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Abstract
1. Pesticide use in agricultural landscapes creates environmental contamination that 

is heterogenous in space and time. Mobile organisms, such as bees, are exposed 
to multiple contamination sources when visiting patches that vary in the amount, 
timing and toxicity of pesticides used. Yet, environmental risk assessments (ERA) 
typically fail to consider this heterogeneity, in part because of the complexities 
of estimating exposure to different pesticides, and subsequent risk at organism- 
relevant scales.

2. We use pesticide assays of 269 bee- collected pollen samples to understand the 
spatiotemporal variability of risk across a network of 41 field sites in southern 
Sweden. Observed bee pesticide risk is calculated based on compound- specific 
residue quantifications in pollen and standardized toxicity data. We then compare 
the ability of three classes of landscape- scale variables to predict this risk: (1) 
landscape composition and configuration metrics, (2) landscape load based on na-
tional pesticide use data and (3) predictions from a newly developed bee pesticide 
exposure model.

3. Based on use data, 10 crops account for 81% of the total risk. We detected 49 
pesticide compounds in bee- collected pollen. Although herbicides and fungicides 
constitute the bulk of detected pesticides, both in frequency and amount quanti-
fied, unsurprisingly, insecticides contribute the most to risk.

4. Landscape composition and configuration metrics did not predict observed pes-
ticide risk, and interactions with bee species indicate taxa- dependency in pre-
dictions. Landscape load predicted observed risk consistently between taxa. 
Risk estimates from our exposure model were strongly predictive but only 
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1  |  INTRODUC TION

Exposure to agricultural pesticides threatens human health (Larsen 
et al., 2017) and biodiversity (Beketov et al., 2013; Rigal et al., 2023). 
Preventing the social, ecological, and economic consequences of 
these non- target effects are goals of environmental risk assessment 
(ERA), pesticide reduction strategies (e.g., integrated pest manage-
ment) and associated policies (e.g., EU 50% reduction in use and risk 
by 2030). Spatiotemporal patterns of pesticide exposure can crit-
ically inform these efforts by identifying where greatest potential 
impact occurs and therefore opportunities for risk mitigation. This 
exposure is influenced by ecotoxicity, life history and the spatiotem-
poral distribution of both pesticide uses and non- target organisms 
(Cairns & Niederlehner, 1996). However, most ERAs are based on 
often poorly validated exposure assumptions or models that do not 
account for chemical and organismal traits and largely ignore spatial 
and temporal variability (Price & Thorbek, 2014).

Landscape ecology has long provided a theoretical framework 
for analysing the responses to and effects of spatial pattern and 
scale, yet ecotoxicology is only recently incorporating landscape 
structure, function and change into replicated assessments of pol-
lutants in the environment (Beketov & Liess, 2012; Schäfer, 2014). 
Studies have shown that landscape composition and configura-
tion can affect pollutant transfer in food webs (Fritsch et al., 2011; 
Vermeulen et al., 2009), pollutant impacts on stream macroinver-
tebrate abundance (Schriever et al., 2007), water quality (Collins 
et al., 2019; Liess & Von Der Ohe, 2005) and pesticide use at large 
scales (Meehan et al., 2011; Nicholson & Williams, 2021; Paredes 
et al., 2021). Pesticide application rates result in landscape patches 
that vary in the amount of compounds applied, hereafter pesticide 
load (Box 1). The underlying processes that create heterogenous 
exposure are that exposure frequency, duration and intensity var-
ies according to landscape pattern because habitat size, suitability 
and spatial arrangement affect the way organisms exploit, and are 
exposed to their environment (Fahrig & Freemark, 1994; Fritsch 

et al., 2012). These processes result in landscape conditioned expo-
sure to organisms, hereafter landscape exposure (Box 1).

Landscape exposure to pesticides is of high relevance for bees 
because they forage on crop and non- crop resources over large 
areas that are directly treated or unintentionally contaminated 
with pesticides (Knapp et al., 2023; Nicholson et al., 2023; Végh 
et al., 2022). Bees, and other mobile organisms with large forag-
ing ranges, can integrate multiple sources of exposure by visiting 
spatially separated patches that vary in the amount, timing and 
toxicity of contamination. In agricultural landscapes, this results 
in two key patterns: (1) spatiotemporal heterogeneity of exposure 
(Sponsler et al., 2019) and (2) exposure to multiple toxic compounds 
(Lonsdorf et al., 2024; Rundlöf et al., 2022). Indeed, recent biomon-
itoring of bee pesticide exposure demonstrates the presence of 
multiple compounds in bee food and nesting material (e.g., flowers—
Bloom et al., 2021; Graham et al., 2022, pollen—Calatayud- Vernich 
et al., 2018; Knapp et al., 2023; McArt et al., 2017; Tosi et al., 2018, 
nectar—Knapp et al., 2023, colony structures—Mullin et al., 2010; 
Ravoet et al., 2015), and with both crop (Favaro et al., 2019; McArt 
et al., 2017; Végh et al., 2022) and non- crop (Graham et al., 2022; 
Wood et al., 2019) sources of contamination. Recently, we found 
that bees' exposure, and subsequent risk, was influenced by the 
proportion of agricultural land, and that this landscape effect var-
ied in strength with the foraging traits of different bee species 
(Knapp et al., 2023). Yet, exploring landscape exposure across many 
exposed species and landscape contexts through field- based bio-
monitoring is a major challenge given costs, potential for interactive 
effects, and number of combinations between pesticides and non- 
target organisms.

Alongside field- based biomonitoring of pesticides, progress 
has been made simultaneously in the development of spatially ex-
plicit ecotoxicological models (Wickwire et al., 2011)—partly out of 
necessity, given complexities of landscape exposure assessments 
(Morrissey et al., 2023). Model scenarios and predictions that help 
characterize landscape variables that influence exposure, coupled 

when considering realized risk (i.e., risk estimates based on prior pesticide use 
information).

5. Synthesis and applications. Predicting pesticide risk based on landscape patterns 
could enable landscape- scale ERA. However, simple metrics of landscape pat-
tern, such as proportion of agricultural land, are not sufficient. We found that risk 
observed in bee- collected pollen was best predicted when integrating spatialized 
pesticide use in the pesticide exposure model, underscoring the importance of 
such data for research, monitoring and mitigation. Further, we propose a guid-
ance framework for future landscape ecotoxicological risk analyses that clarifies 
data needs relative to risk prediction goals.

K E Y W O R D S
Apis, bee, biomonitoring, Bombus, environmental risk assessment, landscape ecotoxicology, 
Osmia, pesticide
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    |  3NICHOLSON et al.

with strategically planned biomonitoring of pesticides, would aid 
higher tier ERA goals of evaluating spatially explicit exposure pat-
terns over time (Simon- Delso et al., 2017; Sponsler et al., 2019; 

Topping et al., 2020). To this end, we have developed a detailed 
predictive framework (Lonsdorf et al., 2024) that links the spa-
tial and temporal mosaic of bee habitat, bee foraging movement 
and pesticide use to generate spatially explicit patterns of pes-
ticide exposure to bees. Apart from complementing biomonitor-
ing, such predictive models can help identify when and where to 
implement mitigation strategies to prevent pesticide impacts on 
non- target bees and other pollinators (Baveco et al., 2016). This 
spatial planning is a critical component of IPM strategies that aim 
to integrate pollinator health (i.e., IPPM) through efficient land-
scape management (Lundin et al., 2021). However, understanding 
the spatiotemporal heterogeneity of pesticide use, let alone pre-
dicting exposure, is often challenging due to a lack of data on pes-
ticide use. Although some places contain rich information on the 
use of pesticides (e.g., California's Pesticide Use Reports), typically 
this information is unavailable or at coarse levels of aggregation 
(e.g., Douglas et al., 2022). Thus, a point of practical importance is 
whether more readily available measures of land use can be used 
to predict pesticide risk.

We address this question through comparative analysis of three 
classes of landscape variables on observed pesticide risk based 
on pesticide residue quantification in pollen samples (N = 269) 
from a network of 41 sites distributed across southern Sweden 
(Figure 1a). Our first class of variables are metrics of landscape 
composition and configuration typical to landscape ecology stud-
ies. Our second class are metrics of landscape- level pesticide use. 
Our third class are predictions from a bee exposure model that 
integrates landscape- level pesticide use with the foraging ecology 
of bees. Using compound- specific toxicity values, we calculate 
pesticide risk to bees for these last two classes (Box 1). We ex-
pected that (1) observed pesticide risk would increase with greater 
dominance of agricultural land (Knapp et al., 2023), (2) incorpo-
rating information on the spatiotemporal pattern of pesticide use 
would improve predictions (Nicholson & Williams, 2021) and (3) 
the fit between observed and predicted pesticide risk would be 
improved when accounting for bee foraging ecology (Lonsdorf 
et al., 2024).

2  |  MATERIAL S AND METHODS

2.1  |  Field biomonitoring network, sentinel bees 
and pollen pesticide residues

Our biomonitoring network (N = 57 site- years) consists of three spe-
cies (Apis mellifera L., Bombus terrestris L. and Osmia bicornis L.) of 
sentinel bee colonies and nests distributed across 41 sites in south-
ern Sweden from 2019 through 2021 (Figure 1a; site network cen-
troid: 55°43′09.2″ N, 13°47′12.2″ E; site network extent: 7768 km2). 
These sites form the basis for completed (Jonsson et al., 2022; Knapp 
et al., 2022, 2023) and ongoing projects (Rundlöf & Andersson 
unpublished data; see Supporting Information, Methods). From 
each site's set- up, we collected pollen, froze samples (−20°C) and 

BOX 1 A landscape ecotoxicology glossary for 
bees and pesticides

Active ingredient: A compound in a pesticide product that is 
intended to control pests.

Application rate: The amount of an active ingredient or pes-
ticide product over a given unit, usually area (e.g., g/ha).

Exposure: The level (e.g., concentration, amount and inten-
sity) of a compound that reaches organisms through one 
or several sources (e.g., soil, air and food) and routes (e.g., 
contact, ingestion and dietary).

Toxicity: The capacity of a compound to cause adverse ef-
fects on organisms at a given exposure level.

Risk: The potential for adverse effects to organisms given 
exposure and toxicity.

Landscape load: The amount of a compound applied in the 
patches of a landscape, standardized by total landscape 
area. Total landscape load summarizes landscape load across 
all compounds.

Landscape toxic load: The toxicity- weighted amount of 
a compound in a landscape. Calculated as the ratio of 
landscape load to compound- specific toxicity. Total land-
scape toxic load summarizes landscape toxic load across all 
compounds.

Landscape exposure: The level (e.g., concentration, amount 
and intensity) of a compound that reaches organisms in the 
landscape as a result of the way organisms interact with 
landscape patterns.

Landscape risk: The toxicity- weighted landscape expo-
sure. Calculated as the ratio of landscape exposure to 
compound- specific toxicity. Total landscape risk summa-
rizes landscape risk across all compounds.

Potential versus realized load, exposure and risk: The detec-
tion, or not, of compounds depends on different and com-
pounding factors among load, exposure and risk. Potential 
landscape load are compounds applied in a landscape, while 
realized landscape load is what is measurable given analyti-
cal methods (e.g., detection limits) and compound environ-
mental fate. Potential landscape exposure is potential load but 
considering organisms' interaction with landscape patterns, 
while realized landscape exposure considers that organisms 
may be differently active in patches of a landscape. Potential 
landscape risk is potential exposure considering toxicity, 
while realized landscape risk considers that toxic compounds 
may kill organisms before they can be monitored.
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4  |    NICHOLSON et al.

screened each for pesticides (see Supporting Information, Methods). 
Fieldwork was done with the approval of landowners and managers, 
and no permits or ethical approval was needed.

2.2  |  Pesticide use data

We acquired pesticide use data from Statistics Sweden (SCB), 
which conducts national surveys to collect differentiated statis-
tics of pesticide use in crops to track use over space and time (see 
Supporting Information, Methods). Following Douglas et al. (2022), 
we applied a ‘downscaling’ approach to match crop-  and month- 
specific use averages to land cover. Specifically, we used 78,111 
application records from the two most recent surveys (2017 and 
2021) to calculate monthly crop- specific application rates for 
all active ingredients (AI) by averaging the amount (g) of AIs in 
each product applied over a reported crop area (deciares). Based 
on crop identity, we joined these estimated pesticide application 
rates (g/100m2) to national agricultural parcel data provided by 
the Swedish Board of Agriculture (IACS Spatial Data Layer). We 
used this spatialized pesticide information (Figure 1b) to calculate 
landscape- level metrics of pesticide use (Box 1) and as input for 
our exposure model (see below).

2.3  |  Landscape data

We analysed the landscape surrounding our sites at three spatial 
scales according to the average foraging range for our three genera 
(Osmia: 500; Bombus: 1500; and Apis: 2000 m; Kendall et al., 2022). 
Using the annually updated IACS Spatial Data Layer, we classified 
land cover categories into agricultural land (i.e., annual crops, or-
chards and leys) and calculated the proportional coverage within cir-
cular buffers with radii corresponding to the three foraging ranges. 
Using the pesticide use data, we classified landcover types based 
on whether they received pesticide application and calculated the 
proportion of pesticide- treated area in the buffers. We calculated 
landscape crop diversity with a Shannon index of crop types (rich-
ness) and their coverage (evenness). As a measure of landscape con-
figuration, we calculated the interspersion and juxtaposition index 
(IJI) for each landscape (McGarigal & Marks, 1995). We chose IJI 
because it was less correlated with the proportion of agricultural 
land compared to other configuration metrics (e.g., edge density, 
mean patch area; Figure S1). Lastly, we calculated total landscape 
pesticide load using the spatialized pesticide use data as:

Loadt =

n∑
i=1

n∑
j=1

ritaj

A
,

F I G U R E  1  Southern Sweden biomonitoring network of 41 sites (a) sampled variously in 3 years (circles: 2019, squares: 2020, diamonds: 
2021). At each of these sites we calculate landscape metrics of composition, configuration and pesticide use. We spatialized a national 
dataset of pesticide use records to generate maps of landscape load (b). We applied our pesticide exposure model to these data for three 
representative bee species with different foraging ranges: Osmia bicornis (500 m), Bombus terrestris (1500 m), and Apis mellifera (2000 m). 
The output of this model provides exposure predictions that are species- , compound- , month-  and site- specific (c–e). The colour bar in the 
example pesticide landscape load map (b) depict compound application rate (g/100 m2). The colour bars in example landscape exposure 
model outputs (c–e) depict estimated exposure (unitless).
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    |  5NICHOLSON et al.

where we summed monthly compound application rates (rit) for com-
pound i multiplied by area (aj) of crop j divided by the foraging range- 
defined buffer area (A) around a site.

2.4  |  Modelling bee pesticide exposure

We used a previously developed and validated mechanistic model (Lonsdorf 
et al., 2024) to predict pesticide exposure to bees in the landscape. We cal-
culated exposure at nest site i from forage site j in month t, Ecijt, as:

where the first term represents the amount of compound C available 
during the visit to site j in month t and the second term represents the 
probability of foraging in site j from nest site i. In the first term, the sca-
lar, zc, describes the proportion of compound C that would be collected 
given how much is available on site j at time t, here always equal to one. 
In the second term, the model assumes that the likelihood bees will 
travel from nest site i to forage in site j depends on the distance, D, be-
tween them and on the floral quality, F, of the site—as Dij increases and 
Fjt decreases, the likelihood of visiting the site declines (Figure 1c–e). 
The parameter, γ, represents the average foraging distance a bee would 
travel from its nest (i.e., 500, 1500 or 2000 m). As inputs, the model 
requires spatial information on pesticide loads, bee nest locations and 
floral resources (see Supporting Information, Methods).

2.5  |  Risk calculations

We calculated toxicity- weighted exposure (TWE) to estimate the di-
rect pesticide risk to bees (Knapp et al., 2023; Rundlöf et al., 2022), 

where the TWE for each compound (TWEi) is the ratio of its ex-
posure value (ci) and its respective acute toxicity endpoint (LD50i). 
Following the recommended concentration addition approach (EFSA 
Scientific Committee, 2019), we summed TWEis to calculate risk (see 
Supporting Information, Methods). Using this approach, we calcu-
late pesticide risk from different information sources. From pollen 
samples, ci are the detected pesticide residues (ng/g). From the spa-
tialized pesticide use data, ci are AI- specific loads (i.e., ritaj). From 
the bee exposure model, ci are predicted exposure values (i.e., Ecijt). 
When summarized across AIs, these provide measures of observed 
risk, total toxic landscape load and total landscape risk (Box 1), re-
spectively. Finally, to facilitate comparisons of risk between AIs 
(Table 1; Table S2), we quantified compound- specific risk (PRQ) as 
the average of concentrations across samples for a given AI divided 
by its respective average LD50 and multiplied by its site detection 
frequency (Sanchez- Bayo & Goka, 2014).

2.6  |  Potential versus realized risk and load

Our predictors of load and risk will depend on the type and number 
of AIs included in risk summaries. Recognizing that in many situa-
tions, the identities of pesticides used are unknown, we calculate 
potential risk and load based on the common set of screened AIs, and 
the recorded applications in our pesticide use data. These ‘screen 
lists’ are based on the Swedish national monitoring scheme (Boye 
et al., 2019) but differed slightly between years and contained be-
tween 66 and 72 compounds. Thus, potential landscape load would, 
for example, summarize load based on area- weighted application 
rates (i.e., ritaj) of all compounds that could be detected. We contrast 
these ‘potential’ measures with metrics of realized risk and load, 
which use the residue information to identify a subset of detected 
AIs across which to summarize. Thus, realized total landscape risk 
would, for example, estimate risk based on exposure predictions 

ECijt
=

�
zcPcjt

�⎛⎜⎜⎜⎝

Fjte
−

Dij

�

∑n

j=1
Fjte

−

Dij

�

⎞
⎟⎟⎟⎠
,

TA B L E  1  Compound- specific pesticide risk based on the relevant detection rate and concentration. Pesticide identity, type (I, insecticide; 
F, fungicide; H, herbicide; N, nematicide), compound group, toxicity (average acute and contact LD50 for Apis mellifera adults, μg per bee), 
method detection limit (μg kg−1), frequency of detection, concentration (average, μg kg−1) and compound- specific risk (PRQ) of the 10 riskiest 
compounds (for all compounds see Table S2). These 10 compounds were detected in all sentinel bee species (A. mellifera, Bombus terrestris, 
Osmia bicornis) and years (2019–2021).

AI Compound group LD50 mean Detection limit Detection frequency Concentration average PRQ

Indoxacarb (I) Oxadiazine 0.156 1.00 47 (17%) 268 300

Acetamiprid (I) Neonicotinoid 11.3 0.0500 128 (48%) 29.5 1.24

Penconazole (F) Triazole 7.10a 0.500 24 (9%) 85.9 1.08

Imidacloprid (I) Neonicotinoid 0.0420 0.500 22 (8%) 0.515 1.00

Thiacloprid (I) Neonicotinoid 28.1 0.0100 148 (55%) 22.2 0.436

Azoxystrobin (F) Strobilurin 113a 0.500 105 (39%) 67.3 0.234

Tebuconazole (F) Triazole 142a 1.00 34 (13%) 227 0.203

Prosulfocarb (H) Thiocarbamate 91.7 0.300 61 (23%) 46.9 0.116

Fluopyram (F) Benzamide 101a 0.0500 153 (57%) 17.2 0.0967

Metamitron (H) Triazinone 98.6a 0.100 72 (27%) 17.7 0.0481

aLD50 based on limit tests.
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6  |    NICHOLSON et al.

(i.e., Ecijt) of all compounds that were detected in the pollen sample 
for that site.

2.7  |  Statistical analyses

We tested whether observed pesticide risk can be predicted by: 
(i) metrics of landscape composition and configuration (proportion 
agricultural land, proportion treated agriculture land, crop diversity, 
IJI), (ii) metrics of landscape- level pesticide use (total landscape load, 
total landscape toxic load) and (iii) total landscape risk based on pre-
dictions from the exposure model.

Given a strong right skew, we log transformed (ln(x)) observed 
risk. Given strong right skews and the presence of zeros, we log- 
transformed (ln(x + c)) predictor risk and load values, using a AIC- 
based constant (c) selection method (Ekwaru & Veugelers, 2018) for 
each metric (c value range: 1e- 07–1e- 02). To allow comparison of 
regression coefficients, all predictors were standardized (Z- scores). 
For each predictor, we specified separate linear mixed effect mod-
els (LMM) with month, year, and that predictor in interaction with 
bee species as fixed effects, and with site as a random effect. We 
reported marginal R2 values calculated following the methods of 
Nakagawa and Schielzeth (2013). We constructed LMMs with the 
‘lme4’ package (Bates et al., 2015). We estimated slopes with the 
‘emmeans’ package (Lenth, 2023) and evaluated models for overdis-
persion, normality and multicollinearity using diagnostic functions in 
the ‘performance’ package (Lüdecke et al., 2021) and the ‘DHARMa’ 
package (Hartig, 2022). We performed analyses and data visualiza-
tion using R version 4.1.1.

3  |  RESULTS

3.1  |  National pesticide use data

Pesticide use in Sweden is dominated by herbicides, followed by fun-
gicides, applied mainly May–October (Figure 2; Figure S2). A total of 
143 AIs were reported across 44 crops, including 62 herbicides, 51 
fungicides, 21 insecticides, eight plant growth regulators and one 
molluscicide. Despite the comparatively small amount of insecti-
cides used (6% of reported pesticide uses), these compounds con-
tribute most to total risk for bees (Figure 2; Figure S2).

Ten crops account for 81% of total risk from reported pesticide 
uses (Figure 2a), with the risk posed by these 10 crops attributable 
to a few, broadly used insecticides (Figure 2b). High- risk insecticides 
include pyrethroids (cyflutrin, alpha- cypermethrin), as well as the 
oxadiazine indoxacarb (Figure 2b).

3.2  |  Pesticide residues in pollen

A total of 49 AIs were detected in pollen samples across the three 
bee species (A. mellifera, B. terrestris and O. bicornis), including 27 

fungicides, 15 herbicides, 5 insecticides, 1 acaracide and 1 plant 
growth regulator. Most pollen samples contained multiple pesticides 
(96% with >1 compound; median: 6; range: 1–19). The compounds 
with the greatest compound- specific risk were insecticides (Table 1) 
but some herbicides (e.g., prosulfocarb and metamitron) and fun-
gicides (e.g., penconazole and azoxystrobin) also ranked highly. As 
with the pesticide use data, while herbicides and fungicides com-
prised the bulk of total pollen detections (75%) and residues (58%, 
in μg kg−1), insecticides generated most (>99%) of the compound- 
specific risk (Table S2). These high- risk insecticide AIs include neo-
nicotinoids (acetamiprid, imidacloprid and thiacloprid), as well as an 
oxadiazine (indoxacarb) (Table 1).

3.3  |  Landscape predictors of observed 
pesticide risk

Observed pesticide risk was best explained by landscape metrics 
based on pesticide information: total landscape risk, total land-
scape toxic load, and total landscape load (Figure 3; Table S5). We 
did not detect an interaction between these metrics and bee spe-
cies (all p > 0.05), and thus, we report coefficient estimates with this 
interaction removed. Both fit (standardized coefficient estimates) 
and explained variance (marginal R2) depended on whether our risk 
predictor was constructed from the list of compounds that were 
screened (i.e., potential risk) or the list of compounds that were de-
tected (i.e., realized risk). If considering realized risk (Figures 3 and 
4 circles), the landscape risk predictions from the exposure model 
explained substantial variation in observed risk (R2

m
 = 0.64, Figures 3 

and 4). However, if considering potential risk (Figures 3 and 4, 
squares), landscape metrics based on pesticide information per-
formed similarly (R2

m
: 0.19–0.27, Figure 3).

The proportion of agricultural land explained observed risk 
but depended on bee species (F2,246.3 = 3.379, p = 0.04, Figure 4; 
Table S3), with risk tending to increase with the proportion of agricul-
tural land for O. bicornis and B. terrestris, although individual slopes 
did not differ significantly from zero. We also detected an interaction 
between bee species and landscape crop diversity (F2,244.5 = 4.118, 
p = 0.017, Figure S3; Table S3), with risk decreasing significantly 
with increasing crop diversity for A. mellifera (slope: −0.86 [95% CI: 
−1.61, −0.10]). We did not detect positive taxa- consistent responses 
of observed risk to landscape juxtaposition (IJI) or to proportion of 
treated agriculture (Table S3). Year and month were significant fixed 
effects in most models (Table S3).

4  |  DISCUSSION

Mobile organisms, such as bees, experience exposure from multiple, 
spatially separated and heterogenous sources. Given the potential 
for this landscape- scale exposure, ecotoxicological evaluations must 
be informed by analysis of broader landscape patterns. Commonly 
available information of landscape pattern could be a valuable risk 
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    |  7NICHOLSON et al.

index and used to inform ERA (EFSA, 2022). Yet, we found that sim-
ple landscape metrics do not consistently predict observed pesti-
cide risk for bees, while landscape metrics based on pesticide use 
information and bee foraging ecology outperformed those simple 

landscape metrics. Our exposure model, which incorporates ex-
pected patterns of bee foraging, improved predictions of pesticide 
risk, but only when based on prior knowledge of local pesticide use. 
This work answers recent calls to integrate ecotoxicology with con-
siderations of spatial pattern and scale (Beketov & Liess, 2012) by 
including both assessment of exposure to pesticides in a real- world 
system at large spatial scales and combining these observations with 
advanced mechanistic modelling.

Recent evidence of spatially heterogenous patterns of pesti-
cide exposure to bees (e.g., Graham et al., 2022; Knapp et al., 2023; 
McArt et al., 2017) suggests that bees' exposure to pesticides could 
depend on broader landscape patterns. We believe two mutually 
inclusive causes could explain this effect. First, landscape pattern 
could affect pesticide use—the amount, frequency and type of com-
pounds applied. Pesticide use can be greater in simple landscapes 
(Larsen & Noack, 2017; Nicholson & Williams, 2021), potentially due 
to increased pest pressure resulting from reduced natural enemy 
abundance or enhanced pest colonization from greater host crop 
connectivity (Meehan et al., 2011). Thus, bees may be more exposed 
in simple landscapes because there are simply more pesticides used. 
Second, landscape complexity and composition could affect polli-
nator foraging and subsequent pesticide exposure. Central place 
foraging theory (Olsson et al., 2008; Schoener, 1971) would predict 
reduced exposure if high resource patches close to nests, such as 
semi- natural grasslands or mass flowering crops, are also uncontam-
inated. Thus, as the dynamics of bee foraging change with landscape 
pattern, so too will their exposure.

We did not find that landscape pattern alone consistently pre-
dicted observed bee pesticide risk, and what evidence we did find 
was taxon- dependent. Like Knapp et al. (2023), we observed an 

F I G U R E  2  Rank pesticide risk based on reported uses in different crops. The top 10 crops comprising the most risk (a), coloured 
according to pesticide class (Figure 2). For these 10 crops, the top 10 compounds contributing the most to risk are shown (b).
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F I G U R E  3  Comparative analysis of landscape metrics for the 
ecotoxicological assessment of pesticide risk to bees. Points depict 
regression coefficient estimates and their 95% confidence intervals 
from linear mixed effects models with z- score standardized 
predictors of proportion agriculture, total landscape load, total 
landscape toxic load, and total landscape risk versus observed 
risk. Where significant interactions between landscape metric and 
bee species were detected, we estimate their individual slopes 
and colour them according to taxa: Osmia bicornis (grey), Bombus 
terrestris (yellow), Apis mellifera (brown). For landscape metrics 
based on pesticide use information (total landscape load, total 
landscape toxic load, total landscape risk), circles correspond to 
realized risk (left- hand R2 values) and squares to potential risk 
(right- hand R2 values). For additional landscape metrics (Crop 
diversity, IJI, Proportion treated agriculture), see Figure S3 and 
Table S5.
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8  |    NICHOLSON et al.

interaction between the proportion of agriculture and bee species, 
with risk marginally increasing (i.e., not significantly at p < 0.05) for 
Osmia nests and Bombus colonies in landscapes dominated by ag-
ricultural land use. Likewise, we observed an interaction between 
bee species and habitat intermixing (IJI) and landscape crop di-
versity. For honeybees, we found that risk decreased significantly 
with increasing crop diversity, while for the other taxa these land-
scape metrics had no individual effects. On balance, landscape 
pattern metrics do not explain much variance in observed risk and 
taxa- dependent effects add complicating context- dependency to 
risk assessment.

Leveraging information on pesticide use enhanced our ability to 
predict pesticide risk to bees. By integrating land cover maps with 
crop- specific data on typical agricultural pesticide use, we could cal-
culate total landscape load and toxicity- weighted load, both of which 
were predictive and explained substantial variance in observed risk 
(R2 range: 0.22–0.51). This result, although perhaps unsurprising, un-
derscores the importance of reliable and readily available pesticide 
use data for research, monitoring, and mitigation. Data on pesticide 
use per se—as opposed to information on sales—are typically un-
common or variable in detail and level of information aggregation. 
For example, in the EU, applicators are usually required to record the 
location and date of pesticide application. Yet, these data are only 
periodically consolidated to produce national estimates of pesticide 
use that are neither crop-  nor compound- specific, let alone spa-
tially explicit (Galimberti et al., 2020). Where spatially and tempo-
rally granular pesticide use data do exist (e.g., California's Pesticide 
Use Reports, PUR), they have been used to determine spatiotem-
poral heterogeneity of multiple ecotoxicological endpoints (Zhang 
et al., 2018), including honeybee (Mullin et al., 2016) and bumblebee 
exposure (Lonsdorf et al., 2024). Openly accessible pesticide use 

data is essential to evaluate the effects of pesticides on human and 
ecosystem health, support pesticide regulation and improve trans-
parency (Möhring et al., 2020).

The pesticide use data we used are the best available in Sweden, 
yet still deserve a few caveats. First, the data are not truly spatially 
explicit, as we did not know the exact field location of application. 
Second, averaging application rates and spatializing these based on 
crop identity assumes a level of homogeneity in plant protection 
practices. Although we captured variation in extent (proportion 
of fields using a compound), we assumed static values of intensity 
(amount of compound applied per area). Third, we inherited the bi-
ases of the sample survey, so we may lack use information for rare 
crops or compounds registered for use outside of the survey years. 
Lastly, these data are not publicly available and require a formal req-
uisition process. In the light of these caveats and our present find-
ings, we echo the recommendations of Mesnage et al. (2021) that 
pesticide use reporting is: (1) spatially explicit (e.g., individual field 
level); (2) includes application information (e.g., active ingredients, 
target crop, rate and timing of application); and (3) frequently re-
ported and openly databased.

If landscape- level pesticide use information is available, is a pol-
linator exposure model needed to predict risk? It depends on how 
much is known about actual agricultural pesticide use. In situations 
where there is spatially explicit information of pesticide use—for ex-
ample from highly detailed use maps (e.g., California's PUR), grower 
spray records (e.g., Graham et al., 2022) or from compound detec-
tions (e.g., the present study)—the exposure model excels at esti-
mating observed risk. Indeed, when considering realized risk (i.e., risk 
calculated from the subset of detected compounds) our exposure 
model predictions better fit the data than all other metrics and ex-
plained a substantial amount of variance (R2 = 0.64). However, prior 

F I G U R E  4  Observed pesticide risk in pollen samples was predicted by risk estimate from our exposure model when calculating total 
landscape risk based on all compounds detected (a; realized risk, cirlces) or risk based on all compounds screened (b; potential risk, squares). 
Points correspond to site- years (N = 269) where pollen was collected from Apis mellifera (brown), Bombus terrestris (yellow), or Osmia bicornis 
(grey). Fitted lines are estimated based on linear mixed effects models. Shaded areas represent the regression 95% confidence intervals. 
Results from statistical models are given in Table S3.
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    |  9NICHOLSON et al.

information of actual pesticide use is often unknown and com-
pounds may go undetected. A pesticide could be absent from pol-
len if it is not used locally, but non- detection may arise from other 
factors, including:

• Compound application method. Pesticide application methods 
(e.g., soil drench of a non- systemic compound) may not result in 
pollen contamination.

• Compound fate. Pesticides with rapid degradation (e.g., pyre-
throids) may go undetected.

• Compound toxicity. Pesticides with high acute toxicity (e.g., neon-
icotinoids) may go undetected because exposure leads to forager 
death or disorientation and contaminated pollen never returns to 
the colony.

• Patch quality. Pesticides applied to patches without floral re-
sources may not result in exposure via pollen or nectar.

• Sample size and design. Pesticides may be missed due to stochas-
ticity and limited sample size, especially those that are rarely used 
in the landscape or used at low rates.

For these reasons, potential risk (i.e., risk calculated from the 
broader set of all screened compounds) provides a more general-
izable, yet overestimation of predicted pesticide risk. It is general-
izable because it incorporates exposure predictions for all possible 
compounds that could contribute to risk in a given landscape and 
is thereby transferable to the common situation where exact pes-
ticide use patterns are unknown. It overestimates because it incor-
porates predictions of compounds that were not detected and thus 
increases risk prediction uncertainty. When considering potential risk 
our exposure model performed similarly to landscape- level pesticide 
use metrics. It is worth noting that all metrics based on pesticide use 
(total landscape load, total landscape toxic load and total landscape 
risk) had a significantly positive fit with observed exposure for both 

realized and potential risk. In practice, this means that where actual 
use is unknown or uncertain a general, albeit imprecise, estimate of 
risk can be approximated from pesticide load (Figure 5). Conversely, 
situations calling for precise estimates of risks will require obtaining 
prior information on actual pesticide use (Figure 5).

5  |  CONCLUSIONS

There is a long- standing acknowledged need in ecotoxicology for 
methods that integrate spatial aspects and context heterogene-
ity into risk assessment. The discipline of landscape ecotoxicol-
ogy (Cairns & Niederlehner, 1996) aims to address this need by 
incorporating principles and methods from landscape ecology 
(Johnson, 2002; Schäfer, 2014). We advance landscape ecotoxico-
logical research using a multiyear terrestrial biomonitoring network 
of bee pollen pesticide residues to assess the capacity of different 
land cover- based metrics to predict bees' pesticide risk. We answer 
the call (EFSA, 2022; Price & Thorbek, 2014) for the development 
and use of spatially explicit exposure predictions from mechanistic 
models at organism- relevant scales. Nonetheless, these models re-
quire specialized tools, data, and expertise, which can be cost-  and 
time- intensive. Our comparative analysis (Figure 4) provides a road-
map for landscape- level risk prediction for pollinators that evaluates 
assessment goals relative to data availability and uncertainty toler-
ance (Figure 5). Taken together, our biomonitoring network, mod-
elling, comparative analysis, and proposed framework are the next 
step towards building standardized methods for landscape- level 
pesticide risk assessment for pollinators.
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