemi-
cals has been a key activity in the NORMAN network, 
allowing the categorisation and ranking of chemicals 
according to different occurrence, hazard and risk indica-
tors [4–6]. The efforts of NORMAN to improve knowl-
edge about the environmental occurrence and potential 
risks of CECs are constantly evolving to accommodate 
new scientific developments. An important development 
is the increasing use of suspect and non-target screen-
ing techniques (both performed on data acquired using 
non-target analysis, as opposed to target analysis) in the 
chemical analysis of CECs [7]. Some crucial develop-
ments such as retention time indexing, substance cura-
tion, chemical domain calculation, semi-quantification 
and harmonised identification scoring system have been 
achieved over the last few years [7].

The aim of this article is to present and discuss an 
updated version of the NORMAN prioritisation scheme, 
which integrates recent developments such as retrospec-
tive suspect screening and predictive modelling tools 
into the prioritisation approach for the assessment of 
CECs. The original prioritisation workflow (Sect.  “The 
NORMAN Database System and original prioritisation 
scheme”), designed to work exclusively with target moni-
toring data, has now been extended to integrate target 
and suspect/non-target data in a systematic and transpar-
ent way as two separate lines of evidence. This updated 
version of the NORMAN prioritisation framework was 
then applied in a suspect screening case study involving 
84 wastewater (WW) sites across Europe, considered as 
hotspots of riverine contamination (Sects. “Materials and 
methods" & "Results and discussion”). Collectively, this 
demonstrates how the use of various databases that are 
part of the NDS can support a holistic, large-scale prior-
itisation of the several thousands of substances that are 
regularly present in the aquatic environment [1].

The NORMAN database system and original 
prioritisation scheme
The original version of the NORMAN prioritisa-
tion scheme [4–6], based on target monitoring data, 
is embedded in the NDS. It is directly supported by the 
Substance Database (SusDat), the Chemicals Occurrence 
Data (EMPODAT), the Ecotoxicology Database (ECO-
TOX), and the Substance Factsheets, explained in the fol-
lowing paragraphs.

The Substance Database (SusDat, https:// www. nor-
man- netwo rk. com/ nds/ susdat/) constitutes the NOR-
MAN inventory of chemical substances for prioritisation. 
It is the result of the merging of all lists of environmen-
tally relevant substances regularly contributed by NOR-
MAN partners and NORMAN-connected activities as 

part of the NORMAN Suspect List Exchange initiative 
(NORMAN-SLE, https:// www. norman- netwo rk. com/ 
nds/ SLE/) [8]. NORMAN-SLE contains 111 lists (as of 
29 Nov. 2023) from different fields (e.g. per-/polyfluoro-
alkyl substances (PFAS), pharmaceuticals, pesticides, 
and transformation products (TPs)). The different lists 
are systematically combined and curated (i.e. removal of 
duplicates, removal of salts, neutralising, etc.) [8] before 
final integration into SusDat.

The EMPODAT Database (https:// www. norman- netwo 
rk. com/ nds/ empod at/) was created in 2005 to host target 
monitoring data from different data sources, gathered 
in a standard format to facilitate data comparability and 
exploitation across Europe and beyond. EMPODAT pro-
vides the prioritisation tool with geo-referenced occur-
rence data from target monitoring studies of chemical 
contaminants conducted as part of research projects, 
national monitoring programmes, etc. in a variety of 
environmental matrices. More than 95 million records 
for over 4500 substances are available in EMPODAT (July 
2023) thanks to the voluntary contribution of NORMAN 
members. Data are mainly from the aquatic environment 
(fresh water, wastewater effluents, marine water, ground-
water, sediment and biota), while efforts are underway to 
improve the coverage of other compartments (e.g. soil, 
ambient air, indoor air and dust).

The NORMAN Ecotoxicology Database (ECOTOX, 
https:// www. norman- netwo rk. com/ nds/ ecotox/) is a 
module designed for the systematic collection and evalu-
ation of experimental ecotoxicity studies [e.g. ecotoxic-
ity endpoints such as Lethal Effect Concentrations 50% 
(LC50) or No-Observed Effect Concentrations (NOEC)], 
as well as the compilation of existing quality targets, also 
referred to as the “Lowest” Predicted No-Effect Concen-
trations (PNEC). An in silico toxicity prediction model 
[9] based on the three basic trophic levels (i.e. algae, fish 
and crustacean), provides provisional PNECs for 93,613 
of the SusDat substances (July 2023) with little or no 
experimental toxicity data. All SusDat substances are 
provided with predicted PNECs and/or experimentally 
based quality targets to calculate risks in support of the 
prioritisation of these substances.

Finally, physicochemical properties and other sub-
stance characteristics, such as the partitioning coeffi-
cients between octanol and water  (Kow), organic carbon 
and water  (Koc), the bioconcentration factor (BCF) and 
the degradation half-time (DT50), available on the NOR-
MAN Substance Factsheets of the NDS (https:// www. 
norman- netwo rk. com/ nds/ facts heets/) are used as key 
parameters for the classification of the substances based 
on the persistence, mobility and bioaccumulation (P, M, 
B) criteria. The physicochemical properties of substances 

https://www.norman-network.com/nds/susdat/
https://www.norman-network.com/nds/susdat/
https://www.norman-network.com/nds/SLE/
https://www.norman-network.com/nds/SLE/
https://www.norman-network.com/nds/empodat/
https://www.norman-network.com/nds/empodat/
https://www.norman-network.com/nds/ecotox/
https://www.norman-network.com/nds/factsheets/
https://www.norman-network.com/nds/factsheets/
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are also crucial to support the selection of suitable instru-
mentations for analytical measurements.

The NORMAN prioritisation scheme involves a two-
step approach (Fig.  1) where the substances are first 
allocated to action categories corresponding to specific 
knowledge gaps. The substances in each action category 
are subsequently ranked based on occurrence, haz-
ard and risk indicators. Six main action categories have 
been identified, based on the most commonly identified 
knowledge gaps (Table  1). Note that there is no hierar-
chical ranking among the different categories; each cor-
responds to a particular knowledge gap.

Substances in Category 1 are of highest priority for con-
trol and mitigation measures (indicated with red shading 
in Table 1). For applications in the context of the Water 
Framework Directive, Category 1 substances should be 
proposed as candidates Priority Substances (PS), whereas 
top-ranked Category 2 substances would be priority 
Watch List candidates for improved knowledge about 
exposure levels and spatial distribution in the environ-
ment. Category 3 substances are also of high interest to 
decision-makers because there is sufficient evidence that 
they are frequently present in the environment. How-
ever, rigorous hazard assessment is necessary before final 
conclusions can be made about the associated risks. For 

Category 4 substances, the quality of the monitoring 
should be improved before further actions are taken. For 
Category 5 substances both screening and rigorous haz-
ard assessment are needed. Finally, for Category 6 (indi-
cated with green shading in Table 1), monitoring efforts 
could be reduced, but mixture risks should be checked 
for substances frequently detected.

In this approach each substance is categorised based 
on its own ‘knowledge-gap’ profile, which is defined in 
relation to existing information and gaps in knowledge 
(e.g. insufficient spatial information on exposure levels, 
insufficient experimental data to assess adverse effects, 
or inadequate performance of analytical methods for 
environmental measurements). In this way, it is possible 
to prioritise less-investigated substances with a focus on 
the actions needed to reduce current knowledge gaps, 
whereas conventional prioritisation processes would tend 
to discard less-investigated substances or leave them on 
“stand-by” because of a lack of data.

It is important to stress that there is no hierarchical 
order of priority among the different categories. With the 
exception of Categories 1 and 6, which reflect the situ-
ation where all the information needed is available, the 
other categories (indicated by grey shading in Table  1) 
correspond to critical knowledge gaps which need to 

Fig. 1 Overview concept of the original two‑step NORMAN prioritisation scheme for categorisation and ranking of emerging substances
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Table 1 Six action categories (original prioritisation scheme) identified based on common knowledge gaps

Red shading: high priority for further action. Grey: additional information needed. Green: low priority, monitoring could be reduced. *) Cat.1 and 6 have two sub-
categories, A and B, see Fig. 2



Page 6 of 22Dulio et al. Environmental Sciences Europe          (2024) 36:113 

be addressed by decision-makers. It is also important to 
point out that substance categorisation and prioritisation 
is an iterative process that involves a periodic revision of 
the priority substances in each category whenever new 
information and/or more reliable data are generated or 
feedback from applied reduction measures is available.

The original NORMAN prioritisation scheme, opera-
tional since 2011, was applied to prioritise 500 substances 
in four river basins (Danube, Elbe, Scheldt and Llobre-
gat), using the datasets collected in the EU MODELKEY 
project [6]. The scheme was also used by NORMAN to 
provide recommendations to the European Commission 
for the prioritisation of the substances on the first Euro-
pean surface water Watch List [10] and for developing 
a groundwater Watch List [11]. It has been adopted by 
regulatory agencies in France [12, 13] and Slovakia [14] 
for prioritisation studies at the national level [15]. More 
recently, the risk indicators of the NORMAN Prioritisa-
tion Framework have been used to identify risk drivers 
related to surfactants and their transformation products 
in wastewater [16] and in passive samplers in the Danube 
River [17]. However, this is all based on target chemical 
analysis results. As discussed above, there is a clear need 
to integrate suspect and non-target screening data due to 
the increasing application of these methods in monitor-
ing [7]. These integration efforts to formulate the updated 
NORMAN Prioritisation Scheme are described in the 
next sections.

Materials and methods
Input data for the prioritisation scheme
In addition to the EMPODAT, ECOTOX and Substance 
Factsheets modules of the NDS, already presented in 
Sect. “The NORMAN Database System and original pri-
oritisation scheme”, the NDS offers several features which 
are essential for the exploitation of non-target high-res-
olution mass spectrometry data using retrospective sus-
pect screening approaches [18]. The following additional 
modules are the key data sources to enable the extension 
of the NORMAN Prioritisation scheme to data generated 
by non-target screening techniques.

First of all, SusDat, which provides the inventory of 
candidate substances for suspect screening, with 120,513 
unique chemical structures as of 13 Jan. 2024, is also the 
source of the mass spectrometric and retention informa-
tion for the identification of substances with non-target 
screening (NTS) techniques (e.g. predicted retention 
time index, predicted electrospray ionisation fragmenta-
tion). This information is also retrievable from other NDS 
modules, including the Digital Sample Freezing Platform 
(DSFP), which uses this information to search for the 
occurrence of substances in digitally frozen samples as 
explained in more detail below.

The DSFP (https:// dsfp. norman- data. eu/) was devel-
oped in 2017 to share non-target screening high-resolu-
tion mass spectrometry (NTS-HRMS) data and is also 
the reference database for suspect screening monitor-
ing data [19]. Within the DSFP it is possible to retrieve 
qualitative and semi-quantitative occurrence data for the 
chemical substances in the SusDat from “digitally frozen” 
environmental samples. Retrospective suspect screening 
of CECs is performed by searching for the exact mass of 
the most probable adduct ion and fragments’ ions of a 
given substance (the contents of SusDat are available as 
a drop-down menu) in combination with the retention 
time index (RTI) [20] in the full scan spectra of the digi-
tally archived samples. In this way, the DSFP allows for 
screening of presence of virtually any substance detected 
by HRMS in any environmental matrix, provided that the 
analytical method is fit for purpose.

The fragmentation pattern of substances present in 
MassBank EU (https:// massb ank. eu/ MassB ank/) is used 
to support identification where available, whereas for 
substances with unknown fragmentation behaviour, in 
silico predicted fragments are generated with CFM-ID 
4.0 [21] and used.

Indicators for substance categorisation and prioritisation
Three types of indicators are applied to first categorise 
CECs into action categories, then rank them within each 
action category: exposure, hazard and risk indicators. 
The indicators reflect the physicochemical properties, 
ecotoxicity and occurrence data of the candidate sub-
stances, while the absence of certain information reflects 
existing data gaps.

Exposure indicators
The exposure indicators used in the categorisation 
phase assess whether the quality and quantity of the 
available monitoring data are sufficient to allow an ade-
quate exposure assessment for the highly ranked CECs. 
The first two indicators are the number of countries 
and number of sites analysed, which reflect the level 
of investigation of a substance (well monitored sub-
stances vs. insufficiently monitored substances) against 
a defined reference value. In the light of current knowl-
edge and experience, for an application for water moni-
toring at EU level, the workflow requires the availability 
of recent monitoring data (collected within the last 
6  years) from at least 4 countries and 100 monitoring 
sites. These reference values can be adapted according 
to the objective of the study and the target compart-
ments (see SI, Appendix B, Section S1).

Another indicator is the number of sites at which 
the substance was detected above the Limit of Quan-
tification (LOQ). It indicates whether the exposure is 

https://dsfp.norman-data.eu/
https://massbank.eu/MassBank/
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widespread or only a local problem based, as above, 
on a defined reference value. In the application of the 
WFD, at least 50 sites with results > LOQ are required. 
Again, the reference value can be defined according to 
the objective of the study.

Finally, the last indicator allows to check the compati-
bility of the applied analytical methods with the defined 
lowest PNEC (most reliable quality target agreed by 
experts) or environmental quality targets for a given 
compartment and target species. If the concentration 
of the substance is reported as “ < LOQ” and the LOQ 
is above the “Lowest PNEC”, the available monitoring 
data will not be sufficient to exclude a potential risk. 
For these chemicals, further monitoring is needed, and 
analytical methods should be improved to assess the 
real risk of the substance (i.e. Cat.4).

In the case of ‘sufficiently monitored’ substances with 
low quantification levels (less than 50 sites > LOQ), it is 
essential to investigate whether the infrequent quanti-
fication is due to very low (or zero) exposure levels or 
inadequate data quality (i.e. LOQ > lowest PNEC for the 
given contaminant), like e.g. in the case of the class of 
highly toxic pyrethroids [22]. A substance is defined as 
‘sufficiently’ supported by ‘good quality data’ if there are 
at least 100 sites where measurements have been per-
formed with an LOQ below the PNEC. This threshold 
aligns with the minimum number of sites required to 
classify a substance as “sufficiently monitored”.

After the categorisation step, the substances are pri-
oritised using specific indicators, which are meant to 
reflect the level of occurrence of the substances and 
their spatial distribution in the environment (e.g. fre-
quency of observations above LOQ (FoQ), i.e. the num-
ber of sites with concentration > LOQ divided by the 
total number of investigated sites). An exposure index 
(see SI, Appendix B, Sect. 2.1) can also be used to rank 
the substances in Cat.2, 4 and 5 for which monitoring 
data are lacking. The same indicators can be used in 
both the categorisation and prioritisation steps.

In the case of retrospective suspect screening of sub-
stances from digitally archived NTS data in the DSFP, the 
frequency of observations above LOQ (FoQ) is replaced 
by the frequency of appearance (FoA), which is the fre-
quency with which a given suspect substance is detected 
in the investigated sites (i.e. signals above noise and suf-
ficient identification points, see IP score, below).

Hazard indicators
The hazard indicators used in the categorisation phase 
assess whether the quality and quantity of the available 
effect data are sufficient to allow for a rigorous hazard 
assessment of the candidate CECs. The workflow dis-
tinguishes between experiment-based and model-based 

quality targets. In the absence of quality standards 
derived by regulatory authorities, the workflow checks 
whether the available (eco)toxicity data are sufficient to 
establish a reliable and experiment-based quality target 
(e.g. PNEC) in the given environmental compartment. 
Note that for regulatory actions, acute effect data are 
not always considered sufficient to derive legally binding 
quality standards due to high assessment factors.

Following the categorisation step, a set of additional 
hazard indicators are used to prioritise the substances 
within the different action categories. The final hazard 
score is based on indicators considering:

– the carcinogenic, mutagenic and reprotoxic (CMR) 
classification,

– the persistent, bioaccumulative and toxic (PBT)/
very persistent and very bioaccumulative (vPvB) and 
persistent, mobile and toxic (PMT)/very persistent 
and very mobile (vPvM) classification (which can be 
combined in a persistent, mobile, bioaccumulative, 
toxic (PMBT) indicator),

– the potential of the substance to cause endocrine dis-
rupting effects (ED).

These indicators are then weighted and combined 
according to the objectives of the prioritisation study (e.g. 
human health, wildlife protection objectives) to derive 
the final score. The details and sources used to assign the 
corresponding scores are reported in the SI, Appendix 
B, Section S2.2. The hazard indicators are independent 
of the analytical technique, i.e. target or suspect / non-
target screening and therefore not changed in the update 
of the prioritisation scheme.

Risk indicators
The risk indicators used in the NORMAN prioritisation 
scheme are consistent with the Risk Quotient concept 
shown in Eq. 1:

where i refers to chemical i, MEC95 is the 95th percen-
tile of the maximum measured environmental concen-
trations  (MECsite) of all sites monitored, and the lowest 
PNEC (most reliable quality target agreed by experts) 
refers to the safety threshold that should not be exceeded 
for chemical i in a given matrix.

Based on the risk quotient concept, three main indica-
tors are applied to rank the substances in terms of poten-
tial risk (according to the data available); see detailed 
explanation in the SI, Appendix B, Section S2.3:

(1)RQi =

(

MEC95(i)

Lowest PNEC(i)

)

,
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– the Extent of Exceedance (EoE) of the lowest PNEC 
(to address the intensity of impacts associated to sin-
gle substances exposure above the lowest PNEC).

– the spatial Frequency of Exceedance (FoE) of the low-
est PNEC (to address the spatial impact associated to 
single substances exposure above the lowest PNEC).

– the frequency of Mixture Risks Contribution (MRC) 
(to address the frequency of occurrence of substances 
at concentration levels just below the lowest PNEC).

The three risk indicators are applied for the catego-
risation and prioritisation of substances (both target 
monitoring data and suspect screening data from DSFP). 
However, in the case of suspect screening data, their 
application relies on semi-quantified data, derived using 
the approach described in [23].

Exploitation of suspect/non‑target screening data 
to improve prioritisation of insufficiently monitored 
substances
In addition to the indicators described in the previous 
section, two new approaches have been introduced to 
enable the application of this prioritisation scheme to 
NTS data: the identification point (IP) scoring system 
and the semi-quantification method.

The identification point system (IP score) [24] makes it 
possible to determine and communicate the confidence 
of identification of a substance according to the com-
mon approach in the environmental field [25] in an auto-
mated, concise and unambiguous manner. A machine 
learning approach based on random forest classifiers was 
used to efficiently filter substances with insufficient iden-
tification evidence.

The technical details behind the construction of this 
indicator are explained elsewhere [24]. For the semi-
quantitative analysis, the method applied is based on a 
system-independent workflow which can provide esti-
mation of concentrations at levels as low as 0.5  µg/L 
[26]. Briefly, detected suspected substances are semi-
quantified based on the standard addition curve of the 
structurally most similar target substance. To find the 
structurally most similar target substance, 2D-linear 
fragment descriptors based on the original definitions 
of atom pairs and atom sequences were calculated [27], 
using the Tanimoto coefficient as the similarity distance 
function.

Application to a case study on wastewater effluent samples
The updated prioritisation scheme (see Sect.  “The 
updated/expanded NORMAN prioritisation scheme”) 
was applied to effluent wastewater samples as a proof-
of-concept using the spectral data from the samples 

available in the NDS, i.e. target data in EMPODAT and 
suspect screening data in DSFP. The suspect screening 
data were obtained from retrospective screening of the 
65,690 substances present in SusDat at the time (Septem-
ber 2021) on 84 wastewater effluent samples collected at 
56 sites in 12 countries (Germany, Austria, Czech Repub-
lic, Slovakia, Hungary, Croatia, Serbia, Romania, Bul-
garia, Ukraine, Greece and Cyprus), between 2017 and 
2021 [28, 29].

The samples were collected in various multi-national 
campaigns, including the ITN-ANSWER project, 
SOLUTIONS project [30], Transformation Products 
of Emerging Pollutants in the Aquatic Environment 
(TREMEPOL), German national monitoring campaign 
2018 [16] and Joint Danube Survey 4 (JDS4) [16, 31–33]. 
The target monitoring dataset included the data labelled 
as “Wastewater effluent” in EMPODAT from 2009 to 
2021, i.e. 165,612 data points for 2579 substances. The 
full dataset (target plus suspect screening) included > 11 
million data points. A dilution factor of 5 was applied to 
all concentration data (to convert the “wastewater con-
centration” into a “diluted waterbody concentration”) 
before input into Eq. 1 for calculation of the risk quotient 
[34].

Results and discussion
The updated/expanded NORMAN prioritisation scheme
Figure 2 gives an overview of the extended categorisation 
workflow using target (Fig.  2A) and suspect screening 
data (Fig. 2B).

The prioritisation workflow starts from the assessment 
of the data available in the NDS (i.e. target monitoring 
data in EMPODAT and ecotoxicity data in the ECOTOX 
database), using the criteria defined in the target prior-
itisation scheme (Fig.  2A). If there is sufficient evidence 
available from target monitoring data to conclude about 
the level of concern of the substance, categorisation and 
prioritisation can already be made. Decision-makers can 
still opt to include information from the suspect screen-
ing workflow (Fig. 2B) if they wish to use this data as an 
additional line of evidence (e.g. additional sites, countries 
or years to extend the scale of the spatial or temporal 
assessment).

In the case of insufficient or complete lack of target 
data in EMPODAT, the suspect screening workflow 
(Fig.  2B) is applied for a preliminary assessment of the 
level of concern and as a trigger for follow-up actions. 
The first step is to check whether there is sufficient confi-
dence in the identification of the substance from digitally 
archived data, using a new query: “IP score above thresh-
old?”, which was introduced into the new version of the 
decision tree. The classifier provides a response based 
on the collected evidence in the NTS-HRMS data. An 



Page 9 of 22Dulio et al. Environmental Sciences Europe          (2024) 36:113  

IP score cut-off value (IP > 0.50), corresponding to Level 
3 [25] is applied as a minimum requirement for identifi-
cation of the substance. Substances that pass this query 
are submitted to additional queries in the decision tree 

to group the substances based on an estimate of their 
relative occurrence (i.e. FoA) and potential risk (i.e. FoE) 
and the existence of an experimentally based or predicted 
lowest PNEC. Each category can be associated to a well 

Fig. 2 NORMAN scheme for categorisation and prioritisation of CECs using: A target and B suspect screening data. The scheme in the figure 
illustrates only the categorisation part of the workflow, assuming that the substances are then ranked within each action category. (NOTE: Cat S4B 
is not currently in use, see Table 2)
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Table 2  Six action categories identified based on exploitation of suspect screening monitoring data
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identified action as indicated in Table  2. It is important 
to highlight that the choice of an IP-score cut-off value 
equivalent to “level 3” identifications has been intention-
ally made in alignment with the objective of this prior-
itisation framework (to prioritise substances for future 
action). The primary aim is to establish a “safety net” to 
identify potential new hazards that warrant further iden-
tification efforts.

The substances in Cat.S1 (immediately recommended 
for action) and Cat.S3 (action recommended after revi-
sion of the lowest PNEC) are important, because they 
represent a potential risk as individual substances (poten-
tial risk drivers). It is a priority to confirm their identity 
and environmental concentrations with target analysis, 
and they should be regarded as top candidates for moni-
toring action. The substances in Cat.S2 and Cat.S5 can 
be considered as potential contributors to mixture risks 
(i.e. mixture risk drivers). Individually they do not exceed 
quality standards, but they may represent a potential 
risk due to their frequent presence and co-occurrence 
in the environment at levels just below the lowest PNEC 
(i.e. 0.1 ≤  RQ_i < 1). Confirmation with target analysis is 
therefore recommended (relevant for Watch List). Since 
substances in Cat.S3 and Cat.S5 are prioritised based on 
PNECs derived from in silico predictions, improvement 
of the ecotoxicity dataset (extended literature research or 
generation of additional experimental toxicity values on 
relevant species) is recommended to increase the robust-
ness of the prioritisation, before monitoring actions are 
taken. In fact, an experiment-based PNEC in the same 
order of magnitude would immediately result in a re-clas-
sification of the substance into Cat.S1. For the substances 
in Cat.S4A that do not pass the query “IP score above 
threshold?”, further analytical actions (e.g. ion mobility, 
other types of spectrometric and chromatographic tech-
niques, etc.) are needed to improve the identification 
process and confirm the identity of the substances before 
further monitoring actions can be started. 

Substances in Cat.S4C, for which no signal is detected 
(FoA = 0, i.e. IPs = 0), reflect the case where either the 
substance does not occur in the environment or the ana-
lytical method is not suitable for the substance (there is 
a need for improving the analytical method (equivalent 
to Cat.4 in the target monitoring-based workflow). In 
contrast, substances classified as Cat.S6 (identified with 
sufficient confidence, i.e. IP score > threshold) are con-
sidered to fall within the applicability domain of the ana-
lytical method and FoE = 0 indicates no risk. NORMAN 

places high importance to the definition of the chemical 
space covered by the analytical methods including sam-
ple preparation, suitability of chromatography and ionis-
ability of substances. This is reflected in the predictions 
available for substances in the SusDat database. In the 
current workflow, evaluating the applicability domain 
of the analytical method for substances identified with 
insufficient confidence (IP score < threshold) should be 
conducted as a subsequent step. However, there are plans 
to explicitly define the applicability domain of the analyt-
ical method upfront for all SusDat substances in the near 
future.

Where non-target data are available in both positive 
and negative ionisation modes, the same workflow is 
run on the suspect screening datasets from each mode 
individually and the results from the two parallel catego-
risation process are then compared. The final “suspect” 
action category is assigned based on a worst-case out-
come (i.e. more stringent category).

Combining results from target and suspect screening 
prioritisation workflows
The added value of the two complementary workflows 
is that the results from the ‘target monitoring’ and ‘sus-
pect screening’ prioritisation workflows using the same 
or different monitoring data sets can be combined. Thus 
it is possible to analyse the different outcomes and then 
assign an ‘overall action category’ to each substance and 
a final score, based on multiple lines of evidence, as illus-
trated in Table  3 (please note that the numbers in the 
table refer to the results of the case study described in 
Sect. “Application to a case study on wastewater effluent 
samples”).

The red area in the table refers to substances which 
are identified as Cat.1 or Cat.3, Cat.S1 or Cat.S3 in the 
respective workflows. Substances with insufficient or no 
evidence of risk from target monitoring data (i.e. all cat-
egories except Cat.1 and Cat.3) and which appear as fre-
quently occurring in suspect screening (Cat.S2, Cat.S4A, 
Cat.S5) are of medium priority for confirmation with 
target monitoring (orange “overall action category”). The 
shaded orange region indicates “medium priority with 
uncertainty” for substances for which target monitor-
ing data are absent and suspect screening data indicate 
insufficient evidence in the identification of the substance 
(i.e. 4A). The green area corresponds to substances with 
low evidence of the PNEC exceedance and/or very low 
frequency of detection. This is the case for substances 

Red: high priority for analytical confirmation and monitoring action. Orange: medium priority for analytical confirmation and monitoring action. Grey: analytical 
improvements necessary before conclusions can be reached. Green: low priority for further action. *S4B is not displayed because it was foreseen for lower confidence 
identification case that may be included in a future version

Table 2  (continued)
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assigned to Category 6 in both workflows or substances 
with insufficient data in target analysis (Cat.2, Cat.5) and 
low frequency of detection in suspect screening. Finally, 
the grey region indicates uncertainty for substances for 
which target monitoring data are insufficient (or not 
available) and suspect screening data indicate that the 
analytical method is not suitable for the substance (i.e. 
Cat.4C).

In general, suspect screening data acquired with high-
resolution mass spectrometry is only available for more 
recent samples, while target data collected from differ-
ent sources may cover longer timeframes and reflect 
more scattered spatial patterns. Increasing frequency of 
appearance in suspect screening might indicate increas-
ing trends or the onset of environmental exposure that 
may have been overlooked in target monitoring pro-
grammes. In contrast, lower concentration levels or 
fewer observations as compared to older target data 
might indicate a downward trend or phasing out of cer-
tain chemicals.

The categorisation/prioritisation algorithm for the ‘tar-
get monitoring’ prioritisation workflow is already built 
in the NDS, thus enabling automated prioritisation of all 
emerging substances contained in the SusDat, within the 

various categories, but can also be applied manually to 
other substances and datasets not included in the NDS. 
The integration of the NTS prioritisation workflow in 
the NDS is currently under way (planned to be finalised 
by the end of 2024). The prioritisation tool in the NDS 
allows easy updating of the categorisation and subse-
quent ranking of the substances in the event of inclusion 
of new substances or new data in the database. The final 
results can be exported as an Excel or csv file and can be 
checked by expert judgement.

Prioritisation of substances within each category
Once the substances have been allocated to one of the 
various action categories, the ranking of the substances 
within each action category is obtained using the set of 
indicators shown in Table 4.

The list of indicators in Table 4 are related to the expo-
sure, hazard and risk assessment. Details on the deriva-
tion of the indicators and associated scores are included 
in the SI, Appendix B, Section S2). Since the objectives 
(i.e. actions) differ from one category to another (e.g. 
Category 4 for improvement of analytical performance; 
Category 3 and 5 for improvement of hazard assessment), 

Table 3  Combined prioritisation of results from target and suspect screening workflows for 65,682 substances in SusDat in 84 
wastewater samples of the case study
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the prioritisation indicators may differ from one category 
to another as well.

For the prioritisation workflow based on target moni-
toring data, the score of a substance is calculated using 
the following equations (see “Sub-score” column), 
depending on the type of action category:

– Final  score_target (Cat. 1, 3, 6) = Expo_score 
(FoQ) + Risk_score (FoE + MRC + EoE)

– Final  score_target (Cat. 2, 4, 5) = Expo_score 
(FoQ + EI) + Risk_score (FoE + MRC)

For the suspect screening prioritisation workflow, the 
same scoring system is applied for all categories:

–Final  score_suspect (all categories) = Expo_score 
(FoA) + Risk_score (FoE + MRC + EoE)

The hazard score can be added as a supplementary 
part of the final score, by either adding up all individual 
scores (see below), or by multiplying it with the expo-
sure score to derive a combined exposure and hazard 
score, similar to the risk score. The indicators and their 
weights can be adjusted, if needed, to address specific 
prioritisation objectives.

The final score, reflecting the results from both lines 
of evidence, will then be calculated as a sum of the indi-
vidual scores, defined by the respective action catego-
ries in the ‘target monitoring’ and ‘suspect screening’ 
workflows.

–Final score = Expo_score  (Expo_tar-

ge t  +   E xp o _susp e ct)  +  Haz_s core  +  R i sk_s core 
 (Risk_target +  Risk_suspect)

In the case of substances for which target monitor-
ing data are not available, the prioritisation score will 
be based on one line of evidence only, and the score will 
be a lower value.

Application to a case study on wastewater effluent samples
A total of 65,690 substances were screened in the case 
study involving 84 WW effluent samples. As expected, 
a high proportion (96% of the substances, 63,113 sub-
stances) were not covered by target monitoring data in 
EMPODAT (Table 3). Even considering the substances 
for which target monitoring data were available (2569), 
only 306 substances (less than 15%) can be considered 
as sufficiently investigated, i.e. assigned to Cat.1, Cat.3, 
Cat.6A and Cat.6B (monitored in ≥ 4 countries and 
at least 100 sites as defined in the NORMAN scheme 
[5]). Using the extended prioritisation workflow, it was 
possible to obtain evidence about the environmental 
occurrence for further 6,534 substances (sum of the 
substances assigned to Cat.S1, Cat.S2, Cat.S3, Cat.S5 
and Cat.S6 in suspect screening, with no target moni-
toring data in EMPODAT) out of the 63,113 substances 
not covered by target data. Even if there is still a large 
percentage of substances (about 90% of the list of can-
didates from the suspect screening) with uncertainty 
in the identification (58,679 substances corresponding 

Table 4 Prioritisation indicators for the ranking process based on target monitoring and suspect screening data

NOTE: (1) For the calculation of the hazard score the indicators and the associated weights can be adjusted according to specific prioritisation objectives; (2) in the 
current algorithm, each indicator has the same weight in the calculation of the risk score. However, a lower weight (1/2) could be given to the MRC indicator as 
compared to the FoE, as proposed by Sauer et al. [17], in order to reflect that the relevance of a substance contributing based on mixture risks (i.e. RQ between 0.1 and 
1) is lower compared to a substance exceeding the PNEC as individual substance (RQ > 1)

Indicators Application to 
categories

Value Sub‑score Final score

Exposure Expo_target FoQ All categories 0.00—1.00 Expo_target = FoQ + EI 
(optional)

Expo score =  Expo_tar‑

get +  Expo_suspectEI (exposure index) Optional for Cat.2,4,5 
(target monitoring)

0.00—1.00

Expo_suspect FoA All categories 0.00—1.00 Expo_suspect = FoA

Hazard Haz_Human Health CMR All categories 0.00—1.00 Haz score is counted 
only once in the final 
score

Haz 
 score1 = CMR + ED + PBT/
vPvB + PMT/vPvM

ED 0.00—1.00

Haz_Other properties of concern PBT /vPvB 0.00—1.00

PMT/vPvM 0.00—1.00

Risk Risk_target FoE_target All categories 0.00—1.00 Risk_target
2 =  FoE_tar‑

get +  MRC_target +  EoE_target

Risk score =  Risk_tar‑

get +  Risk_suspectMRC_target

EoE_target Only Cat.1, 3 and 6 0.00—1.00

Risk_suspect FoE_suspect All categories 0.00—1.00 Risk_suspect
2 =  FoE_sus‑

pect +  MRC_suspect +  EoE_

suspect
MRC_suspect

EoE_suspect 0.00—1.00

Final score (target + suspect screening)  = Expo + Haz + Risk
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to the sum of Cat.S4A and Cat.S4C), it was possible to 
detect a signal for more than 39,000 substances (Cat.
S4A), and in this way identify the features with high-
est exposure and risk scores (i.e. FoA and FoE) to be 
selected for further elucidation of the structure.

Most of the substances in the candidate list (64,825 
chemicals) had only predicted PNECs at the time of the 
study, which means that most of the frequently found 
substances were allocated to Category S3 (frequently 
found and evidence of risk) or Category S5 (frequently 
found with low or no evidence of risk), and a relatively 
small percentage was assigned to Category S1, Category 
S2 or Category S6.

Based on categorisation results (prior to the final pri-
oritisation), 677 substances would fall in the red zone 
(high priority for further actions), 7455 in the orange 
zone (medium priority) and 326 in the green zone with 
potentially lower priority for actions. Among the remain-
ing substances, more than 37,000 substances should be 
considered of medium priority with uncertainty while 
approximately 19,000 substances are classified as “uncer-
tain” (i.e. no data or insufficient data from target moni-
toring and uncertainty in the identification from suspect 
screening or analytical method not appropriate). Overall, 
since the evidence collected with suspect screening was 
not sufficient to conclude on the identity or even appear-
ance of a large number of candidate substances, efforts 
are still needed to improve the analytical capabilities to 
yield additional information for better enrichment, analy-
sis, detection and finally structural identification in sus-
pect screening.

Examples of representative substances in various com-
binations of categories from both approaches are shown 
in Table  5: and discussed further below for interpreta-
tion. Details of the screened substances are included in 
the SI, Appendix A.

Category S1: frequent PNEC exceedances
Category S1 substances are contaminants for which pri-
ority actions would be required at the level of regulatory 
monitoring and control of emissions, once confirmed by 
target analysis. Among the 20 substances in Category S1, 
two well-known pharmaceuticals (diclofenac CAS RN: 
15307–86-5; carbamazepine CAS RN: 298-46-4) and one 
biocide (bendiocarb CAS RN: 22781-23-3) were already 
prioritised as Category 1 substances in the target prioriti-
sation workflow, meaning that there is sufficient evidence 
from target monitoring data to demonstrate their poten-
tial risk to the environment. The frequencies of appear-
ance of these substances obtained by target and suspect 
screening were consistent. Here the suspect screening 
approach could provide complementary additional evi-
dence for prioritisation of these chemicals. For diclofenac 

and carbamazepine, while both substances have the same 
final score, their individual risks profiles are actually 
quite different: diclofenac is more often found to exceed 
the PNEC (FoE: 0.43; MRC: 0.21), while carbamazepine 
is more often present at concentration levels close to the 
PNEC (FoE: 0.14; MRC: 0.45), i.e. a potential mixture risk 
contributor.

Amongst the highest ranked substances, there are sev-
eral substances for which the information from available 
target monitoring data were insufficient (8 substances) or 
not available (3 substances). In particular, the conclusions 
based on the suspect screening prioritisation could pro-
vide evidence on industrial chemicals such as 8-hydrox-
yquinoline (CAS RN: 148-24-3) (used as antiseptic drug 
and antifungal agrochemical), nonanoic acid (CAS RN: 
112-05-0) (high tonnage biocide used in cosmetics and 
personal care products) and oxacycloheptadec-10-en-
2-one (CAS RN: 28645-51-4) (flavouring and fragrance 
agent) for which no data were available in EMPODAT.

In the investigated sites of our study 17beta-estradiol 
(CAS RN: 50-28-2) and other oestrogens, e.g. 17beta-
trenbolone (CAS RN: 10161-33-8, steroid), were detected 
in wastewater at relatively high concentration levels 
above the PNEC, which has led to their assignment to 
Category S1. The same substances were assigned to Cat-
egory 4 in the target prioritisation scheme. Although 
local exceedances were observed also in the target data-
set, an insufficient analytical performance (LOQ > PNEC) 
resulted in a limited number of sites where the sub-
stances were quantified. Therefore, they did not meet 
the more stringent criteria for allocation to Category 1 in 
the target prioritisation workflow (i.e. > 50 sites > LOQ). 
This example shows the added value of combining sus-
pect and target monitoring data to identify substances of 
higher priority for improvement of analytical methods. 
However, it is important to be aware of the limitations 
of screening methods. Since they are not as sensitive as 
dedicated target methods, the detection of the two ster-
oids in suspect screening might be a false positive result 
and should be verified before further action.

Finally, climbazole (CAS RN: 38083-17-9 antifungal 
agent) and propyphenazone (CAS RN: 479-92-5, phar-
maceutical, analgesic) were both classified as Category 
6A in target monitoring, meaning that they were fre-
quently quantified at concentration levels not exceeding 
the PNEC, but still close to the threshold value. This is 
in line with the conclusion from the suspect screening 
data where these substances appear as frequently quanti-
fied but with lower frequency of exceedance of the PNEC 
(FoE: 0.01 for both substances). In this case the combined 
use of target and suspect screening data provides more 
robust information before further actions are taken.
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Table 5 Examples of representative substances of concern in the various prioritisation categories for the present wastewater case 
study

Substances CAS RN/
NORMAN 
SusDat ID

Final  score1 
(suspect 
screening)

Final category 
(suspect 
screening)

Final category 
(target 
monitoring)2

Remarks

Diclofenac 15307‑86‑5
NS00000212

1.65 S1 1A Pharmaceutical, non‑steroidal anti‑
inflammatory drug (NSAID)

Carbamazepine 298‑46‑4
NS00000207

1.65 S1 1A Pharmaceutical, antiepileptic agent, 
anticonvulsant

Bendiocarb 22781‑23‑3
NS00001535

0.35 S1 1A Biocide, insecticide, carbamate

8‑Hydroxyquinoline 148‑24‑3
NS00010316

1.42 S1 N/A Industrial chemical, disinfectant

Bisphenol A 80‑05‑7
NS00008865

1.01 S1 2 Industrial chemical, phenol, plasti‑
ciser, ED substance

Nonanoic acid 112‑05‑0
NS00009752

0.96 S1 N/A REACH; ≥ 1 000 to < 10 000 tonnes/
year; biocide; cosmetics and per‑
sonal care products

Oxacycloheptadec‑10‑en‑2‑one 28645‑51‑4
NS00013096

0.90 S1 N/A Industrial chemical

4‑Methyl‑1H‑benzotriazole 29385‑43‑1
NS00010509

1.16 S2 2A Industrial chemical, corrosion 
inhibitor

Clarithromycin 81103‑11‑9
NS00008649

1.13 S2 1A Antibiotic

5‑Methyl‑1H‑benzotriazole 136‑85‑6
NS00008943

0.99 S2 6A Industrial chemical, corrosion 
inhibitor

Tris(2‑butoxyethyl) phosphate 78‑51‑3
NS00010389

0.93 S2 2A Industrial chemical, phosphate 
plasticiser, vPvM

N‑Methyl‑2‑pyrrolidone 872‑50‑4
NS00009178

0.92 S2 2A Industrial chemical, plasticiser

Diisopropanolamine 110‑97‑4
NS00001427

0.85 S2 N/A Antibacterial drug, pesticide

Vinyl neodecanoate 51000‑52‑3
NS00007080

0.82 S2 N/A REACH ≥ 10 000 to < 100 000 
tonnes/year; adhesives and coat‑
ings, machine wash detergents, 
fragrances

1,2‑Propylene oxide 75‑56‑9
NS00009434

0.79 S2 N/A Antibacterial drug, fungicide

Methacrylamide 79‑39‑0
NS00003892

0.75 S2 N/A Industrial chemical, polymer produc‑
tion

Melamine 108‑78‑1
NS00010262

0.74 S2 2A Industrial chemical, vPvM and PMT

O‑Desmethylvenlafaxine 93413‑62‑8
NS00000330

0.18 S2 2A Transformation product, antipsy‑
chotic drug, antidepressant

Mesotrione 104206‑82‑8
NS00000240

0.05 S2 N/A Herbicide, pesticide

Meclofenamic acid 644‑62‑2
NS00000697

1.49 S3 5A Pharmaceutical, NSAID, anti‑inflam‑
matory drug

Allyl alpha‑ionone 79‑78‑7
NS00011942

1.46 S3 N/A REACH (pre‑registered); fragrance; 
food additive; flavouring agent;

1H‑Benzotriazole, 5,5’‑methylen‑
ebis‑

15805‑10‑4
NS00020749

0.56 S3 N/A Transformation product of benzo‑
triazole

2‑(2H‑Benzotriazol‑2‑yl)‑4,6‑bis(1,1‑
dimethylpropyl)phenol

25973‑55‑1
NS00010624

0.14 S3 N/A REACH; (UV‑328) is an ultraviolet 
(UV) stabiliser with a phenolic group 
connected to the benzotriazole 
structure, on the Stockholm Conven‑
tion for Persistent Organic Pollutants

Octabenzone 1843‑05‑6
NS00005821

1.39 S4A N/A UV stabiliser
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Category S2: priority substances with potential contribution 
to mixture toxicity
A total of 130 substances were classified in Category S2 
based on the suspect screening data. For 26 of them, no 
target occurrence data existed, and they were therefore 
detected as potentially relevant substances only via sus-
pect screening. Amongst them are several high-volume 
industrial chemicals (such as methacrylamide, and vinyl 
neodecanoate with CAS RN 79-39-0 and 51000-52-3) 
and antimicrobial agents (such as diisopropanolamine 
and 1,2-propylene oxide with CAS RN 110-97-4 and 
75-56-9). The prioritisation based on suspect screening 
data provided additional evidence on the environmental 
occurrence of substances of high PMT/vPvM potential, 
such as tris(2-butoxyethyl) phosphate (CAS RN: 78-51-
3), 1,3-diphenylguanidine (CAS RN: 102-06-7), mela-
mine (CAS RN: 108-78-1) which were not supported by 
sufficient monitoring data in EMPODAT, and some 
widely used triazoles, such as 5-methyl-1H-benzotriazole, 
4-methyl-1H-benzotriazole and 1H-benzotriazole (CAS 
RN: 136-85-6; 29385-43-1 and 95-14-7).

The semi-quantified concentration levels from suspect 
screening in Category 2 do not exceed the PNEC val-
ues, but monitoring of potential mixture effects should 
be considered using the MRC indicator. Substances with 
a higher contribution to mixture risks receive a higher 
score within the list of Category 2 substances. This is the 
case for clarithromycin (CAS RN: 81103-11-9) which had 
an MRC of 0.39, meaning that it was detected at 39% of 
the sites at concentration levels in the range of 10% of the 

PNEC. Likewise, sulfamethoxazole (CAS RN: 723-46-6) 
was frequently found in both target and suspect screen-
ing (95 and 80% of the sites, respectively), with exceed-
ances only at local level in target analysis. No exceedance 
was observed in suspect screening, but 7% of the sites 
had concentration levels in the range of 10% of the PNEC, 
meaning that sulfamethoxazole would be prioritised as 
a potential driver of mixture risk in a combined suspect 
screening and target analysis prioritisation scheme.

Category S3: priority substances for further hazard 
assessment
As many as 485 substances were classified as Category 
S3 based on the suspect screening data, meaning that 
these substances are frequently occurring in wastewa-
ter at semi-quantified concentration levels above the 
PNEC, although an uncertainty exists associated with 
the predicted PNEC values. Most of these substances 
(472) are not supported by target monitoring data in 
EMPODAT. Among these more frequently occurring 
substances, some require particular attention, such as 
allyl alpha-ionone (CAS RN: 79-78-7) which is a sus-
pected carcinogen under the ECHA Annex III inventory. 
Often there are no agreed experimental PNECs for these 
substances to protect aquatic ecosystems. Among phar-
maceuticals, meclofenamic acid (CAS RN 644-62-2), an 
anti-inflammatory, analgesic drug similar to diclofenac 
(NSAID), and the antihypertensive agent bisoprolol 
(CAS RN 66722-44-9) exceeded the predicted PNECs in 
36% and 13% of the samples, respectively. In the case of 

Table 5 (continued)

Substances CAS RN/
NORMAN 
SusDat ID

Final  score1 
(suspect 
screening)

Final category 
(suspect 
screening)

Final category 
(target 
monitoring)2

Remarks

Pethoxamid 106700‑29‑2
NS00000317

0.81 S4A 4 Herbicide, pesticide, chloroaceta‑
mide

17Alpha‑ethinylestradiol 57‑63‑6
NS00008601

0.71 S4A 4 Steroid

Spinosad 168316‑95‑8
NS00003609

0.49 S4A 2A Insecticide, pesticide

Triticonazole 31983‑72‑7
NS00010104

0.24 S4A 4 Fungicide, pesticide

1‑Methylbenzotriazol 13351‑73‑0
NS00000460

1.05 S5 5A Industrial chemical, corrosion 
inhibitor

2,5‑Dimethyl‑2‑ethylhexanoic acid 24353‑79‑5
NS00001375

0.92 S5 N/A Herbicide, plant growth regulator

4‑Hydroxy‑3‑methoxybenzalde‑
hyde

121‑33‑5
NS00009754

0.76 S5 N/A Vanillin, flavourings, food, perfumes 
and pharmaceuticals

2,4,6‑Triaminotoluene 88‑02‑8
NS00039235

0.00 S6 N/A Industrial chemical

Dimethyl sulfoxide 67‑68‑5
NS00001957

0.00 S6 N/A Organic solvent

1 Final score suspect screening (all categories) = Expo_score (FoA) + Risk_score (FoE + MRC + EoE)



Page 17 of 22Dulio et al. Environmental Sciences Europe          (2024) 36:113  

5-methyl-2-(1-methylbutyl)-5-propyl-1,3-dioxane (CAS 
RN 80480-24-6), a fragrance used in cleaning products 
and cosmetics, 3 valid short-term toxicity studies on 
invertebrates are reported by ECHA, with an EC50 of 
1.8 mg/L, leading to an estimated PNEC of 1.8 µg/L for 
freshwater (in line with the P-PNEC of 0.84 µg/L used in 
this study). The concentration values (dilution factor 5) 
showed exceedances for 10 out of 86 wastewater samples, 
suggesting the need to look in more detail on the ecotox-
icity data for this substance, which might be potentially 
relevant for further target monitoring. Finally, galaxo-
lidone (CAS RN: 256393-37-0), a metabolite of galaxolide 
(a polycyclic musk widely used in soaps and cosmetics) 
was found in 18% of the samples (5% above the predicted 
PNEC). No experimental ecotoxicity data exist for this 
substance to our knowledge. Its parent substance, galax-
olide (CAS RN: 1222-05-5), is classified in Cat.6A in the 
target prioritisation workflow (and in Cat.4A in suspect 
screening), meaning that the concentration levels do not 
exceed the PNEC, but they are still close to the threshold 
(i.e. potential contributor to mixture risks). The (eco)tox-
icity of degradation products of high tonnage chemicals 
(≥ 1 000 to < 10,000 tonnes per annum) should hence be 
verified. Overall, suspect screening data provided a use-
ful line of evidence for the identification of potential risks 
caused by the occurrence of substances not supported 
by sufficient target monitoring data in EMPODAT. 
Improvement in hazard assessment is required to con-
firm the environmental risk of these substances, which 
would potentially require regulatory scrutiny.

Category S4: priority substances for further analytical 
improvement
In total, 58,680 substances were classified as Category 
S4 substances, which means that the applied analyti-
cal approach was not able to collect enough evidence 
for elucidation of their identity and potentially the ana-
lytical method was not appropriate or sensitive enough 
for the substance. Among them, 19,360 are Category 
4C substances, which were never detected. The other 
39,320 substances in Category 4A showed FoA above 0, 
although with relatively low IP scores (i.e. their identifi-
cation confidence is low). Over 96% of these substances 
were not studied in target analysis due to lack of refer-
ence standards in our case study, one example being the 
photostabiliser octabenzone (CAS RN: 1843-05-6) used 
for a variety of plastic systems, including food packaging 
materials. However, the list of S4 substances also includes 
some well-known contaminants such as azithromycin 
(CAS RN: 83905-01-5), fipronil (CAS RN: 120068-37-3), 
diuron (CAS RN: 330-54-1), PFOS (CAS RN: 1763-23-1) 
and triclosan (CAS RN: 3380-34-5), which are prioritised 
as Category 1 substances based on target monitoring 

data available in EMPODAT. Indeed, suspect screening 
could not collect sufficient evidence to confirm the iden-
tity of these substances. The reasons for this shortcoming 
are likely due to analytical issues: e.g. poor fragmentation 
(common for substances detected in negative ionisation 
mode such as the above-mentioned substances), matrix 
effects in complex matrix (here wastewater) and limita-
tions in the performance of the instrument (mass reso-
lution obtained with the QTOF techniques used in this 
study is known to be lower compared to Orbitrap mass 
analysers).

In spite of the inherent limitations of the analyti-
cal instrumentation, the intensity of the signals are well 
aligned with the results from target monitoring, i.e. 
azithromycin (FoA 0.68; FoE 0.46; EoE 0.25) and fipronil 
(FoA 0.66; FoE 0.48; EoE 0.25) are frequently quantified 
with higher degree of PNEC exceedance, while PFOS 
(FoA 0.84; FoE 0.17; EoE 0.1) is frequently quantified with 
lower degree of PNEC exceedance and finally, triclosan 
(FoA 0.35; FoE 0.00 and EoE 0.00) is less frequently found 
in wastewater and at lower levels. In conclusion, suspect 
screening revealed substances that need enhanced chem-
ical analysis to confirm their detection and quantification 
in suspect screening. Investigation to confirm the envi-
ronmental presence of Category S4A substances could 
be focused on the ones that have high FoA from suspect 
screening (for example there are 470 Cat.S4A substances 
with FoA > 0.75 and no standard from the target analysis 
in this case study) and confirmed low PNECs (about 50 
substances with experimental PNEC values below 1 µg/L) 
or PBT or PMT properties. With the confirmation of 
selected Category S4A substances by target screen-
ing, some of them could be moved to target Category 1, 
which would trigger follow-up actions in the regulatory 
context.

The Category S4C might contain substances for which 
the applied LC–electrospray ionisation (ESI)-HRMS 
analytical method is not suitable at all, e.g. substances 
that need specific enrichment or separation meth-
ods or can only be detected with GC–electron ionisa-
tion (EI)-HRMS due to, e.g. missing heteroatoms. This 
could be estimated from the physicochemical proper-
ties, molecular formula and molecular structure of the 
substances. Substances with high exposure index (high 
usage), which do not fall in the applicability domain of 
the screening method, should be selected for application 
or development of dedicated methods. For example, LC–
ESI-HRMS/MS, currently the most common technique, 
could be complemented with GC–atmospheric pressure 
chemical ionisation (APCI)-HRMS/MS analysis.
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Category S5: priority substances for further monitoring 
and improved hazard assessment
Approximately 6000 substances were assigned to Cat-
egory S5. Based on the predicted PNECs and semi-
quantified concentrations, these substances showed no 
exceedance of safety thresholds, which is not surprising 
given the multitude of substances present in our environ-
ment. The vast majority of the Category  S5 substances 
were either supported by insufficient target monitoring 
data in EMPODAT (277 substances) or not supported at 
all by target monitoring data (the remaining 5744 sub-
stances). Amongst the highest ranked substances (based 
on FoA and MRC) there are several members of the 
class of benzotriazoles and their transformation prod-
ucts, widely applied as corrosion inhibitors in washing 
and cleaning products, de-icers, surface coatings, cut-
ting fluids, etc., and already highlighted in Category 
S2 as ubiquitous contaminants in wastewater. Among 
the top-ranked substances there are also several repre-
sentatives of the amines and amides chemical classes, 
registered as high-volume industrial chemicals. One 
example is N-ethyl-2-methylbenzenesulfonamide (CAS 
RN: 1077-56-1) used as pigment and plasticiser in vari-
ous consumer products such as paints but also cosmet-
ics [35], which was found in 95% of the samples. Another 
example is N-ethyl-4-menthane-3-carboxamide (CAS 
RN: 39711-79-0), a food additive (fragrance), which was 
frequently found (95% of the samples) at concentration 
levels close to the predicted PNEC (MRC: 0.23). Cat-
egory S5 includes, amongst others, 23 substances, e.g. 
geranyl acetate (CAS RN: 105-87-3), 1,4-benzenediamine 
(CAS RN: 106-50-3), linalyl acetate (CAS RN: 115-95-7), 
which are identified as suspect endocrine disrupters by 
ANSES/DEDuCT (NORMAN-SLE S99 ANSESEDC List 
[36] and as ingredients in cosmetics (NORMAN-SLE S13 
EUCOSMETICS List von der Ohe and Aalizadeh [35]) 
and which are also highly present in the market (KEMI 
exposure index > 0.7). Experimental effect data (PNEC) 
need to be integrated in the NDS to allow for a proper 
risk assessment of all these substances, starting from 
those with highest MRC scores.

Category S6: low‑priority substances according to current 
knowledge status
Suspect screening could identify 310 substances of ‘low 
priority’ with sufficient confidence for which target mon-
itoring data are lacking in EMPODAT. This number rep-
resents a low percentage of the list of > 65,000 candidate 
substances investigated in this study. Surprisingly none 
of the 130 Category 6 substances from the target prior-
itisation scheme are found in Cat.S6. Nevertheless, the 
conclusions from target and suspect screening remain 
well aligned. These 130 substances were assigned either 

to Category S4C, meaning that they were not detected, 
most likely because the method was not appropriate, 
or to Cat.S4A or S2 with very low FoA scores, meaning 
that their occurrence in wastewater is not significant. 
One substance was assigned to Cat.S1. It is worth recall-
ing that Cat.6A in the target prioritisation scheme cor-
responds to substances with risk quotient (RQ = MEC95/
lowest PNEC) below 1, but still above 0.1.

Current knowledge gaps for exposure and hazard 
assessment to prioritise CECs for which actions are needed
As shown above, the use of suspect screening data in the 
prioritisation workflow provided additional lines of evi-
dence to prioritise under-investigated contaminants in 
the environment. The novelty in the upgraded scheme 
is primarily in the concurrent use of target and suspect/
non-target screening data available in the NDS for an 
integrated assessment and prioritisation of chemicals. 
The scheme provides a simple workflow which facili-
tates decision-making regarding under-investigated sub-
stances. The system scrutinises both the frequency and 
the level of detection to assess chemical occurrence, 
and compares concentrations to an environmental qual-
ity threshold, the lowest PNEC, to appraise the severity 
of the chemical risks to the environment. While the cur-
rent study was focused on the aquatic environment, the 
same scheme can be adapted to any other environmental 
compartment (e.g. terrestrial). The substances contained 
in SusDat are automatically allocated to action categories 
via this prioritisation scheme, thereby providing evidence 
for the identification of potential priority CECs in waste-
water (or the given matrix in question) and a preliminary 
assessment of their environmental risks.

Knowledge gaps for the determination of chemical 
exposure and hazard still exist, and the following actions 
are recommended to fill such gaps and optimise current 
prioritisation efforts:

(1) Improvement of the suspect screening (higher IP 
score where sufficient information is available) 
could result in more certain chemical occurrence 
data. This could be achieved using machine learn-
ing-based models in retention time prediction [37] 
and substance structure identification [38]. In cases 
of insufficient fragmentation, smarter data acqui-
sition methods can be (and in the interim have 
been) developed by instrument vendors, such as 
AcquireX in Orbitrap systems [39] and in Iterative 
MS2 in Agilent TOF systems.

(2) The application of the same scheme can be 
extended to GC–APCI-HRMS techniques, to look 
beyond LC–ESI/APCI-HRMS data acquisition [7]. 
A further refinement of the current prioritisation 
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framework is already under way that will integrate 
a preliminary step to define the most appropriate 
instrumentation for each substance based on its 
physicochemical properties. This improvement will 
enable the coverage of a wider chemical space via 
the application of several complementary methods 
and will increase the confidence in the results.

(3) More comprehensive compilation of agreed qual-
ity targets by governmental authorities should be 
sought. In the absence of experimental toxicity data, 
ecotoxicity endpoints should be predicted with the 
use of validated quantitative structure–activity rela-
tionship (QSAR) models, covering a wider range 
of taxa to allow derivation of PNECs of higher rel-
evance and reliability. Comprehensive experimental 
datasets covering a well-defined chemical domain 
are essential to develop reliable QSAR models for 
PNEC derivation [40]. Data from in  vitro assays, 
e.g. the high-throughput screening in  vitro toxic-
ity database from the United States Environmental 
Protection Agency (US EPA) can be used to extend 
the hazard categorisation directly (if available in the 
database) or with machine learning-based predic-
tions [41]. In case the chemical domain of a certain 
group of chemicals is not yet covered by the models 
(e.g. PFAS in vivo toxicity), additional experimental 
data should be generated to expand the chemical 
domain of the original model.

Improving the availability and sharing of existing infor-
mation, including raw and spectral data, chemical occur-
rence and effect data would facilitate collaboration and 
improvement in prioritisation efforts. The NDS is an 
example of comprehensive data dissemination strategy 
which provides various interconnected modules to fos-
ter the knowledge exchange to improve the prioritisation 
of CECs, and the prioritisation approach presented here 
shows how this data sharing can support complementary 
efforts at community level beyond international borders.

Conclusions
Given the increasing importance of suspect and non-
target screening in environmental studies, the NOR-
MAN prioritisation scheme has been expanded to exploit 
the potential of these new data. These updates cover 
substances that are in the domain of contaminants of 
emerging concern, which are by definition affected by 
lack of data. The categorisation / clustering process has 
been designed to specifically address such aspects and 
data gaps. Since the prevailing consensus was that hav-
ing some information is preferable to having none at all, 
it was collectively decided to integrate uncertain data 

related to both hazard and exposure data in dedicated 
categories and treat this information as an additional 
line of evidence. This updated scheme was applied to a 
combined dataset of > 65,000 chemicals with target analy-
sis and suspect screening data from European wastewa-
ter samples. The prioritisation workflow using suspect 
screening data revealed 20 substances in Category S1 
(highest priority for confirmation/target monitoring), 
129 in Category S2 (medium priority, potential mixture 
toxicity risk), 485 in Category S3 (high priority based on 
predicted effect data), 58,680 in Category S4 (improve-
ment of analysis required), 6066 in Category S5 (medium 
priority, improvement of effect data required) and 310 in 
Category S6 (lowest priority for target monitoring). Com-
bining the results from the suspect screening and target 
analysis workflows as two lines of evidence revealed that 
677 substances were high priority for further actions (red 
zone), 7455 were medium priority (orange zone) and 
326 were in the green zone with potentially lower prior-
ity for actions. Among the remaining substances, more 
than 37,000 should be considered of medium priority 
with uncertainty, while the conclusion remains uncertain 
for ~ 19,000 substances due to insufficient data from tar-
get monitoring and uncertainty in the identification from 
suspect screening.

Further actions were suggested for the chemicals 
according to their assigned category. The suspect screen-
ing data showed good agreement with target screen-
ing data in terms of categorisation for highly prioritised 
chemicals and provided additional lines of evidence for 
tens of thousands of chemicals currently not frequently 
investigated. The study demonstrated that the integra-
tion of suspect screening data to the target prioritisa-
tion approach provides a more comprehensive basis for 
environmental risk assessment. With the infrastructure 
of the NORMAN Network, such risk assessment can 
also be performed in a retrospective manner. The com-
bined use of these innovative tools, integrated in the NDS 
platform, can also serve as an early warning system for 
identifying CECs that start to appear in the environment. 
If a periodic NTS monitoring is established, it will soon 
be possible to also identify time trends. The proposed 
categorisation and prioritisation method is based on a 
comprehensive list of classification criteria and indica-
tors, taking into account key aspects agreed by the sci-
entific community for exposure and risk assessment. 
Future perspectives include e.g. enhancing the robust-
ness of the statistical framework for this scheme further 
and the refinement of the hazard score. Finally, it should 
be highlighted that the workflow presented here can be 
applied to various environmental compartments and 
matrices, including freshwater, marine waters, sediments, 
biota, biosolids or reused waters as reclaimed water for 
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irrigation, to rank the critical groups of chemicals that are 
of potential environmental concern. It will be an impor-
tant contribution to a more efficient use of environmen-
tal monitoring data for the prioritisation of monitoring 
and regulatory actions, as envisaged in the EU chemicals 
strategy for sustainability.

Disclaimers
The conclusions expressed in this paper represent the 
expert judgement of the authors, but not necessarily the 
opinion of their affiliation.
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