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Abstract
1. Camera traps have transformed the way we monitor wildlife and are now rou-

tinely used to address questions from a wide range of ecological and conservation 
aspects. Sampling design optimization and a better understanding of drivers de-
termining the precision of detection rates (i.e. the number of detections per unit 
of effort) are important methodological issues. Little attention has been focused 
on the effect of placing more than one camera on each sampling point (hereafter, 
clustered design), and/or rotating (i.e. redeploying) the cameras to new place-
ments during the sampling period.

2. We explored the differences in the precision of detection rates between clus-
tered vs. single camera designs when cameras remained in the same location dur-
ing the study. Furthermore, the effect of keeping the placement of cameras fixed 
or rotating them (i.e. moving them to new locations during the sampling period), 
when a limited number of camera devices are available, was also evaluated. We 
used simulations and field data to test differences in detection rate precision for 
the different sampling designs. We simulated three different population distribu-
tions (random, trail- based and aggregated) and three abundance scenarios. The 
simulations were validated with a field experiment focused on eight species with 
different behavioural traits, including artiodactyls, carnivores, lagomorphs, and 
birds.

3. When a fixed number of sampling points were monitored simultaneously, clus-
tered designs generally resulted in an increase in the precision of detection rates 
compared to single designs. The absolute reduction in the coefficient of varia-
tion by clustered designs was on average 0.07 units (min: 0.01, max: 0.15), which 
represents an average relative reduction in CV of 31% (min:6%, max:44%). An im-
provement in precision was also observed as a higher number of sampling points 
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1  |  INTRODUC TION

Camera traps are used around the world by scientists to study wild-
life populations in a wide range of habitats and latitudes. Constant 
progress in technology, falling prices over time (Agha et al., 2018), 
and advances in data management software (Forrester et al., 2016; 
Scotson et al., 2017; Vélez et al., 2022) have enabled the spread of 
their use in wildlife management and conservation. Camera traps 
are now used to address questions from a wide range of ecologi-
cal, management, and conservation aspects (Delisle et al., 2021; 
ENETWILD- consortium et al., 2023).

The detection of an individual by a camera trap is determined 
by a plethora of factors (Hofmeester et al., 2019). The detection 
process has been generally referred to as the combination of the 
ecological (i.e. the site is occupied or not by the species) and ob-
servational processes (i.e. the species is detected or not given that 
it is present). Although the ecological process is out of the scope 
of human decisions, the observational process is not. Sampling de-
sign, including camera trap placement and settings, camera model 
and/or brand, survey length, number of placements, and use of 
lures and/or attractants, among others, determine the detection 
rate (i.e. the number of detections per unit of effort) in camera 
trapping studies (du Preez et al., 2014; Hofmeester et al., 2019; 
Kays et al., 2020, 2021; Palencia, Vicente, et al., 2022). Survey 
effort is typically measured as camera days (i.e. the number of 
camera traps used multiplied by the number of days they were 
in operation, Rovero & Zimmermann, 2016). The detection rate 
can be also referred to as the encounter rate, detection frequency, 
photographic rate or passage rate. Direct indices are frequently 
derived from detection rates as basic descriptors of species' pres-
ence—such as naïve occupancy (proportion of sampling points 
where a species has been observed)—and species' abundance—
such as the relative abundance index, RAIs, (e.g. detection rate 
specified per 100 days; Carbone et al., 2001; Palmer et al., 2018; 

Sollmann et al., 2013). However, detection rates do not account 
for imperfect detection (i.e. individuals/species present but not 
detected). Thus, the comparison of RAIs across time, species, 
space, or others is not reliable due to a variation in the detection 
rate that cannot be unambiguously attributed to actual differences 
in abundance but may have arisen from differences in detection 
(e.g. Anderson, 2001; Hofmeester et al., 2019). Similarly, naïve oc-
cupancy will result in underestimates of true occupancy due to 
false absences (i.e. species present but not detected, MacKenzie 
et al., 2002). More robust methodologies that account for imper-
fect detection when estimating occupancy and abundance have 
been described and are recommended. In general, the large vari-
ability in the detection rate among sampling points has been ac-
knowledged, and usually, it determines most of the precision in the 
ecological parameter (e.g. population density, Howe et al., 2017; 
Palencia, Barroso, et al., 2022; Palencia et al., 2021). More precise 
detection rates will subsequently imply an improvement in preci-
sion in the ecological parameter.

Survey design has been a common research topic in camera 
trapping studies (Guillera- Arroita & Lahoz- Monfort, 2012; Hamel 
et al., 2013; Kays et al., 2020, 2021; Rich et al., 2019), both to opti-
mize the detection process, improve the precision of the estimates 
and to better understand the drivers that determine the detec-
tion capability of the cameras (Jacobs & Ausband, 2018; Palencia, 
Vicente, et al., 2022). Designs based on targeted placements and 
the use of lures and attractants could be used to increase detec-
tion probability (du Preez et al., 2014; Stewart et al., 2019; Tourani 
et al., 2020); but random designs are mandatory to allow unbiased 
estimation for many analytical methods (e.g. Howe et al., 2017; 
Moeller et al., 2018; Nakashima et al., 2018; Rowcliffe et al., 2008). 
Additionally, both in targeted/lured and random designs, the most 
common practice is to place only one camera at each sampling 
point. The cost associated with the equipment usually limits the 
total number of cameras available to one per sampling point, 

was used for all population distributions and sampling designs tested. When a 
fixed number of cameras were available, rotating the cameras to independent 
locations improved precision (an absolute reduction of 0.19 CV units) when mon-
itoring aggregated populations, but not for random and trail- based population 
distributions.

4. Synthesis and applications: Our research provides a guideline for wildlife managers 
and researchers to improve the precision of camera trap detection rates and op-
timize resource allocation. In general, the study design should accommodate the 
behaviour of the target species (e.g. spatial aggregation and abundance), monitor-
ing program logistic resources (both human and economic) and study area char-
acteristics (e.g. accessibility and vandalism).

K E Y W O R D S
abundance, camera traps, ecology, encounter rate, imperfect detection, sampling design, 
trapping rate, wildlife
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to eventually maximize the number of sampling points sampled 
and cover wider areas. Exceptionally, two cameras per sampling 
point are usually placed when individual identification of animals 
is needed (Green et al., 2020); but in these settings, cameras are 
placed facing each other to record pictures of both sides of the 
animals, and the microsite area surveyed overlaps.

The improvements in detectability due to the number of place-
ments, survey duration and/or camera trap settings have been 
broadly explored (Kays et al., 2020; Palencia, Barroso, et al., 2022; 
Palencia, Vicente, et al., 2022), but little research has been con-
ducted to assess the extent to which data collected at a single 
point are a consistent and repeatable measure of species presence 
and use of the habitat patch, and lastly, other ecological- related 
parameters (Hofmeester et al., 2021; Kays et al., 2021; Wong 
et al., 2019). Recent studies have evidenced the high variability in 
detection rate at small spatial scales (Evans et al., 2019; Hofmeester 
et al., 2021; Kolowski et al., 2021; Kolowski & Forrester, 2017). 
Across five focal species, Kolowski et al. (2021) evidenced a nearly 
total absence of spatial autocorrelation (i.e. data collected at one 
given site are independent to data collected at neighbouring sites) 
in detection rates at any distance, for any species in any season 
in a high- intensity grid with less than 20 m inter- camera spacing. 
Additionally, the authors found that local covariates that may 
influence detectability explained only a small proportion of the 
variation in the detection rates (Kolowski et al., 2021). A lack of 
spatial autocorrelation in cameras more than 25 m apart was also 
reported for mammals in a rainforest (Kays et al., 2010), and an 
empirical study in which camera traps were placed 10 m apart con-
cluded that single cameras were not likely to represent the ani-
mal activity of the surrounding area for most of the species (Kays 
et al., 2021). All these results suggest a high level of unpredictabil-
ity and randomness in the observation process, especially when 
attractants/bait are not used. While the high variation at smaller 
scales has been reported, little attention has been paid to the ef-
fect of placing multiple cameras at each sampling point to repre-
sent an average detection rate (hereafter clustered designs). Few 
studies have shown an improvement in occupancy and richness 
estimates when using clustered designs (Pease et al., 2016; Wong 
et al., 2019). Further research is needed to better understand sam-
pling design strategies to improve the precision of estimates, es-
pecially concerning the potential reduction in the detection rate 
variance. In this respect, while its utility has been acknowledged 
(Kays et al., 2021), the effect of clustered designs on the precision 
of the detection rate has been overlooked.

From a practical point of view, clustered designs could become 
prohibitive due to the large number of camera devices needed. If a 
limited number of camera devices is available, a rotating approach 
(i.e. moving the camera location during the sampling period) could 
be a more flexible procedure to transition from a single design to a 
clustered one (ENETWILD- consortium et al., 2023). In this respect, 
a trade- off between the length of the monitoring period at sampling 
points and the number of sampling points emerges. The cost of the 
devices and the human effort needed to arrive at predetermined 

sampling points limit the number of camera traps and relocations to 
different sampling points in practice, respectively (Fuller et al., 2022; 
Si et al., 2014). However, it has not been investigated if rotating the 
cameras inside a cluster improves the precision of detection rate 
estimates compared to rotating the cameras to independent place-
ments or not moving the cameras at all.

Considering all the above, the further investigation of sampling 
design decisions to obtain more precise detection rates will con-
tribute to improving the precision and accuracy of the ecological 
parameter estimated (e.g. abundance or occupancy, Hofmeester 
et al., 2021; Howe et al., 2017; Kays et al., 2021; Palencia, Barroso, 
et al., 2022). Here, working in a simulation framework and an exper-
imental field study, our objective was to assess the improvement in 
detection rate precision (i) when considering clustered designs given 
a fixed number of sampling points and (ii) when a given number of 
devices are available, comparing rotating cameras to new locations 
against keeping fixed camera placements. We hypothesized that 
clustered designs would provide a better representation of the pres-
ence and activity of the animals in the surrounding area of each sam-
pling point and would thus increase the precision of detection rate 
estimates. Similarly, we expected that rotating the cameras to new 
placements (independent and/or clustered ones) would also increase 
the precision of detection rate estimates.

2 | MATERIALS AND METHODS

2.1  |  Simulations

In a 2- dimensional space of 25 km2 (5 × 5 km), we simulated three 
spatial point processes representing animal distribution, three dif-
ferent point intensities representing animal abundance scenarios, 
and two design strategies (static and rotating, see details below). In 
this simulation, each point represents a location visited by an animal.

2.1.1  |  Spatial point process

We simulated random, trail- based, and aggregated spatial point pro-
cesses representing animal distributions (Figure 1). In the random 
scenario, the points were randomly distributed through the study 
area. In the trail- based scenario, we first simulated a set of 75 ran-
dom lines through the study area. Then, we distributed 20% of the 
points in 35 m buffers around those lines and the remaining 80% 
were randomly distributed throughout the study area. This distri-
bution of points was based on the use of linear features reported 
for some mammals. For example, 16% of the GPS- collared Iberian 
lynx (Lynx pardinus) locations were found on trails and roads (Garrote 
et al., 2021), thus we used 20% as a reference value. For compari-
son purposes, we also simulated a trail- based scenario in which 50% 
of the points were distributed around the lines, and the remaining 
50% were randomly distributed, see Appendix S1 in Supporting 
Information for further details. In the aggregated scenario, we 
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1652  |    PALENCIA et al.

simulated 10 circular buffers with a radius of 500 m, within which we 
used a Poisson process to generate aggregated points. The centres 
of the buffers were randomly distributed. Each scenario was rep-
licated 1000 times. Finally, we also simulated three intensities for 
the point process (low, 90,000, medium; 180,000 and high: 360,000 
points), representing increasing levels of abundance.

The points were then aggregated into 10 × 10 m squares. Thus, a 
square with a point count of 5 could represent 5 different individu-
als using this square, or a single individual using the square 5 times. 
This approximation represents the type of data recorded in camera 
trapping: for 5 records of a species at the same camera trap, we do 
not know, in general, whether they are 5 different individuals or the 
same individual recorded five times. This is always the case when 
individual recognition is not possible due to the absence of natural 
or artificial marks.

2.1.2  |  Camera trap designs

We compared static and rotated designs. In the former, all the sam-
pling points were monitored for the full duration of the survey pe-
riod (cameras remained in the same location the entire period). In the 
latter, the cameras were rotated (moved) to new, either independent 
or clustered, placements during the survey period, resulting in each 
sampling point only being sampled during part of the survey period.

Fixed number of sampling points: Static approach
Regular grids (5 × 5, 6 × 6, 7 × 7, and 8 × 8) of sampling points (i.e. cam-
era sites) were distributed covering the entire study area (Figure 2). 
A 10 × 10 m square (grid cell) was considered as the area sampled 
by a camera. Thus, all the point locations generated by the spatial 
process and that fell in a certain square represented the number of 
detections of that camera (i.e. perfect detection in the cell was as-
sumed). In the single design, we placed one camera (i.e. 10 × 10 m 
grid cell) per sampling point. In the clustered design, we placed two 
additional cameras in a buffer of 50 m radius around the location 
where the first camera was located, resulting in three cameras (i.e. 3 
grid cells) per sampling point in clustered designs, (Figure 2—upper 

panels). The cameras remained in the same location throughout the 
survey period. Using this simulation we also compared clustered and 
single designs in terms of the number of cameras, and not only sam-
pling points (i.e. 75 cameras deployed in a single design −75 sampling 
points- , or deployed in a clustered design −25 sampling points).

Fixed number of camera devices: Rotated approach
We also evaluated which rotation strategy resulted in the highest 
precision when a fixed number of devices were available (Figure 2—
bottom panels). Specifically, we compared three regular grid designs 
under a scenario in which 15 cameras were available: (i) a 3 × 5 grid 
in which the cameras were fixed in the 15 initial locations (control 
scenario due to its cost- effectiveness), (ii) a rotating survey in which 
the 15 cameras were moved to new locations twice to finally moni-
tor 45 independent sampling points (5 × 9 grid), and (iii) a rotating 
survey in which the 15 cameras were moved twice to new locations 
inside the 50 m buffer to finally monitor 45 locations clustered on 15 
independent sampling points (3 × 5 grid). In the rotating approaches, 
we re- assigned the point count for each camera (square) considering 
that the survey effort of this design would be one third of the sur-
vey effort simulated. Specifically, we generated a number following 
a binomial distribution in which the size corresponds to the number 
of points counted in this square during the entire monitoring period, 
and the probability of success 1/3.

The R packages used to run the simulation were raster 
(Robert, 2023), dplyr (Wickham et al., 2023), sp (Pebesma & 
Bivand, 2005), data. table (Dowle & Srinivasan, 2021), rgeos (Bivand 
& Rundel, 2021) and spatstat.random (Baddeley & Turner, 2005). 
Simulations were coded in R (R Core Team, 2022), and the code to 
replicate the simulations can be found in Appendix S2.

2.2  |  Field data experience

We sampled one natural area to evaluate the performance of 
clustered and rotated designs in field settings. The field experi-
ment was carried out in Cabañeros National Park (39.3964 N, 
−4.4872 W, Central Spain, Figure 3). The administrative services 

F I G U R E  1  Examples of simulated spatial point patterns: random (left panel), trail- based (central panel), and aggregated (right panel). The 
study area is divided into 10 × 10 m squares and the scale indicates the number of points counted on each one.
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    |  1653PALENCIA et al.

of the National Parke authorized the experiment. The land is oc-
cupied mainly by three ecosystems: Iberian savannah- like habitats 
that are dominated by scattered Quercus spp trees (commonly 
known as “dehesa”), dense scrubland dominated by Cistus spp., 
Salvia rosmarinus, Erica spp., Arbutus unedo, and Phyllirea angusti-
folia, and some patches covered by Quercus faginea, Q. rotundifolia 
and Q. suber forests. From 28 February to 5 May 2022, we de-
ployed a camera trap grid in the ecotone between dense scrub-
land and dehesa with 60 sampling points 500 m apart (Figure 3). 
Eighteen of these points were deployed following a clustered 
design containing three cameras per station in a 50 m radius 
(Figure 3). StrikeForce and ReconForce Browning cameras were 
used (the same camera model was used in all clusters). Ethical ap-
proval was not required.

All cameras were placed 40 cm above the ground and pro-
grammed to take images when activated by an animal in eight- shot 

groups. For the field data, independent detections were defined as 
images recorded more than 10 min apart.

2.3  |  Data analysis

To estimate the standard error of the detection rate, a non- parametric 
bootstrap (resampling sampling points with replacement) with 
999 iterations was implemented (Buckland et al., 2001; Rowcliffe 
et al., 2008). The coefficient of variation (CV) was estimated by divid-
ing the standard error of the detection rate by the mean detection rate. 
In clustered designs (both in static and rotated approaches), we first 
estimated the average mean of detections on each sampling point (i.e. 
arithmetic mean of the detection rate of the three cameras in a cluster), 
to finally estimate the CV as described above. We considered that a 
given design had a reasonable effect on precision when (i) it reduced 

F I G U R E  2  Single and clustered designs compared. The upper left panel represents a single design in which one camera trap (cross) is 
placed on each sampling point. The upper central panel represents a clustered design in which three camera traps (crosses) were placed in 
a buffer of a 50- m radius. The right- upper panel represents a zoom to one clustered sampling point in which three cameras are placed in a 
buffer of 50 m radius. The bottom panels represent three different design strategies when 15 camera devices are available. The bottom left 
panel represents a design in which cameras are placed in a fixed location on the 3 × 5 single- regular grid for the entire survey period. The 
bottom- central penal represents a design in which cameras were rotated twice during the survey period but within a 50 m buffer around 
the original locations on a 3 × 5 clustered regular grid; cameras were first placed on red points and subsequently moved to blue and green 
locations. The bottom- right panel represents a design in which cameras were rotated twice during the survey period to finally sample a 9 × 5 
single- regular grid; cameras were first placed on red points and subsequently moved to blue and green locations. For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.
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1654  |    PALENCIA et al.

CV by 0.1 or more in absolute terms (e.g. CV reduced from 0.3 to 0.1); 
or (ii) it reduced CV by 20% or more in relative terms (e.g. CV reduced 
from 0.15 to 0.1, relative reduction of 33%). Thus, a reduction in abso-
lute CV ≥0.1 or a relative reduction in CV ≥20% would support the use 
of this specific design to increase precision. In this analysis, we only 
considered those simulation replicates in which animals were detected 
at more than one sampling point.

2.3.1  |  Specific considerations on field data

In addition to the analytical procedure described above, specific 
analyses were applied to field data to assess the population level of 
aggregation. First, for each species with a minimum of 20 detections 
(see Section 3), we assessed aggregation in counts by fitting Poisson 
or negative binomial distribution models to the detection rate (in the 
single designs) by using fitdistrplus R package (Delignette- Muller & 
Dutang, 2015).

Second, similarly to the static approach described above, we 
compared the CV obtained at the clustered sampling points, against 
the CV obtained at the same number of sampling points, but consid-
ering single cameras (Figure 3).

Third, to explore the effect of a rotated approach on the field 
data, we subsampled the detection rates in three different ways 
to recreate a scenario in which only 15 camera devices were used. 
Specifically, (i) we randomly selected 15 sampling points and con-
sidered the entire monitoring period (66 consecutive days); (ii) we 
randomly selected three groups of 15 sampling points and consid-
ered a monitoring period of 22 days for each one (thus, similarly 
to the simulation, created a dataset where cameras were rotated 
to a new position every 22 days); and (iii) from the 15 sampling 
points in which a clustered design was used, we randomly selected 
one camera of each cluster and considered a monitoring period of 
22 days (thus, similarly to the simulation, created a dataset where 
cameras were rotated to a new position inside the cluster every 
22 days; Figure 2).

F I G U R E  3  Fieldwork experiment carried out in Cabañeros National Park, Spain. Bottom- right panel: location of the study area (red 
square) in Spain. Upper- right panel: Cabañeros National Park boundaries (white line) and location of the monitored area (blue square). Left 
panel: location of the sampling points (camera traps). Blue represents single sampling point (i.e. one camera per sampling point), while yellow 
represents clustered sampling points (i.e. three cameras per sampling point in a 50 m radius plot). Background maps and orthophotos from 
Google Maps were used. For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.
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3  |  RESULTS

3.1  |  Fixed number of sampling points: Static 
approach

3.1.1  |  Simulations

When the same number of sampling points was monitored, the clus-
tered design generally resulted in a slight increase in precision (i.e. lower 
coefficients of variation—CV) compared with single designs (Figure 4). 
On average, clustered designs reduced the CV by 0.08 under random 
animal distribution (relative reduction of 42.57%), by 0.09 under the 
trail- based animal distribution (relative reduction of 40.91%), and by 
0.04 for aggregated animal distribution (relative reduction of 9.53%) 
(Appendix S3). We also observed that the difference in precision be-
tween clustered and single designs became smaller as underlying 
point intensity increased (considering the three distributions simu-
lated, clustered designs reduced the CV by 0.10 - a 33.30% relative 
reduction-  when 90,000 points were simulated, by 0.07 for 180,000 
points - a 32.07% relative reduction- , and by 0.04 when 360,000 
points were simulated - a 27.64% relative reduction- , Appendix S3). 
The naturally expected improvement in precision was also observed 
with a higher number of sampling points for all the point distributions 
and sampling designs (Figure 4). The average CV decreased from 0.35 

(single) and 0.26 (clustered) when monitoring 25 sampling points, to 
0.20 (single) and 0.15 (clustered) when monitoring 64 sampling points 
(Appendix S3). For random and trail- based distributions, similar values 
were obtained when a similar number of cameras were used, regard-
less if they were distributed in a single or cluster design. For example, 
the CV obtained in a clustered design with 25 sampling points (i.e. 75 
cameras) was equivalent to a single design with 64 sampling points (i.e. 
64 cameras; Figure 4). In contrast, for aggregated animal distributions, 
single- design deployments resulted in more precise detection rates in 
comparison to clustered designs (Appendix S3).

3.1.2  |  Field data

We included those species in the analysis for which more than 20 
independent encounters were recorded: red deer (Cervus elaphus), 
wild boar (Sus scrofa), roe deer (Capreolus capreolus), red fox (Vulpes 
vulpes), stone marten (Martes foina), badger (Meles meles), Iberian 
hare (Lepus granatensis), and red- legged partridge (Alectoris rufa). 
Three clustered sampling points were discarded due to camera fail-
ures. Therefore, we analysed 45 single sampling points (45 × 1), 15 
clustered sampling points (15 × 3) to account for an equivalent num-
ber of camera devices, and 15 single sampling points (15 × 1) to ac-
count for an equivalent number of sampling points.

F I G U R E  4  Precision results from the simulations. The coefficient of variation (y- axis) is plotted against the number of sampling points 
(x- axis) for the three distribution settings (random left panels, trail- based central panels and aggregated right panels), and the three- point 
intensity scenarios (90,000 points—upper panels, 180,000 points—central panels, and 360,000 points—bottom panels). While in single 
designs only one camera was placed at each sampling point, in the cluster ones, three cameras were placed in each sampling point. For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.
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When assessing population aggregation, the negative binomial 
distribution was supported against the Poisson distribution for the 
detection rates of all species, indicating a high level of aggregation in 
all the species (Figure 5). The estimated k overdispersion parameter 
ranged from 0.11 (badger) to 4.18 (wild boar) (the lower the k pa-
rameter, the higher the overdispersion; Bolker, 2008). The precision 
of the detection rate increased as the aggregation decreased for all 
species and sampling designs. The clustered design was generally 
more precise (CV = 0.33) than the single design (CV = 0.46) when 
monitoring 15 sampling points. When comparing 45 cameras dis-
tributed in a single design (45 × 1, Figure 5), or aggregated into a clus-
tered design (i.e. 15 × 3, Figure 5), the former returns a slightly lower 

(ca. 0.05 lower) CV, especially when the aggregation was not very 
high (i.e. k overdispersion parameter was higher than 0.5, Figure 5).

3.2  |  Fixed number of camera devices: 
Rotated approach

3.2.1  |  Simulations

All these results refer to simulations in which 15 cameras (devices) 
were available. When aggregated distributions were simulated, keep-
ing the camera trap locations fixed or rotating the cameras inside the 

F I G U R E  5  Relation between population aggregation and precision in real populations. The upper panels show two scenarios of 
population aggregation, from highly aggregated (top left, partridge, k = 0.14) to less aggregated (top right, wild boar, k = 4.18). In the upper 
panels, the size of the circle is proportional to the number of encounters at the trap on the centre of the circle. The lower panel represents 
the increase in precision (lower coefficient of variation) in relation to a decrease in population aggregation (higher k- values). The K- value is 
the overdispersion parameter of a negative binomial distribution and measured the degree of aggregation in the data (here, the aggregation 
on the encounter histories of the 45 cameras), the lower the k, the higher the overdispersion. The lines represent a potential fit to the 
data (CV = a·kb). Silhouettes represent the target species from the most aggregated (left) to the least aggregated (right): badger, red- legged 
partridge, Iberian hare, stone marten, roe deer, red fox, red deer, and wild boar. For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.
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    |  1657PALENCIA et al.

cluster resulted in an average CV of 0.69 in both cases. However, we 
observed an increase in precision when rotating cameras to independ-
ent placements (Figure 6); we obtained an average CV of 0.50 (i.e. a re-
duction of 0.19 in CV, Appendix S3). For trail- based and random point 
distributions, maintaining the location of the cameras, rotating them 
in the cluster, or rotating them to independent locations resulted in 

similar CVs (Figure 6). For instance, with low- point intensity and ran-
dom point distribution, the CV obtained was 0.43 when the cameras 
were kept in the same location, and 0.44 when they were rotated in-
side the cluster or to independent placements (Figure 6, Appendix S3).

3.2.2  |  Field data

Regarding the field data, rotating the cameras to independent place-
ments resulted in the lowest CV (on average, 0.30), while rotating 
inside the cluster resulted in a CV of 0.40, and keeping the cameras 
fixed resulted in a CV of 0.32 (Figure 6). Rotating the cameras to 
independent locations returned the lowest CV in red deer, red par-
tridge, and wild boar (Figure 6). Alternatively, keeping the location 
of the cameras fixed during the entire survey period returned the 
lowest CV for the Iberian hare and red fox (Figure 6).

4  |  DISCUSSION

Working in a simulated framework and with field data, we illustrated 
that clustered designs slightly improve precision in camera trap detec-
tion rates when a constant number of sampling points are monitored 
simultaneously (cameras remained in the same location the entire sur-
vey period) regardless of how animals are distributed over a study area 
(Figures 4 and 5). When a limited number of camera devices is available, 
rotating (moving) cameras to independent placements could be desir-
able to increase precision for spatially aggregated populations because 
we found a reduction of 0.2 units in CV with this design (Figure 6).

Previous studies have described the absence of spatial autocor-
relation in capture rates even at small (10–100 m) distances (Kays 
et al., 2010; Kolowski et al., 2021), and it has been recommended 
to place multiple cameras at each sampling point to obtain an av-
erage value for the habitat patch and minimize bias associated with 
single locations (Hofmeester et al., 2021; Kays et al., 2021). Our 
study corroborates these recommendations, both for simulated 
and empirical data. We found high variability in detection rates 

F I G U R E  6  Precision obtained when using 15 camera traps, 
where the total amount of effort is the same in all designs. Orange 
represents a design in which the 15 cameras were moved to new 
locations within the cluster during the sampling period to finally 
sample a 3 × 5 clustered regular grid. Green represents a design in 
which the 15 cameras are kept fixed in the same position during the 
entire sampling period to finally sample a 3 × 5 single- regular grid. 
Blue represents a design in which the 15 cameras were moved to 
new independent locations during the sampling period to finally 
sample a 5 × 9 single- regular grid. The three upper panels represent 
simulation results under three scenarios of point intensity, from the 
lower (upper panel) to the higher (bottom panel). Results obtained 
in the field study are shown in the bottom panel, including the 
Iberian hare (Lepus granatensis), red deer (Cervus elaphus), red fox 
(Vulpes vulpes), partridge (Alectoris rufa) and wild boar (Sus scrofa). 
For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.
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among the clustered cameras (i.e. cameras placed close together, 
a 50 m radius buffer in this study, Figure 1). The intra- cluster vari-
ability corroborates the convenience of clustered designs to better 
represent the species' use of the sampling point and surroundings. 
On the other hand, the inter- cluster variability in detection rates 
was still high, thus the improvement in precision was relatively low 
(lower than 0.1 units in CV for all the spatial point patterns simu-
lated, Figure 4). More than three cameras per sampling point will in-
crease the precision - and the difference between single and cluster 
designs- , but such an approach would likely not be feasible due to 
time and cost restrictions. The use of multiple cameras per sampling 
point increases the likelihood that at least one of them is situated 
in a site that is used by the species (Hofmeester et al., 2021). This 
is especially convenient in occupancy studies targeted to rare and/
or low- detectable species. In line with our results, previous studies 
have shown that placing at least two cameras per sampling point 
increased the accuracy and precision of occupancy estimates (Evans 
et al., 2019; Pease et al., 2016; Wong et al., 2019). Technical devel-
opments that increase the camera detection zone (e.g. 360° field of 
view) and/or a system that allows the camera to rotate on its main 
axis during a deployment could contribute to more representative 
and cost- efficient monitoring.

Both in clustered and single settings, an increase in precision was 
observed when increasing the number of sampling points (Figures 4 
and 5). Previous studies have shown a relationship between pop-
ulation aggregation and precision (Palencia, Barroso, et al., 2022; 
Rowcliffe et al., 2008), suggesting that for a desired level of preci-
sion, the number of sampling points needed should increase with 
population aggregation. Our empirical data from eight different spe-
cies corroborated this pattern, as we found the highest precision for 
the species with the lowest aggregation (i.e. wild boar—k overdisper-
sion parameter of 4.18, Figure 5). Similarly, we obtained the lowest 
precision for species with high aggregation such as Iberian hare, red 
partridge, and badger (k overdispersion parameter lower than 0.5; 
Figure 5). In this respect, the high level of population aggregation 
reinforces the need to monitor a minimum of 30–40 sampling points 
for most species to obtain a coefficient of variation lower than 0.2 
(Palencia, Barroso, et al., 2022).

We also observed similar precision between single and clus-
tered designs, when deploying a given number of camera traps 
(not sampling points) simultaneously (and not rotating) and moni-
toring random or trail- based distributions (Figure 4, Appendix S1). 
From the practical point of view, clustered designs provide the 
easiest field implementation, and decrease the human power 
and time needed during fieldwork as a lower number of sampling 
points need to be visited. This could be especially relevant in areas 
with low human accessibility. On the other hand, we could hy-
pothesize that the main disadvantage of clustered designs could 
be a higher risk of a cluster being affected by vandalism due to the 
proximity of cameras, but there is still no evidence in this regard. 
On the contrary, simulations suggested that deploying static cam-
eras following a single design (i.e. maximizing the number of sam-
pling points) could be preferred in comparison to clustered designs 

when monitoring aggregated populations (Figure 4). When mon-
itoring aggregated distributions, increasing the number of sam-
pling points would be desirable to better reflect the areas without 
species presence, but also those with high species abundance 
(Figure 1). Thus, the large- scale population variability is higher 
and a higher number of sampling points is needed to capture this 
variability. On the contrary, in random and trail- based scenarios, 
the small- scale variability is higher relative to the large- scale vari-
ability (Figure 1), and thus clustered designs are more convenient 
to deal with small- scale variability (Figures 4 and 5). Concerning 
the field data, we observed that the precision was equivalent (ca. 
0.05 difference in CVs) between deploying 45 cameras following 
a single design or clustering them, especially when the aggrega-
tion of the population was not very high (i.e. k overdispersion pa-
rameter >0.5, Figure 5). For example, in the red deer population, 
we obtained a coefficient of variation of 0.14 when monitoring 
45 single sampling points, and a coefficient of variation of 0.13 
when monitoring 15 clustered sampling points (Figure 5). Finally, 
we also observed that as the intensity of the point pattern in-
creased, the difference in precision between single and clustered 
designs became smaller (Figure 5). This result reinforced the need 
to account for the abundance of the underlying population when 
defining the study design. Under high- abundance scenarios, the 
animals will use a higher proportion of the available space (not 
only high- quality habitat), and thus, the small- scale spatial vari-
ation in detection rates might be reduced. It is worth mention-
ing that we simulated perfect detection in the grid cell (10 × 10 m 
square), which is considerably higher than the area effectively 
monitored with a camera trap (Palencia, Barroso, et al., 2022). This 
assumption does not compromise the comparison among sampling 
designs (perfect detection was assumed in all of them) and allowed 
us to optimize computing resources when running the simulations.

We also explored which design strategy returned the most pre-
cise estimates when the number of camera trap devices is limited 
(as it usually is in real- world situations) by considering a scenario 
in which 15 camera devices were available. From the simulation 
results, we observed that rotating the cameras to independent 
sampling points (single designs) returns a strong improvement in 
precision for aggregated populations (reduction by 0.20 in CV, 
Figure 6). For the trail- based and random distributions, the three 
approaches returned similar precision (Figure 6). This result was 
expected because, in a scenario of random animal distribution, 
sampling design is irrelevant. However, no animal distribution is 
ever truly random. Animals are distributed according to e.g. habi-
tat preferences, resource availability, and intra-  and inter- species 
interactions. The lowest CV for red deer, red partridge, and wild 
boar was obtained by rotating the cameras to independent loca-
tions (Figure 6). These three species prefer not to use trails and 
their spatial distribution is equivalent to the simulated aggre-
gated scenario (Figure 1). The improvement in precision when 
monitoring aggregated populations and rotating the cameras to 
independent locations was especially marked in the simulated me-
dium-  and high- abundance scenarios (Figure 6). In our study area, 
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red deer and wild boar were the most abundant species. Red deer 
was the most abundant species, with population densities close 
to 40 ind·km−2 (Acevedo et al., 2008) and it was the species for 
which we observed a stronger improvement in precision when ro-
tating the cameras to independent placements (CV = 0.16), com-
pared to keeping the camera fixed (CV = 0.25) or rotating them 
within the cluster (CV = 0.26). Regarding wild boar, population 
density estimates were not available for the target population. A 
population density close to 10 ind·km−2 was however reported for 
a population in a similar habitat less than 30 km away (Palencia 
et al., 2021). The only two species for which the rotating approach 
did not return the lowest CV were the Iberian hare and red fox 
(Figure 6). These results were expected considering that both spe-
cies travel along trails and prefer areas near field edges (Adkins & 
Stott, 1998; Andersen et al., 2017; Dickie et al., 2017; Roedenbeck 
& Voser, 2008; Schai- Braun & Hackländer, 2014), leading to a sit-
uation similar to the trail- based simulated scenario. Iberian hare 
results showed similar precision independent of the design (fixed 
approach: 0.43, rotating within the cluster: 0.47, rotating to inde-
pendent placements: 0.46, Figure 6, Appendix S3). For red fox, 
a CV of 0.34 was obtained for both rotating designs, while the 
CV was 0.25 in the fixed approach (Figure 6, Appendix S3). Our 
results also showed that rotating inside the cluster resulted in the 
lowest precision (average CV of 0.4). This is partially induced by 
the effect of the red partridge precision. Not considering the red 
partridge in the estimation of the average CV results in a more 
similar CV among designs (CV = 0.29 when rotating to indepen-
dent placements, CV = 0.31 when rotating inside the cluster, and 
CV = 0.26 when keeping cameras fixed; Figure 6, Appendix S3), 
which is consistent with the simulation results. Important aspects 
to account for when applying rotating designs are both overall 
survey duration and the deployment duration. Previous research 
showed a stabilization of detection rates between 2 and 3 weeks 
(Kays et al., 2020); while detection rates were highly variable for 
the first days of camera deployment. On the other hand, survey 
lengths longer than 3/4 months could introduce variability in de-
tection rates due to seasonal dynamics (e.g. resource availability, 
weather conditions, species detectability, movement patterns, 
etc.). Thus, a general recommendation when applying rotating 
designs could be to consider 3 weeks as the minimum deploy-
ment length, and 3/4 months as the maximum survey length (Kays 
et al., 2020), but this is likely to be species-  and location- specific, 
which highlights the need to understand one's species of interest 
to optimize survey design.

5  |  CONCLUSIONS

In conclusion, given a certain number of sampling points, our re-
sults support the use of static clustered designs when monitoring 
random and trail- based populations with a high number of cam-
eras, due to an average relative reduction of more than 40% in CV 
when comparing a given number of sampling points, resulting in 

more precise detection rates (Figures 4 and 5). Clustered designs 
could be especially recommended in areas that are difficult to ac-
cess. On the contrary, when few cameras are available, our results 
support the use of single designs and rotating the cameras to in-
dependent sampling points when monitoring aggregated popula-
tions, and also in cases where the target is to monitor a range of 
species showing different distribution patterns (Figure 6). Keeping 
the cameras fixed during the entire survey period is the most ef-
ficient procedure when monitoring species which frequently use 
linear features (e.g. trails) and random population distributions and 
returns similar precision in comparison to rotating the cameras 
(Figure 6). Broadly, this framework could be not only applied in 
the growing number of camera trap studies worldwide (Caravaggi 
et al., 2017; Delisle et al., 2021), but also to other survey methods 
(e.g., hair snares) that rely on detection data with corresponding 
spatial information.
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