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Abstract
Micronutrient malnutrition is one of the major causes of human disorders in the 
developing world. Iron (Fe) is an important micronutrient due to its use in human 
metabolism such as immune system and energy production. Estimates indicate 
that above 30% of the global population is at risk of Fe deficiency, posing a par-
ticular threat to infants and pregnant women. Plants have adapted various strate-
gies for uptake, transport, accumulation, and storage of Fe in tissues and organs 
which later can be consumed by humans. Biofortification refers to increase in mi-
cronutrient concentration in edible parts of plants and understanding the path-
ways for Fe accumulation in plants. Conventional plant breeding, transgenics, 
agronomic interventions, and microbe- mediated biofortification are all potential 
methods to address Fe deficiency. This review article critically evaluates key as-
pects pertaining to Fe biofortification in cereal crops. It encompasses an in- depth 
analysis of the holistic presence of Fe, its significance in both human and plant 
contexts, and the diverse strategies employed in Fe uptake, transport, accumula-
tion, and storage in plant parts destined for human consumption. Additionally, 
the article explores the bioavailability of Fe and investigates strategies for biofor-
tification, with a specific emphasis on both traditional methods and recent break-
throughs aimed at enhancing the Fe content in food crops. Keeping in view the 
significance of Fe for human life, appropriate biofortification strategies may serve 
better to eliminate hidden hunger rather than its artificial supplementation.
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1  |  INTRODUCTION

Micronutrient malnutrition, often referred to as hid-
den hunger, is a widespread nutritional disorder (Nair 
et  al.,  2013) that affects approximately one- third of the 
global population (FAO, 2013). This silent epidemic occurs 
when daily food intake falls short of the recommended 
daily allowances (Jha & Warkentin,  2020) and remains 
overlooked unless the deficiency symptoms are diagnosed 
(Majumder et al., 2019). The annual economic cost of defi-
ciencies in both micronutrients and macronutrients is esti-
mated to be around 2 trillion US dollars (Hoddinott, 2016; 
Panel, 2016). Consequently, enhancing nutritional health 
poses a significant challenge for many countries (Maqbool 
et al., 2020). Iron is an essential nutrient for living organ-
isms, playing a vital role in various metabolic processes in 
plants and animals. In humans, Fe is vital for growth, de-
velopment, and several physiological processes, including 
the transportation of oxygen from the lungs to tissues, the 
development of immune system, and the synthesis of oxy-
gen transport proteins such as hemoglobin and myoglobin 
(Jomova et al., 2022). Globally, Fe deficiency is the most 
prevalent micronutrient disorder, impacting over 2 bil-
lion people (World Health Organization [WHO],  2019). 
It gives rise to significant health complications, includ-
ing increased mortality risk, limited physical and mental 
development, weakened immunity, anemia, and fatigue 
(Black et al., 2008). Pregnant women are particularly vul-
nerable to the consequences of Fe deficiency, which can 
lead to adverse outcomes such as premature births, low 
birth weight babies, impaired growth and development 
in infants, and compromised cognitive abilities (Bailey 
et al., 2015; Lozoff et al., 2008).

Iron is crucial for fundamental processes in plants, 
encompassing respiration, photosynthesis, and antioxi-
dant defenses. It also plays a vital role in numerous bio-
chemical pathways, including those related to hormones 
and secondary metabolism, making it an essential micro-
nutrient (Kobayashi et al., 2019; Vigani & Murgia, 2018; 
Therby- Vale et al., 2022). Its involvement extends to var-
ious chemical forms, such as Fe- heme groups, Fe- S clus-
ters, and nitrosyl- Fe complexes (Ramirez et al., 2011). Iron 
is crucial in symbiotic nitrogen fixation, aiding in synthe-
sizing the Fe- molybdenum cofactor (FeMo- co) of the ni-
trogenase enzyme, which is essential for activating and 
catalyzing nitrogen fixation (Rubio & Ludden, 2008).

Human Fe nutrition is closely tied to the concentration 
of Fe in plants, which, in turn, relies on the Fe content 
present in the soil (Cakmak, 2012; Li et al., 2023; Shukla 
et al., 2014). However, calcareous soils, which are wide-
spread across more than 30% of the Earth's land surface, 
particularly in arid and semi- arid regions, typically exhibit 
a pH range between 7.4 and 8.5. Within this pH range, 

the presence of inorganic Fe forms is minimal (Prasad & 
Djanaguiraman,  2017; Shenker & Chen,  2005), the con-
centration of Fe is less than 10−10 M (Frossard et al., 2000; 
White & Broadley,  2009); which has drawn attention in 
last few years at the global level. The transformation of 
Fe into the insoluble Fe- hydroxyl complex leads to natural 
deficiencies of Fe in saline, alkaline, sodic, and calcareous 
soils. This limitation restricts the roots' capacity to absorb 
and uptake Fe. Conversely, in acid sulfate soils with a pH 
below 5, Fe is excessively available, facilitating its trans-
port to plants (Fageria et al., 2002, 2008). Additionally, the 
removal of Fe- containing aleurone and embryonic tissues 
during postharvest processing of staple crops such as rice, 
wheat, and corn significantly contributes to the low intake 
of Fe from diets (Connorton & Balk, 2019).

Given the widespread prevalence of Fe deficiency and 
its associated health risks, it is crucial to implement nec-
essary practices to enhance Fe content in human food 
consumption. In recent years, several strategies, such as 
increased food production, supplementation, food fortifi-
cation, and biofortification, have been employed to address 
Fe deficiency. Biofortification, specifically enhancing Fe 
levels in plants, is a promising approach to improve the 
nutritional value of crops and mitigate Fe deficiency in 
humans (Monika et al., 2022). The objective of this review 
is to elaborate on the role of Fe in humans and plants, its 
dynamics in soil, factors affecting its bioavailability, and 
its uptake as well as translocation in plants. Moreover, it 
will critically discuss biofortification strategies, especially 
conventional approaches and recent modifications for Fe 
enrichment in cereal crops. Given the critical importance 
of Fe for human health, biofortification strategies may 
prove more effective in addressing hidden hunger than 
artificial supplementation.

2  |  IRON AND HUMAN HEALTH

Iron is an essential component found in every human 
cell, playing a crucial role in numerous biological func-
tions within the body. It is involved in vital processes 
such as DNA and protein synthesis, the formation of 
connective tissues, and the enhancement of the immune 
system (Abbaspour et al., 2014). Approximately 85% of 
the Fe in the human body is utilized in the production 
of crucial heme proteins, namely hemoglobin and myo-
globin, which play a vital role in facilitating the trans-
portation of oxygen (Bell & Dell, 2008; Tak et al., 2013). 
Iron plays a crucial role as both a necessary compo-
nent and activator in numerous enzymes that partici-
pate in electron flux and redox reactions (Gharibzahedi 
& Jafari,  2017). Furthermore, it contributes to energy 
production through cellular respiration, aids in the 
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synthesis of bile acids and steroid hormones in the liver, 
and is involved in the production of neurotransmitters 
such as dopamine and serotonin, which regulate brain 
signaling (Charles, 2012; Stoltzfus et al., 2003).

Iron deficiency is a critical global health concern, 
ranked as the sixth most perilous factor among 10 pri-
mary threats to human race (Fageria et al., 2012; Uzoh & 
Babalola, 2020). Its consequences include stunted growth, 
mental retardation, weakened immunity, fatigue, and 
reduced work efficiency (Bharadva et  al.,  2019; Black 
et al., 2008). Children and pregnant women are particu-
larly at a higher risk of Fe deficiency, with susceptibility 
rates of 40% and 38%, respectively, due to their increased 
Fe requirements (Camaschella, 2015; Pasricha et al., 2013; 
Rahal & Shivay, 2016; Stevens et al., 2013), leading to over 
60,000 deaths annually during pregnancy or childbirth 
(Tak et al., 2013). Furthermore, inadequate Fe intake can 
cause anemia, with 50% of global anemia attributed to Fe 
malnutrition, as reported by WHO  (2019). The daily re-
quirement of Fe based on age and sex, with men, women, 
and children needing 1.46, 1.05, and 0.71 mg day−1, re-
spectively (FAO/WHO,  2004). It is noteworthy that the 
Fe content in cereal grains varies widely, ranging from 15 
to 115 μg g−1 (Uzoh & Babalola, 2020), while the tolerable 
upper limit is set at 45 mg day−1 (Rahal & Shivay, 2016).

3  |  ROLE OF IRON IN PLANT 
METABOLISM

Iron is the third most limiting nutrient for plants, which 
plays a vital role in their growth and physiological func-
tioning (Rout & Sahoo,  2015; Therby- Vale et  al.,  2022). 
The adequate range of Fe in plant tissues ranges from 50 
to 250 ppm (Rengel et al., 1999). Iron plays a crucial role in 
plant metabolism, primarily due to its involvement in the 
formation of enzymes (Rawashdeh & Florin, 2015). It ac-
tively participates in vital processes such as DNA synthe-
sis, electron transport system, N- fixation, photosynthesis, 
and respiration, making it essential for plant growth and 
productivity (Briat et al., 2015; Mazaherinia et al., 2010; 
Rout & Sahoo, 2015; Tripathi et al., 2018). Nearly 80% of 
Fe in plant tissues is distributed in the photosynthetic ap-
paratus, with direct involvement in photosystem II (PS- 
II), Photosystem I (PS- I), the cytochrome complex, and 
ferredoxin (Abbaspour et al., 2014; Ma et al., 2021; Varotto 
et al., 2002). The biosynthesis of chlorophyll and the de-
velopment of chloroplast are also reliant on Fe (Layer 
et al., 2010; Yadavalli et al., 2012).

Iron is a fundamental element necessary for numer-
ous biosynthetic processes in plants. It plays a critical 
role in the production of essential molecules such as cy-
tochromes and heme, which are integral components 

involved in the synthesis of chlorophyll (Briat et al., 2007; 
Hansch & Mendel, 2009). Fe also plays a role in the syn-
thesis of Fe–S clusters in the chloroplasts, which are in-
volved in electron transport within thylakoid membranes 
and serve as cofactors for several protein complexes 
(Balk & Schaedler, 2014; Couturier et al., 2013; Eberhard 
et al., 2008; Ma et al., 2021). Additionally, it is an integral 
component of chlorophyllide, an oxygenase enzyme, in-
volved in conversion of chlorophyll a to chlorophyll b 
during chlorophyll synthesis (Eggink et al., 2004; Tanaka 
& Tanaka, 2006).

4  |  IRON IN SOILS AND ITS 
DYNAMICS

Iron is abundant in lithosphere, ranked as the fourth most 
plentiful element (Ma, 2005; Rout & Sahoo, 2015) consti-
tuting up to 5% of agricultural lands; while its concentra-
tion ranges from 22.4 to 112 tons ha−1 in the plow layer 
(Rawashdeh & Florin, 2015). In soil, Fe exists in four dif-
ferent pools, including primary and secondary minerals, 
bioavailable pools, and organically bound Fe (Colombo 
et  al.,  2013). Soil minerals contain Fe in ferrous (Fe2+) 
and ferric (Fe3+) oxidation states, which are released 
through chemical reactions. However, the subsequent 
fate of released Fe depends on various physiochemical 
and biological soil properties such as soil texture, aeration, 
temperature, pH, CaCO3 content, organic matter, and 
soil phosphorous content (Carrillo- Gonzáles et al., 2006; 
Robin et al., 2008).

Among all factors, pH and redox potential (Eh) are 
the most significant factors, influencing Fe bioavailability 
in soil. Under high pH- Eh soil system, Fe bioavailability 
is low (Briat,  2005; Schulte,  2004) due to rapid oxida-
tion of released Fe from primary minerals, resulting in 
precipitation as oxides, hydroxides, and oxyhydroxides 
(Borggaard,  2002; Hinsinger,  2001; Robin et  al.,  2008; 
Rout & Sahoo,  2015). Goethite (α- FeOOH) and hema-
tite (α- Fe2O3) are the predominant minerals in well- 
aerated soils, known for their low solubility and stability 
(Colombo et  al.,  2012). This condition is exacerbated in 
calcareous soils with high pH, leading to Fe precipitation 
(de Santiago & Delgado, 2006). Under such conditions, Fe 
is 100 times less available than the required concentration 
for optimum plant growth (Uzoh & Babalola, 2020), as ap-
proximately 30% of cultivable lands exhibit high pH lev-
els that hinder the uptake of Fe (Babalola & Glick, 2012; 
Kobayashi et al., 2019). Under high pH and oxic soil condi-
tions, the total bioavailable fraction of Fe is about 10−10 M 
(Boukhalfa & Crumbliss, 2002) against the total concen-
tration of 20–40 g kg−1 (Cornell & Schwertmann,  2003); 
while the required concentrations for optimum plant 
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growth is about 10−8 mol L−1 (Eskandari,  2011). In con-
trast, low pH- Eh soil systems enhance Fe solubility 
(Johnson et al., 2012) by reducing Fe3+ to Fe2+ form, facil-
itating its entry into the available pool through adsorption 
on soil exchangeable sites (Hochmuth, 2011).

Soil organic matter plays a critical role in regulating 
the availability of Fe in the soil. High organic matter con-
tent enhances the bioavailability of Fe by forming soluble 
complexes with it (Hochmuth,  2011). This formation of 
soluble complexes helps protect Fe from potential precipi-
tation, which would otherwise reduce its solubility (Cesco 
et al., 2000; Varanini & Pinton, 2001). Additionally, humic 
substances exhibit chelating and redox reactive properties 
(Olaetxea et al., 2018) and contain phenolic groups that fa-
cilitate the reduction of Fe3+ to Fe2+. These reduced forms 
of Fe can either remain in the soil solution or become 
adsorbed onto exchangeable sites (Heitmann et al., 2007; 
Kögel- Knabner et al., 2008). Tipping (2002) demonstrated 
that within pH range of 6.5–8.5, the concentration of or-
ganically bound Fe was more than twice the concentration 
of all inorganic Fe species. However, the process of Fe3+ 
reduction by organic substances is strongly influenced by 
pH (Chen et al., 2003). As pH increases, humic substances 
tend to bind more frequently to metal cations, resulting in 
a reduced ability to carry out the reduction of Fe3+ to Fe2+ 
(Chen et al., 2003).

5  |  LOADING AND 
ACCUMULATION OF IRON IN 
SEEDS

The vasculature of the mother plant and the pro- 
vasculature of the embryo lack continuity. Consequently, 
nutrients, including Fe, must be discharged from the 
phloem and subsequently absorbed by the embryo. In 
Arabidopsis and other dicotyledonous plants, the chalaza 
and nucellus are the sites where nutrients are released into 
the embryo sac fluid. Subsequently, the embryo absorbs 
these nutrients from the fluid. Similarly, in cereals, Fe is 
transported from plant roots and aging leaves to devel-
oping seeds through the phloem. This movement occurs 
because the upward flow of xylem sap, driven by transpi-
ration, typically results in slow or even negligible transport 
of minerals through the xylem to reproductive tissues that 
are not directly exposed, such as fruits and seeds (Figure 1; 
Morrissey & Guerinot, 2009; Stacey et al., 2008). Thus, the 
transport of Fe to these tissues occurs solely through the 
phloem (Stacey et al., 2008). Furthermore, mineral nutri-
ents, including Fe, require active and selective transport 
mechanisms and are not directly unloaded from the seed 
coat into the endosperm (Grillet, Mari, et al., 2014; Grillet, 
Ouerdane, et al., 2014). This suggests a potentially crucial 

role for transporter proteins in the loading of nutrients 
into the seed.

AtYSL1 expression has been identified in both the fu-
niculus and the chalazal endosperm (Le Jean et al., 2005). 
Examination of Fe speciation in the embryo sac fluid 
during pea seed development indicates the presence of 
ferric Fe bound to citrate and malate in this extracellular 
compartment (Grillet, Mari, et al., 2014; Grillet, Ouerdane, 
et al., 2014). Consistent with this finding, the citrate efflux 
transporter FRD3 is active in the peripheral cell layer of 
the embryo and the tegument cell layer facing the em-
bryo sac throughout seed development (Roschzttardtz 
et al., 2011). FRD3's secretion of citrate in the embryo sac 
is indicative of its role in maintaining Fe solubility and 
availability for the embryo's uptake. In dicotyledonous 
plants, Fe is absorbed in its ferrous form, necessitating its 
reduction before uptake by the embryo. Despite efforts, 
genetic analyses in Arabidopsis have not pinpointed a 
crucial membrane- bound ferric chelate reductase among 
FRO2 homologues for Fe acquisition by the embryo. 
Conversely, an examination of pea embryo sac fluid re-
vealed a substantial concentration of ascorbate, effectively 
reducing Fe(III) to Fe(II) before the embryo takes it up 
(Grillet, Mari, et al., 2014; Grillet, Ouerdane, et al., 2014). 
Notably, Arabidopsis vtc mutants lacking ascorbate bio-
synthesis show reduced seed Fe content, aligning with the 
importance of ascorbate in this process. The speciation of 
Fe in the embryo sac mirrors that of other extracellular 
plant compartments like xylem sap. Interestingly, the use 
of ascorbate for Fe reduction in the embryo sac contrasts 
with the employment of membrane- bound ferric che-
late reductases in roots, leaves, and intracellular organ-
elles such as mitochondria and plastids (Jain et al., 2014; 
Jeong et al., 2008). While the transporters responsible for 
secreting ascorbate and Fe in the embryo sac remain un-
identified, in the case of zinc (Zn), Heavy Metal pump-
ing P- type ATPases HMA2 and HMA4 releases Zn from 
mother tissues for subsequent embryo uptake (Olsen 
et  al.,  2016). Concerning Fe, the plasma membrane Fe 
efflux transporter IREG1/FPN1 might play a role, but no 
defect in Fe supply to the embryo has been reported in 
IREG1/FPN1 mutants so far (Morrissey et  al.,  2009). In 
wheat and barley, a single vascular strand along the ven-
tral crease is responsible for providing nutrients, includ-
ing Fe, to the grain (Borg et al.,  2009). Iron is primarily 
supplied by the phloem and traverses several specialized 
cell layers, namely the crease vascular parenchyma, the 
pigment strand, and the nucellar projection. The ultimate 
destination is the transfer cells, which face the embryo. 
These transfer cells, akin to the modified aleurone cells 
adjacent to the embryo, feature highly invaginated plasma 
membranes that facilitate the release and reabsorption of 
nutrients (Borg et al., 2009).
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Iron accumulation and speciation within these struc-
tures exhibit distinct patterns in mature wheat grains. 
The nucellar projection, where Fe is concentrated, 
shows co- localization with sulfur. In contrast, the mod-
ified aleurone accumulates Fe to a lesser extent, likely 
acting as a distribution source for other aleurone cells, 
the embryo, and the endosperm (De Brier et al., 2016). 
X- ray absorption spectra suggest that Fe in the nucel-
lar projection is mainly associated with NA, while in 
the modified aleurone, it is linked to phytate (De Brier 
et al., 2016).

Barley homologs of AtVIT1, responsible for driving 
Fe influx into the vacuole where phytate is localized, 
are highly expressed in the aleurone (Borg et al., 2009; 
Connorton, Jones, et  al.,  2017; Kim et  al.,  2006; Lott 

& Spitzer,  1980). Conversely, genes encoding NAAT, 
NAS, and YSL, promoting Fe mobility, exhibit high 
expression levels in transfer cells (Borg et  al.,  2009; 
Curie et  al.,  2009). In Arabidopsis, the absence of 
Nicotianamine Synthase 4 (NAS4) has been found to 
inhibit the translocation of Fe into flowers and seeds 
(Klatte et al., 2009). Likewise, Kruger et al. (2002) iden-
tified an iron transporter protein (ITP) in the phloem of 
castor bean plants. They found that nicotianamine (NA) 
is involved in mobilizing and transporting Fe within and 
out of the phloem. The transport of Fe in the phloem 
is facilitated by a 17 kDa iron- binding protein. Ishimaru 
et  al.  (2006) observed the expression of the OsIRT1- 
GUS gene in both the phloem cells of roots and shoots 
in rice plants. The gene expression was triggered due to 

F I G U R E  1  Model of location and pathways of Fe uptake or transport genes discussed in this review. (a) Detail of seed loading. Gene 
families potentially involved in seed mineral micronutrient transport are pictured in hypothetical or known localizations. Maternal tissues 
are shown in green, and filial tissues are shown in gold. Efflux transporters are shown in light blue, plasma- membrane localized uptake 
transporters in dark blue, vacuolar uptake transporters in gray, vacuolar efflux transporters in red. Pd, plasmodesmata. (b) Model of wheat 
plant showing the following translocation steps to the seed: (1) uptake from the rhizosphere; (2) xylem loading; (3) root- to- shoot transfer; 
(4) distribution to the leaves or seed- covering tissues; (5) phloem loading for movement to seed; (6) loading into the seed (Conceived 
from Waters & Sankaran, 2011). AHA, Arabidopsis H+- ATPase; COPT, copper (Cu) transporter; FIT, FER- like Fe deficiency- induced 
transcription factor; FPN, ferroportin; FRD, ferric reductase defective; FRO, ferric reduction oxidase; HMA, heavy metal ATPase; IREG, 
iron- regulated gene; IRO, iron- responsive operator; IRT, iron- regulated transporter; ITP, iron transport protein; MTP, metal tolerance 
proteins; Nramp, natural resistance- associated macrophage protein; OPT, oligopeptide transport; Pd, plasmodesmata; VIT, vacuolar iron 
transporter; Ys1, yellow stripe1; YSL, yellow stripe- like; ZIP, ZRT-  and IRT- like protein.
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Fe deficiency, particularly in companion cells. It was re-
ported that OsIRT1 facilitates the transport of Fe2+ into 
the phloem cells, where it is chelated by NA (Ishimaru 
et al., 2006). In the future, it will be crucial to elucidate 
the specific expression patterns and roles of each gene 
involved in Fe transport within this intricate structure. 
This effort should aid in identifying key transporters 
responsible for releasing Fe to the extracellular space 
from transfer cells and those involved in its uptake by 
the embryo in modified aleurone cells. In rice plants, 
approximately 4% of the Fe in the shoots is remobilized 
to the seeds, while in wheat, this percentage is higher at 
77% (Morrissey & Guerinot, 2009). During grain devel-
opment, phloem cells are responsible for transporting Fe 
into the maternal seed coat. Simultaneously, the trans-
location of Fe into the grain apoplast involves various 
types of influx and efflux transporters, including yel-
low stripe- like (YSL), ZRT-  and IRT- like protein (ZIP), 
and natural resistance- associated macrophage protein 
(Nramp) (Tauris et al., 2009).

The distribution of Fe in seeds varies among species 
and developmental stages. This distribution, along with 
subcellular localization, is closely tied to Fe speciation, 
which refers to the nature of the ligand binding Fe and in-
fluencing its bioavailability (Clemens, 2014). For instance, 
Fe phytate complexes stored in vacuoles are known for 
their low bioavailability (Hallberg,  2001). In contrast, 
ferritin- bound Fe stored in plastids serves as a highly bio-
available source of Fe (Briat, 1999). Limited information 
exists regarding the generation of Fe distribution patterns 
during embryo development. The pronounced expression 
of VIT1 throughout seed development aligns with the 
early emergence of the Fe pattern at the torpedo stage, 
particularly in the central region of the cotyledons where 
provascular tissue is set to differentiate (Kim et al., 2006; 
Roschzttardtz et al., 2009).

In graminaceous species, such as grains, the distri-
bution of Fe differs significantly from that observed in 
Brassicales (Mari et al., 2020). Unlike Arabidopsis, where 
the embryo constitutes a substantial volume of the seed, 
in grains, particularly in wheat (Triticum turgidum L.), 
the embryo represents a small portion, with the major 
part consisting of the starchy endosperm. The endo-
sperm is enveloped by the aleurone cell layer, which, 
during germination stimulated by gibberellins, becomes 
active, releases enzymes for carbohydrate digestion 
stored in the endosperm, and eventually undergoes pro-
grammed cell death (Fath et al., 1999; Jones, 1969). In 
grains, a significant portion of Fe is concentrated in the 
aleurone layer, with another pool found in the embryo 
(De Brier et al., 2016; Iwai et al., 2012; Singh et al., 2013). 
Notably, in wheat, the highest Fe concentrations are 
observed in the aleurone layer and the scutellum, the 

absorptive structure in the embryo akin to the human 
placenta, responsible for nutrient uptake from the en-
dosperm (Singh et al., 2013). Separate measurements of 
wheat flour and bran revealed that nearly 60% of grain 
Fe is in the bran, encompassing the aleurone layer and 
representing the primary Fe reservoir in grains (De Brier 
et  al.,  2015). Within the aleurone layer, Fe is concen-
trated along with phosphorus and other minerals in glo-
boids within the protein storage vacuole, resembling the 
subcellular localization observed in Arabidopsis (Lott & 
Spitzer, 1980).

In situ X- ray absorption spectroscopy analyses have 
revealed that within the aleurone layer, the majority of 
Fe is bound to phytate, existing as either Fe(II) or Fe(III), 
consistent with its subcellular localization (De Brier 
et al., 2016; Singh et al., 2013). Another pool of Fe is bound 
to citrate, potentially playing a role in transport from mod-
ified aleurone cells in the crease to aleurone cells (De Brier 
et al., 2016). In rice, Fe accumulates in the aleurone layer 
along with phytate and in the scutellum, mirroring obser-
vations in wheat (Iwai et al., 2012; Takahashi et al., 2009). 
However, the precise speciation of Fe in the embryo and 
endosperm remains undetermined in these tissues, which 
have lower Fe concentrations, likely due to limitations in 
the sensitivity of X- ray absorption spectroscopy. Based on 
element co- occurrence, it is suggested that Fe is bound to 
phosphate, potentially as phytate, in the wheat scutellum 
and to other ligands in different parts of the embryo and 
endosperm (De Brier et al., 2016, Singh et al., 2013). These 
ligands may encompass proteins or smaller molecules like 
NA, present in grains and seeds of nongraminaceous spe-
cies (Le Jean et al., 2005; Lee et al., 2009). In wheat flour, 
corresponding to the starchy endosperm, NA serves as the 
primary ligand for Fe (Eagling et al., 2014).

Limited information exists regarding the mechanisms 
governing the pattern of Fe localization in grains. A de-
velopmental study in rice grains revealed that throughout 
grain development, Fe co- localizes with phosphorus in 
the aleurone cell layer, suggesting that Fe is likely bound 
to phytate upon storage (Iwai et al., 2012). Mutations in 
OsVIT1, OsVIT2, and mitochondrial iron transporter 
(MIT) disrupt Fe localization within the embryo (Bashir, 
Takahashi, Akhtar, et al., 2013; Zhang et al., 2012). OsYSL9 
exhibits strong expression in the scutellum and contrib-
utes to Fe storage in the embryo (Senoura et al., 2017). The 
phytosiderophore efflux transporter TOM2 is expressed in 
the dorsal vascular bundle, epithelium, and the scutel-
lum, potentially playing a role in Fe distribution (Nozoye 
et  al.,  2015). Silencing TOM2 gene expression did not 
impact seed total Fe content. Utilizing techniques such 
as sXRF, Perls staining, or seed dissection for Fe distribu-
tion analysis could offer further insights into its function 
during rice grain development.
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6  |  AGRONOMIC 
BIOFORTIFICATION

Micronutrients, which are essential for human health, are 
naturally present in varying amounts in different parts of 
plants and are typically absorbed from the soil (Bhardwaj 
et  al.,  2022). Agronomic based biofortification approach 
implicates the supplementation of nutrient- rich fertilizers 
aimed to enhance their content in edible plant parts; thus, 
enhancing their consumption by individuals. This is con-
sidered the traditional way to enrich grains of food crops 
with vital micronutrients (Figure 2). The pathway through 
which nutrients move from the soil to plants, food, and 
eventually into the human body is a complex process 
that is influenced by their bioavailability (de Valenca 
et al., 2017; Zulfiqar, Maqsood, & Hussain, 2020; Zulfiqar, 
Maqsood, Hussain, & Anwar- ul- Haq,  2020). Several fac-
tors play a crucial role in determining the effectiveness of 
agronomic biofortification, as there is a substantial loss 
of nutrients during the transitional phases from soil to 
plant, plant to food, and ultimately from food to humans 
(Daud et al., 2016, 2017). Several factors contribute to the 
success of agronomic biofortification in addressing Fe de-
ficiency in human beings. These factors depends on the 
availability of Fe at different stages: the presence of avail-
able Fe for crop uptake (soil to crop), the localization and 
mobilization of Fe into the edible harvested food (crop to 
food), the availability of Fe in the ready to eat food for hu-
mans, and the health condition of the human body, which 

determined its ability to absorb and assimilate Fe (food to 
human).

7  |  SOIL TO CROP

The bioavailability of nutrients from the soil to plants 
is influenced by various factors such as soil pH, organic 
matter content, soil moisture and aeration, and interac-
tion with other mineral nutrients and by the crop variety 
that defines the structure and function of the root system 
(Alloway, 2009; de Bang et al., 2020; Jalil et al., 2023). Some 
plants have the ability to modify the rhizosphere by secre-
tion of H+ ions or organic acids that improve the avail-
ability and uptake of micronutrients (Zhang et al., 2010). 
Rhizosphere acidification plays a crucial role in facilitat-
ing Fe absorption by plants. Studies have shown that the 
solubility of Fe decreases exponentially by a factor of 1000 
for every one- unit increase in pH within the range of 4–9 
(Zhou et  al.,  2018). Multiple beneficial microorganisms 
have been identified to facilitate the absorption of Fe by 
plants through various mechanisms, including chelation, 
reduction, acidification, and induction (Castulo- Rubio 
et al., 2015). Acidification enhances the mobility of Fe3+, 
and microbial- induced rhizosphere acidification pro-
motes plant Fe uptake. Microbes play a role in this process 
by producing organic acids in their extracellular metabo-
lites. For example, Bacillus amyloliquefaciens GB03 emits 
volatile organic compounds (VOCs) such as glyoxylic 

F I G U R E  2  Iron biofortification in cereals.
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acid, 3- methyl- butanoic acid, and diethyl acetic acid, lead-
ing to direct rhizosphere acidification (Farag et al., 2006; 
Zhang et  al.,  2009). Plant roots produce siderophores, 
enhancing Fe availability by efficiently chelating Fe3+ 
and solubilizing Fe from mineral or organic compounds 
(Miethke & Marahiel,  2007). Typically, siderophores ex-
hibit a strong 1:1 affinity for complex formation with Fe3+. 
Both gram- positive and gram- negative bacteria absorb 
these complexes through their cell membranes, resulting 
in the reduction of Fe3+ to Fe2+. Subsequently, the cell 
membrane expels these ions from the siderophores into 
the cell through a mechanism known as “gating,” involv-
ing the linkage of inner and outer membranes (Boukhalfa 
& Crumbliss, 2002). This process facilitates the solubiliza-
tion of Fe from otherwise unavailable minerals or organic 
compounds under Fe- limiting conditions (Indiragandhi 
et  al.,  2008). Microbial biofertilizers also improve the 
availability and uptake of micronutrients in the soil (Kaur 
et al., 2020).

Interaction between elements significantly influences 
the bioavailability for root uptake. The uptake of elements 
by plants relies not only on the presence of those elements 
in the soil solutions but also on the roots' nutrient uptake 
capacity. An imbalance of P, either deficiency or excess, can 
impact the Fe homeostasis of plants (Shi et al., 2019; Zheng 
et al., 2009). Iron and P can interact at various levels, in-
cluding in the soil or growth medium, on the root surface, 
and within plant systems (Rai et al., 2015). Elevated con-
centrations of Fe have been observed in P- deficient plants, 
attributed to the activation of Fe- responsive genes in re-
sponse to P deficiency (Zheng et al., 2009). However, this 
phenomenon is not observed in a high P medium (Hirsch 
et al., 2006). In experimental conditions, the absence of P 
increased the Fe concentration in seedling shoots, while 
the Fe concentration in the roots remained unaffected, 
indicating an antagonistic relationship between P and Fe 
(Chaiwong et al., 2018). Consequently, the regulation of P 
homeostasis significantly influences the availability of Fe 
(Bournier et al., 2013).

The interaction between Fe and Zn occurs due to the 
chemical similarity between their divalent cations and 
basic transporter proteins (Sinclair & Krämer,  2012). 
While an antagonistic relationship between Fe and Zn 
is commonly reported in many plants (Jalil et  al.,  2023; 
Saenchai et al., 2016), some exhibit a more complex dy-
namic in their uptake and distribution. In Arabidopsis 
thaliana, an increase in Zn concentration led to a decrease 
in Fe concentration in the shoots, but the roots of A. thali-
ana were unaffected in terms of Fe concentration. The Zn 
concentration in plant shoots showed a positive correla-
tion with the Zn concentration in the growth medium and 
remained unaffected by Fe concentration (Shanmugam 
et al., 2012). Despite Thlaspi caerulescens having high Zn 

concentration in the leaves, the root Zn content was low 
(van de Mortel et al., 2008). The decrease in Fe content in 
T. caerulescens shoots was attributed to a high concentra-
tion of Zn in the growth medium. Conversely, increasing 
the Fe concentration in the medium resulted in a decrease 
in Zn concentration in the shoots (Pineau et  al.,  2012). 
It was observed that Zn interferes with the uptake and 
translocation of Fe. Similarly, there is an antagonistic re-
lationship between Fe and Mn. When present at equim-
olar concentrations, Mn interferes with the uptake and 
transport of Fe (Gayomba et  al.,  2015). The application 
of sulfur- based fertilizers alters soil properties, that is, pH 
and stimulates Fe bioavailability and uptake (Ramzani 
et al., 2016).

8  |  CROP TO FOOD

Iron absorption is significantly influenced by the physical 
state of Fe, specifically its presence as ferrous (Fe2+) and 
ferric (Fe3+) forms (Piskin et al., 2022). In the diet, non-
heme Fe is primarily found in the oxidized or ferric form, 
although ferrous Fe is more readily absorbed by entero-
cytes. Ferric Fe precipitates at pH levels above 3, whereas 
ferrous Fe remains soluble under neutral pH conditions. 
As a result, ferric Fe needs to be first solubilized and 
chelated in the stomach to be absorbed in the less acidic 
proximal small intestine (Conrad & Umbreit, 2002). This 
chelation process occurs rapidly due to the presence of 
other components in food, as iron is released into the intes-
tinal lumen. These chelators, acting as enhancers (ascor-
bic acid and animal tissues) or inhibitors (phytic acid, 
polyphenols, calcium, and oxalic acid), play a significant 
role in influencing iron absorption by affecting iron solu-
bility (Clemens, 2014). Consequently, the composition of 
the diet is a critical factor in determining the absorption 
of nonheme Fe (Sharp,  2010). The presence of ascorbic 
acid in the diet has been shown to enhance the absorp-
tion of nonheme Fe (Teucher et al., 2004). Ascorbic acid 
facilitates Fe absorption by forming a chelate with ferric 
iron (Fe3+) at the acidic pH of the stomach, maintaining 
solubility even at the alkaline pH of the duodenum, the 
initial part of the small intestine. Additionally, ascorbate, 
the salt of ascorbic acid, acts as a free radical scavenger 
and donates an electron, thereby reducing Fe oxidation 
states to Fe2+. This reduction is crucial since Fe2+ is the 
bioavailable form for enterocyte cells (Smirnoff, 2018). It 
is important to note that Fe2+ is the only form of Fe that 
can be absorbed through the Fe transporters present in 
intestinal enterocyte cells (Gulec et al., 2014). The effect 
of vitamin C on Fe absorption relies on the dosage and 
the simultaneous consumption of both nutrients (Cook 
& Reddy,  2001; Davidsson et  al.,  1998). Iron absorption 
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shows an increase from 0.8% to 7.1% when supplementing 
a meal containing 4.1 mg of nonheme Fe with 25–1000 mg 
of ascorbic acid. Consuming 500 mg of ascorbic acid along-
side food enhances Fe absorption by six- fold, whereas tak-
ing it 4–8 h prior to the meal has a diminished effect (Cook 
& Monsen,1977).

Phytate and polyphenols in plant- based foods inhibit 
Fe absorption by forming complexes with dietary Fe in 
the gastrointestinal tract (Schönfeldt et al., 2016). Phytate, 
found in plants, significantly reduces the bioavailability of 
minerals (Me et al., 2009). Humans lack the necessary en-
zymes (endophytases) to digest phytate, so it remains un-
absorbed in the small intestine, making chelated minerals 
inaccessible (Wilson et  al.,  2015). Hallberg et  al.  (1989) 
studied the inhibitory effects of sodium phytate on Fe ab-
sorption in humans consuming wheat rolls with varying 
phytate levels (2–250 mg). Phytate's inhibitory effect de-
pended on the dose: 2 mg inhibited Fe absorption by 18%, 
while 250 mg led to an 82% inhibition. Additionally, the 
study found that the addition of ascorbic acid counteracted 
the inhibitory effect of phytates (Hallberg et al., 1989).

Nutrient bioavailability in food is influenced by crop va-
riety and processing techniques. In case of rice, the outer 
layer, which contain Fe, is often removed during process-
ing, resulting in lower Fe levels (Majumder et al., 2019). 
Paraboiling, a method used to particularly boil rice, can ef-
fectively retain and even enhance nutrient contents, par-
ticularly when micronutrients are added to water during 
paraboiling. This process tends to- mobilize nutrients from 
the outer layer to the endosperm (Hotz et  al.,  2015). In 
contrast, wheat contains Fe and Zn in the endosperm, 
which remains unaffected by processing (removal of seed 
coat and aleurone layer during milling and bread making) 
(Ajiboye et al., 2015). While food processing can lead to 
nutrient losses, it also reduces the levels of antinutrients, 
thereby enhancing the bioavailability of micronutrient. 
Soaking cereals in water can reduce phytate availability 
and increase the bioavailability of Zn, Fe, and other micro-
nutrients (Hotz & Gibson, 2007). However, conventional 
cooking methods may still result in nutrient loss. To en-
sure an adequate intake of micronutrient, it is crucial to 
breed crop varieties that concentrate these nutrients in the 
edible parts of the plant.

9  |  FOOD TO HUMAN

The bioavailability of a nutrient refers to the proportion 
of the ingested substance that becomes accessible for uti-
lization and storage within the body (Gibson, 2007). The 
supply of nutrients to the human body does not only de-
pends on the amount of the nutrient in a food but also 
on its bioavailability (Melse- Boonstra,  2020; Schönfeldt 

et al., 2016). It encompasses their absorption by improving 
accessibility in the intestinal lumen as well as their main-
tenance, absorption, and uptake in the body ultimately in-
fluencing their utilization by the body (Fernández- García 
et al., 2009; Hambidge, 2010). Indeed, the bioavailability 
of nutrients is correlated with their bioaccessibility and 
bioactivity, as bioaccessibility focuses on the release of 
compounds during digestion, while bioactivity relates to 
the biological effects or actions of those compounds once 
they are absorbed into the body (Rodrigues et al., 2022).

The inhibiting factors are known to reduce nutrient 
bioavailability by binding the nutrient in consideration 
into a form that is not recognized by the uptake systems 
while enhancing factors can act in different ways such as 
keeping a nutrient soluble or protecting it from interaction 
with inhibitors (Schönfeldt et al., 2016). Different nutrients 
(including protein, iron, and vitamin A) and the forms, in 
which they exist in the ingested medium, will react in dif-
ferent ways to inhibit or enhance the minerals absorption 
depending on their ingested quantity. In addition, the bio-
availability can be affected by the concentration of a nu-
trient, dietary factors, chemical form, supplements taken 
separately from meals, nutrition and health of the individ-
ual, excretory losses, and nutrient–nutrient interactions 
(Quintaes et al., 2015). Bioavailability of iron, for example, 
is known to be influenced by various dietary components, 
which include both inhibitors and enhancers of absorp-
tion (Hemalatha et al., 2007). In the case of minerals, the 
amount available for absorption (bioaccessible or soluble) 
depends on the composition and physical characteristics 
of the diet, the content and the chemical nature of the 
mineral, the presence of ligand promoters or inhibitors 
of the absorption, luminal gastrointestinal secretions, and 
interactions that occur as a result of the interplay of these 
factors (Drago, 2017).

10  |  AGRONOMIC APPROACHES 
TO MANAGE IRON IN FOOD CROPS

Iron deficiency in mineral soils is rare due to limited solu-
bility caused by high soil pH and HCO3 content in calcare-
ous soils (Aciksoz et al., 2011). In acidic soils, where Fe 
is abundant, the presence of Fe2+ can pose a significant 
toxicity risk to plants. Iron toxicity is frequently observed 
in rice- growing environments, characterized by ad-
verse conditions like inadequate drainage, highly reduc-
ing conditions, and elevated sulphide levels (Mahender 
et al., 2019). Limited solubility and availability is one of 
the reason of lower grain Fe concentration, consequently 
affecting human Fe intake (Grillet, Mari, et  al.,  2014; 
Grillet, Ouerdane, et al., 2014). Agronomic methods offer 
short- term solutions compared to breeding approaches 
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(Zulfiqar, Hussain, Ishfaq, Ali, Ahmad, et  al.,  2021; 
Zulfiqar, Hussain, Ishfaq, Ali, Yasin, et al., 2021). Soil ap-
plication is less effective due to fixation and poor mobility 
in the phloem. However, the use of Fe chelates can help 
minimize fixation and prove useful as soil Fe fertilizers 
(Cakmak et  al.,  2010; Cakmak & Kutman,  2017; Rengel 
et al., 1999). Different Fe sources, such as FeSO4·7H2O, Fe- 
EDTA, Fe- EDDHA and Fe nanoparticles, have been uti-
lized as fertilizers for various crops (Aciksoz et al., 2011; 
Alsamadany et  al.,  2024). In a field study, the applica-
tion of FeSO4·7H2O at 50 and 100 kg ha−1 as basal dose 
resulted in an improvement in grain Fe concentration 
the bread wheat by 14.9% and 19.1%, respectively (Yadav 
et  al.,  2016). Regarding flooded rice, the basal applica-
tion of FeSO4·7H2O led to a 9.6%–14.9% increase in grain 
Fe concentration (Yadav et  al.,  2016). Similarly, when 
FeSO4·7H2O was applied to the soil at a rate of 67 mg kg−1, 
the grain Fe concentration increased in direct- seeded aer-
obic rice by 25% (Meena et al., 2016). Agronomic bioforti-
fication has proven successful in different cereal crops as 
detailed in Table 1.

Fe can be effectively applied through foliar applica-
tion to address visual deficiencies in plants and improve 
the micronutrient status of crops, thereby assisting in 
the achieving biofortification goals (Fageria et  al.,  2009; 
Therby- Vale et al., 2022). The foliar application of Fe- AA 
(Fe- amino acid) significantly enhanced the Fe concentra-
tion in brown rice, with a 14.5% higher Fe concentration 
recorded in foliar- applied treatments compared to the 
control (Yuan et  al.,  2013). Zhang et  al.  (2010) demon-
strated that foliar application of ferric citrate, ferric ci-
trate + ZnSO4·7H2O, and FeSO4·7H2O increased wheat 
grain Fe concentration by 16.8%, 19.1%, and 34.7%, re-
spectively. Similarly, foliar application Fe- EDTA and Fe- 
EDDHA improved grain Fe concentration by 13.3% and 
14.8%, respectively (Aciksoz et  al.,  2011). Foliar appli-
cation of different Fe sources, such as nano Fe oxide, Fe 
chelates, and FeSO4, improved grain Fe accumulation in 
wheat by 7%–38% (Ghafari & Razmjoo, 2015). Likewise, 
in flooded rice, foliar application of 2% solution of FeSO4 
enhanced the grain Fe concentration by 16% compared 
to the control (Yadav et  al.,  2013). Foliar application of 

T A B L E  1  Fortification levels of Fe achieved in various cereal crops using different application techniques.

Application technique Crop Biofortification level (%) Reference

Soil application Maize 66 Saleem et al. (2016)

Sorghum 5–12 Singh et al. (2016)

Finger millet 17.8 Teklu et al. (2023)

Foliar application Rice 8 Prom- U- Thai et al. (2020)

Wheat 22 Aziz et al. (2019)

Wheat 8 Pahlavan- Rad and Pessarakli (2009)

Soybean 36 Sharma et al. (2019)

Wheat 6–85 Narwal et al. (2012)

Maize 52 Saleem et al. (2016)

Wheat 80 Ramzan et al. (2020)

Wheat 58–65 Zulfiqar, Maqsood, Hussain, and 
Anwar- ul- Haq (2020)

Rice 37 Zulfiqar, Hussain, Maqsood, 
et al. (2021)

Nutripriming Wheat 70 Sundaria et al. (2019)

Wheat 15 Zulfiqar, Maqsood, Hussain, and 
Anwar- ul- Haq (2020)

Wheat 20–121 Rizwan et al. (2019)

Rice 31 Zulfiqar, Hussain, Maqsood, 
et al. (2021)

Seed coating Wheat 11 Zulfiqar, Maqsood, Hussain, and 
Anwar- ul- Haq (2020)

Rice 21 Zulfiqar, Hussain, Maqsood, 
et al. (2021)

Soilless cultivation Rice 51 Chen et al. (2017)
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FeSO4 at 25 μM L−1 improved Fe concentration and bio-
available Fe contents in cowpea seeds (Marquez- Quiroz 
et al., 2015). Similar improvement in Fe concentration in 
grains in grains of cowpea (Salih,  2013) and mungbean 
(Ali et al., 2014) were also observed.

Micronutrients can be directly delivered to plants 
during germination through seed treatments such as prim-
ing and coating, which offer cost- effective alternatives to 
soil and foliar applications (Farooq et al., 2012, 2019). Seed 
priming involves presowing hydration, allowing the seed 
to initiate pre- germination activities without radical pro-
trusion (Bradford, 1986), while seed coating applies nutri-
ents to the seed surface using a sticky agent, affecting the 
soil–seed interface, and potentially altering nutrient avail-
ability (Farooq et al., 2012). However, the effectiveness of 
micronutrient delivery can be influenced by factors such 
as micronutrient source, sticky agent, nutrient- seed ratio, 
soil type, and fertility (Halmer, 2006). Iron pulsing is an-
other promising and cost- effective technique to improve 
grain Fe concentration without incurring environmental 
costs (Dey et al., 2021). In an experiment, rice seeds were 
subjected to Fe pulsing (FeSO4 and FeCl3 treatment for 
72 h), leading to improved rice productivity and plant Fe 
status (Dey et al., 2019).

11  |  INCREASING IRON BY 
CONVENTIONAL BREEDING

The breeding of food crops to obtain desired traits has 
been practiced for centuries. However, the availability of 
genetic diversity for exploitation through breeding var-
ies among different crops. For instance, crops like maize 
rich in pro- vitamin A have been successfully bred due to 
a clear understanding of the genetics behind pro- vitamin 
A accumulation (Gebremeskel et al., 2018). On the other 
hand, progress has been slower for traits such as Fe ac-
cumulation. Biofortification efforts require overcoming 
the tightly regulated mechanisms of Fe homeostasis to 
achieve Fe accumulation in targeted tissues (Connorton, 
Balk, et al., 2017). In transgenic strategies, known genes 
involved in Fe homeostasis are specifically targeted, 
whereas in traditional breeding methods, the focus is on 
inheriting the phenotype with high Fe content along with 
specific gene markers (Rommens, 2007).

Compared to their wild counterparts and primitive 
races, modern cultivars exhibit a lower degree of genetic 
diversity. The NAC transcription factor (NAM- B1) en-
coded by the ancestral wild wheat allele expedites senes-
cence and enhances nutrient remobilization from leaves 
to developing grains. In contrast, contemporary wheat va-
rieties harbor a nonfunctional NAM- B1 allele. Employing 
RNA interference to decrease RNA levels of various NAM 

homologs resulted in a senescence delay of more than 
3 weeks and a reduction of over 30% in wheat grain pro-
tein, Zn, and Fe content (Uauy et al., 2006). Additionally, 
in wheat, the contemporary cultivars have been observed 
to possess lower levels of Fe (Esquinas- Alca'zar,  2005). 
Moreover, the downward trend of Fe accumulation has 
been observed as the yield increases (Fan et  al.,  2008). 
Iron accumulation in different crops was also affected 
by environmental factors including an increase in atmo-
spheric CO2 (Leakey,  2009; Myers et  al.,  2014). A study 
investigated the impact of elevated atmospheric CO2 on 
nutrient levels in edible portions of different crops (Myers 
et al., 2014). The findings revealed that higher CO2 levels 
were associated with significant declines in Fe concentra-
tions among all C3 grasses. For instance, wheat grains cul-
tivated under elevated CO2 had 5.1% less Fe compared to 
those grown in ambient CO2 conditions. Similarly, rice ex-
hibited a reduction of 5.2% in Fe concentration when ex-
posed to elevated CO2 compared to the control group. The 
C4 plant, maize, also showed a similar pattern, with a 5.8% 
decrease in Fe concentration observed under elevated CO2 
conditions. These results suggest that increased atmo-
spheric CO2 levels can negatively impact Fe levels in these 
crops (Myers et al., 2014). Old varieties of rice have more 
Fe content compared to new varieties, but yield may be re-
duced (Anandan et al., 2011). Breeders are now exploring 
the possibility of incorporating desirable genes from wild 
ancestors into modern cultivars (Palmgren et  al.,  2015). 
Inserting chromosomes from the wild ancestor Aegilops 
has been successful in doubling the Fe content in wheat 
grains (Neelam et al., 2011; Tiwari et al., 2010).

Genome- Wide Association Studies (GWAS) and QTL 
mapping have been quite helpful in the identification of 
parts of chromosomes and alleles closely linked with high 
Fe content in crops. The assessment of various single nu-
cleotide polymorphisms (SNPs) can be done by GWAS in 
an extraneous population (Mitchell- Olds, 2010). It is help-
ful in the study of all the existing forms of a particular 
gene and the identification of single genes that have a role 
in increasing Fe content.

GWAS and QTL mapping simultaneously help in the 
refinement of chromosomal regions and identification 
of specific genes which is otherwise a very difficult step. 
Meta- QTL analysis is particularly useful in collecting 
information from various studies and accounting for en-
vironmental factors that may affect QTL studies (Garcia- 
Oliveira et al., 2018; Wu & Hu, 2012). In South and Middle 
America, research conducted in seven experiments found 
two QTLs for high Fe content and eight QTLs for high Zn 
and Fe content in common beans (Izquierdo et al., 2018). 
Twelve candidate genes from different families, that is, fer-
ric chelate reductases, bZIP transcription factor, and metal 
transporters (MATE, NRAMP, and ZIP) were identified in 
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these studies (Izquierdo et  al.,  2018). In rice, the genes 
OsVITI and OsVIT2 are crucial for Fe homeostasis. OsVITI 
transports Fe to the vacuole (Zhang et al., 2012), whereas 
OsVIT2 distributes Fe to various tissues through vacuo-
lar sequestration (Che et al., 2021). The gene OsNAS3 has 
been found within the QTL that regulates the natural vari-
ation of grain Fe accumulation (Talukdar et al., 2022). A 
recent GWAS study in wheat found 137 SNPs correlated 
with Fe content in grains ranging from 24 to 52 mg kg−1 
(Alomari et al., 2019). The identity and precise functions 
of numerous genes containing SNPs are yet to be fully elu-
cidated. Nevertheless, certain genes are situated within 
an NAC family transcription factor known as NAM- B1. 
These genes play a crucial role in mineral remobilization 
within wheat, significantly influencing the nutrient com-
position of grains (Uauy et al., 2006).

QTL mapping has successfully identified loci associ-
ated with high Fe content in crops such as maize, rice, 
and wheat. In rice, QTL with significant additive ef-
fects were found on chromosomes 1 and 5, which coded 
for candidate genes OsYSL1 and OsNAS3 (Anuradha 
et al., 2012). In wheat, QTL on chromosomes 7DS and 4A 
in wheat explained 14.5% and 21% variation in grain Fe 
content, respectively, whereas QTL on chromosome 5 in 
maize explained 16% of the variation in grain Fe content 
(Crespo- Herrera et  al.,  2016, 2017; Jin et  al.,  2013). The 
presence of combined Fe-  and Zn- associated QTL is not 
surprising since mineral translocation chelators can bind 
to both cations (Benes et al., 1983). Breeding experiments 
can benefit from targeting QTL that improve both Zn and 
Fe accumulation, as both minerals are important for crop 
improvement.

12  |  INCREASING IRON USING 
TRANSGENICS

The identification of genes involved in Fe regulation is of 
great importance to determine their potential for overex-
pression, aiming to enhance Fe content and its storage in 
desired tissues without negatively impacting crop yield. 
Genes related to Fe homeostasis have been studied indi-
vidually or in combinations throughout the entire pro-
cess (Bashir, Takahashi, Nakanishi, et al., 2013; Masuda, 
Aung, et al., 2013; Vasconcelos et al., 2017). Investigating 
these genes with different promoters has helped in the de-
velopment of optimal transgenic techniques for enhanc-
ing Fe accumulation. Plant- based proteins play a crucial 
role in the bioavailability and storage of Fe in a vegan diet 
(Kawakami & Bhullar,  2018). Various enzymes, such as 
proton ATPases, ferric reductases, coumarins, and phyto-
siderophores, are responsible for enhancing the solubil-
ity of Fe hydroxides in the soil (Connorton & Balk, 2019; 

Lemanceau et  al.,  2009; Paffrath et  al.,  2024). In dicots, 
IRT1 acts as a mediator for the transport of Fe from the ap-
oplast to the symplast (Jeong et al., 2017), while in grasses, 
proteins of the yellow stripe family are responsible for Fe 
transport (Curie et al., 2009). The supply of Fe to different 
parts of the plant is facilitated by specific transport pro-
teins, while biosynthetic enzymes aid in the incorporation 
of Fe into Fe–S clusters or heme groups. Moreover, Fe can 
be stored in vacuoles or bound to Fe- binding proteins like 
ferritin in plastids (Eroglu et al., 2019). Genes associated 
with any of these proteins hold promising potential as tar-
gets for biofortification efforts.

In a study by Masuda et  al.  (2012), three transgenic 
approaches were employed to enhance Fe content in rice. 
The first approach involved controlling the expression of 
ferritin, an Fe- binding protein, using specific endosperm 
promoters. The second approach focused on overproduc-
ing the metal chelator NA to increase Fe deposition. Last, 
two promoters, namely a specific endosperm promoter 
and a sucrose transport promoter, were used to regulate 
the expression of the Fe (II)- NA transporter OsYSL2. 
Under greenhouse conditions, Fe content was enhanced 
up to six times, while field planting yielded a fourfold in-
crease. The introduction of multiple genes was found to 
be more beneficial for Fe biofortification compared to sin-
gle gene introgression. In another study, the ferritin gene 
from common bean was introduced in to the rice plant 
using transgenic approach. The gene was controlled by the 
glutelin promoter, resulting in a twofold increase in Fe ac-
cumulation (Lucca et al., 2001). Goto et al. (1999) utilized 
agrobacterium- mediated transformation to introduce the 
SoyferH1 gene from soybean into rice endosperm. The 
gene was placed under the control of the GluB- 1 pro-
moter, leading to a threefold increase in Fe accumulation. 
Qu et al. (2005) developed transgenic rice by incorporat-
ing the SoyferH1 gene from soybean, controlled by both 
the glutelin (GluB- 1) and globulin (Glb- 1) gene promot-
ers. Additionally, they used a soybean Fe binding protein 
under the control of the Glb- 1 promoter. This multi- gene 
approach resulted in a threefold increase in Fe accumu-
lation. In a study by Tan et al.  (2015), the MxIRT1 gene 
from the apple tree was introduced into rice, resulting in a 
threefold increase in Fe and Zn levels.

13  |  INCREASING IRON UPTAKE

A broad array of genes are involved in Fe uptake 
(Brumbarova et al., 2015; Connorton, Balk, et al., 2017). 
However, only a few genes have been studied as targets 
for biofortification (Brumbarova et al., 2015; Connorton, 
Balk, et  al.,  2017). Plants utilize two strategies for Fe 
uptake: a chelate- based strategy found in grasses and 
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a reductive strategy employed by other plant species. 
Several key genes involved in the uptake of Fe through 
this mechanism have been recognized, including iron- 
regulated transporter 1 (IRT1) (Eide et al.,  1996), ferric- 
chelate oxidase 2 (FRO2) (Robinson et al., 1999), and the 
HC- ATPase (HA) genes (Kobayashi & Nishizawa, 2012). 
The overexpression of the divalent transporter IRT1, cru-
cial for the reductive uptake of Fe, has been explored. 
This overexpression led to an increase in Fe accumula-
tion in leaves, up to 1.7 times, and only 1.1 times in rice 
grains. These results suggest that when sink capacity is 
inadequate, Fe starts to accumulate in vegetative parts of 
plants (Lee & An,  2009). To enhance Fe deposition, the 
overexpression of IRT1, in combination with PvFER1, was 
employed in the endosperm of rice, resulting in a four-
fold increase in Fe deposition (Boonyaves et  al.,  2017). 
Gómez- Galera et al. (2012) developed transgenic rice with 
elevated expression of the barley Fe(III)- MA transporter 
gene HvYS1, utilizing the CaMV35S promoter for control. 
The study proposed that the enhancement of HvYS1 ex-
pression could potentially improve the uptake of Fe from 
the rhizosphere.

Recent findings propose that the formation of a pro-
tein complex involving AHA2- FRO2- IRT1 could play a 
crucial role in optimizing Fe uptake at the cell membrane 
(Martín- Barranco et  al.,  2020). All three proteins were 
observed to co- localize on the cell surface, with AHA2 
distributed evenly and FRO2 and IRT1 showing polar 
localization, enriched at the outer plasma membrane 
facing the rhizosphere (Barberon et  al.,  2014; Dubeaux 
et  al.,  2018; Martín- Barranco et  al.,  2020). The close 
proximity of FRO2 and IRT1 may facilitate the efficient 
transport of Fe by coordinating reduction and transport. 
This complex likely aids in Fe uptake in aerobic soil en-
vironments by preventing the re- oxidation of ferrous Fe 
produced by FRO2. The presence of AHA2 may create a 
local acidic pH environment around FRO2, mitigating the 
adverse effects of high pH or bicarbonates on ferric reduc-
tion. The functional significance of this protein complex 
is still unclear, pending the identification of factors or 
residues in AHA2- FRO2- IRT1 crucial for its formation. 
Whether AHA2, FRO2, and IRT1 must form an obliga-
tory complex for efficient Fe transport remains uncertain. 
Intriguingly, increasing the expression of IRT1 or FRO2 
alone has been shown to enhance Fe uptake (Barberon 
et al., 2011; Connolly et al., 2003). The limitation of FRO2 
and IRT1 for Fe acquisition argues against the necessity 
of a stoichiometric complex between AHA2, FRO2, and 
IRT1 for efficient Fe uptake. This implies that a pool of 
free FRO2 or IRT1 at the plasma membrane may contrib-
ute to Fe import into root epidermal cells. While FRO2 
and IRT1 were previously reported to strictly co- localize 
at the outer plasma membrane domain of root epidermal 

cells (Martín- Barranco et al., 2020), the resolution limits 
of confocal microscopes hinder definitive conclusions. 
The development of super- resolution imaging techniques 
with FRO2 and IRT1 is expected to aid in visualizing free 
and complex- loaded FRO2 and IRT1 proteins at the cell 
surface.

14  |  FACILITATING IRON 
DISTRIBUTION

The Fe is primarily available in the form of chelates, 
mainly malate and citrate, in the xylem, and NA and its 
derivatives in the phloem. YSL transporters, that is, YSL2 
in case of rice, facilitate the transport of NA and Fe com-
plexes across cell membranes (Ishimaru et al., 2010). NA 
is involved explicitly in divalent metals transport; hence, 
it is of the main focus for biofortification. It can also be 
easily synthesized by using NA synthase with substrate S- 
adenosyl methionine. Overexpression of NAS genes with 
strong promoters such as ZmUBIQUITIN and Cauliflower 
Mosaic Virus 35S has been observed to increase NA levels 
up to 10 times in leaves and even higher in seeds, result-
ing in a significant enhancement of Fe content, up to two 
times, in rice grains. NA is further converted to deoxymug-
ineic acid (DMA) by NA aminotransferase and DMA syn-
thase (Bashir et al., 2006). Plant roots also secrete DMA, 
which aids in the uptake of Fe. In rice, the overexpression 
of NAS1 and NAAT together led to a 29- fold increase in 
DMA concentration and a 4- fold increase in Fe concen-
tration (Banakar et al., 2017). The OsSUT1 promoter has 
been employed to manipulate Fe distribution in rice seeds 
(Ishimaru et  al.,  2010). Plant ferritin genes, when ex-
pressed under endosperm- specific promoters, have been 
used to enhance Fe content in rice and wheat grains. In 
rice, the expression of soybean FERH1 resulted in a three-
fold increase in grain Fe content (Goto et  al.,  1999). In 
contrast, expressing PvFER1 or TaFER1- A in wheat, using 
the OsGLUB or Ta- GLUB- 1D- 1 promoter, led to only a 
1.5- fold increase in Fe content (Borg et al.,  2012; Singh, 
Gruissem, et al., 2017).

In a genetic transformation experiment, introducing 
ferritin and mugineic acid biosynthetic genes, including 
SoyferH2, HvNAS1, HvNAAT- A, HvNAAT- B, and IDS3, 
into rice (Masuda, Kobayashi, et al., 2013) led to a four-
fold or greater increase in Fe content in polished grain in 
genetically modified rice lines cultivated in both normal 
and calcareous soils. Similarly, expressing the soybean 
ferritin gene in bread wheat resulted in a 60% rise in total 
Fe levels in wheat grains (Bhati et al., 2014). However, 
X- ray fluorescence imaging indicated that Fe is lost 
during milling, accumulating in the bran rather than the 
starchy endosperm of the grain (Neal et  al.,  2013). As 
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an alternative strategy, the utilization of the Fe storage 
protein ferritin, coupled with NAS overexpression, was 
adopted to enhance grain micronutrient content (Neal 
et al., 2013). Elevating the expression of the endosperm- 
specific ferritin gene TaFer1- A, using the 1Dx5 promoter 
in wheat seeds, resulted in a 50%–80% increase in Fe 
levels (Harrington et al., 2023). Wheat contains the VIT 
family of genes, such as TaVIT1, TaVIT2, and TaVIT3, 
as well as VTL genes like TaVTL1, TaVTL2, TaVTL4, 
and TaVTL5 (Harrington et  al.,  2023). Overexpression 
of TaVIT2- D using the wheat endosperm- specific high 
molecular weight glutenin D1 (HMWG- D1) promoter 
in transgenic wheat led to a consistent more than two-
fold increase (from 8 to 20 μg g−1) in Fe content in white 
flour, excluding the aleurone (Ram et al., 2021; Sheraz 
et al., 2021). This approach achieved an increase in Fe 
content within the range of required fortification levels 
in cereal grains (Gupta et  al.,  2021), surpassing what 
could be attained by using NAS genes alone. A threefold 
increase in Fe content, reaching approximately 25 μg g−1, 
was observed in highly pure white flour composed of en-
dosperm. This significant increase was achieved in two 
genetically engineered hexaploid wheat cultivars, where 
TaVIT2- D expression in the endosperm was combined 
with OsNAS2 expression. Although the distribution 
of grain Fe in these transgenic lines did not improve, 
OsNAS2 expression resulted in redistributing grain Fe to 
the endosperm rather than the aleurone, demonstrating 
that combining the two transgenes into a single cassette 
provides nutritional advantages beyond what can be 
achieved through conventional breeding methods.

15  |  ENHANCING IRON STORAGE

Iron in plants is stored in vacuoles or in the form of fer-
ritin. Genes that control plant ferritin have been success-
fully overexpressed in crops such as maize, wheat, and 
rice using specific endosperm promoters (Connorton & 
Balk,  2019). For biofortification purposes, the soybean 
gene FERH1 has been utilized in rice and maize. This 
resulted in a significant enhancement of Fe accumula-
tion, up to threefold in rice. However, the outcomes in 
maize were not as desired (Kanobe et  al.,  2013; Oliva 
et  al.,  2014). Similarly, when the FER1 gene from com-
mon bean was expressed in wheat, there was a 1.5- fold 
increase in Fe content (Borg et al., 2012; Neal et al., 2013; 
Singh, Gruissem, et al., 2017; Singh, Keller, et al., 2017). 
Additionally, when the TaVIT2 gene, which is responsible 
for Fe transport to the vacuole, was overexpressed with 
the GLU- 1D- 1 endosperm promoter, more than a twofold 
enhancement of Fe content was observed (Connorton, 
Jones, et al., 2017).

In cereals, Fe is primarily stored in vacuoles, making 
it a crucial focus for Fe storage compared to ferritin stor-
age (Tanin et al., 2024). The reduced expression of VIT1 
or VIT2 gene in rice has been shown to increase Fe con-
tent in embryo, resulting in a 1.3- fold enhancement of 
total Fe content (Bashir, Takahashi, Akhtar, et al., 2013; 
Zhang et  al.,  2012). Mutant VIT lines exhibited lower 
Fe content in shoots and roots compared to wild types. 
Plants tend to redirect Fe to seeds and embryos when 
the storage capacity of these parts is reduced. While in-
dividual gene transformation can effectively enhance 
Fe storage, the strategy for vacuolar or ferritin storage 
may differ depending on the species (Gupta et al., 2021). 
Successful multigenic approaches have been employed 
to enhance Fe absorption, transportation, and storage si-
multaneously. Global regulators involved in Fe homeo-
stasis can be modified to alter the expression of multiple 
genes. For example, in brown rice, the transcription 
factor OsIRO2, when overexpressed, activated several 
genes related to Fe absorption, resulting in a threefold 
increase in Fe accumulation (Ogo et  al.,  2011). Genes 
HRZ1 and HRZ2, which negatively regulate the tran-
scriptional response to Fe deficiency, can be targeted for 
biofortification. In mutant lines, these genes have led to 
increased transcription of genes involved in Fe absorp-
tion and transport, resulting in a 3.5- fold increase in Fe 
content in rice seeds (Kobayashi et al., 2013). In maize, 
overexpression of the phytase gene from Aspergillus 
under the control of the rice endosperm promoter Gt- 1, 
along with increased ferritin protein from soybean, has 
been effective in increasing Fe content and its bioavail-
ability (Drakakaki et al., 2005).

16  |  IMPROVING IRON 
BIOAVAILABILITY

Bioavailability connotes the extent of nutrients that can 
be absorbed from food into the blood and help the body 
to function properly. In food plants, the bioavailability 
of Fe is typically less than 15%, making it a crucial fac-
tor to consider in the biofortification of cereal crops. 
Bioavailability is influenced not only by the chemical 
composition of the nutrient but also by factors such as 
age, gender, life stage, and individual nutrient status. 
Human studies are necessary to assess the improved Fe 
nutrition resulting from biofortification efforts. Caco- 2 
cell analysis could be utilized to evaluate bioavailability 
by measuring Fe absorption in these cells, which resem-
ble the enterocyte lining of the intestinal absorptive cells 
but lack the mucosal layer. The total amount of ferritin 
formed after digestion is measured to determine the 
level of Fe absorption (Glahn et al., 1998). The Caco- 2 
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cells can be employed to investigate the impact of com-
ponents that inhibit nutrient absorption such as phytic 
acid. While animal models such as mice and chickens 
have been used to study Fe bioavailability, they do not 
provide comprehensive information about Fe uptake in 
the human gut. Certain biophysical methods have been 
employed to explore the available Fe in food and provide 
insights into its bioavailability (Narayanan et al., 2019). 
It is important to note that cooking or digestion of food 
can alter the chemical form of Fe, negatively impacting 
its bioavailability. However, there are contradictory ob-
servations regarding the impact of cooking or digestion 
on Fe availability, as Mamiro et  al.  (2017) stated that 
the process of cooking plays a crucial role in facilitat-
ing mineral absorption during digestion in humans by 
reducing the binding of minerals, making them more 
readily available for physiological uptake. On the other 
hand, some studies indicated that heating the food ma-
trix can release ferritin Fe hydroxides as Fe2+ or Fe3+ 
ions, which can bind with phytic acid and reduce bio-
availability (Hoppler et  al.,  2008; Moore et  al.,  2018; 
Perfecto et al., 2018).

In cereal foods, the molar concentration of phytic 
acid to Fe should be <1:1 to ensure effective absorption 
of Fe (Hurrell & Egli,  2010). Therefore, the concentra-
tion of phytic acid can serve as an indicator to assess bio-
availability. Some whole- grain cereals and pulses have a 
phytic acid to Fe ratio of 10:1, resulting in negligible bio-
availability when analyzed using Caco- 2 cells (Rodriguez- 
Ramiro et  al.,  2017), whereas isotope analysis in young 
women showed absorption rates of up to 4%–6% (Petry 
et  al.,  2013). Breeders are working toward developing 
crops with reduced phytic acid content, although a sig-
nificant reduction may lead to lower yields. Caco- 2 cell 
studies have demonstrated improved Fe bioavailability 
with up to a 60% reduction in phytic acid in peas (Liu 
et  al.,  2015; Warkentin et  al.,  2012) and reduced phytic 
acid in common beans resulted in increased Fe levels in 
young females (Petry et al.,  2013). In maize, the expres-
sion of fungal phytase enhanced available Fe levels by 
up to three times (Drakakaki et al., 2005). Phytic acid is 
typically more concentrated in the bran than in the endo-
sperm of cereals. Therefore, targeting Fe accumulation in 
the endosperm can help mitigate the phytic acid problem 
(Connorton, Jones, et al., 2017). However, differences in 
Fe bioavailability are not solely related to phytic acid lev-
els. The overlapping of QTL controlling grain Fe content 
with QTL for bioavailability, particularly through the com-
bination of three large QTLs, has been shown to enhance 
Fe bioavailability (Lung'aho et  al.,  2011). Furthermore, 
some studies have reported improved bioavailability by 
adding NA to meals (Zheng et al., 2010) or increasing NA 
levels through the overexpression of NAS genes in wheat 

and rice grains, as confirmed by Caco- 2 cell analysis or in 
mice (Beasley et al., 2019; Zheng et al., 2010). However, 
experiments involving human subjects have not yet been 
conducted.

17  |  GENETIC ENGINEERING 
VIA OVEREXPRESSION OF GENES, 
RNAI,  CRISPR/CAS9

Recent advancements in biotechnology have opened 
up possibilities for the identification and characteri-
zation of target genes, making genetic engineering for 
biofortification a feasible approach. Techniques, such as 
metabolite profiling, gene expression analysis, physical 
mapping, and whole- genome sequencing, have greatly 
aided in the identification of desirable genes and their 
transfer into target organisms. Through genetic modifi-
cation, the transfer of genes of interest and development 
of desired varieties with anticipated traits have become 
more accessible and efficient compared to traditional 
breeding methods.

Transgenic experiments have been conducted in signif-
icant agricultural crops with the goal of accumulating mi-
cronutrient and protein in specific target tissues. Proper 
coalescence of omics data, that is, proteomics, genomics, 
and transcriptomics, is essential to manipulate genes using 
transgenics (Chaudhary, Deshmukh, Mir, et  al.,  2019; 
Chaudhary, Alisha, et al., 2019; Deshmukh et al., 2014). A 
comprehensive understanding of transgenic approaches 
aids in the development of the desired crops for culti-
vation. Golden rice stands as a well- known genetically 
engineered biofortified crop (Ye et  al.,  2000). Moreover, 
transgenic approaches have been employed to enhance Fe 
and Zn content in rice (Trijatmiko et al., 2016). Scientists 
are actively working on developing plants with high lev-
els of Zn and Fe by improving their uptake and translo-
cation in plant parts (Rana et al., 2019; Zhu et al., 2007). 
Transgenic varieties hold immense nutritional potential, 
but progress has been limited due to national biosafety reg-
ulations. However, the emergence of genome editing tech-
niques, such as CRISPR/Cas, has facilitated the bypassing 
of regulatory processes to develop desired transgenic vari-
eties (Mushtaq et al., 2020; Vats et al., 2019). CRISPR/Cas 
has already been employed in rice for genome editing to 
enhance biofortification (Vats et al., 2019). These studies 
often target known genes with well- understood molecular 
mechanisms.

Mutation breeding is a low- cost and convenient 
method for crop improvement, although it relies 
chance- driven process (Bansal et al., 2019; Chaudhary, 
Deshmukh, & Sonah, 2019; Kumawat et al., 2019). For 
biofortification, the probability of success is higher 
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if a single gene controls the desired trait. In mutation 
breeding, traits that are negatively regulated may exhibit 
more significant improvements compared to positively 
regulated traits. Sevanthi et al. (2018) conducted a study 
where mutants were selected from a pool of 87,000 rice 
mutants with EMS- induced mutations and screened for 
levels of Fe and Zn in grains. Mutants with enhanced 
Zn and Fe levels have been identified in various studies. 
For example, a rice mutant with sequence variation in 
NA aminotransferase resulted in increased Fe content 
(Cheng et  al.,  2007). Jeng et  al.  (2012) also identified 
mutants with enhanced Zn and Fe content in milled rice 
from the IR- 64 variety.

18  |  MICROBE- ASSISTED 
BIOFORTIFICATION

Microbes play a crucial role in maintaining the environ-
ment's biogeochemicals (Gadd, 2010; Lugtenberg, 2015). 
Some microorganisms can enhance plant growth and nu-
trient use efficiency by promoting nutrient uptake (Pang 
et al., 2023; Xu et al., 2018; Yadav, Rastegari, et al., 2020; 
Yadav, Singh, et al., 2020). These microbes employ vari-
ous mechanisms, such as solubilization, oxidation, 
nitrogen fixation, and phytohormone production, to in-
crease nutrient availability for plants (Kour et  al.,  2020; 
Pang et  al.,  2023; Yong et  al.,  2014). For instance, in-
oculating both Bradyrhizobium strain and Streptomyces 
griseoflavus together resulted in enhanced nodulation, ni-
trogen fixation, and nutrient uptake in Glycine max (Htwe 
et  al.,  2018). Microbes produce siderophores to increase 
Fe bioavailability in soil, especially in aerobic calcareous 
soils (Schalk et al.,  2011). The synthesis of siderophores 
and their solubilization mechanism in Fe hydroxides is a 
significant microbial activity that improves Fe acquisition 
(Jin et al., 2010). Inoculation with siderophore endophytes, 
such as Enterococcus hirae DS- 163 and Arthrobacter sul-
fonivorans DS- 68, significantly increased grain Fe concen-
tration in high and low Fe accumulating wheat genotypes 
by up to 67% (Singh, Gruissem, et al., 2017; Singh, Keller, 
et  al.,  2017). Likewise, Pseudomonas aeruginosa and 
Pseudomonas fluorescens are capable of producing two 
types of siderophores, pyoverdine and pyochelin. These 
siderophores facilitate the uptake of Fe (Shen et al., 2013). 
Furthermore, various studies have identified several 
rhizobacteria capable of producing siderophores, includ-
ing Klebsiella, Bacillus, Bradyrhizobium, Streptomyces, 
Serratia, and Rhizobium (Mustafa et al., 2019). Inoculating 
wheat with Providencia sp. PW5 resulted in increased 
grain Fe contents, while a combination of Providencia sp., 
Ochrobactrum anthropic, and Brevundimonas diminuta 
boosted rice grain Fe levels by 13%–16% (Rana et al., 2015; 

Rana, Joshi, et  al.,  2012; Rana, Saharan, et  al.,  2012). 
Microbes can play an important role in biofortification of 
deficient micronutrients like Fe and Zn, where other tech-
niques of improving nutrient uptake encountered limita-
tions due to soil properties, organic matter content, and 
micronutrient form in soil. Plants and microbes produce 
siderophores to chelate insoluble Fe in soil and improve 
Fe uptake (Sharma & Johri, 2003). Siderophores increase 
Fe bioavailability by chelating Fe3+ to Fe2+ under vary-
ing pH conditions. Inoculation of arbuscular mycorrhizal 
fungus (AMF) Glomus intraradices in maize significantly 
enhanced Fe uptake (Liu et  al.,  2000). Fungi have vari-
ous mechanisms for Fe uptake, such as siderophore- Fe 
chelates, low- affinity Fe chelates, heme, hemoglobin, and 
transferrin (Philpott, 2006). In a study, 51 rhizospheric bac-
teria were evaluated for their capacity to produce sidero-
phores and promote Fe uptake in plants under Fe- limited 
conditions. In maize, inoculation with Arthobacter globi-
formis led to enhanced plant biomass and increased Fe up-
take (Sharma et al., 2016). In another study, Burkholderia 
phytofirmans and Enterobacter sp. were found to increase 
grain Fe contents by 10.14% compared to a control treat-
ment (Yaseen et al., 2018). Soil pH has a significant im-
pact on Fe availability, with a decrease in each unit of 
pH reducing Fe availability up to 1000- fold (Guerinot & 
Yi, 1994). The acidification of the rhizosphere through the 
nitrification process of ammonium- containing fertilizers 
can increase Fe availability. Ammonia- oxidizing microbes 
can catalyze soil nitrification (Jetten et al., 1997). In cal-
careous soils, P- solubilizing microbes such as Penicillium 
bilaji and P. cf. fuscum can lower the soil pH in the pres-
ence of NH4

+, resulting in increased Fe solubility (Illmer 
& Schinner, 1995).

19  |  CONCLUSIONS AND 
PROSPECTS

Micronutrient malnutrition leads to health issues and 
economic problems, including mortality, impaired de-
velopment, reduced productivity, and increased health-
care costs. Biofortification offers a solution to reduce Fe 
and other micronutrients deficiencies, promoting global 
welfare in terms of improved food quality. Historically, 
food production has prioritized quantity over quality 
to meet the growing population's demands. However, 
with growing concerns about hidden hunger, research 
has shifted toward genetic and agronomic biofortifica-
tion for sustainable solutions. It is important to note that 
these biofortification methods work in tandem to achieve 
maximum impact. The future of biofortification lies on 
several fronts; in gene editing, with a focus on genes that 
enhance Fe uptake, translocation, and bioavailability, 
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while reducing antinutrient accumulation in cereals. 
The role of certain soil microbes in improving Fe avail-
ability to plants may be crucial, but, further research is 
needed to identify suitable microbial species and mix-
tures that can enhance Fe availability through various 
mechanisms in the rhizospheres. Another strategy is the 
development of specific genetically modified microbes 
or manipulation of endophytes and rhizosphere micro-
biome through bioengineering to enhance their traits. 
Postharvest management plays a vital role in delivering 
nutrient- rich foods to consumers. However, essential 
nutrients like Fe and Zn are often removed during pro-
cessing, limiting their availability to humans. Improved 
whole grain processing can address this issue by increas-
ing the dietary and nutritional value of products. Moving 
forward, genetic engineering tools are the most promis-
ing strategy to improve the Fe content of cereal crops 
and enhance the process of biofortification. These tools 
have significant potential for improving the biofortified 
Fe content of food crops. Conversely, it is important to 
acknowledge that genetically modified food crops may 
face challenges in receving societal acceptance.
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