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Abstract: Improved land-use efficiency in agricultural production is crucial to meet increasing 
demand for agricultural commodities using the finite area of arable land worldwide. By applying 
a spatial autoregressive stochastic frontier methodology to county-level data spanning from 
1980 to 2011, we conducted an analysis to investigate changes in both the spatial and tem-
poral dimensions of technical efficiency and land-use efficiency within Chinese crop produc-
tion. During this period, China achieved a remarkable upsurge in food production, notably 
within the first three decades of the rural reform that began in 1978. There were substantial 
transformations in agricultural land use that encompassed changes in cropland areas, shifts in 
the composition of various crops, alterations in their geographical distributions and enhance-
ments in crop yields. Based on the results of this analysis, land-use efficiency increased slightly 
from 0.47 to 0.56 in most regions of China during that period and became convergent over 
time, with spatial gaps narrowing. National technical efficiency increased by 20 % on average, 
but with substantial regional variations, e.g. lower technical efficiency gains in northeast and 
northwest China and greater technical efficiency in the north and south. Urbanisation was 
found to be positively associated with lower technical efficiency, while a greater distance from 
provincial capitals resulted in higher technical efficiency. Efficient land use can lead to greater 
agricultural productivity, which, in turn, can boost rural economies and contribute to overall 
economic growth. These results could help in the design of effective regional policies to opti-
mise land-use efficiency in crop production. 
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1 Introduction 

Chinese agriculture has witnessed a drastic and rapid transformation in recent decades. 
Cropland in China is relatively limited. Despite a gradual increase in crop yield since the intro-
duction of the household responsibility system in 1978, a slight decrease in cropland along 
with soil degradation have led to high intensity and less sustainability. For a sustainable and 
food-secure future, China needs to boost the productivity and efficiency of agricultural produc-
tion while substantially reducing its environmental footprint (Viana et al, 2022; Zhang et al., 
2022; Wang et al., 2023). Technical efficiency (TE) and land-use efficiency (LUE) in cropping 
production both optimise production processes. TE, a key measure of overall production per-
formance, quantifies the capacity of a production unit to convert inputs, such as land, labour 
and capital, into outputs. The idea is to achieve maximum output levels from a given set of 
inputs or to produce a given level of output with the minimum use of inputs. In the context of 
agriculture, the assessment of TE can provide important insights into how efficiently resources 
are being used, and thus pave the way for adjustments that could lead to more sustainable 
and productive farming systems. Apart from overall production performance, examining the 
efficiency of individual inputs enables the identification of specific areas where improvements 
can be made for the sustainable development of agriculture. 

Agricultural production in China has increased substantially through the intensive use of inputs 
such as irrigation (Zhu et al., 2019), fertilisers (Huang and Jiang, 2019) and machines (Qiu et 
al., 2022). However, high or excessive usage of natural resources and chemical inputs can be 
the cause of severe ecological and environmental issues (Zahoor et al., 2022), including the 
depletion of water resources, water pollution (Ouassanouan et al., 2022) and soil degradation 
(Seeger, 2023). To tackle these problems, we measured the efficiency of single input use, 
specifically in this paper land-use efficiency (LUE). The basic concept of LUE originated from 
the theory of environmental efficiency as a quantitative management tool for studying both 
economic and environmental aspects (Reinhard et al., 2002). LUE is a tool used to gauge the 
effectiveness of cropland use, which is measured by comparing the actual area of cropland to 
the optimal area needed for best-practice cultivation, with LUE usually defined as the ratio 
between the two. A higher LUE score implies that less land is required to yield a certain level 
of agricultural output, signifying better use of the land. Conversely, a lower LUE indicates that 
more land is needed for the same output, indicating a larger gap between the current and ideal 
use of the land. Thus, striving for a higher LUE can lead to better land management and sus-
tainable agricultural practices. Considering its importance in achieving food self-sufficiency and 
maintaining food security for China’s population of 1.4 billion, improvements in overall perfor-
mance (i.e. TE) and single input efficiency (i.e. LUE) are vital for efficient agricultural produc-
tion. 

Agricultural production activities vary due to heterogeneous biophysical conditions, such as 
soil type, topography, climate and hydrological setting (Grau et al., 2013). These non-uniform 
conditions result in spatial differences in agricultural production efficiency (Neumann et al., 
2010; Bharadwaj K, 1982). For example, Yang (1996) found a wide spatial variation in the 
factor productivities of maize production under natural conditions, while Chen et al. (2009) 
found that the frontier production functions of Chinese farms have a statistically different struc-
ture in different regions. Omitting this spatial heterogeneity can lead to biased and inaccurate 
TE estimates since the estimated values may capture not just the true inefficiency of the oper-
ations, but also intrinsic farm- or regional-specific heterogeneity (Greene 2005). Moreover, ag-
ricultural outputs and production factors often exhibit unique spatial clustering patterns owing 
to geographical spillover effects. Understanding these spatial clustering patterns and spatial 
autocorrelations offers a more nuanced insight into the dynamics of agricultural production and 
can improve the accuracy of TE estimates and agriculture-related analysis.  

Spatial stochastic frontier analysis (SFA) models account for such spatial autocorrelation ef-
fects by incorporating spatial dependence. These models can be divided into two types: one 
explaining efficiency in terms of exogenous determinants analysing heterogeneity and another 

2



Yin et al. | Ger J Agr Econ 73 (2024), No. 2 

 

that accounts for spatial dependence by incorporating a spatial autoregressive specification 
(LeSage and Pace, 2009). Druska and Horrace (2004) developed a spatial error model using 
SFA for rice farming, calculated the time-invariant technical inefficiency and concluded that 
spatial correlation can affect TE. Cho et al. (2010) analysed the TE of agricultural performance 
in China using spatial lag models with county-level cross-sectional datasets, while Jiang et al. 
(2017) introduced spatial dependency to the determinants of a single-factor efficiency model 
with provincial data for the period 2003-2011. Pede et al. (2018) investigated the role of the 
spatial dependency of the dependent variable in a TE estimation of rice farmers, using panel 
data for the Philippines, and concluded that a spatial autoregressive stochastic frontier analysis 
model (SAR-SFA) outperforms models that do not account for spatial spillover. Glass et al. 
(2016) proposed a SAR-SFA for panel data and introduced the concept of efficiency spillover 
where the technical inefficiency term is homoscedastic. Ramajo and Hewings (2018) devel-
oped a SAR-SFA model with a time-varying decay efficiency specification, and used it to esti-
mate regional development performance in western Europe. Skevas (2023) presents a novel 
modelling framework that allows the dependence of TFP growth and its components on certain 
factors to be built into the SFA framework. Tsukamoto (2018) examined the Japanese manu-
facturing industry using a SAR-SFA model and simultaneously estimated the determinants of 
technical inefficiency. Glass et al. (2016) extended the SAR-SFA model by including true fixed 
effects with balanced panel data, and concluded that an SFA model with a spatial lag structure 
combined with a model of technical inefficiency can estimate parameters correctly. Collec-
tively, these studies underline how neglecting spatial dependencies may lead to biased esti-
mates of agricultural efficiency. This recognition of spatial effects has not only improved model 
precision, but also broadened the understanding of the complex dynamics involved in agricul-
tural productivity. 

We extended the SAR-SFA model developed by Glass et al. (2016) by incorporating a spatially 
dependant component to measure the TE of crop production, the determinants of technical 
inefficiency and the LUE of crop production at county level in China for the period 1980-2011. 
To our knowledge, this is the first empirical study of changes in TE and land-use efficiency, 
and of the determinants of technical inefficiency for agricultural crop production in China using 
extensive, long-term county-level data and accounting for spatial spillover. Our aim was to 
identify efficiency pathways by analysing how TE and LUE varied spatially and temporally, with 
our findings helping inform agricultural policies and strategies at both local and national levels 
in China, and guiding targeted interventions tailored to the specific needs of different regions, 
potentially leading to improvements in agricultural efficiency and productivity. 

2 Methodology 

2.1 Technical Efficiency and Land-Use Efficiency 

TE is defined as the ratio of observed output to the optimal output, given current technology 
and observed inputs (Farrell, 1957), using the formula: 

TE𝑖𝑖𝑖𝑖 =
𝑦𝑦𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑖𝑖. (1) 

where yit is the observed output of unit i at time t, and yit
opt. is the optimal output. 

When referring to input efficiency, LUE is defined as the ratio of the optimal amount feasible 
to the observed use of an environmentally detrimental input, given existing technology and 
observed levels of output and inputs (Reinhard et al., 2002). When referring to agricultural 
efficiency, LUE can be interpreted as the partial efficiency of land use, defined as the ratio of 
optimal land area needed for the observed crop production to the observed land area in use 
(Reinhard et al., 2002): 

3



Yin et al. | Ger J Agr Econ 73 (2024), No. 2 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑙𝑙 𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑖𝑖𝑖𝑖

 (2) 

2.2 The Spatial Autoregressive Stochastic Frontier Model  

To estimate TE and LUE, we applied a SAR-SFA model, for which we developed a production 
function and nested test to find the most suitable logarithmic functional form. This is a more 
flexible approach and imposes fewer assumptions on the functional form and its elasticities 
than the Cobb-Douglas function (Christensen et al., 1973). The SAR-SFA model for panel data 
takes the form: 

𝐿𝐿𝑙𝑙𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝜂𝜂(𝑜𝑜)𝑖𝑖 + 𝑇𝑇𝐿𝐿(𝑥𝑥)𝑖𝑖𝑖𝑖 + 𝜌𝜌�𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿𝑙𝑙𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=1

+ 𝑜𝑜𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖;  𝑜𝑜, 𝑗𝑗 = 1, … ,𝑁𝑁; 𝑜𝑜 = 1, … ,𝑇𝑇 (3) 

where  Lnyit is log-normalised output of the 𝑜𝑜th unit; 𝛼𝛼𝑖𝑖 is a fixed effect;  η(t)t is a time period 
effect; 𝑇𝑇𝐿𝐿(𝑥𝑥)𝑖𝑖𝑖𝑖 represents the technology as the translog approximation of the log of the pro-
duction function where 𝑥𝑥 is a vector of log normalised inputs;  is the spatial autoregressive  
parameter; ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿𝑙𝑙𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁

𝑖𝑖=1  is the endogenous spatial lag of the dependent variable which shifts 
the frontier technology where 𝑤𝑤𝑖𝑖𝑖𝑖 is the non-negative element of the spatial weight matrix W;  
𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑜𝑜𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖 is an error term, independent and identically distributed (𝑜𝑜. 𝑜𝑜.𝑙𝑙.) for 𝑜𝑜 and t with 
zero mean and variance 𝜎𝜎2; and (vit-uit) is the composed error term, which has two compo-
nents (Aigner et al., 1977; Meeusen and van Den Broeck, 1977), where 𝑜𝑜𝑖𝑖𝑖𝑖 accounts for sto-
chastic effects, including statistical noise and measurement errors, and 𝑜𝑜~𝑜𝑜. 𝑜𝑜.𝑙𝑙.𝑁𝑁(0,𝜎𝜎𝑣𝑣2), and 
𝑢𝑢𝑖𝑖𝑖𝑖 is the technical inefficiency term, which is a non-negative random variable, and  
u~i. i. d. N+(μ,σu2). This equation could be estimated using maximum likelihood in a procedure 
following Lee and Yu (2010). 

A spatial weight matrix 𝑊𝑊 is a 𝑁𝑁 ×𝑁𝑁 matrix of pre-specified non-negative constants that de-
scribes the spatial arrangement of the cross-sectional units and the strength of the spatial 
interaction between n units. It represents the spatial structure of the data. All the results are 
conditional on the specification of 𝑊𝑊 (Dubin, 1998). The element of the matrix W = (wij, i, j =
1, … , N), wij, typically reflects the “spatial influence” of unit j on unit i. In the present study, all 
the elements on the main diagonal of 𝑊𝑊 were set to zero to exclude “self-influence”, by as-
summing wij = 0,∀i = j. The spatial weight matrix was used to capture the spatial arrangement 
and spatial interaction between the counties represented in the dataset. The commonly used 
spatial weight matrices are based on distance, contiguity or a combination of these. The weight 
is row-normalised so that each row in the weight matrix adds up to 1, and the endogenous 
spatial lag of the dependent variable is the weighted average of observation values for the 
dependent variable of neighbouring units.  

2.3 Technical Inefficiency and Determinants of Technical Inefficiency  

As the technical inefficiency component is heteroscedastic, it accounts for the determinants of 
efficiency in the estimation (Kumbhakar and Lovell, 2000). By allowing for heteroscedasticity 
in the inefficiency component, the model accounts for the possibility that different determinants, 
such as environmental factors or managerial skills, can affect the level of inefficiency differ-
ently. This can lead to a more comprehensive understanding of the factors affecting efficiency 
and allow for a more robust analysis. Once the variations in TE across production units were 
estimated, the determinants of technical inefficiencies were estimated simultaneously, i.e. the 
exogenous factors explaining the variation between production units. Assuming a linear rela-
tionship between technical inefficiency and its explanatory variables, the technical inefficiency 
term uit can be estimated as: 
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𝑢𝑢𝑖𝑖𝑖𝑖 = 𝜏𝜏0 + � 𝜏𝜏𝑚𝑚𝑧𝑧𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀

𝑚𝑚=1

,𝑜𝑜 = 1, … ,𝑀𝑀 (4) 

where zmitis an explanatory variable for county i at time t associated with technical inefficiency; 
M is the number of explanatory variables; and τm is the coefficient for the mth explanatory 
variable. As the dependent variable u is technical inefficiency, instead of TE a positive value 
of the coefficient, i.e. τm > 0, indicates a negative effect on TE and vice versa.  

3 Data and Empirical Model Specification 

Data for the analysis were taken from the China Statistics Yearbooks and Chinese Agricultural 
Statistic Yearbooks from 1980 to 2011. This period was significant in China due to economic 
and political transformations that brought about remarkable changes in the country following 
the introduction of the Reform and Opening-Up Policy in 1978. The household responsibility 
system (HRS) was a pivotal component in China’s Reform and Opening-Up Policy that pro-
foundly changed the rural economy. There were substantial transformations in agricultural land 
use, encompassing changes in cropland areas, shifts in the composition of various crops, al-
terations in their geographical distributions and enhancements in crop yields. Each of these 
shifts would have had an impact on both the technical efficiency (TE) and land-use efficiency 
(LUE) of agricultural production in China. An evaluation of these changes can provide valuable 
insights into China’s agricultural transformation, and offer lessons for future farming policies 
and practices. The balanced panel data contained 22,077 observations covering 2,007 coun-
ties in China for the period 1980-2011 at three-year intervals. To minimise the impact of non-
representative outliers, we removed counties in provinces with an average cropland area be-
low 10,000 ha between 1980 and 2011, and counties where cropland accounted for less than 
10 % of the total area. As a result, Inner Mongolia, Xinjiang, Qinghai, Tibet, Hainan, Beijing 
and Tianjin were excluded from the analysis. The area included in the final analysis is shown 
in Appendix Figure A1. We calculated three-year moving averages of all variables to smooth 
out short-term fluctuations and highlight longer-term trends, and then picked the data at three-
year intervals. Before estimation, we log-transformed and then normalised all the variables 
around the sample mean to reduce the influence of unit changes. To account for inflation and 
make monetary values comparable over time, we converted all the variables with monetary 
values to the constant price in 2010.  

3.1 Output and Input Variables 

The output variable used was the aggregated cropping output of a county, measured in Chi-
nese Yuan (y) in constant 2010 prices. It was calculated by multiplying the quantity of crops 
produced by the consumer prices in the respective year. The consumer prices index increased 
from around 19.3 to 105.4, a 4.5-fold increase, during the study period. This indicates a signif-
icant increase in overall price levels as it provides essential information about inflation. 

The input variables were the amounts of agricultural labour (x1), machinery power in agriculture 
(x2), land (sown area x3), fertiliser (x4) and pesticide (x5) (Coelli and Rao, 2005). Labour (x1) 
included the amount of labour for farming activities; machinery (x2) was estimated as the total 
horsepower of agricultural machinery to reduce the bias of different sizes of machine, including 
all farm machinery for harvesting, irrigation and transportation; and land (x3) was estimated as 
the total sown area for all annual crops, including grain, oil, cotton, sugar crops, vegetables, 
melons, fibre crops and medicine crops. Since double-cropped areas were counted twice, the 
sown area reflected the effective usage of cultivated land in agriculture. Multiple cropping was 
common in the Middle-Lower Yangtze River Valley in south and southwest China (Hou et al., 
2012). Use of fertiliser (x4) was measured as the annual quantity of chemical fertilisers (nitro-
gen, phosphorus, potassium and potash contained in combined fertilisers) used for crop pro-
duction, while the use of pesticides (x5) was estimated as the annual quantity of pesticides 
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used in crop production. Detailed descriptive statistics on all the variables used are presented 
in Table 1.  

Table 1. Selected variables and summary statistics 

Variable description Unit Notation Mean Std. Min. Max. 
Variables in the production function 
Output - farming output value 106 Yuan y 747 768 0 8,819 
Input - agricultural labour 103 Person x1 151 113 0 1,013 
Input - machinery power in agriculture 106 Watt x2 209 253 0 3,049 
Input - sown area 103 ha x3 69 51 0 405 
Input - fertilisers 103 tonne x4 17 19 0 250 
Input - pesticides 103 tonne x5 1 8 0 362 
Variables in the technical inefficiency model 
Population 103 z1 535 408 3 7,682 
Urbanisation rate % z2 18 17 0 97 
Elevation m z3 614 774 0 4,512 
Suitable soil for farming 103 ha z4 75 88 0 927 
Road length km z5 80 68 5 1,343 
Distance to nearest provincial  
capital 

km z6 143 93 0 759 

Livestock output value 106 Yuan z7 414 535 0 7,712 
Forestry output value 106 Yuan z8 55 81 0 1,976 
Temperature °C z9 14 5 -4 24 
Accumulated temperature over 10 de-
grees (growing degree days, GDD) 

°C z10 499 143 40 889 

Rainfall mm z11 1000 471 23 2,979 
Share of irrigated area % z12 33 20 0 100 
Share of machinery-farmed area % z13 32 22 0 100 

Source: authors' own calculation 

3.2 Determining Variables of Technical Inefficiency 

Technical inefficiency in the stochastic frontier approach was related to socio-economic varia-
bles, ecological considerations and climate factors. The socio-economic variables were popu-
lation (z1), urbanisation (z2), road length (z5), livestock outputs (z7) and forestry outputs (z8). 
The total population of a county (z1) is an important factor for demand, as well as a source of 
labour and non-agricultural uses for land, consequently influencing TE in agricultural produc-
tion. The urbanisation rate (z2) was calculated as the urban population divided by the total 
population to represent the changes driving the use of new agronomic techniques (Masters et 
al., 2013; Yang et al., 2022). Road length (z5) was taken as the length of all roads in the county, 
including national-level, provincial-level and county-level paved roads, to reflect changes in 
transportation and market access. Livestock output value (z7) and forestry output value (z8) 
can promote the use of agricultural practices for intensifying production sustainably, and thus 
have an influence on efficiency (Alves et al., 2017).  
To capture ecological and climate-related effects, we included elevation (z3), soil quality (z4), 
temperature (z9), growing degree days (GDD) (z10) and rainfall (z11). The elevation median (z3) 
was devised from the global digital elevation model (DEM), i.e. a digital representation of 
ground surface topography or terrain. DEM and county boundaries were overlaid to calculate 
the average elevation of each county. Land area with suitable soil for farming (z4) was taken 
from the Soil and Terrain Database (SOTER) for China, v1.0. The soil information was inter-
preted and divided into suitable areas (better soil quality for crops) and unsuitable areas. Cli-
mate variables influence the performance of agricultural production, e.g. rainfall has an impact 
on irrigation (Demir and Mahmud, 2002; Pilevneli et al., 2023). Data on mean annual temper-
ature (z9), GDD (accumulated temperature over ten degrees, z10) and rainfall (z11) were ob-
tained from China’s meteorological office. In addition, the irrigation rate (proportion of irrigated 
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land, z12) and machinery rate (proportion of machinery-farmed land, z13) represented water 
and machine accessibility. To represent physical accessibility, we calculated the straight-line 
distance from the geographic centroid of the county to the nearest provincial capital (z6) as the 
distance to that capital. 

3.3 Empirical Model Specification 

We assumed a Hicks-neutral technical change for the production function with a linear time 
trend variable t and its square t2, with the respective parameters η1 and η2 (Ramajo and Hew-
ings, 2018). Based on Equation 3, the production function was specified as follows: 

𝐿𝐿𝑙𝑙𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝜌𝜌 � 𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿𝑙𝑙𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

2007

𝑖𝑖=1

+ 𝜂𝜂1𝑜𝑜 + 𝜂𝜂2𝑜𝑜2 + �𝛽𝛽𝑙𝑙𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙𝑖𝑖𝑖𝑖

5

𝑙𝑙=1

+
1
2
��𝛽𝛽𝑙𝑙𝑙𝑙𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙𝑖𝑖𝑖𝑖𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙𝑖𝑖𝑖𝑖

5

𝑙𝑙=1

5

𝑙𝑙=1

+ 𝑜𝑜𝑖𝑖𝑖𝑖

− �𝜏𝜏0 + � 𝜏𝜏𝑚𝑚𝑧𝑧𝑚𝑚

13

𝑚𝑚=1

� ;  𝑜𝑜, 𝑗𝑗 = 1, … ,2007; 𝑜𝑜 = 1, … ,32; 𝑜𝑜,𝑘𝑘 = 1, … ,5;  𝑜𝑜

= 1, … ,13 

(5) 

where yit 𝐿𝐿𝑙𝑙𝑦𝑦𝑖𝑖𝑖𝑖 is the natural log of agricultural production output value and xlit is one input xl 
in county i at time t of five inputs (amount of agricultural labour (x1), machinery power in agri-
culture (x2), sown area (x3), fertiliser (x4) and pesticide (x5)); l is the index of the (1×5) vector 
of exogenous independent variables; t is time trend; βl is an unknown coefficient to be esti-
mated for input xl; and 𝛽𝛽𝑙𝑙𝑙𝑙 is the coefficient for the translog term of inputs xl and xk, assuming 
βlk = βkl. 

As the output and input variables were normalised by sample means, the estimated first-order 
parameters can be interpreted as production elasticities at the sample mean (Kumbhakar and 
Lovell, 2000). Based on the estimates of the production function, the term elasticity of output 
with respect to inputs can be calculated by the marginal effects (LeSage and Pace, 2009): 

ε𝑥𝑥𝑙𝑙 =
𝜕𝜕𝐿𝐿𝑙𝑙𝑦𝑦
𝜕𝜕𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙

= (𝐼𝐼 − 𝜌𝜌𝑊𝑊)−1 �𝛽𝛽𝑙𝑙 + �𝛽𝛽𝑙𝑙𝑙𝑙𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙

5

𝑙𝑙=1

� (6) 

where ε𝑥𝑥𝑙𝑙 is the elasticity of one input xl. Since the elasticity of each input factor depends on 
the other input factors if  l ≠ k

 
, elasticities are no longer fixed and identical for all counties and 

periods.  

This means that TE could be calculated as followed: 

TE𝑖𝑖𝑖𝑖 =
𝑦𝑦𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑖𝑖. = 𝑎𝑎−𝑢𝑢𝑖𝑖𝑖𝑖

𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑙𝑙
= 𝑎𝑎−(𝐼𝐼−𝜌𝜌𝜌𝜌)−1𝑢𝑢𝑖𝑖𝑖𝑖 = (𝐼𝐼 − 𝜌𝜌𝑊𝑊)−1𝑎𝑎−𝑢𝑢𝑖𝑖𝑖𝑖 (7) 

3.4 LUE 

For the study area, LUE was calculated as the difference between the natural log of input x3, 
i.e. the actual land area used, and the optimal land input x3'  for the observed level of production:  

𝐿𝐿𝑙𝑙 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝑙𝑙 �
𝑥𝑥3′

𝑥𝑥3
� = 𝐿𝐿𝑙𝑙𝑥𝑥3′ − 𝐿𝐿𝑙𝑙𝑥𝑥3 (8) 
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Setting u=0 and letting the output of the land use-efficient producer equal that in Equation (5) 
(Reinhard et al., 2002), then: 

𝐿𝐿𝑙𝑙𝑦𝑦𝑖𝑖𝑖𝑖 = (𝐼𝐼 − 𝜌𝜌𝑊𝑊)−1 �𝛼𝛼 + 𝜂𝜂1𝑜𝑜 + 𝜂𝜂2𝑜𝑜2 + ∑ 𝛽𝛽𝑙𝑙𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙𝑖𝑖𝑖𝑖5
𝑙𝑙=1 + 1

2
∑ ∑ 𝛽𝛽𝑙𝑙𝑙𝑙𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙𝑖𝑖𝑖𝑖𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙𝑖𝑖𝑖𝑖5

𝑙𝑙=1
5
𝑙𝑙=1 +

𝑜𝑜𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖� = (𝐼𝐼 − 𝜌𝜌𝑊𝑊)−1 �𝛽𝛽3𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖′ + 1
2
𝛽𝛽33𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖′ 𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖′ + 𝛽𝛽13𝐿𝐿𝑙𝑙𝑥𝑥1𝑖𝑖𝑖𝑖𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖′ +

𝛽𝛽23𝐿𝐿𝑙𝑙𝑥𝑥2𝑖𝑖𝑖𝑖𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖′ + 𝛽𝛽34𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖′ 𝐿𝐿𝑙𝑙𝑥𝑥4𝑖𝑖𝑖𝑖 + 𝛽𝛽35𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖′ 𝐿𝐿𝑙𝑙𝑥𝑥5𝑖𝑖𝑖𝑖 + ∑ 𝛽𝛽𝑙𝑙𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙𝑖𝑖𝑖𝑖5
𝑙𝑙≠3 +

1
2
∑ ∑ 𝛽𝛽𝑙𝑙𝑙𝑙𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙𝑖𝑖𝑖𝑖𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙𝑖𝑖𝑖𝑖5

𝑙𝑙≠3
5
𝑙𝑙≠3 + 𝑜𝑜𝑖𝑖𝑖𝑖� 

(9) 

The logarithm of the stochastic land input efficiency measure (𝐿𝐿𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖′ − 𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖) can 
be isolated. Setting Equation 5 and Equation 9 as equal yielded: 

(𝐼𝐼 − 𝜌𝜌𝑊𝑊)−1 �
1
2
𝛽𝛽33(𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖′ 𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖′ − 𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖)

+ (𝛽𝛽3 + 𝛽𝛽13𝐿𝐿𝑙𝑙𝑥𝑥1𝑖𝑖𝑖𝑖 + 𝛽𝛽23𝐿𝐿𝑙𝑙𝑥𝑥2𝑖𝑖𝑖𝑖 + 𝛽𝛽34𝐿𝐿𝑙𝑙𝑥𝑥4𝑖𝑖𝑖𝑖 + 𝛽𝛽35𝐿𝐿𝑙𝑙𝑥𝑥5𝑖𝑖𝑖𝑖)(𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖′

− 𝐿𝐿𝑙𝑙𝑥𝑥3𝑖𝑖𝑖𝑖) + 𝑢𝑢𝑖𝑖𝑖𝑖� = 0 

(10) 

which can be solved for LnLUE to obtain: 

𝐿𝐿𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = (𝐼𝐼 − 𝜌𝜌𝑊𝑊)−1

⎩
⎨

⎧−(𝛽𝛽3 + ∑ 𝛽𝛽3𝑙𝑙𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙𝑖𝑖𝑖𝑖5
𝑙𝑙 ) ± �(𝛽𝛽3 + ∑ 𝛽𝛽3𝑙𝑙𝐿𝐿𝑙𝑙𝑥𝑥𝑙𝑙𝑖𝑖𝑖𝑖5

𝑙𝑙 )2 − 2𝛽𝛽33𝑢𝑢𝑖𝑖𝑖𝑖

𝛽𝛽33
⎭
⎬

⎫
 (11) 

LUE was calculated using the positive root in Equation 11 (Reinhard et al., 2002). 

4 Results 

4.1 Empirical Model Selection and Testing 

The development of the SAR-SFA model comprised two steps: 1) the estimation of the pro-
duction function and technical inefficiency simultaneous model to obtain coefficients of inputs 
and determinants of technical inefficiency, and 2) the calculation of spatial TE and land-use 
efficiency scores. Prior to the final model selection, we compared different settings of spatial 
weights and conducted three tests – Hausman test, LR test and Variance Inflation Factor (VIF) 
Test – for endogeneity for the non-spatial stochastic frontier model to determine the specifica-
tion of a suitable econometric model (Kutlu et. al., 2020). In terms of spatial weight selection, 
we conducted 15 kinds of spatial weights and calculated Moran’s I for output y (see details in 
Appendix Table 1). Four types were contiguity weights and the others were inverse distance 
weights. We found contiguity weights had a better autocorrelation for the explained variable. 
Finally, we conducted rook contiguity and found that there was one county isolated, so selected 
the first order of the queen contiguity weight for the following regression. The queen weights 
consider as neighbours all observations that share a common boundary or vertex point. The 
ijth component in the matrix W equals 1 if units i and j are neighbours and 𝑜𝑜 ≠ 𝑗𝑗, otherwise the 
elements are set to 0. We then normalised the values so that each row in the weight matrix 
added up to 1 and all neighbours had the same weight, so that the endogenous spatial lag of 
the dependent variable was a simple average of observation values for the dependent variable 
of neighbouring counties, which preserved the scaling of the data. 

In terms of production function model selection, we used a truncated inefficiency term for esti-
mation. First, we used the Hausman test to assess whether a fixed-effects model or random-
effects model was more appropriate. Second, we applied the likelihood ratio test to assess 
whether the Cobb-Douglas production function or translog production function was the better 
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choice. We also used the likelihood ratio test to select the technical inefficiency model specifi-
cation and spatial dependence. The test results showed that the empirical model matched the 
data very well (Appendix Table 2). We used the Akaike information criterion (AIC) to choose 
between the fitted SFA and SAR-SFA models. To check the robustness of model selection, 
we used the Schwarz/Bayesian information criterion (BIC). Both criteria are based on the con-
cept of minimising information loss and properly separating noise from structural information, 
where the smaller the AIC or BIC value, the less information loss. Based on the Hausman test, 
we rejected the hypothesis of no difference in coefficients, resulting in the fixed-effects model 
being preferred for the analysis. Based on the likelihood ratio test results, three null hypotheses 
(referring to translog terms, technical inefficient items and spatial dependency items) were re-
jected, and consequently the SAR-SFA translog function was selected. The AIC/BIC results 
gave a strong preference (low values) for an SAR-SFA model with a technical inefficiency 
determinant model, compared with a normal SFA model and an SAR-SFA model without tech-
nical inefficiency determinant models (higher AIC and BIC values). The local spatial parameter 
ρ was significant at the 1 % level, indicating that the spatial dependence of dependent variable 
y was affected by the model specification. The results presented below were obtained using 
the fitted SAR-SFA model. 

4.2 Estimates for the SAR-SFA and Technical Inefficiency Model 

The estimates obtained using SAR-SFA with fixed effects are presented in Table 2. The esti-
mated first-order coefficients for the inputs labour (x1), machinery (x2), land (x3), fertiliser (x4) 
and pesticide (x5) had the expected positive signs, with values of 0.06, 0.05, 0.25, 0.10 and 
0.01 respectively. The estimated coefficient of spatial lag 𝜌𝜌 for the dependent variable was 
positive and had a value of 0.52, showing that agricultural production had substantial spillover 
effects. The patterns of the production elasticities of inputs were spatially heterogeneous with 
respect to the output. The average elasticity of inputs x1, x2, x3, x4 and x5 was 0.10, 0.06, 0.56, 
0.19 and 0.01 respectively. Based on the magnitude of these coefficients, the most important 
input for production was land (x3), followed by fertiliser (x4), machinery (x2), labour (x1) and 
pesticides (x5) in that order. This shows the essential role of land in crop production, which is 
consistent with the situation of arable land being comparatively scarce in China (Chen et al., 
2009). Increases in land input over time were due to the expansion and intensification (multiple 
cropping) of cultivated land, but some regions in which production inputs were limited showed 
a decrease in the extent of multi-cropping (Yan et al., 2009). Fertiliser, at the second highest 
magnitude, was particularly important in regions with scarce land resources in crop production. 
The estimates of elasticities confirmed that the most important input was land, followed by 
fertiliser, machinery, labour and pesticides (Figure 1). Similarly to the results reported by Fan 
(1997) and Gong (2018), we found that input elasticities of land and labour decreased by 0.4 
% and 5.9 % respectively from 1981 to 2011, while input elasticities of fertiliser, machinery and 
pesticides increased by 0.2 %, 2.1 % and 1 %, respectively. The decline in the elasticity of 
labour inputs was particularly apparent in the model for the whole of China, but was also evi-
dent in all regions except for northeast China. In the south and southwest, where the terrain is 
dominated by hilly landscapes that require higher labour input per area, labour still played a 
larger role than machinery.  

Population (z1), urbanisation (z2) and road length (z5) were found to be negatively associated 
with technical inefficiency, i.e. they had a negative association with TE. A 1 % increase in 
population was associated with a 0.6 % decrease in TE of crop production, while a 1 % in-
crease in urbanisation could be associated with a 0.14 % decrease in TE. Population increase 
and urbanisation were correlated with a decrease in cropland area and occupation of high-
quality cropland, although the total decrease was small. The coefficient for rainfall (z11) sug-
gested that 1 % more rainfall would be negatively correlated with agricultural TE by 0.76 %.  
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The climate factors temperature (z9) and growing degree days (z10) had positive influences on 
the TE score, with a 1 % increase in these increasing TE by 0.25 % and 1.1 % respectively. 
Compared with rainfall, a temperature increase during the growing season had a positive im-
pact on agricultural production. The association relationship of geographical factors on tech-
nical inefficiency was negative, but relatively small, for elevation (z3; -0.15), suitable soil for 
farming (z4; -0.01) and distance to the nearest provincial capital (z6; -0.14). Meanwhile, the 
development of other parts of the primary economy besides crop farming, such as a 1 % in-
crease in forestry (z7) and livestock (z8) outputs, was positively correlated with TE of crop pro-
duction by 0.95 % and 0.28 %, respectively.  

Table 2. Parameter estimates for the spatial autoregressive production function and technical 
inefficiency model 

Spatial autoregressive production function Technical inefficiency model 
Dependent variable: ln(y) Dependent variable: inefficiency relevant variable 
Parameters Coeff. Confidence intervals Parameters Coeff. Confidence intervals 
t 𝜂𝜂1 -0.04  [-0.041,-0.037] lnz1 𝜏𝜏1 0.60  [0.52,0.67] 
t2 𝜂𝜂2 0.00  [0.0012,0.0013] lnz2 𝜏𝜏2 0.14  [0.093,0.18] 
lnx1 𝛽𝛽1 0.06  [0.038,0.081] lnz3 𝜏𝜏3 -0.15  [-0.18,-0.13] 
lnx2 𝛽𝛽2 0.04  [0.028,0.055] lnz4 𝜏𝜏4 -0.01  [-0.043,0.022] 
lnx3 𝛽𝛽3 0.25  [0.22,0.28] lnz5 𝜏𝜏5 0.02  [-0.068,0.10] 
lnx4 𝛽𝛽4 0.10  [0.084,0.12] lnz6 𝜏𝜏6 -0.14  [-0.19,-0.091] 
lnx5 𝛽𝛽5 0.01  [0.0022,0.017] lnz7 𝜏𝜏7 -0.91  [-0.96,-0.86] 
lnx1lnx1 𝛽𝛽11 0.03  [0.011,0.046] lnz8 𝜏𝜏8 -0.28  [-0.32,-0.25] 
lnx2lnx2 𝛽𝛽22 0.01  [0.0041,0.016] lnz9 𝜏𝜏9 -0.25  [-0.41,-0.081] 
lnx3lnx3 𝛽𝛽33 0.07  [0.054,0.078] lnz10 𝜏𝜏10 -1.10  [-1.35,-0.84] 
lnx4lnx4 𝛽𝛽44 0.01  [-0.0034,0.019] lnz11 𝜏𝜏11 0.76  [0.64,0.88] 
lnx5lnx5 𝛽𝛽55 0.00  [-0.0044,0.0031] lnz12 𝜏𝜏12  -0.03  [-0.086,0.019] 
lnx1lnx2 𝛽𝛽12 -0.05  [-0.061,-0.033] lnz13 𝜏𝜏13 -0.09  [-0.12,-0.065] 
lnx1lnx3 𝛽𝛽13 0.01  [-0.0071,0.030] _cons 𝜏𝜏0 -3.60  [-3.69,-3.51] 
lnx1lnx4 𝛽𝛽14 0.01  [-0.0029,0.029] Vsigma    
lnx1lnx5 𝛽𝛽15 0.01  [0.0016,0.019] _cons 𝑜𝑜 -3.89  [-3.95,-3.84] 
lnx2lnx3 𝛽𝛽23 0.03  [0.017,0.049]  
lnx2lnx4 𝛽𝛽24 -0.01  [-0.018,0.00025] Model performance   
lnx2lnx5 𝛽𝛽25 0.01  [0.0067,0.019] AIC 7534 
lnx3lnx4 𝛽𝛽34 -0.02  [-0.041,-0.0058] BIC 23898 
lnx3lnx5 𝛽𝛽35 -0.03  [-0.041,-0.020] Likelihood value -1722 
lnx4lnx5 𝛽𝛽45 0.01 [0.0026,0.015] No. of observations  22,077 
Spatial lag 𝜌𝜌 0.52  [0.51,0.53]         

Note: 95 % confidence intervals in brackets  
Source: authors' own calculation 
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Figure 1. Annual elasticities in the period 1981-2011 in crop production inputs for the whole of 

China and for its main regions (see Appendix Figure A1 in Supplementary Material) 

Source: authors' own calculation  

4.3 Spatio-Temporal Patterns of TE 

Based on the estimated parameters and production function, TE was estimated for each county 
in each year. The average TE was 0.8 for the whole study region and period, but the TE dis-
tribution was negatively skewed. During the period, TE increased from 0.68 to 0.84, i.e. by 
20 %, and the standard deviation in TE decreased from 0.27 to 0.12, which could be interpreted 
as indicating a decreasing regional gap. 

Spatial and temporal changes in TE of crop production from 1981 to 2011 are shown in Figure 
2. TE for the regions varied from 0 to 0.99, with values above 0.8 for the provinces of Shan-
dong, Sichuan, Chongqing, Fujian and Guangxi, while for Heilongjiang, Jilin, Shanxi and 
Shaanxi the TE values were below 0.8. One reason for the lower TE in northeast China (the 
provinces of Heilongjiang and Jilin) is that large tracts of unused wetland and unused barren 
land were converted to cultivated land during the period (Hou et al., 2012, Yao et al., 2008). In 
the north (Shanxi and Shaanxi provinces), an ecologically fragile area, cropland was converted 
to grassland and forest as part of environmental programmes. Since a lower TE value indicates 
greater potential for increasing production performance through improved TE, TE was more 
likely to increase in regions such as the northeast when crop productivity was improved. 
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Figure 2. Spatial distribution of technical efficiency (TE) at six-year intervals from 1981 to 2011 

Source: authors' own graph based on calculated technical efficiency 

4.4 Spatio-Temporal Patterns of LUE 

The results showed that the national average LUE was 0.54, i.e. substantially lower than 1, 
indicating ample scope to improve LUE (Liu et. al. 2019). LUE also varied over time, ranging 
from 0.52 in 1980 to 0.59 in 2011. During this period, LUE reached its highest level (0.65) in 
2005, while in 1999 it was only 0.44, the lowest level observed in the study period. After 2008, 
there was an apparent downward trend in LUE. Overall, LUE increased slightly over time by 
18 %, but there was no clear overall trend and a series of upwards and downward turns. LUE 
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fluctuated and remained well below 1 during the study period, which implies untapped poten-
tial, but also difficulties in improving LUE. LUE is one of the efficiency components in overall 
TE. As expected, LUE and TE were positively correlated. Thus, the increase in LUE probably 
resulted in the increase of TE. At the same time, LUE also correlated highly with crop yields. 
The increase in LUE through improvements in agricultural practices and technologies also al-
lows for a reduction in cultivated land area in those marginal regions, which brings about pos-
itive environmental externalities.  

  

  

  

Figure 3. Distribution of changes in land-use efficiency (LUE) at six-year intervals  
from 1981 to 2011 

Source: author's own graph based on calculated land-use efficiency 
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The spatial pattern of LUE in 2011 revealed heterogeneity between regions (Figure 3), e.g. a 
low LUE in Gansu, Heilongjiang, Jiangxi and Shanxi provinces (below 0.5). The provinces of 
Shandong and Chongqing had the highest LUE (0.61 on average for 1980-2011), while Gansu 
had the lowest (0.41). Jiangsu, Anhui, Henan and Shandong provinces are China’s main 
breadbaskets, and their LUE was relatively high at above 0.55 in all cases. However, the LUE 
of Heilongjiang, also an important breadbasket, was only 0.51. A low LUE may be due to the 
conversion of land within a region (Hou et al., 2012). For example, Deng et al. (2006) found 
that large tracts of unused wetland and unused barren land in northeast China were converted 
to cultivated land between 1986 and 2000. As previously mentioned, the breadbasket regions 
showed a high LUE (0.65-0.7), including the provinces of Hebei, Shandong and Henan. These 
major food production areas have been prioritised in government policy on cropland conser-
vation.  

4.5 Discussion 

Using an SAR-SFA approach, we estimated changes in LUE and TE and in the determinants 
of technical inefficiency for crop production in China based on county-level data for the period 
from 1980 to 2011. We found that the average TE increased by 20 % over the study period, 
indicating improvements in the ability of the agriculture to use inputs effectively to produce 
output. However, this gain was not uniform across the country, with substantial regional varia-
tions characterised by a lower TE gain in northeast and northwest China and a higher TE gain 
in the north and south. In the study period, LUE increased overall by 18 %, but again with 
substantial regional variations. There is a positive correlation with TE. Since the spatial heter-
ogeneity of land-use efficiency is well observed for counties, policies could promote the devel-
opment of customised support and incentives for counties with a lower land-use efficiency. In 
northeast China, for large-scale farms, the development of advanced machines and technolo-
gies for land management would enhance efficiency. In the southwest of the country, where 
small farms and hilly fragments are ubiquitous, the planting of specific crops could increase 
the output value. With spatial spillover, greater collaboration and cooperation between counties 
to leverage their advantages and shortcomings could be encouraged. This could involve es-
tablishing inter-county partnerships, knowledge-sharing networks and joint initiatives to pro-
mote sustainable land-use practices and agricultural development. 

Urbanisation resulted in a lower TE, which could be due to the loss of arable land and a pos-
sible reallocation of resources away from cropping. A greater distance from provincial capitals 
was associated with a higher TE, which might be due to factors such as lower land costs, less 
competition for alternative land uses, or farm-scale fitting for different agricultural practices. 
We also found an association between TE and geographical and economic factors, underscor-
ing the complexity of agricultural efficiency and the need for region-specific approaches. One 
way to increase production performance could be better networking or integration between 
regions, from farm level to province level. Moreover, developing other components of the pri-
mary sectors, including forestry and livestock, could bolster efficiency in crop production, ad-
vocating a more holistic approach to agriculture. 

The elasticities of key production inputs varied between regions. There was an overall decline 
in the elasticity of labour, which was good from another perspective since declining labour 
availability, or a fall in the demographic dividend, represents a major challenge for farming in 
China. China has the highest fertiliser use per hectare globally, but productivity remains mod-
erate by global standards. Consequently, fertiliser-use efficiency is lower than the global aver-
age (Wu et al., 2018; Huang and Jiang, 2019). In addition, excessive use of synthetic fertilisers 
is causing increasing and widespread water pollution (Yu et al., 2019). To achieve sustainabil-
ity in crop production, the use of fertiliser needs to be reduced by adopting better management 
practices in fields (Cui et al., 2018). Pesticides are other critical chemicals in agriculture, with 
average pesticide use per hectare of cropland in China 1.3 times the global average in 2011 
(FAO, 2019). Decreasing pesticide use would not only increase efficiency, as our results 
demonstrated, but also reduce the environmental impact of crop production. To address the 
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overuse of inputs such as fertilisers and pesticides, integrated pest management, organic farm-
ing and the use of bio-fertilisers have been promoted as part of the government’s agricultural 
green development. These findings suggest that there are opportunities to improve the sus-
tainability and efficiency of China’s agricultural sector through careful management and policy 
interventions that are tailored to the specific needs and conditions of different regions. 

5 Conclusions 

This is the first empirical analysis to apply a SAR-SFA model to estimate spatio-temporal 
changes in TE and LUE of crop production in China using county-level data over a long period 
(30 years). We examined spatial dependency in crop production by introducing a spatial lag in 
the model, which substantially improved the estimates obtained by accounting for the strong 
positive influence of spatial spillover effects. Identifying and quantifying the effects of the de-
terminants on production performance can help design effective policies for improving the TE 
and LUE of crop production. Improving TE and LUE in agricultural production is crucial if China 
is to feed its vast population with the limited area of arable land available and achieve the 
government goal of domestic self-sufficiency. More detailed analyses at a finer resolution, pos-
sibly using primary farm-level data, would provide deeper insights into TE and LUE efficiency 
in crop farming in China.  

This study has some limitations. We measured crop output in monetary terms, which made the 
outputs for different crops comparable. However, most of the rural labour force also perform 
off-farm work, and a major limitation of this study was that we could not determine how much 
of their time was devoted to working in agriculture. Another limitation was that the spatial weight 
matrix used in this study was based on geographical contiguity, without consideration being 
given to the economic interaction between counties. This would be an interesting area for fur-
ther study, but we lacked data and information about the nature of these interactions. We are 
also aware that the use of county-level data for crop production has drawbacks in terms of 
depth and data quality, which we could not address, but county-level and long-term statistical 
data were the only available data for the type of analysis presented here. More detailed, fine-
scale analyses, possibly using primary farm-level data, would deepen the insights gained here 
by providing additional knowledge on efficiency in crop farming in China.  
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Appendix 

Table A1. Spatial weights selection and related Moran’s I value 

No. Spatial weight Moran’s I of y 
1 One order of queen contiguity 0.383 
2 Two orders of queen contiguity 0.309 
3 One order of rook contiguity 0.384 
4 Two orders of rook contiguity 0.311 
5 Neighbour within 150 km 0.29 
6 Neighbour within 200 km 0.259 
7 Neighbour within 250 km 0.233 
8 One neighbour for each county 0.310 
9 Two neighbours for each county 0.327 
10 Three neighbours for each county 0.336 
11 Four neighbours for each county 0.346 
12 Five neighbours for each county 0.356 
13 Six neighbours for each county 0.361 
14 Seven neighbours for each county 0.352 
15 Eight neighbours for each county 0.347 

Source: authors' own calculation 

 

Table A2. Results of model specification tests 

Test Hypothesis LL AIC BIC 
1. Specification of effects: chi2(7)  = 1040.43 /  Prob>chi2 = 0.00 
 H0: Difference in coefficients not systematic (RE) -10372.11 20766.21 20854.24 
 H1: Difference in coefficients systematic (FE) -5654.381 15340.76 31473.38 
2. Selection of production function LR chi2(15) = 450.68 / Prob > chi2 =    0.00 
 H0: Cobb-Douglas production function -5654.381 15340.76 31473.38 
 H1: Translog production function -5429.039 14920.08 31172.73 
3. Specification of technical inefficiency model LR chi2(11) =2840.27 / Prob > chi2 =0.00 
 H0: No technical inefficiency effect -5429.039 14920.08 31172.73 
 H1: Final specification as Model 1 -4008.902 12101.8 28442.48 
4. Specification of SAR LR chi2(1)  =4533.84 / Prob > chi2 =0.00 
 H0: ρ=0 no spatial dependency -4008.902 12101.8 28442.48 
 H1: Final specification as Model 2 -1741.983 7569.966 23918.65 

Note: AIC Akaike information criterion, BIC Bayesian information criterion, LL log likelihood value 
Source: authors' own calculation 
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Figure A1. Agricultural regions of China and the provinces included in this study 

Source: author`s own graph 
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