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A B S T R A C T   

Fatty acids are of particular interest for industrial applications of microalgal feedstock, as these 
have a wide array of different uses such as pharmaceuticals and biofuels. Fourier transform 
infrared (FTIR) spectroscopic techniques used in combination with multivariate prediction 
modeling are showing great potential as analytical methods for characterizing microalgal 
biomass. The present study investigated the use of diffuse reflectance Fourier transform infrared 
spectroscopy (DRIFTS) coupled with partial least squares regression (PLSR) to estimate fatty acid 
contents in microalgae. A prediction model for microalgal samples was developed using algae 
cultivated in both Bold’s basal medium (BBM) and sterilized municipal wastewater under axenic 
conditions, as well as algal polycultures cultivated in open raceway ponds using untreated 
municipal wastewater influent. This universal prediction model was able to accurately predict 
microalgal samples of either type with high accuracy (RMSEP = 1.38, relative error = 0.14) and 
reliability (R2 > 0.92). DRIFTS in combination with PLSR is a rapid method for determining fatty 
acid contents in a wide variety of different microalgal samples with high accuracy. The use of 
spectral characterization techniques offers a reliable and environmentally friendly alternative to 
traditional labor intensive techniques based on the use of toxic chemicals.   

1. Introduction 

There is a growing demand for sustainable sources of lipids for the production of biofuels as well as nutritional additives and 
pharmaceuticals [1–3]. Microalgae have been subject to extensive research in the past several decades due to their ability to amass 
large quantities of lipids [4]. Microalgal cultures proliferate rapidly, accumulating biomass faster than most land crops, and do not 
require arable land, meaning that they also do not compete with existing food crops [5]. They are also a versatile industrial feedstock in 
the sense that they can be cultivated in sealed bioreactors when a particularly high level of purity of the resulting extract is needed, 
while also having the option of growing in large open ponds when the purity of the feedstock is less important than the quantity. Some 
studies have suggested cultivating microalgae in wastewater as a form of water remediation [6], while using the resulting algal 
feedstock for biodiesel production [7] or as plant biostimulant [8]. 

The fatty acid content of microalgae is highly variable, and depends on a large variety of factors such as the growth phase and the 
specific culture conditions [9]. Light availability can also be tuned to increase fatty acid yields, as photooxidative stress has been 
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shown to cause carbon reallocation to storage triacylglycerides (TAGs) [10,11]. The relative fatty acid abundance can also be increased 
by alteration of salt concentration, potentially doubling the quantity compared to regular conditions [12–15]. One of the most 
commonly investigated methods for increasing fatty acid yield is nitrogen starvation [16], which can produce fatty acid contents that 
are three or even five times that of regular growth conditions, depending on species and culture duration [17,18]. 

Some oleaginous algae have been shown to produce as much as 80 % of their dry weight (DW) in oil [2], albeit this oil typically 
contains not only fatty acids but also other lipid-soluble substances like carotenoids [19], phytosterols [20] and hydrocarbons- [21]. , 
Fatty acid contents of 13–31 %DW are often achievable under regular conditions, with nutrient stress typically achieving an average of 
41 %DW [22]. 

A rapid and accurate method for estimating the fatty acid contents of microalgal biomass would be highly beneficial when 
screening for strains with optimal fatty acid accumulating properties, as well as when evaluating the correct time for harvesting a large 
microalgal culture. Spectroscopic techniques have been shown to be highly accurate in quantifying common components of algal 
biomass with minimal sample processing and labor requirements, and these methods have the potential to replace traditional methods 
for the characterization of microalgae which are laborious and require extensive use of chemicals [23,24]. The development of 
spectroscopic tools and techniques for fatty acid analysis in microalgae should therefore enable researchers to more rapidly identify the 
best strains and culture conditions for maximizing fatty acid yield, as well as improve monitoring of industrial-scale algal cultures. 
Fourier transform infrared spectroscopy (FTIR) has been used to estimate the shift in carbon partitioning of Chlamydomonas reinhardtii 
and Scenedesmus subspicatus during nitrogen-starvation over time, by correlating the ratio of intensity of specific absorbance bands 
with lipid, carbohydrate and protein contents, with decent accuracy [25]. Considerably higher accuracy of prediction of total fatty acid 
contents was obtained in Nannochloropsis oculata through the use of FTIR coupled with partial least squares regression (PLSR) [26]. 
Attenuated total reflectance (ATR) FTIR coupled with PLSR has also been used to determine fatty acid contents and even the quantities 
of certain fatty acid species in N. oceanica cells [27]. Other spectral PLSR analyses of fatty acids in microalgae have relied on visible or 
near-infrared (NIR) [28,29] or H-1 nuclear magnetic resonance (NMR) spectroscopies [30]. The use of FTIR and PLSR in the analysis of 
microalgal fatty acid contents is thus largely limited to one genus of green algae, and a broadening of these methods to encompass a 
wider array of microalgal samples is necessary. Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) is a particularly 
interesting technique due to its high resolution, and the linearity of spectral absorbance intensities across the spectrum which tends to 
lead to improved predictive accuracy when compared to ATR which suffers from diminished absorbance at higher wavenumbers [31, 
32]. To the authors’ knowledge, there are presently no studies showing the use of DRIFTS in prediction of microalgal fatty acid 
contents however. 

In the present study, DRIFTS was used to estimate the fatty acid contents in dehydrated microalgal biomass in combination with 
PLSR analysis. The feasibility of using these techniques for pure monocultures cultivated in controlled lab conditions was compared to 
that of open raceway ponds where numerous microalgal species can be expected to be present, in addition to other microbial or-
ganisms. Quantifying the fatty acid contents of microalgae is necessary for determining the potential for using the biomass for biofuel 
production or other uses like development pharmaceuticals or nutraceuticals, and a rapid method for estimating microalgal fatty acid 
contents would be greatly beneficial. 

2. Materials and methods 

2.1. Microalgal cultures and harvest 

The microalgae analyzed in the present study were grouped into two separate data sets: one consisting of monocultures of green 
microalgae, cultivated in either synthetic growth media or in filtered wastewater and one set consisting of polycultures grown in open 
raceway ponds in untreated municipal wastewater influent. For multivariate spectral analysis, the two data sets were analyzed both 
separately and as one large, combined data set. 

The monoculture set consisted of a variety of species cultivated in either Bold’s basal medium (BBM) [33] or lightly filtered and 
autoclaved municipal wastewater at either 22 ◦C or 5 ◦C with a light:dark cycle of 16:8 h. These cultures were grown for varied 
durations, from 6 to 46 days, meaning that some were in the late exponential growth phase while some were in the stationary phase 
and had likely entered into nutrient stress. This ensured a data set with a wide variety of fatty acid quantities, making it suitable for the 
calibration of multivariate prediction models. Strains used included Chlorella vulgaris ‘13–1’, Scenedesmus obliquus ‘B2-2’, and Coe-
lastrella spp. ‘3–4’, with some additional samples of Haematococcus spp., Coelastrum spp. ‘RW-10’. 

The polycultures consisted of samples harvested throughout two growth seasons at the Dåva algae pilot plant in Umeå, Sweden, 
cultivated in untreated municipal wastewater influent throughout the summer seasons of 2017 and 2019. The 2017 season samples 
have been previously characterized by Lage and Gentili [34], and the microalgal diversity has been well documented. The 2019 season 
samples were characterized during the present study. 

Microalgal cultures were concentrated by centrifugation at 4000 x G for 10 min. Liquid media was removed and the concentrated 
cultures were frozen at − 20 ◦C overnight before lyophilization. Frozen microalgae were lyophilized in a freeze dryer (Edwards high 
vacuum international, Crawley, England) at − 40 ◦C overnight. 

2.2. Cell disruption 

To ensure high extraction efficiency, cell were disrupted following the protocol from Ref. [8]. Briefly, microalgal cells were flash 
frozen using liquid N2, and grinded using 2.4 mm steel beads at 20 Hz for 2 min in a Mixer Mill MM 400 (Retsch GmbH, Haan, 
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Germany). The samples were placed on ice to cool down, in order to prevent degradation of heat-sensitive fatty acids, and the grinding 
cycle was repeated for a total of twenty cycles. Light microscopy was used to assess the disruption of cells and cell clusters which could 
inhibit fatty acid extraction. 

2.3. Fatty acid extraction and purification 

2.3.1. Lipid extraction 
Extraction of algal lipids was performed using a protocol described by Ref. [35], with minor alterations. A 2:1 solvent mixture of 

chloroform:methanol (MeOH) was used to extract soluble compounds from 20 ± 0.2 mg algal sample. An 0.73 % (w/v) aqueous NaCl 
solution was added to reach a chloroform:MeOH:NaCl ratio of 2:1:0.8 (v/v/v) followed by repeated inversion of the sample. The 
sample was centrifuged at 400 x G for 2 min, and the lower, organic phase was recovered. The aqueous phase was washed twice with 
chloroform and all organic phases were pooled. To the pooled lipid sample, 10 μg of tripentadecanoic acid (C15:0-TAG) (product 
number: 33–1500, Larodan, Solna, Sweden) was added as internal standard for quantification. The solvent was evaporated from the 
crude lipid extract overnight using a Syncore Multievaporator (Büchi Labortechnik GmbH, Essen, Germany) at 45 ◦C with a pressure of 
270 mbar and orbital shaking at 200 rpm. 

2.3.2. Solid phase extraction 
The lipid extract was purified using solid phase extraction (SPE), as previously described [36]. SPE cartridges (Thermo Fisher) were 

primed with hexane prior to sample purification, and fixed to a vacuum manifold. The crude lipid extracts were dissolved in hexane, 
washing the tube twice to ensure maximum recovery, and placed in the SPE cartridge. Neutral lipids were eluted using a mixture of 
80:20:10 hexane:diethyl ether:acetic acid (v/v/v), and polar lipids were eluted using a mixture of 2:2:1 MeOH:acetone:hexane. 
However, the purified lipid fractions were pooled in the same sample vial and the solvents were evaporated overnight as described 
above. 

2.3.3. Transmethylation 
The purified lipid extract was dissolved in toluene, and 1 % H2SO4 in dry MeOH was added as transmethylation reagent. The sample 

vial was flushed with N2 in order to limit oxidation and transmethylation was performed at 80 ◦C for 2 h with orbital shaking at 100 
rpm. After cooling to room temperature, an equal quantity of aqueous 5 % NaCl and hexane was added, the sample was vortexed and 
centrifuged for 2 min at 400×g to obtain clear phase separation. The organic phase was recovered, the aqueous phase was washed 
again with hexane and the two organic phases were pooled. Aqueous 2 % KHCO3 was used as washing agent of the organic phase that 
was dried by the addition of a small quantity of anhydrous Na2SO4 to remove trace amounts of water. The organic phase was recovered 
and evaporated overnight as described above. Since toluene evaporates more slowly than the other solvents used, residual solvents 
were evaporated at 55 ◦C with a pressure of 120 mbar for 1–2 h until all solvent was removed. The fatty acid methyl ester (FAME) 
sample was dissolved in heptane and analyzed using gas chromatography flame ionization detection (GC-FID). 

2.4. Gas chromatography analysis 

The FAME samples were analyzed by gas chromatography flame ionization detection (GC-FID). A TriPlus RSH autosampler 
(Thermo Scientific, Hägersten, Sweden) was used to inject 1 μL sample in 1:10 split mode into a Trace 1310 gas chromatograph 
(Thermo Scientific). The chromatograph was equipped with a 30 m × 0.32 mm ID FAMEWAX capillary column (Restek, Bellefonte, 
Pennsylvania, USA), with a 0.25 μm Crossbond polyethylene glycol stationary phase. The column temperature was held at 195 ◦C at 
the time of injection, and was increased at a rate of 1.8 ◦C min− 1 up to 240 ◦C, where it was held for 2.8 min prior to cool-down. Data 
acquisition and peak integration was performed using Chromeleon 7 software (Thermo Scientific). Peaks were identified using a 
marine FAME standard mixture (Product number: 35066, Restek). 

FAME quantification was performed using a method described by Ref. [37]. Calibration curves were made for all individual fatty 
acids in the standard mixture, and their respective relative response factors (RRFs) were calculated by normalising to the pentade-
caenoic methyl ester internal standard. 

All the above mentioned studies were performed at the department of Forest Biomaterials and Technology, Swedish University of 
Agricultural Sciences in Umeå Sweden. 

2.5. Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) 

DRIFTS measurements were performed on the microalgal samples, using a protocol described in Ref. [38]. Briefly, dried algal 
powders were mixed with potassium bromide (KBr) to an approximate 1:10 ratio of algae:KBr (v:v). Spectra were measured using an 
IFS 66 v/S vacuum spectrometer (Bruker Optik GmbH, Ettlingen, Germany), co-adding 128 scans over a spectral region of 400–4000 
cm− 1, at a resolution of 4 cm− 1. The KBr background was subtracted by OPUS v.5 software (Bruker Optik GmbH), and further pro-
cessed using the MCR-ALS GUI, available at the Vibrational Spectroscopy Core Facility, Department of Chemistry, Umeå University 
(v4c, https://www.umu.se/en/research/infrastructure/visp/downloads/) running in MATLAB software (version R2017b, Math-
Works, Natick, MA, USA). 

The 800-1800 cm− 1 fingerprint region is known to contain bands with a high degree of correlation to fatty acids as well as car-
bohydrates and proteins, the main components of algal biomass, and the spectra were thus cut to this region. Asymmetric least squares 
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(AsLS) baselining was performed on the cut spectra (lambda = 20 000, p = 0.001), followed by normalization to the total spectral area. 
The processed spectra were used for multivariate analysis. There are spectral signatures relevant to fatty acids in the higher wave-
numbers (especially in the 2800-3000 cm− 1 range) (Rohman & Man, 2010), and so an attempt was made at using a broader spectrum 
(500-3500 cm− 1) for multivariate modeling, but PLSR was unable to resolve spectral components without excessive noise, and the 
prediction was considerably lower than with the narrower spectral range (data not shown). 

2.6. Statistical analysis 

Any statistically significant differences in total fatty acid contents between different algal culture conditions were tested using t- 
test. In the case of variables such as the month of harvest of polycultures or culture duration of monocultures where more than two 
groups had to be compared, one-way analysis of variance (ANOVA) was performed. For comparison of monoculture culture duration, 
samples were grouped approximately into weeks rather than days, for the sake of simpler data analysis. Statistical analysis was 
performed in Excel (16.16.27, Microsoft, Redmond, Washington, US). 

2.7. Multivariate spectral analysis 

The sample sets were analyzed using principal component analysis (PCA), to determine the influence of sample characteristics like 
species, growth temperature, culture medium and culture duration on the DRIFTS spectra. Such data were not available for the 
polyculture samples, and these were instead analyzed in terms of harvest month. Due to the differences between the monoculture and 
polyculture data sets in terms of available data, PCA was performed separately on both data sets. PCA was performed in the RStudio 
software (Rstudio, Boston, MA, USA) using the FactoMineR package and visualized using factoextra. 

Partial least squares regression (PLSR) was also used to construct prediction models, using a method described previously [39]. 
PLSR analysis was done using RStudio with scripts from the PLS package. The two data sets were analyzed both separately and together 
(total n = 101), and for all three runs approx. 75 % of the samples were used for calibration and 25 % for model validation. The 
component number was chosen through leave-one-out cross-validation, and the predictive accuracy of the resulting models was 
determined through the root mean square error of prediction (RMSEP), the relative error of prediction (RE), and the R2 coefficient of 
determination of the validation samples. 

3. Results and discussion 

3.1. Fatty acid contents 

The total fatty acid contents of the microalgal monocultures differed considerably from the polycultures. The monocultures 
featured a far wider range of fatty contents, from 1.32 to 22.46 %DW, while the polyculture fatty acid contents were universally quite 
low in comparison, ranging from 0.76 to 4.21 %DW. This can be explained by the semi-continuous mode of operation of the ponds, 
being repeatedly harvested and having the growth medium replenished regularly, likely leading to a culture that is constantly in the 
early to mid-exponential growth phase. This also explains the low amount of fatty acids, as fatty acids are accumulated in stress 
situations as long-term energy storage. The monoculture samples on the other hand were harvested in various stages of the growth 
cycle, leading to a wider range of total fatty acid contents. 

There were some differences between monoculture species, with Coelastrella sp. exhibiting the highest (10.43 ± 5.84 %DW), 
followed by Chlorella vulgaris (9.85 ± 2.66 %DW), Haematococcus sp. (8.50 ± 2.50 %DW), and Scenedesmus obliquus (7.83 ± 4.46 % 
DW). Two-sample t-tests were used to determine statistically significant differences in total fatty acid quantities depending on culture 
conditions. A large difference was found between culture temperatures, with fatty acid contents in cultures grown at 5◦ on average 
being close to three times higher (15.06 ± 2.21 %DW) than corresponding cultures grown at 22◦ (6.38 ± 1.40 %DW), t(8) = 8.106, p 
< 0.01, an effect that has been described in these strains by Lindberg et al. [40]. The total fatty acid contents did not change to a 
statistically significant extent depending on culture medium where all other culture conditions remained the same, with Chlorella 
vulgaris showing minor differences (WW = 8.77 ± 0.02, BBM = 10.53 ± 1.43 %DW), t(2) = 2.139, p = 0.166, and Scenedesmus obliquus 
remaining largely unchanged (WW = 6.20 ± 0.40, BBM = 6.69 ± 0.16 %DW), t(2) = 1.964, p = 0.144. The Coelastrella sp. strain on the 
other hand appeared considerably more sensitive to the culture medium (WW = 17.68 ± 4.39, BBM = 10.03 ± 0.76 %DW), while still 
not showing a statistically significant difference, t(2) = 2.973, p = 0.097. One-way ANOVA also showed statistically significant dif-
ferences depending on culture duration (F(5, 37) = 4.365, p = 0.003). This is to be expected as the cultures were in different growth 
cycle stages, with the short-term cultures being in the early exponential phase and thus having lower fatty acid contents, with the 
long-term cultures having entered into the static phase and having exhausted nutrients in the growth medium, triggering lipid 
accumulation [22]. 

The polyculture samples did not differ significantly in total fatty acid contents depending on the year of culture, with the 2019 
season being only slightly higher (1.96 ± 0.74 %DW) than the 2017 season (1.88 ± 0.67 %DW) on average, t(55) = 0.426, p = 0.672. 
Monthly differences in fatty acid contents were statistically significant according to a one-way ANOVA (F(3, 53) = 2.907, p = 0.043), 
likely as a consequence of temperature differences. 
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3.2. FTIR spectroscopy 

The FTIR spectrum contains spectral absorbance bands which are highly characteristic of certain biological molecules and can often 
be directly associated with wider categories of compounds, e.g. fatty acids. From looking at the FTIR spectrum, one can therefore draw 
general conclusions about the ratio of the major compounds in a biomass sample, especially since these predominantly consist of 
macromolecules like polysaccharides or proteins, or fatty acids which can be distinguished by a number of spectral bands, especially in 
the so-called fingerprint region [41]. 

The spectral variance of the polyculture data set was also considerably narrower than the monocultures (Fig. 1A and B). From the 
spectra, it appears that the polycultures contain far lower fatty acid contents, and a large amount of protein, judging by the intensity of 
the Amide I and II peaks at approx. 1540 and 1660 cm− 1, respectively. This has been confirmed by amino acid analysis, showing that 
the protein contents of this data set are above 20 %DW in the majority of the samples, and all but one being above 16 %DW (data not 
shown). The spectral intensity of the polyculture samples was considerably lower as well, likely due to high ash contents (in the range 
of 10–30 %DW), caused by being cultured in untreated municipal wastewater in open ponds. 

3.3. Multivariate spectral analysis 

3.3.1. Principal component analysis (PCA) 
PCA was performed to determine to which extent the DRIFTS spectra of the microalgae depended on the species, growth tem-

perature, culture medium or culture duration of the samples. 
For the monocultures, PCA could resolve the data into four principal components (PCs) explaining a total of 85.65 % of variance. 

PC1 accounted for 40.2 % of the variance, while PC2 accounted for 25.3 %. There was notable clustering dependent on species, with 
Scenedesmus obliquus samples grouping separately from the others, while Chlorella vulgaris and Coelastrella spp. tended to overlap 
considerably (Fig. 1A). Most variance in the C. vulgaris samples was also along PC2, while the others depended more on PC1. The other 
species had too few samples to say anything conclusive about them. Cultures from both types of growth media overlapped extensively, 
but the wastewater cultures tended to reside in the right-hand quadrants, implying a higher correlation to PC1 (Fig. 2B). The samples 

Fig. 1. DRIFTS spectral profiles of microalgal monocultures (A), and polycultures (B). The light-shaded area indicates the minimum and maximum 
absorbance for all samples within the data set, the dark-shaded area indicates the 95 % CI, and the black line is the mean spectrum. 
The PLSR regression coefficients (C) of the monocultures, polycultures and combined data sets. 
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did not notably cluster according to temperature or culture duration, likely due to different species reacting differently to these culture 
conditions (Fig. 2C and D). 

The distribution of the monoculture samples seemed relatively dependent on fatty acid contents, with higher-quantity samples 
almost universally grouping in the lower right quadrant and low-quantity samples being in either of the upper quadrants, showing an 
apparent correlation of fatty acid contents to PC1, and to a lesser extent PC2 (Fig. 2E). This was confirmed by the PCA loadings for PC1 
showing major influence from the fatty acid ester peak at 1740 cm− 1 (Fig. 3A). PC2 also heavily correlated to the 1740 cm− 1 peak, but 
had negative contribution from the C–O–C stretches in the 950-1200 cm− 1 region associated with carbohydrates [42]. 

The fit of the polyculture model was considerably lower than that of the monoculture model, requiring 6 components to explain 
84.07 % of the variance in the data. Plotting PC1 (32.7 %) and PC2 (17.0 %) against each other, the spectra of the polyculture samples 
showed no separation based on the month or year of harvest (Fig. 2F and G), and the distribution of samples according to fatty acid 
contents seemed largely random (Fig. 2H). The explanatory power of this PCA model was thus quite low. This can likely be explained 
by the high degree of similarity between the polyculture samples, having quite a homogenous composition regardless of harvest time. 
The polyculture set simply did not have enough compositional variance to calibrate a reliable model. PCA loadings for the polyculture 
PC1 indicated no correlation to the relevant fatty acid absorbance bands (Fig. 3B), unlike the monoculture model. 

3.3.2. Fatty acid prediction by PLSR 
PLSR was used to predict fatty acid contents in microalgal samples. The monoculture and polyculture data sets were evaluated 

separately and in a combined prediction model. The monoculture PLSR model performed well, with an RMSEP of approx. 1.2615, an 
RE of 0.0231, and R2 > 0.93 (Table 1). Considering the fatty acid contents in the validation set ranged from 1.91 to 15.23 %DW, this 

Fig. 2. PCA scatterplots for the monocultures (A–E) and polycultures (F–H) datasets. The ellipses show the 90 % confidence interval of the indi-
cated category. 

C. Niemi and F.G. Gentili                                                                                                                                                                                            



Heliyon 10 (2024) e33058

7

predictive error is quite low, and the model can be considered reliable. The model regression coefficient also indicated that the model 
relied on relevant spectral bands associated with fatty acids (Fig. 1C). In particular, the notable ester carbonyl peak at 1750 cm− 1, but 
also smaller bands at 1470 and 990 cm− 1, likely associated with CH2 and CH3 bending vibrations and CH bending, respectively [41]. 

The polyculture model was unable to predict fatty acid contents in the validation set. Even with only two components, the model 
incorporated considerable amounts of noise. As with the monoculture set, five components was calculated to be optimal, but the 
resulting predictions did not correlate with the expected values at an R2 < 0.05 (Table 1). The regression coefficient for the five- 
component model also showed no correlation to expected spectral bands (Fig. 1C). As with the PCA, it was clear that the narrow 
range of calibration made the model unreliable. 

When combining both data sets into one model, however, prediction performance was almost on-par with the monoculture model, 
with an RMSEP of approx. 1.3772, an RE of 0.1369, and R2 > 0.92 (Table 1). The predictive error was higher than the monoculture 
model, but still within an acceptable range. While the polyculture set on its own was not capable of producing a viable prediction 
model, the polyculture spectra were sufficiently similar to those of the monocultures to be predictable when combined into one large 
set. The cross-validation fits and prediction results of each PLSR model are shown in Fig. 4A–C. 

For the sake of comparison to univariate methods of spectroscopic quantification, the peak heights of the fatty acid ester C––O 
stretching vibration at 1740 cm− 1 and the protein-associated Amide I band at 1650 cm− 1 [43] were measured, and the fatty acid/-
Amide I peak ratio was calculated. The fatty acid peak itself was linearly correlated to fatty acid contents, with an R2 > 0.82. When 
taking the ratio of the fatty acid and Amide I peaks, this correlation improved slightly to R2 > 0.83. As has been shown by previous 
studies [25], these peaks can be used to estimate fatty acid contents in microalgae on their own, but the multivariate PLSR method 
outperforms in terms of accuracy at the cost of some minor computation time. This study shows the efficacy and accuracy of DRIFTS 
used in combination with PLSR for the determination of microalgal fatty acids, regardless of species or conditions of growth, presenting 
an improvement over univariate methods. This is consistent with the findings of Zhang et al. [27] who showed that individual 
absorbance bands perform considerably worse than whole spectra for fatty acid quantification in Nannochloropsis oceanica. The results 
of the present study show the viability of whole-spectra analysis of multiple microalgal species using the same prediction model. 

The lack of variety in the polyculture samples in the present study means that further studies are needed to verify that the method 
works in complex polycultures with high fatty acid contents as well, however. Future research should be aimed at using a system-
atically constructed data set of microalgal cultures with a variety of species compositions, grown in conditions known to induce 
extreme fatty acid contents, such as light, salt, or nitrogen-stress [10,15,17]. 

Fig. 3. PCA spectral loadings of microalgal monocultures (A) and polycultures (B). The first two principal components are displayed.  

Table 1 
PLSR prediction results.  

Culture type Component number RMSEP RE R2 

Monocultures 5 1.26 0.02 0.9399 
Polycultures 5 0.54 0.25 0.0461 
Combined 6 1.38 0.14 0.9212  
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4. Conclusions 

Estimation of fatty acid contents in microalgae using DRIFTS was shown to be highly effective and accurate, given robust model 
calibration. The study found minimal effect on spectral profiles depending on culture medium, growth phase, temperature, or species, 
and the method works on complex samples like polycultures grown in wastewater. A universal prediction model trained on a suffi-
ciently broad data set should be able to estimate fatty acids in microalgae grown in a diverse set of conditions. There is high potential 
for the applicability of multivariate spectral prediction techniques in algal industries, since these methods require far less labor time 
and chemical use. The use of spectral characterization techniques in algal research and industries has the potential to cut down on the 
use of chemicals while also providing results faster than traditional chemical methods. In particular, this should enable easier 
screening of microalgal strains and culture conditions for optimization of lipid production for the development biofuels. 
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