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Summary

� A large fraction of plant litter comprises recalcitrant aromatic compounds (lignin and other

phenolics). Quantifying the fate of aromatic compounds is difficult, because oxidative degra-

dation of aromatic carbon (C) is a costly but necessary endeavor for microorganisms, and we

do not know when gains from the decomposition of aromatic C outweigh energetic costs.
� To evaluate these tradeoffs, we developed a litter decomposition model in which the aro-

matic C decomposition rate is optimized dynamically to maximize microbial growth for the

given costs of maintaining ligninolytic activity. We tested model performance against > 200

litter decomposition datasets collected from published literature and assessed the effects of

climate and litter chemistry on litter decomposition.
� The model predicted a time-varying ligninolytic oxidation rate, which was used to calculate

the lag time before the decomposition of aromatic C is initiated. Warmer conditions increased

decomposition rates, shortened the lag time of aromatic C oxidation, and improved microbial

C-use efficiency by decreasing the costs of oxidation. Moreover, a higher initial content of

aromatic C promoted an earlier start of aromatic C decomposition under any climate.
� With this contribution, we highlight the application of eco-evolutionary approaches based

on optimized microbial life strategies as an alternative parametrization scheme for litter

decomposition models.

Introduction

The question of whether the decomposition of complex poly-
mers, such as lignin and similar compounds, represents a signifi-
cant rate-limiting step to terrestrial carbon (C) cycling has been a
subject of extensive research. However, a gap in understanding of
the mechanistic controls on the decomposition of these recalci-
trant compounds remains (Thevenot et al., 2010; Hall et al.,
2020). Plant detritus, exudates, and their derived compounds are
building blocks of particulate and mineral-associated organic
matter (Huang et al., 2019; Cotrufo & Lavallee, 2022). There-
fore, accurate predictions of decomposition rates of these litter
components are crucial for better understanding the fate of C in
soils (Moorhead & Sinsabaugh, 2006). Moreover, litter decom-
position releases essential plant nutrients, and in some ecosys-
tems, low decomposition rates contribute to retention of
nutrients in recalcitrant pools. However, the timing of lignin
decomposition, the associated release of lignin-protected com-
pounds, and the tradeoffs with other microbial functions are not
well understood, leaving uncertainties regarding incorporation of
litter-derived organic matter into the soil and nutrient release
during decomposition. Much of the lignin is released as CO2

during decomposition as mainly basidiomycete fungi degrade it
to get access to energy and nutrient-rich compounds, and part of

it may also be used to fuel fungal growth (Berg & McClaugherty,
1987; Kirk & Farrell, 1987; del Cerro et al., 2021). In particular,
uncertainty surrounding the temperature sensitivity of decompo-
sition rates of lignin-like compounds in aboveground litter, top-
soil, and subsoil hinders our capacity to quantify the persistence
of soil organic C in future warming scenarios (Allison et al.,
2018; Chen et al., 2020; Tan et al., 2020; Dao et al., 2022; Zosso
et al., 2023).

Much of the uncertainties in assessing the dynamics of lignin
decomposition are associated with unknown constraints on fun-
gal communities with ligninolytic capacities. Vivelo & Bhatnagar
(2019) suggested that ‘decomposer fungal succession is partially
rooted in fungal decomposers’ deep evolutionary history’, imply-
ing that microbial activity might be regulated according to evolu-
tionary pressures toward improved fitness. Indeed, the succession
of different microbial groups linked to different extracellular
enzyme activities is correlated with mass loss of different litter
fractions, suggesting that different microbial guilds contribute to
the degradation of complex compounds (Šnajdr et al., 2011;
Bhatnagar et al., 2018). These community composition dynamics
are shaped by microbial succession linked to litter chemical traits
(specifically nutrient content and the abundance of recalcitrant
compounds) and their interaction with local soil conditions.
Together, litter quality and soil properties modulate the activities
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of community members in controlling litter decomposition (Bur-
esova et al., 2019; Herzog et al., 2019). Additionally, extracellular
enzyme activities change during litter decomposition, even when
litter is colonized by a single fungus (Barbi et al., 2020). Thus,
decomposition is regulated by both community-level changes
and the dynamic behavior of single organisms. Therefore, devel-
oping a conceptual framework that links microbial adaptation to
local environmental conditions is essential to disentangle the che-
mical, physiological, and ecological drivers of litter decomposi-
tion rates.

While evolution acts at the species level, our aim here is to
develop a pragmatic approach for modelling complex microbial
community dynamics with a minimal—albeit ecologically mean-
ingful – set of assumptions. Furthermore, ecological and evolu-
tionary drivers interact in regulating microbial functions by
shaping community composition, motivating the study of eco-
evolutionary dynamics (Loreau et al., 2023; Martiny et al.,
2023). Models based on community-level optimality criteria have
been successful in predicting scaling relations between enzyme
activities and soil organic matter content at steady state (Calabr-
ese et al., 2022), as well as the relationship between microbial C-
use efficiency and nutrient availability (Manzoni et al., 2017).
Optimal control theory has been used for investigating the tem-
poral dynamics of decomposition (Manzoni et al., 2023). How-
ever, these approaches have not yet been tested in litter
decomposition models where different chemical compounds
interact nonlinearly, such as in the case of lignin, which may pro-
tect high-energy compounds from decomposition by complex
formation.

Optimal control theory attempts to find the optimal temporal
trajectory of a model parameter (i.e. the ‘control’ variable), which
maximizes a given goal function. A classic example is the parti-
tion of photosynthate into vegetative growth and reproduction
with the goal of maximizing seed yield (King & Roughgar-
den, 1982). In this contribution, we formulated an eco-
evolutionary model built on the assumption that the ligninolytic
activity of the litter-decomposing community is dynamic and
adapted to maximize the collective community fitness. Mathema-
tically, this means optimizing ligninolytic activity through time
to maximize the mean microbial growth rate throughout the
decomposition process.

Such an optimization approach is appropriate because it allows
the balancing of the costs and benefits of lignin degradation. The
main benefit is access to substrates otherwise protected by
the complex organic structure and complexations of lignin. The
main cost is related to the maintenance of oxidative enzymes.
Fungal oxidation of unhydrolysable compounds, including lig-
nin, has been described as ‘enzymatic combustion’ (Kirk &
Farrell, 1987) – an energetically costly process (Shimizu
et al., 2005; Moorhead et al., 2013), as it relies on continuous
generation of hydrogen peroxide by the fungi to be used as an
electron acceptor (Mattila et al., 2022). Oxidative degradation
facilitates increased access to, for example cellulose and proteins,
which are often protected from hydrolysis by interactions with
lignin, tannins, melanin, and other unhydrolysable compounds
(Berg & McClaugherty, 1987; Kirk & Farrell, 1987). It can then

be hypothesized that if oxidation is costly, it should not be
initiated until ‘lignin-free’ hydrolysable compounds are depleted.
Therefore, we expect our model to predict optimal lignin decom-
position to start earlier in litter with initially high lignin content,
or when warmer conditions promote fast microbial consumption
of lignin-free compounds.

We developed and tested a minimalist model of litter decompo-
sition that follows organic C into two pools – nonaromatic C and
aromatic C. Building on the optimal control framework developed
by Manzoni et al. (2023), we use the mean microbial growth rate
as a proxy for microbial fitness to predict the optimal ligninolytic
strategy. Specifically, we answer the following questions:
(1) Does this eco-evolutionary approach have more predictive
power than a model with time-invariant rate parameters?
(2) Is climate or litter chemistry the more dominant control on
ligninolytic oxidation rate?
(3) How does the investment in ligninolytic and hydrolytic
enzymes change with climate and litter chemical traits?

Materials and Methods

We start by describing a two-pool litter decomposition model
(Litter decomposition model section). Next, Data collation and
preparation section describes the data collected from published
sources used in model parametrization. The eco-evolutionary
approach is described in Eco-evolutionary approach: litter
decomposition as an optimal control problem section and the
least-square fitting in Least-square model-data fitting section.
Finally, Statistical analyses section explains the linear mixed-
effect models used to identify relationships between estimated
model parameters and climatic and litter chemical traits.

Litter decomposition model

We developed a litter decomposition model that describes the
interactions between litter chemistry and microbial traits.
The model was parametrized using mass (or C) and lignin loss
data from litter bag incubations in field conditions. ‘Lignin’ is
here defined as acid unhydrolysable residues (AURs) corrected to
account for measurement bias, and including both lignin and
similar aromatic compounds, such as tannins and other polyphe-
nols.

In the model, we divide litter C into a nonaromatic C pool
(CH, expressed as g of C in the modelled domain, e.g. a litter-
bag), dominated by polymers susceptible to hydrolytic enzymes,
including cellulose and hemicellulose, and an aromatic C pool
(CO, also expressed as g of C), representing aromatic C in lignin
and condensed tannins that require oxidative ligninolytic
enzymes for their decomposition (Fig. 1a). The nonaromatic
pool contains both nonaromatic constituents of aromatic com-
pounds and nonaromatic compounds that are unhydrolysable
because they are complex-bound to aromatic compounds. This
implies that the two pools do not decompose independently.
Mathematically, the protection of nonaromatic C by aromatic C
in lignocellulose complexes is simulated using a factor p, which
reduces the decomposition rate of the nonaromatic pool with
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increasing fraction of aromatic C (Fig. 1b). At low aromatic C
contents, this protective effect is negligible, and p ≈ 1; at aro-
matic C contents close to 15% (on a total litter C basis), the
accessibility to nonaromatic C is approximately halved.

The nonaromatic and aromatic pools are decomposed with
first-order kinetics (suitable to describe dynamics at annual or
longer scales), in which the rate constants account implicitly for
extracellular enzyme activity. The rate constant vH of the nonaro-
matic pool is time-invariant, whereas the rate constant vO of the
aromatic pool is assumed to vary through time due to dynamic
changes in microbial resource acquisition strategy. For ease of
interpretation, we refer to vH and vO as the hydrolytic and the
ligninolytic oxidation rate, respectively.

We assume that microorganisms can utilize both pools for
growth purposes (del Cerro et al., 2021); however, their C-use
efficiency is at maximum (emax) when the aromatic pool is not
used and decreases linearly with increasing vO due to metabolic

cost of producing oxidative enzymes and hydrogen peroxide to
sustain oxidation (Manzoni et al., 2021). The cost factor is
denoted by rO (expressed in days) and referred to as cost of ligni-
nolytic. Furthermore, we assume a quasi-steady state for the
microbial biomass so that the microbial growth rate Gð Þ is equal
to mortality. In other words, microbial biomass is not directly
modelled, but its effect on decomposition is implicitly described
through the values and temporal changes in the kinetic constants.
A fraction μO of the microbial necromass is recycled into the aro-
matic pool. A higher value of μO indicates that a higher fraction
of microbial necromass is of aromatic nature, whereas a lower
value indicates that necromass is mostly nonaromatic. With these
assumptions, the mass balance equations for the nonaromatic
and aromatic pools are written as,

dCH

dt
¼ 1�μOð ÞG�vHCHp Eqn 1

(a)

(c)

(d)

(b)

Fig. 1 Schematic of (a) litter decomposition
model, (b) reduction in the hydrolytic rate (vH)
due to the presence of aromatic carbon, as
represented by the function p lð Þ (solid line),
where l is the fraction of aromatic carbon (C) in
the litter (Eqn 1), (c) model parametrization
scheme including the eco-evolutionary approach
and data-model fitting, and (d) statistical infer-
ence on estimated parameters with climatic vari-
ables and litter chemical traits. Data points,
obtained from Bonanomi et al. (2013), in (b)
represent aromatic C obtained from NMR analy-
sis, and p is the calculated (and normalized) rate
of decomposition of the nonaromatic C pool. The
dashed lines in panel b indicate 95% confidence
interval of the scaling parameter a in Eqn 1. The
succession time of specialist microbes (e.g. basi-
diomycete fungi) is the same as ligninolysis lag
time.
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dCO

dt
¼ μOG�vOCO Eqn 2

where the microbial growth rate is given as the product of C-use
efficiency (CUE, ratio of growth over C uptake) and C acquisi-
tion rate,

G ¼ CUE vHCHp þ vOCOð Þ ¼ emax�rOvOð Þ vHCHp þ vOCOð Þ:
Eqn 3

The p-function is formulated as,

p ¼ exp � l

a

� �2
 !

Eqn 4

where l ¼ CO= CO þ CHð Þ and a is a scaling exponent
(Fig. 1b). The energetic costs of maintaining the oxidative pro-
cesses is modelled as a reduction in microbial CUE (Moorhead
et al., 2013; Manzoni et al., 2021). Thus, CUE varies through
time because of the time-dependent cost of ligninolysis, as
CUE ¼ emax�rOvO.

Model parametrization

The model has six parameters: μO, emax, vO, vH, rO and a. The
fraction of necromass C recycled into aromatic pools μO was
fixed based on estimates of unhydrolysable content (mainly mela-
nin) of fungal necromass, μO ¼ 0:1 (Fernandez et al., 2019; See
et al., 2021). A few litter bag samples showed more than a dou-
bling in unhydrolysable C from initial values, possibly due to
metabolized C characterized as unhydrolysable residues in the
proximate analysis. Such an increase in aromatic C is simulated
by assuming a higher fraction of necromass recycled into the aro-
matic C pool, that is μO ¼ 0:3 when fitting the model to data.
The maximum growth efficiency emax was calculated as a function
of the initial litter C : N ratio (CN0) to implicitly account for the
effect of nitrogen (N) limitation of microbial growth,
emax ¼ min 6:25CN�0:77

0 , 0:4
� �

(Manzoni et al., 2010). A maxi-
mum value of emax ¼ 0:4 was imposed at low CN0. The lignino-
lytic oxidation rate, vO, was estimated dynamically by
maximizing the mean microbial growth rate (Eco-evolutionary
approach: litter decomposition as an optimal control problem
section). The hydrolytic rate, vH, and the cost of ligninolysis, rO,
are time-invariant parameters estimated by fitting the model to
the observed time series of total litter and aromatic C (Least-
square model-data fitting section).

The initial mass of aromatic and nonaromatic C was directly
set from the observed litter mass loss data. The initial amount of
nonaromatic C (gC) was estimated by subtracting the initial
amount of aromatic C (gC) from the initial total litter C (gC).

To parameterize the p-function, we utilized 13C NMR spec-
troscopy data from Bonanomi et al. (2013) from a litterbag incu-
bation experiment conducted in Mediterranean and temperate
environments. This NMR dataset provided information on the
fraction of different functional groups within the total organic C

of the litter at four distinct time points: 0, 60, 90, and 180 d.
From the NMR data, the fraction of aromatic C was determined
by calculating the spectral area under the chemical shift region
between 141 and 160 ppm. Since the areas under spectral regions
are normalized to 1, the fraction of nonaromatic C is calculated
as one minus the fraction of aromatic C. Subsequently, the frac-
tions of aromatic and nonaromatic C were converted into
amounts by multiplying them by the remaining C content within
the litterbags. Utilizing the amount of nonaromatic C, we com-
puted the first-order rate constants (k) during the initial stage of
litter mass loss, specifically within the 0–30 d period. To estimate
the scaling coefficient a, we fitted a modified decay function,

k ¼ Aexp � l
a

� �2� �
, to these k values as a function of initial frac-

tions of aromatic C l , where A is a normalizing constant. The
values of A and a are estimated using least-square fitting. Finally,

the p-function is calculated as p lð Þ ¼ k
A ¼ exp � l

a

� �2� �
(Fig. 1b).

Data collation and preparation Litter decomposition data,
encompassing total litter mass (or total C) and lignin mass (esti-
mated as Klason lignin, acid detergent lignin, by cupric oxide
(CuO) oxidation, or by near-infrared spectroscopy), were com-
piled from 208 published litter bag datasets from 18 studies
(Table 1; Supporting Information Fig. S1). These datasets were
digitized directly from the original articles or provided by the
authors. Moreover, we did not include studies that indicated sig-
nificant contributions of abiotic factors to the decomposition of
lignin, for example via photodegradation in sites under open
canopy and with intense radiation (Méndez et al., 2022), because
our model only simulates biotic pathways.

To ensure consistency, we treated Klason lignin, acid detergent
lignin, and estimates based on near-infrared spectroscopy as AUR
proxies, except for lignin reported using the CuO method
(McLellan et al., 1991; Berg & McClaugherty, 2014). NMR
spectra have shown that AURs not only encompass most of the
aromatic litter constituents, but also contain other organic com-
pounds (Preston & Trofymow, 2015; Baskaran et al., 2019). To
convert AUR C into aromatic C, we used NMR spectra of AUR
from Pinus sylvestris L. litter (Baskaran et al., 2019). By fitting a
linear relation between the mass of aromatic C obtained from
NMR spectra and that of AUR C from proximate analysis, we
determined that 20% of AUR C is aromatic (see Fig. S2). We
assumed that this fraction does not change through decomposi-
tion and is the same for all litter types, allowing us to convert the
time series of measured mass of AUR C to the mass of
aromatic C.

Unless reported in the original sources, a 50% C content of lit-
ter and 60% C content of AUR (on a dry mass basis) were
assumed (Coûteaux et al., 1998; Preston & Trofymow, 2015).
No conversion factor was applied to lignin reported using the
CuO oxidation method. To calibrate the model to observations,
we normalized litter C and aromatic C to their initial values
before litterbag incubation. In line with Manzoni et al. (2010),
for data that exhibited rapid initial C leaching (when the mass at
the first measurement point decreased to less than 70% of C 0),
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the initial data point was excluded. Furthermore, we applied a
C t�C t�1ð Þ=C t�1 > 0:1 threshold to remove data points that
implied increases in litter mass possibly caused by contamination
from external sources.

Eco-evolutionary approach: litter decomposition as an optimal
control problem Following Manzoni et al. (2023), we formu-
lated litter decomposition as an optimal control problem where
we assumed that the microbial community maximizes its mean
growth rate over the entire decomposition period (T ) by adapt-
ing ligninolytic oxidation. The maximization objective Jð Þ can
be written as,

J ¼ 1

T

ZT

0

Gdt Eqn 5

This maximization is constrained by the mass balance Eqns 1 and
2 and constitutes a fixed terminal time and free terminal state
problem (Lenhart & Workman, 2007). In other words, the out-
come of this optimization problem is an optimal variation in vO
that maximizes microbial growth rate in the specified period of
time T for a given initial litter chemistry (Fig. 1c).

In principle, the period during which microorganisms maxi-
mize their growth can also be optimized. These problems are
referred to as free terminal time problems in the literature on
optimal control and are numerically more challenging to solve.
To keep the problem numerically tractable, we defined the
decomposition period as the time when half the mass remaining
at the last litter bag harvest was attained. This time was calculated
by fitting a single exponential model to litter mass loss data. This
procedure only provides the terminal time for the optimization
and does not imply that the modelled decomposition trajectories
are exponential.

The optimal control problem was solved with numerical meth-
ods based on direct collocation, using the Yop toolbox in MATLAB

(Leek, 2016).

Least-square model-data fitting We determined the time-
invariant parameters vH and rO by least-square fitting of the
model output to the time series of total litter C and aromatic C
(Fig. 1c). Briefly, we initialized the least-square solver with a
guess of vH and rO and then ran the optimal control problem to
obtain an estimate of the optimal vO and the temporal dynamics
of the state variables CH and CO. The optimal vO was recalcu-
lated at each iteration of the least-square solver. Subsequently, we
compared the sum of CH and CO with the measured total litter
C, and CO with the measured aromatic C using a mean square
error metric. To obtain the best-fitted parameters for each litter
bag dataset, we employed the MATLAB lsqcurvefit function. We
used the coefficient of determination (r2) and the root mean
squared error (rmse) to evaluate model performance.

Additionally, for comparison with the optimally controlled vO
model, we also fitted the same model (Eqns 1, 2) to the same data
but with time-invariant vO. This simpler model version is for-
mally similar to conventional litter decomposition (or soil C)

models with fixed parameters. Finally, using a Bayesian informa-
tion criterion, we compared the predictive accuracy of these two
models.

Statistical analyses

Using the best-fitted parameters, we estimated the ligninolysis lag
time τð Þ as the time when vO increased above 5% of the maxi-
mum value (i.e. at the threshold vO > 0:05 max vOð Þ). This lag
time was used as an index to characterize the timing of aromatic
C degradation, while the temporal average of ligninolytic oxida-
tion rate vO and the peak value of vO (calculated as max vOð Þ)
were used as indices of the aromatic C decomposition capacity.

We used linear mixed-effect models to disentangle the effects
of climate and litter chemistry on aromatic C and litter decompo-
sition rates. These models treated τ, vH, rO, max vOð Þ, and vO as
response variables. The predictor variables were mean annual
temperature (MAT), mean annual precipitation (MAP), initial
litter C : N ratio (CN0), initial aromatic C to litter N ratio, and
the initial aromatic C. In the final model, we only used MAT,
CN0, and initial aromatic C to reduce collinearity among predic-
tors. To enhance interpretability, all predictors were centered and
scaled. Additionally, the data source was included as a random
effect on the intercept to account for any study-specific variation.
The Q 10 temperature sensitivity values for hydrolytic and ligni-
nolytic oxidation rates were estimated using fixed effect sizes of
MAT from the linear mixed-effect model, and nonparametric
bootstrapping was used to calculate confidence intervals.

All response variables were log-transformed to ensure the nor-
mality of residuals. Notably, the lag time τ exhibited a zero-
inflated response. Therefore, we transformed it using
log τ þ Kð Þ, where K ¼ 0:5min τ> 0ð Þ was introduced to
address instances where τ equaled zero. We also fitted τ using a
zero-inflated generalized linear model from glmmTMB (Brooks
et al., 2017). However, here we only present results from the lin-
ear mixed-effect model because both resulted in similar signifi-
cance levels for the predictors, and it is more straightforward to
interpret coefficient estimates in linear models. The MATLAB
fitlme function was used to perform these analyses.

Results

We start by presenting numerical explorations of model behavior
(Figs 2, 3), followed by examples of model fitting (Fig. 4), model
performance metrices (Fig. 5), and the results from the statistical
analysis of how litter chemistry and climate affect model para-
meters (Figs 6, 7).

The first numerical exploration illustrates the temporal
changes in total C remaining (red curves), aromatic C remaining
(blue curves), and the optimal ligninolytic oxidation rate vO
(black curves) for different values of the time-invariant para-
meters hydrolytic rate vH, cost of ligninolysis rO, initial aromatic
C, and necromass recycling into the aromatic C pool μO (Fig. 2).
Our optimization approach predicted a temporally variable ligni-
nolytic oxidation rate vO. The optimal vO was initially zero, but
after a lag, it increased steeply, attained a maximum in the
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Fig. 3 Effect of the hydrolytic rate (vH), cost of ligninolysis (rO), initial fraction of aromatic carbon (C) (ARC0), and necromass cycling into the aromatic C
pool (μO) on (a–d) lag time of ligninolysis (τ), (e–h) temporal average of the ligninolytic oxidation rate (vO), and (i–l) cumulative microbial biomass growth.
Values of the fixed parameters are: vH ¼ 0:0015 d�1, rO ¼ 25 d, ARC0 ¼ 0:05 gC g�1 litter, and μO ¼ 0:1. Red and blue lines represent low initial litter C :
N ratio= 20 and high C : N ratio= 100, respectively. Mean rates are calculated from a fixed simulation period of 2000 d. The grey patch areas represent the
observed range of estimated vH and rO.

Fig. 2 Effect of the hydrolytic rate (vH), cost of ligninolysis (rO), initial fraction of aromatic C (ARC0), and necromass cycling into the aromatic carbon (C)
pool (μO) on (a–d) total litter C remaining and the aromatic C pool remaining, and (e–h) ligninolytic oxidation rate (vO). Both C pools are expressed relative
to the initial amounts. The dashed or solid lines denote low or high levels of the parameters being varied. Values of the fixed parameters in simulations are:
vH ¼ 0:0015 d�1, rO ¼ 25 d, μO ¼ 0:1, CN0 ¼ 50, and ARC0 ¼ 0:05.
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intermediate phase of decomposition, and then decreased as the
amount of C in both pools decreased. Increasing the hydrolytic
rate vH or the cost of ligninolysis rO delayed decomposition of
aromatic C, whereas increasing initial aromatic C or necromass
recycling into the aromatic C pool μO reduced the lag time of lig-
ninolysis. The lag time was most sensitive to initial aromatic C –
a chemical trait that emerged as a key predictor also in the follow-
ing analysis. A direct consequence of this temporal variation in
optimal vO is that the aromatic C can accumulate initially before
ligninolysis starts or remain constant when vO begins to increase
but necromass recycling balances aromatic C decomposition.

Aromatic C eventually decreases with rates similar to the whole
litter C when vO is sufficiently high (blue curves in Fig. 2). These
different phases of the aromatic C trajectory vary not only
according to vO, but also depending on other model parameters.

Fig. 3 shows variation in three metrics that summarize the
whole decomposition process: lag time of ligninolysis (τ, top
row), temporal average of ligninolytic oxidation rate (vO, middle
row), and cumulative microbial biomass growth (bottom row), as
a function of other, time-invariant model parameters. As the rate
of hydrolysis vH was increased, the lag time remained close to
zero for very low values of vH and then peaked at intermediate

Fig. 5 Comparison of root mean squared error (rmse), coefficient of determination (r2), and Bayesian information criterion (BIC) between optimal control
model (OCP) and least-square fitting model (LSC). The ends of each box represent the 25th and 75th quantiles of rmse, r2, and BIC, and the horizontal line
within the box represents the median. Whiskers of each boxplot extend from the minimum and maximum values in 1.5 times interquartile range. Diamond
points are outliers falling outside the whisker range.

Fig. 4 Examples of model fitting: variation in (a) amount of aromatic carbon (C) normalized by the initial value, (b) ligninolytic oxidation rate (vO), and
(c) C-use efficiency, as a function of total C loss. Solid symbols represent observed ARC and total C loss measured at the same time points. Four litter types
with contrasting initial aromatic C and initial C : N ratio from four different climates were chosen as examples–boreal: Pinus sylvestris L. leaves, ARC0 =
0.04, CN0 = 132, r2= 0.96, rmse= 0.05 from Berg & McClaugherty (1989), cold temperate: Cryptomeria japonica D. leaves, ARC0 = 0.08, CN0 = 95,
r2= 0.97, rmse= 0.03 from Osono & Takeda (2005), warm temperate: Eucalyptus grandis H. twigs ARC0 = 0.06, CN0 = 189, r2= 0.98, rmse= 0.03 from
Tu et al. (2014), and tropical: Shorea beccariana B. leaves, ARC0 = 0.1, CN0 =66, r

2 = 0.98, rmse= 0.03 from Hirobe et al. (2004). Ligninolysis lag time (τ)
values are in days.
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values of vH (Fig. 3a). This implies that the decomposition of the
aromatic C started immediately if the decomposition of nonaro-
matic C was not favorable (low values of vH ≈ 1E-4 d�1), result-
ing in a nonzero value of vO (Fig. 3e). As the decomposition of
nonaromatic pools became faster (increasing values of vH, in the
range of 1E-4 to 3E-4 d�1), the rate of decomposition of the aro-
matic C was slightly reduced, but the lag time remained close to
zero. However, for higher values of vH > 3E-4 d�1, increasing
vH increased the vO with a significant increase in lag time. For
very high values of vH > 1E-2 d�1, vO remained stable.

Increasing the cost of ligninolysis rO increased the lag time
(Fig. 3b), while increasing initial aromatic C decreased it

(Fig. 3c). Above a threshold of initial aromatic C c. 0.1 g aro-
matic C/g litter C, the lag time decreased to zero. Furthermore,
increasing the fraction of necromass recycling into the aromatic
C pool decreased the lag time (Fig. 3d) because having more C in
the aromatic pool promotes its decomposition. Variation in aver-
age ligninolysis rate vO followed opposite trends compared with
lag time when increasing rO, ARC0, or μO (Fig. 3f–h).

The cumulative microbial biomass growth increased with
increasing hydrolytic rate vH, and decreased with increasing cost
of ligninolysis rO, initial aromatic C and necromass recycling
into the aromatic C pool μO, although variations due to the last
two factors were minor (Fig. 3i–l). These trends can be explained

Fig. 6 Estimates of fixed effects and their SE from linear mixed-effect models to predict ligninolysis lag time log τ þ Kð Þ, cost of ligninolysis log rOð Þ, the
hydrolysis rate log vHð Þ, and temporal average and maximum of the ligninolytic oxidation rate, respectively log vOð Þ, log max vOð Þð Þ, as a function of mean
annual temperature (MATS), initial C : N ratio (CN0,S), initial fraction of aromatic carbon (C) (ARC0,S), and their interaction terms as predictors. Red repre-
sents a negative relationship between response and predictor, green represents a positive relationship, and white represents an insignificant estimate. The
rightmost column describes the marginal (r2marg) and conditional (r2cond) coefficients of determination. Subscript ‘S’ denotes that the predictors are scaled
and centered to mean 0 and SD 1. Star symbols denote significance levels: ***, P< 0.001; **, P< 0.01; *, P< 0.05; ., P< 0.1, ns as not significant P> 0.1.

Fig. 7 Simulated variation of (a) ligninolysis lag
time log τ þ Kð Þ, (b) cost of ligninolysis log rOð Þ,
(c) hydrolysis rate log vHð Þ, and (d) temporal
average ligninolytic oxidation rate log vOð Þ with
changing mean annual temperature (MATS),
initial C:N ratio (CN0,S), and initial fraction of
aromatic carbon (C) (ARC0,S) using only the
fixed effects from linear mixed-effect models.
Note that for log vHð Þ and log vOð Þ lines with dif-
ferent colors show variation with changing
CN0,S and fixed ARC0,S ¼ 0, while for
log τ þ Kð Þ and log rOð Þ lines with different col-
ors show variation with changing ARC0,S and
fixed CN0,S ¼ 0. Subscript ‘S’ denotes that the
predictors are scaled and centered to have
mean= 0 and SD= 1. The black dashed line in
panels (c) and (d) denotes the average tempera-
ture sensitivity observed for hydrolytic and ligni-
nolytic enzymes by Allison et al. (2018).
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by the positive effect of nonaromatic C acquisition on growth,
the negative effect of enzyme costs and litter recalcitrance, and
the negative effect of recycling necromass in the aromatic C pool.

All metrics shown in Fig. 3 also depended on the initial litter
C : N ratio (blue vs orange curves in Fig. 3), which was implemen-
ted via CUE in our model. A lower value of CN0 implies lower N
limitation, thus higher CUE and growth rate (dashed curves are all
higher than the solid curves in Fig. 3i–l). Ultimately, higher CUE
caused a larger fraction of decomposed C to be recycled as necro-
mass, stimulating the decomposition of aromatic C (Fig. 3e–h) and
decreasing lag time (Fig. 3a–d). Therefore, the effects of initial litter
CN0 on decomposition are all mediated by the feedback of CUE
and growth on the dynamics of aromatic C.

In Fig. 4(a), four examples of least-square fitting of the model
to total C and aromatic C loss data are shown. The selected data
sets span different climates and initial litter quality to illustrate
the range of behaviors in the data (and model output). The opti-
mal ligninolytic oxidation rate vO showed a similar pattern as in
Fig. 2(e–h), with a peak of ligninolytic enzyme activity during
late stages of decomposition, at c. 60–80% C loss (Fig. 4b). The
estimated lag time was lowest (τ ¼ 0) in the Shorea beccariana lit-
ter, which had the highest initial aromatic C among the four
litters; lag time was most delayed in the Pinus sylvestris litter,
which had the lowest initial aromatic C (Fig. 4b). Furthermore,
the CUE was lower in litter with higher CN0, and decreased as
decomposition proceeded because of ligninolysis costs (Fig. 4c).
These examples are representative of the typical model perfor-
mance, which was overall good, with r2 generally higher than 0.8
and rmse lower than 0.1 g C/g initial C (Fig. 5). Notably, the
two model variants – optimized vO vs time-invariant vO – per-
formed similarly well (Fig. 5).

The results of the linear mixed-effect model used to identify
the drivers of model parameters are shown in Fig. 6 (see also
Figs S3, S4, S5; Table S1). The lag time of ligninolysis decreased
with increasing initial aromatic C regardless of climate (Fig. 7a).
It also decreased in warmer climates at low initial aromatic C,
but increased in warmer climates at high initial aromatic C
(Fig. 7a). The cost of ligninolysis rO increased with increasing
initial aromatic C and decreased in warmer climates, though tem-
perature effects were most apparent at low initial aromatic C
(Fig. 7b). The hydrolytic rate vH increased in warmer conditions
for low values of CN0, but decreased for high CN0 (Fig. 7c). The
temporal average of the ligninolytic oxidation rate vO followed
the same patterns as vH (Fig. 7d).

To compare the temperature sensitivities of hydrolytic and lig-
ninolytic oxidation rates to observations, we used Q 10 values
reported by Allison et al. (2018). The temperature sensitivities of
both vH and vO at low CN0 were closer to the observed tempera-
ture sensitivities of hydrolytic and oxidative enzymes, respectively
(black dashed lines in Fig. 7c,d). The Q 10 values of the maxi-
mum ligninolytic oxidation (1:72� 0:16) rate were significantly
higher than those of hydrolytic decomposition (1:53� 0:11) and
the temporal average of ligninolytic oxidation (1:47� 0:26;
Fig. S6). Furthermore, the Q 10 of hydrolytic decomposition was
significantly higher than the Q 10 of the temporal average of ligni-
nolytic oxidation (Tables S2, S3).

Discussion

Our litter decomposition model is based on an eco-evolutionary
approach, assuming that ligninolysis is regulated to maximize the
fitness of the microbial community. Using this model, we eluci-
dated the effect of climate and litter quality on the decomposition
rates of aromatic (lignin and other phenolics) and nonaromatic C
compounds (soluble, cellulose, hemicellulose, proteins, and
lipids). Here, we start discussing these results from a methodolo-
gical perspective (Eco-evolutionary approach vs model with time-
invariant rate parameters section); next, we focus on the patterns
of ligninolytic oxidation (Simulated temporal patterns in optimal
ligninolytic activity section); then, the chemical and climatic dri-
vers are considered (Climate and litter quality controls ligninoly-
sis section), and finally, a broad discussion on the application of
eco-evolutionary principles in C cycling models is provided (Eco-
evolutionary dynamics in carbon cycling models section).

Eco-evolutionary approach vs model with time-invariant
rate parameters

Optimization approaches, such as the one proposed here, could
help reduce the degrees of freedom (and related equifinality
issues) of current, often over-parameterized models (Marsch-
mann et al., 2019; Harrison et al., 2021). If optimization pro-
vides time-dependent model parameters, it can also capture the
consequences of dynamic changes, such as alterations in enzyme
production resulting from changes in microbial community com-
position as decomposition progresses. This possibility motivated
our first question: whether the optimization model has higher
predictive power than an alternate model with a time-invariant
ligninolytic oxidation rate. We found that both models per-
formed well, and their BIC values were similar, even though the
model with time-invariant parameters has three fitting parameters
and the optimization model has only two (Fig. 5). This indicates
that the eco-evolutionary approach – substituting an uncon-
strained parameter with a maximization criterion (Eqn 5) – has
equivalent performance as the more traditional model. This result
is encouraging, as the optimization approach provides a frame-
work informed by ecological theory that includes tradeoffs
among microbial traits (here, ligninolytic capacity and C-use effi-
ciency) and predicts temporal trait variation without requiring
new observations for parametrization.

Simulated temporal patterns in optimal ligninolytic activity

Decomposition of the aromatic C pool increases the accessibility
of protected cellulose and proteins, but low-molecular size pro-
ducts of complex aromatic polymers, such as lignin, can also
actively enter metabolism to support microbial growth (del Cerro
et al., 2021). As a result, investment in ligninolytic enzymes
might yield dual benefits. While some microbial explicit litter
decomposition models have explored the effects of lignin-
mediated carbohydrate protection on uptake rates and microbial
C-use efficiency (Moorhead & Sinsabaugh, 2006; Manzoni et al.,
2021), none have investigated the emergent ligninolytic capacity
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that arises from maximizing cumulative growth rate. Our model
capitalizes on the dual influences of the aromatic C pool,
enabling us to predict optimal temporal variation in ligninolytic
oxidation (vO) during litter decay (Fig. 2).

Since vO serves as a proxy for overall ligninolytic enzyme activ-
ity, a direct comparison with observed enzyme activities (e.g. per-
oxidase, laccase, or polyphenol oxidase) is not straightforward,
because ligninolytic enzymes are multifaceted (Sinsabaugh, 2010)
and several enzymes may act together to decompose aromatic
compounds (Mori et al., 2023; Schimel, 2023). Despite these
methodological limitations, the simulated pattern of vO was qua-
litatively similar to the activities of peroxidase and laccase
enzymes reported in Huang et al. (2021) and Šnajdr et al. (2011;
Fig. S7). The only notable difference between observations and
model results was in the dataset by Huang et al. (2021), in which
enzyme activity exhibited an early peak that our model could not
predict. Such a peak is difficult to explain but is consistent with
the early loss of lignin in that particular dataset. Overall, this
independent evidence based on measured enzymatic activities
lends additional support for the predicted decomposition pat-
terns in the aromatic C pool.

Patterns in ligninolytic oxidation rate are explained by the con-
trols of hydrolytic decomposition, cost of ligninolysis, and initial
aromatic C, as these parameters combine the effects of climate,
microbial metabolic tradeoff, and litter chemistry (Fig. 3).
Depending on these parameters, the microbial community may
initiate production of ligninolytic enzymes already in early stages
of litter decay, or there might be a more or less long lag in ligni-
nolytic activity leading to the often observed initial accumulation
of aromatic C (Cotrufo et al., 2015; Barbi et al., 2020). When lit-
ter has a higher initial content of aromatic C, microorganisms
prioritize the removal of the aromatic C to access the nonaro-
matic C, resulting in higher optimal rates of ligninolytic oxida-
tion vO and reduced lag time (Fig. 3c,g). However,
microorganisms with a lower cost of ligninolysis, leading to
higher CUE, can achieve higher growth rates, thereby facilitating
increased investment in ligninolytic enzymes and subsequently
increasing vO (Fig. 3b,f). Notably, as the cost of ligninolysis is
reduced, the initial aromatic C threshold level at which the lag
time becomes zero is also lower (as illustrated in Fig. S8).

From the estimated parameters, we found a positive relation
between hydrolytic and mean ligninolytic oxidation rates (see
log vHð Þ vs log vOð Þ in Fig. S3; the range of these parameters is
also illustrated as shaded areas in Fig. 3) – implying that faster
hydrolysis is linked to faster ligninolysis. This coordination is
particularly relevant in tropical forests, where warm and humid
conditions prompt swift losses of labile litter pools, which in turn
can increase losses of the more recalcitrant litter pool, thereby
reducing the aromatic contribution to stable soil C. On the con-
trary, in cold climates and N-limited conditions, slow hydrolysis
may lead to delayed aromatic C oxidation and accumulation of
recalcitrant, aromatic residues. However, when hydrolytic C
acquisition is very rapid (high vH) or very slow (low vH), the
cumulative growth rate can only increase through decomposition
of the aromatic pool, necessitating an early increase in vO (i.e.
short lag time; see Fig. 3a,e). In reality, forcing low vH as we did

in the numerical analysis of Fig. 3 might not be realistic, because
hydrolytic enzymes are produced together with oxidative
enzymes. High vH is more likely to occur, and in that case it is
reasonable to expect – as predicted by the model and estimated
parameters – that ligninolytic capacity would also increase and
start earlier during decomposition.

Climate and litter quality controls ligninolysis

We found that the lag time (τ) decreased, even though the pre-
dicted cost of ligninolysis (rO) increased, with increasing initial aro-
matic C under all climatic conditions (red to green lines, Fig. 7a,
b). This implies that microorganisms decomposing litter with
higher initial aromatic C will invest early in ligninolytic enzymes
because the benefits of accessing nonaromatic C outweigh the costs
of ligninolysis. Furthermore, this effect was enhanced for N-poor
litter (significant negative ARC0 � CN0 term for τ in Fig. 6). By
contrast, the average ligninolytic oxidation rate decreased at a
higher initial C : N ratio, indicating that the average rate of aro-
matic C decomposition is slower in N-poor litter, consistent with
findings by Talbot & Treseder (2012), who reported a decrease in
lignin decay rate as litter C : N increased. Theoretically, in N-poor
litter, decomposers may benefit if oxidation of aromatic litter com-
ponents releases growth-limiting substrates, for example from
protein–tannin complexes. Such mining for tightly bound N may
be suppressed in N-rich litter (Craine et al., 2007). Taken together,
these results support the traditional hypothesis that microorganisms
consume easily degradable C during the early stages of litter decay
and later co-metabolize lignocellulose to access C and N from pro-
tected sugars and proteins (Berg & Staaf, 1980).

The effect of increasing temperature on lag time depended on
initial aromatic C. The lag time decreased in warmer climates for
high-quality litter (low initial aromatic C) but increased for low-
quality litter (high initial aromatic C) due to the decreasing cost
of ligninolysis with increasing temperature.

This study only included data on MAT, initial litter C : N
ratio, and initial proportion of aromatic C, which explained 10–
40% of the variance of the response variables. Other studies have
reported that soil pH, fungal diversity and community composi-
tion, fungi-to-bacteria ratio, and soil minerals (e.g. Mn, Fe) cor-
relate with aromatic C decomposition rates (Huang et al., 2023).
Here, we assumed that the effects of these potential predictors
(for which we do not have complete data) are captured by includ-
ing the data source as a random factor (which accounted for an
additional 40–60% of the variance of the response variables,
Table S1). In addition, our model does not account for microbial
adaptation under conditions of N limitation or N excess, which
could affect the relationship between ligninolytic oxidation and
the C : N ratio of litter. We leave the development of such a
model for a future contribution.

Warming accelerates microbial metabolism, but the sensitivity
of decomposition rates to temperature also depends on other fac-
tors, such as substrate quantity and quality (Davidson & Jans-
sens, 2006). We found that climate (MAT) and initial litter
quality (initial aromatic C and C : N) together controlled the
rates of hydrolysis vHð Þ and ligninolytic oxidation (vO) and
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max vOð Þ. The Q 10 value of hydrolysis was higher than that of
average ligninolytic oxidation, as also shown in empirical studies
in litter (Nottingham et al., 2016; Allison et al., 2018; Tan
et al., 2020). However, the Q 10 of maximum ligninolytic oxida-
tion was even higher, suggesting that ligninolytic enzymes exhibit
varying temperature sensitivity at different stages of litter decay
(e.g. Duboc et al., 2014). In soils, ligninolytic enzymes can have
higher Q 10 than hydrolytic enzymes (Davidson & Janssens, 2006;
Wetterstedt et al., 2010; Wang et al., 2012), consistent with our
results for maximum ligninolytic oxidation rate (Fig. 7).

Eco-evolutionary dynamics in carbon cycling models

The microbial engine that drives recycling of C and nutrients
continuously adapts to the local conditions. For microbial sys-
tems, the evolutionary time scale is intermingled with ecological
processes (changes in community composition), giving rise to
eco-evolutionary dynamics at the community scale (Loreau
et al., 2023; Martiny et al., 2023). These eco-evolutionary
dynamics can feedback on soil C cycling in ways that are still not
fully explored (Abs et al., 2022). Here, we found wide ranges of
estimated hydrolytic rates, cost of ligninolysis, and of the opti-
mized temporal variation in ligninolytic oxidation rates, making
a strong case against using fixed values of these parameters in soil
and ecosystem models. Therefore, developing a framework
accounting for adaptation of microbial resource acquisition stra-
tegies in a tractable manner that can be upscaled and integrated
into a large-scale model is a much-needed advancement.

One major challenge in modelling microbial adaptation is the
mathematical representation of eco-evolutionary dynamics govern-
ing the variation in parameters reflecting the plasticity of microbial
functional traits in individual taxa, or the breadth of community
composition variations driving community-level trait variation.
Recent literature has proposed various mathematical approaches
that employ optimality principles to elucidate optimal tradeoffs in
organism life-history traits, thereby establishing a link between
eco-evolutionary dynamics and shifting environmental conditions.
For example, using an adaptive dynamics framework, Abs
et al. (2022) showed that when tradeoffs between growth and
extracellular enzyme production are accounted for, estimated losses
of global C stocks increase. A simpler optimal control approach by
Manzoni et al. (2023) showed that the optimal foraging strategy
that maximizes microbial growth rate in a competitive environ-
ment favors high rates of resource uptake and low growth effi-
ciency. These principles, rooted in optimizing resource allocation,
extend beyond microbial systems and have been applied to plants
(Feng et al., 2022; Bassiouni et al., 2023), underscoring their
potential generality across diverse ecological contexts.

Conclusion

We developed a novel litter decomposition model based on an eco-
evolutionary approach that maximizes mean microbial growth rate
by finding the optimal ligninolytic activity. This model, constrained
by >200 litter mass loss datasets, was used to assess the rate and
starting time of decomposition of aromatic C (i.e. lignin and other

phenolics) in plant litter. Climate and litter chemical quality
interacted in controlling aromatic C decomposition. Specifi-
cally, warmer conditions accelerated decomposition rates, shor-
tened the lag time of ligninolytic enzyme expression, and
enhanced microbial C-use efficiency by reducing the predicted
costs of ligninolysis. Furthermore, higher contents of aromatic
C promoted its decomposition under any climatic conditions.
We conclude that for a better understanding of aromatic C
decomposition and stabilization in soil, it is crucial to consider
interactions among climate, litter chemistry, and microbial
metabolism. Eco-evolutionary approaches, such as the one pro-
posed here, offer an avenue for capturing these interactions with
less complex models that are easier to parameterize.
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