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Data homogeneity impact in tree species classification based 
on Sentinel-2 multitemporal data case study in central 
Sweden
Giovanni D’Amicoa,b, Mats Nilsson c, Arvid Axelsson c and Gherardo Chiricia,d

aDepartment of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy; bCREA 
Research Centre for Forestry and Wood, Arezzo, Italy; cDepartment of Forest Resource Management, 
Swedish University of Agricultural Sciences, Umeå, Sweden; dFondazione per il Futuro delle Città, Florence, 
Italy

ABSTRACT
Spatial information on forest composition is invaluable for achiev-
ing scientific, ecological, and management objectives and for mon-
itoring multiple changes in forest ecosystems. The increased flow of 
optical satellite data provides new opportunities to improve tree 
species mapping. However, the accuracy of such maps is affected 
by training data, and in particular on the homogeneity of individual 
classes. Thus, we evaluated the effect of data homogeneity in tree 
species classification. We performed tree species classification by 
considering different ways to partition data into tree species 
classes. The class sets considered were (i) only mixed coniferous 
and mixed deciduous forest classes, (ii) single-species classes, (iii) 
single-species, mixed coniferous and mixed deciduous classes, and 
(iv) single-species, mixed coniferous and mixed deciduous classes 
and a true mixed class. Using data from the Swedish National Forest 
Inventory, we varied the threshold that defined dominating species. 
Tree species were classified for a study area in central Sweden using 
Sentinel-2 data and two classification approaches: Bayesian infer-
ence and random forest (RF). Images were selected by class separ-
ability and the most informative images based on variable selection 
with RF. The most informative images tended to be selected by 
both methods. However, in forests with tree species of similar 
spectral behaviour, image selection on the basis of class separability 
was found to be more reliable. More accurate classification results 
were achieved as the number of classes decreased and the thresh-
old of plot purity increased. The Bayesian classification approach of 
only mixed coniferous and mixed deciduous classes gave the high-
est OA, always greater than 90%. When discriminating between 
pure plots of Birch (Betula spp.), Spruce (Picea abies), Scots pine 
(Pinus sylvestris) and Lodgepole pine (Pinus contorta), the best OA 
values were 84% for Bayesian and 80% for RF. In more complicated 
scenarios, RF resulted in higher overall accuracies (OA).
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1. Introduction

Sustainable forest management and conservation require up-to-date and accurate 
tree species maps. Having reliable tree species information is critically valuable for 
a variety of scientific and operational forestry implementations, such as planning 
(Chiarucci and Piovesan 2020), biodiversity monitoring (Parisi et al. 2023; Wallis et al.  
2017; Wang and Gamon 2019), climate change effect in adaptation and mitigation 
(Hof, Dymond, and Mladenoff 2017; Wazen et al. 2018), and assessments of terrestrial 
carbon stocks and fluxes (Vangi et al. 2023; Xiao et al. 2019). In addition, the essential 
role of sustainable forest management and forests is mentioned in the Sustainable 
Development Goals (SDGs) set by the United Nations in the 2030 Agenda specifically 
of SDG 15 (life on land) (Gregersen et al. 2017).

National Forest Inventories (NFIs) generally provide aggregated data such as precise 
estimates of tree species proportions on regional to national levels, but they lack detailed 
spatially explicit information required for the monitoring and management of natural 
resources. Moreover, large forest areas, mainly in mountainous regions, are often remote 
and difficult to access (Young et al. 2017), necessitating time-consuming and costly NFI 
surveys. In contrast, remote sensing technology can easily obtain full-coverage forest 
information over large areas even in dense and inaccessible forests. As a result, remote 
sensing-based approaches that provide spatialized and updatable information on forest 
cover distribution are increasing in demand (Kangas et al. 2018; Lister et al. 2020).

The constant progress in remote sensing technologies supports the development of 
species recognition and classification methods. These data are usually gathered from an 
airborne or spaceborne platform due to the opportunity to easily cover large areas. 
Primarily data from multispectral (e.g. Axelsson et al. 2021; Hemmerling, Pflugmacher, 
and Hostert 2021; Immitzer et al. 2019; Sameen, Pradhan, and Aziz 2018), hyperspectral 
(e.g. Fricker et al. 2019; Vangi et al. 2021), LiDAR (Light Detection and ranging) data (e.g. 
Lindberg, Holmgren, and Olsson 2021; Michałowska and Rapiński 2021; Waser, Ginzler, 
and Rehush 2017), or a combination of these are used (e.g. Mäyrä et al. 2021; Plakman 
et al. 2020). However, large area tree species mapping is primarily still based on multi-
spectral satellite data (Breidenbach et al. 2020).

The increasing availability of open-access optical satellite data provides new oppor-
tunities for the use of multi-temporal methodologies, under the assumption that 
changes in reflectance caused by the phenological cycle may increase spectral separ-
ability among tree species (Persson, Lindberg, and Reese 2018; Sheeren et al. 2016). In 
particular, the short revisit period of Sentinel-2 (i.e. 2–3 days in Sweden) allows 
monitoring of seasonal variations with high temporal resolution and consequently 
observing phenological differences between tree species, improving vegetation classi-
fication results (Fassnacht et al. 2016; Immitzer et al. 2019). However, in large-area land 
cover analyses with multi-temporal imagery, several critical issues may occur. Images 
are affected by different atmospheric conditions, such as haze, clouds and cloud 
shadows. These can affect the separability of tree species or even cover parts of the 
image, causing data to be missing. The illumination conditions, that is greatly affected 
by sun angle, also cause shadows to appear different between images. Combined with 
topography, whole areas can be affected. Moreover, class separability is also strongly 
influenced by reference data and their homogeneity. In particular, on the one hand, 
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the prevalence of few forest species allows their consistent spectral behaviours to be 
identified. On the other hand, the widespread diffusion of mixed forests results in the 
complexity to identify distinctive spectral signatures.

When a large number of images are available for classification, an appropriate selection 
among them can improve the classification accuracy. Modern classification approaches 
are able to use the vast hyperdimensional space created by several bands of all the 
available images. In particular, machine learning approaches, such as convolutional neural 
networks, support vector machines, or random forest (RF), have shown accurate classifica-
tion results even for computationally complex procedures. However, even a traditional 
classification approach, such as the maximum likelihood classification used in a Bayesian 
framework, has provided promising results that need further investigation (Axelsson et al.  
2021; Cardille and Fortin 2016; Crowley et al. 2019).

The objective of this study was to evaluate the effect of data homogeneity in tree 
species classification by testing and evaluating two approaches. Bayesian and RF classi-
fication approaches were applied to the Swedish boreal forest using Sentinel-2 data. The 
effect of data homogeneity was evaluated by dividing field data into classes according to 
four different schemes with increasing complexity. Initially, only coniferous and decid-
uous forest classes were considered, then single-species classes, and finally both single- 
species and mixed classes were used.

2. Materials

2.1. Study area

The study area is located in mid-Sweden (62° 37’ 18.66’’ N, 17° 2” 40.63’’ E) and is defined by two 
adjacent Sentinel-2 tiles (33VWK and 33XWK) for a total of approximately 100 km � 200 km of 
which about 14,000 km2 on land (Figure 1). The study area contains various types of land-
scapes, both coastal and inland areas dominated by forest or agriculture. The maximum 
altitude is 577 m a.s.l. and annual precipitation ranges from 500 to 700 mm. The vegetation 
period normally begins in mid-May and ends in mid-October. The forest is mainly managed for 
wood production and dominated by coniferous stands of Norway spruce (Picea abies Karst.) 
with the second most frequent species being Scots pine (Pinus sylvestris L.), but Lodgepole pine 
(Pinus contorta Dougl. ex Loud.) and areas with broadleaf forests (mainly Birch, Betula spp.) are 
also present.

2.2. NFI field plots

The Swedish NFI is carried out as two independent annual field inventories covering all of 
Sweden (Fridman et al. 2014). Each field sample consists either of temporary or perma-
nent plots, all of which are located in rectangular shaped clusters with side lengths of 300  
m to 1500 m. Five geographic strata are used with a sampling intensity that decreases 
towards the north of the country. On both temporary and permanent plots, trees with 
a stem diameter less than 4 cm are measured on two 0.5 m radius plots, and trees with 
a stem diameter between 4 cm and 10 cm are measured on a 3.5 m radius plot. If the stem 
diameter is 10 cm or more, the trees are measured on plots with a 7 m or 10 m radius for 
temporary and permanent plots, respectively.
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In total, over 10,000 plots are surveyed annually by the NFI in the whole Sweden. 
A sample of 985 NFI plots was selected within the study area. Of these, 469 were 
temporary plots with a 7 m radius and 516 were permanent plots with a 10 m radius. 
Each tree that was measured was also positioned relative to the plot centre. Many 
forest variables were measured or estimated for each plot, including basal-area 
weighted mean tree height, basal-area weighted mean stem diameter, basal area, 
stem volume, and above ground tree biomass. The coordinates for the centre of the 
plots are positioned using a global navigation satellite system (GNSS) with 
a horizontal accuracy of about 1 m for most of the permanent plots and 
a horizontal accuracy of about 5 m for most of the temporary plots (Nilsson et al.  
2017; Persson et al. 2017). Field plot coordinates were transformed from SWEREF 
99TM (EPSG 3006) to WGS84/UTM zone 33 N (EPSG 32,633) since the latter was used 
in the remote sensing data.

Dominating tree species or species group was determined for each field plot depend-
ing on basal area (BA) proportion. If a species or group of them (Birch and other Broadleaf, 
Norway Spruce, Scots pine, and Lodgepole pine) constituted a larger BA proportion than 
a certain threshold, it was assigned as dominant of the field plot. When no species’ basal 
area proportion was higher than a certain threshold, the plot was assigned to 1. Mixed 
Coniferous, when the sum of the BA proportions of conifers exceeded the threshold; 2. 
Mixed Broadleaf, when the sum of the BA proportions of the broadleaves exceeded the 
threshold, and 3. Mixed otherwise (Table 1). The basal area proportion thresholds used in 
this study to assess the influence of plot homogeneity in classification were 70%, 80%, 
90%, and 100%.

The study was carried out considering four classification schemes: class set 1 consisting 
of single species, mixed domination and no domination (Birch and other Broadleaf, 
Norway Spruce, Scots pine, Lodgepole pine, Mixed Conifer, Mixed Broadleaf, Mixed), 
class set 2 consisting of single species and mixed domination (Birch and other 
Broadleaf, Norway Spruce, Scots pine, Lodgepole pine, Mixed Conifer, Mixed Broadleaf), 
class set 3 consisting of single species only (Birch and other Broadleaf, Norway Spruce, 

Figure 1. Mid-Sweden study area defined by the extent of two contiguous Sentinel-2 tiles, and the 
locations of the NFI plots.
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Scots pine, Lodgepole pine), and class set 4 consisting of mixed domination only 
(Broadleaf, Conifer). The partitioning of field plots into classes is visualized in Figure 2.

2.3. Remote-sensing data

In this study, imagery from the Sentinel-2 (S2) mission was used for tree species classification. 
The two S2 satellites feature a wide-swath width of 290 km, a Multi-Spectral Imaging (MSI) 
sensor with 13 high spectral resolution bands, and a varying spatial resolution of 10 m, 20 m, 
and 60 m depending on band (Drusch et al. 2012). The study area is covered by two S2 tiles, 
each with a fixed size of 100 km � 100 km (Figure 1). All images with the processing level of 
L2A (i.e. atmospherically corrected surface reflectance images) from the period of 2018 to 
2019, with a cloud cover of less than 15%, were downloaded from ESA Copernicus Open 
Access Hub. As the winter months are characterized by low sun angles, few daylight hours, 
and snow, only images acquired in the period between May and November of each year were 
used in the study. In total, 45 images, obtained by merging the 33VWK and 33VXK tiles 
(Figure 1), were collected during the period. Among these, 16 images, or 32%, were manually 

Table 1. Number of plots by class at different proportions of basal area. Values within parentheses are 
the number of original plots and the other values are plots available after selection.

Prop% Birch Lodgepole P Scots P NS pruce Mixed Broad Mixed Conif Mixed

70 (36) 
24

(46) 
20

(273) 
133

(319) 
182

(19) 
13

(138) 
74

(154) 
63

80 (27) 
12

(42) 
14

(235) 
104

(249) 
128

(11) 
5

(183) 
101

(238) 
96

90 (17) 
9

(36) 
13

(170) 
96

(177) 
94

(5) 
3

(216) 
108

(364) 
156

100 (8) 
4

(30) 
14

(118) 
53

(99) 
49

(4) 
3

(178) 
99

(548) 
347

Figure 2. Plot frequency by tree species in the four class sets.
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identified as free of clouds and cloud shadows. Among the spectral bands available from the 
S2 sensor, we selected the nine visible and near-infrared bands with a spatial resolution of 10  
m and 20 m (B2: Blue, B3: Green, B4: Red, B5: Red-Edge1, B6: Red-Edge2, B7: Red-Edge3, B8A: 
NIR, B11: SWIR1, B12: SWIR2). All 10 m bands were also provided at 20 m resampled by the 
average value (Pignatale 2022). Thus, to ensure homogeneous information quality for all 
bands investigated, 20 m resolution images were used. Thus, the spatial resolution of the NIR 
and SWIR bands, which are more sensitive in discriminating between vegetation classes, is 
preserved (Alonso, Picos, and Armesto 2021). Spectral data for each image were extracted for 
the NFI plots as a weighted average of pixels according to their proportion in the circular plot.

2.3.1. Remote sensing variables
Spectrally similar tree species in combination with a 20 m spatial resolution may reduce 
mapping accuracy in some areas with complex forest structures, often characterized by 
mixed and diverse forests. Adding vegetation indices as a complement to the spectral 
bands could better represent the tree coverage characteristics and thus improve map 
accuracy (Khan et al. 2023). Therefore, we increased the S2 variables and then selected the 
most representative ones as follows.

We combined the nine S2 bands in pairs, to calculate a set of 36 normalized differential 
indices nc, mathematically defined as 

where i ≠ j, correspond to c-combinations (Si; Sj) of the set composed of S2 bands.
Then, the data of different S2 band combinations were standardized as 

where μc and σc are the mean and standard deviation of the cth S2 indices nc (D’Amico 
et al. 2021b).

3. Methods

The procedures herein presented were performed in the statistical software R 4.2.2 
(https://www.r-project.org., accessed on: 1 May 2023).

3.1. Classification methods

3.1.1. Bayesian approach
Maximum Likelihood (ML) is a method that has commonly been used to classify pixels in 
satellite images based on spectral data. All pixels are assigned a class based on the relative 
likelihood of that pixel as part of the probability density function of each class (Hagner 
and Reese 2007). The algorithm provides a classification by using a decision rule based on 
an expression describing probabilities for different classes using conditional probabilities 
(Swain 1978).

In this study, we used the decision rule that k should be selected to maximize 
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where P ωkð Þ is the prior probability of class k that was estimated by field sample 

proportions and p Xt;~θk;t

� �
is the likelihood of observing X at time t with the 

distribution parameters ~θk;t (Axelsson et al. 2021). With this decision rule, we 
assumed that observations (i.e. satellite images) were conditionally independent 
given a tree species. The Bayesian classification was performed by fitting a normal 
distribution to field data, although any likelihood function can be used (Gorte and 
Stein 1998).

3.1.2. Random forest
For comparison, the classification results were compared with those obtained with the RF 
algorithm. This method was taken as a reference for benchmarking due to extensive and 
well-documented applications within forestry spatial prediction using remotely sensed 
data (Chirici et al. 2020). Random Forest is a decision tree algorithm and nowadays is 
among the most popular ensemble methods to predict forest variables (Belgiu and 
Drăguţ 2016). In RF, a set of de-correlated regression trees (ntree) are generated. The 
results from these regression trees are aggregated to produce predictions without over-
fitting the data (Breiman 2001). To build and grow trees, RF uses a randomly chosen 
subset of predictors at each splitting node (mtry), and trees are grown without the need 
for pruning. RF uses a procedure called out-of-bag samples (OOB) to grow trees. In the 
OOB procedure, each tree of the maximum size is built independently, based on boot-
strap samples from the training dataset (i.e. two-thirds of the data), leaving randomly the 
remaining one-third of the samples. Following the OOB sample procedure, the prediction 
error (OBB error) for each of the individual trees can be estimated as: 

where ŷi is the predicted output of an OOB sample, yi is the actual output and n is the total 
number of OOB sample units. In this study, we used random forest model growth through 
the ranger package (Wright, Wager, and Probst 2023), optimizing the model by searching 
for the combination of ntree and mtry that minimized the OOB error (Belgiu and Drăguţ  
2016; Chirici et al. 2020).

In comparison to other machine-learning techniques, RF may minimize output var-
iance and the overfitting issue, improving model stability and accuracy (Breiman 2001). In 
order to compare the results obtained from the two classification methods, the reference 
conditions were uniformed by implementing the two classification methods with the 
same S2 images (section 3.2.1.).

3.2. Image and feature selection

To achieve a high classification accuracy, classification algorithms require remote sensing 
data of high quality. For the Bayesian classification, image selection to ensure the greatest 
separability between class pairs can be used (Axelsson et al. 2021). However, since image 
selection is the same as feature selection, a selection among images should be suited to 
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the classification method that is used. Therefore, classification results based on images 
selected by using Z-value and an RF-based feature selection approach were compared.

3.2.1. Z-values
The images were sorted according to the class separation level within them. For each pair 
of classes, a Mahalanobis distance (Mahalanobis 1936) of the difference between the class 
population averages was calculated as 

where a and b represent the different classes, b~μ is the sample mean vector, Σ̂ is the sample 
variance-covariance matrix, and m is the sample size.

Based on the Z-values, 16 images were selected, corresponding to the cloud-free image 
proportion (section 2.3). To select these 16 images, two images with the largest Z-value 
for each class pair were selected. This resulted in different sets of images selected for 
different class sets. After this, additional images were chosen by the highest sum of 
Z-values over class pairs, to reach a total of 16 images.

3.3. Feature selection

3.3.1. Bayesian approach
For each image, we performed a recursive feature elimination (RFE) (Guyon et al. 2002) to 
choose a good feature subset for tree species classification among the S2 bands (9) and 
indices (36). The wrapper-type algorithm identifies good combinations of features by 
generating a set of classification models and iteratively removing features that do not 
improve classification accuracy. The RFE was conducted using a naïve Bayes algorithm 
(nb-RFE) as prediction model, specifically, the nbFuncs method from the caret R package 
(Kuhn 2008) was used. The feature elimination method employs backward selection, 
meaning that the RFE search process starts with the full feature set and proceeds to 
iteratively remove features that do not contribute to or are detrimental to classification 
accuracy, until a good combination of features is found (Ramezan 2022). A 10-fold cross- 
validation resampling method was employed in the iterative development of the RFE 
model, providing performance estimates that incorporate variation due to feature selec-
tion. Thus, the model with the highest accuracy provides a good subset of metrics for tree 
species classification.

3.3.2. Random forest
For the RF classification model, a feature selection was performed using the Variable 
Selection Using Random Forest (VSURF) R-package (Genuer, Poggi, and Tuleau-Malot  
2015). The algorithm works in two steps: 1. variables are ranked according to importance 
using RF, and irrelevant ones are eliminated; 2. it performs feature selection to generate 
two separate subsets for interpretation and prediction purposes, respectively. The subset 
considered is the prediction subset, which includes the response-related variables. The 
data set containing S2 variables (bands and indices) from all available (45) images and the 
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information classes for each plot served as input to VSURF. After the variable selection, all 
images were classified using RF and ranked according to their OA.

3.4. NFI plot selection

To limit the influence of ground vegetation in young forests with limited canopy cover, 
plots with heights below 5 m were excluded from the analyses. In addition, plots affected 
by cuttings in the time period between the field inventory and the image acquisition were 
identified and removed based on the NDVI of the six S2 images with the best Z-values 
(Section 3.2.) (Table 1).

3.5. Accuracy assessment

Leave-one-out cross-validation was conducted to assess the accuracy of the classification 
models. The primary measure of accuracy was overall accuracy, which is defined as the 
number of correctly classified items divided by the total number of items. The accuracy of 
the Bayesian inference method was also evaluated by varying the number of images used 
for classification. More specifically, classification was made using the best available images 
that had been chosen by Z-values (Section 3.2). All the possible combinations were tested 
by progressively adding images from the 16 selected. Applying the classification method 
to a single image corresponds to ordinary ML classification.

4. Results

4.1. Bayesian approach

4.1.1. Image selection
For each class set (Figure 2) and BA threshold, we selected 16 images out of 45 for the 
classification according to their class separability (Z value). Two of the images were 
selected in all cases (30 May 2018 and 1 July 2018), and five images were selected in 
80% of the cases (30 May 2018, 1 July 2018, 16 July 2018, 7 October, and 14 October 2018). 
When considering each class set, 7 out of the 16 selected images were the same for all BA 
thresholds in class 1 and 2, eight for class 3, and six for class 4 (Table 2). As shown in 
Table 2, the best images for discriminating between all classes (class set 1) are in 2018: 10, 
25, and 30 May, 1 and 16 July, 7 and 14 October, and when excluding plots in mixed 
coniferous and deciduous forests (class set 2), the best images are 10, 25, and 
30 May 2018, 1 July, 7 and 14 October and for 17 May 2019. When considering only single- 
species classes (class set 3), the best images are on 10 and 30 May 2018, 26 Jun, 1, 16, 
24 July, 7 Octoberth, and 22nd, and when only using the two classes coniferous and 
broadleaf trees (class set 4), the best images are 30 May, 26 June , 1, 16, and 24 July, 
and 3 August 2018.

4.1.2. Feature selection
For each of the 16 selected images used, a naïve Bayes classification model was produced 
from the RFE method. Features were selected from the 36 indices and nine original S2 
bands. Depending on the class set, a different number of features were selected. On 
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average, 28 metrics were selected for the classification of class set 1. For the class set 2, 28 
features were selected on average, for the class set 3, 20 features were selected on 
average, and for class set 4, 15 features were selected on average. On average, the number 
of metrics decreased with decreasing number of target classes. In fact, when discriminat-
ing between coniferous and deciduous trees, with a basal area proportion threshold of 
100%, only six metrics were selected (Figure 3).

Looking at the individual metrics that were selected, those most frequently chosen 
were: SWIR1, SWIR2, and RedEdge2, followed by the normalized differential indices of 
RedEdge1 and SWIR1, and Green and Red, followed by the original NIR and RedEdge3. As 
for metrics selected per class set, results are presented in Figure 4. Here, we see that SWIR1 
appears to be the most frequently chosen feature for classification when looking at class 
sets that include single tree species dominated classes (class sets 1, 2, and 3), while for 
classification of deciduous and coniferous mixed classes (class set 4), NIR appears to be 
the most commonly used.

4.1.3. Classification accuracy
The OA increased as more images were used for classification, a pattern that held true for 
all class sets. Moreover, the highest OA values were observed as the complexity of class 
sets decreased and plot homogeneity (BA threshold) increased. When including plots with 
all single species classes and mixed classes (class set 1), OA values averaged 0.5. The 
highest OA for classification using class set 1 was 60%, and it was obtained with the 
combination of seven images and plots with a basal area threshold of 90% (Table 3). The 
average OA values using two images are the lowest, ranging from 31% to 36%, varying 
with the species homogeneity of the plots (Figure 5).

Figure 3. Boxplot of number of metrics selected in the 16 images per class set and basal area 
proportion threshold. Black dots represent the arithmetic mean while black center lines represent the 
median.
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In terms of OA results slightly higher than class set 1 were obtained by removing the 
class with mixed forests from the analysis (class set 2). The OA values, using all 16 images, 
were 56% for both a basal area threshold of 70% and 100%. While the best OA values of 
61% was obtained using a BA threshold equal to 100% with two combinations with both 
eight and nine images (Table 4). Using only two images, the average OA value is between 
36% and 43%, depending on the species homogeneity of the plots (Figure 5).

A significant improvement in OA results was obtained by removing mixed classes (class 
set 3). With pure classes and combinations of at least 13 images, the average OA results 
75%. The best OA values of 84% result with four combination images (considering 4, 6, 7 

Figure 4. Number of times different metrics were selected in the 16 images per class set.
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and 9 image combinations) and tree species pure plots (BA = 100%). With 80% and 90% G, 
the highest OA of 81% results with combinations of 5–6 and 7 images, respectively 
(Table 5). While using two images, the average OA varies between 49% and 62% when 
looking at different plot homogeneity (Figure 5).

When classifying only the two classes of coniferous and broadleaf species (class set 4), 
an average OA of 99% was achieved with at least 10 images used for classification and tree 
species pure plots (BA = 100%). With BA = 90%, the OA was 97% with at least 10 images, 
while with BA = 80%, the OA was 95% with at least 14 images. With BA = 70%, the average 
OA was 90% using at least 11 images. Considering plots with BA = 100%, the maximum 
OA achieved for any combination of images was more than 99%. The best combinations 
of 4–10 images with BA = 90% ensured an OA of 99%. With 10 images, the maximum OAs 

Table 3. Best confusion matrix (with OA and No. of images) per basal area proportion considering class 
set 1. Birch and other Broadleaf, Norway Spruce, Scots pine, Lodgepole pine, Mixed Conifer, Mixed 
Broadleaf, Mixed.

P
re

di
ct

io
n

Reference

70 Mixed Mixed
Broadleaf

Mixed
Conifer Birch Lodgepole

Pine
Scots
Pine

Norway 
Spruce

Mixed 19 1 4 4 1 5 15
Mixed Broadleaf 14 9 0 5 0 2 6
Mixed Conifer 7 0 26 1 1 12 20
Birch 10 3 2 14 0 1 2
Lodgepole Pine 0 0 6 0 13 19 9
Scots Pine 5 0 14 0 3 77 17
Norway Spruce 8 0 22 0 2 17 113

OA = 53.24%; 7, and 9 images

80 Mixed Mixed 
Broadleaf

Mixed 
Conifer Birch Lodgepole 

Pine
Scots 
Pine

Norway 
Spruce

Mixed 51 2 3 3 0 8 16
Mixed Broadleaf 6 0 0 1 0 1 0
Mixed Conifer 7 0 58 0 1 33 30
Birch 11 2 0 8 0 0 0
Lodgepole Pine 0 0 5 0 9 4 1
Scots Pine 9 1 17 0 3 51 10
Norway Spruce 12 0 17 0 1 7 70

OA = 54.14%; 8 images

90 Mixed Mixed 
Broadleaf

Mixed 
Conifer Birch Lodgepole 

Pine
Scots 
Pine

Norway 
Spruce

Mixed 95 1 10 2 0 3 13
Mixed Broadleaf 0 0 0 0 0 0 0
Mixed Conifer 27 0 62 0 2 26 17
Birch 12 2 0 7 0 0 0
Lodgepole Pine 0 0 5 0 9 4 0
Scots Pine 9 0 11 0 1 59 7
Norway Spruce 13 0 20 0 1 4 57

OA = 60.33%; 7 images

100 Mixed Mixed 
Broadleaf

Mixed 
Conifer Birch Lodgepole 

Pine
Scots 
Pine

Norway 
Spruce

Mixed 199 1 6 1 0 2 3
Mixed Broadleaf 2 0 0 2 0 0 0
Mixed Conifer 45 0 48 0 2 9 11
Birch 8 2 0 1 0 0 0
Lodgepole Pine 7 0 7 0 9 2 0
Scots Pine 36 0 15 0 3 37 5
Norway Spruce 50 0 23 0 0 3 30

OA = 57.64%; 6, and 7 images

5062 G. D’AMICO ET AL.



achieved were 97% for BA = 80% and 95% for BA = 70% (Table 6). The worst OA values 
stood at 49% using two images, while on average, the OAs using two images were above 
84% (Figure 5).

4.2. Random forest

4.2.1. Image and variable selection
In the VSURF approach, an average of 12 images are selected for all class sets and different 
BAs. While considering each class set separately, the selected images are 13 for class set 1 
(all tree species classes), 15 for class set 2 (excluding mixed coniferous and deciduous 
forests), 11 for class set 3 (pure forests only), and 8 for class set 4 in which conifers and 
broadleaf trees are discriminated. The 1 July 2018 image was always selected, the 
14 October 2018 image was selected in 80% of the cases, while in more than 60% of 
cases were selected 2018: 30 May and 7, 19, and 22 October (Figure 6).

The VSURF algorithm mainly provides the most important variables for predic-
tion. Analysing the frequency of variables by dates, it turns out that the images 
with the most variables were 2018: 14 October, and 1 July, followed by 30 May, 

Figure 5. Overall accuracy boxplots considering every possible combination of images used for 
classification per class set and basal area proportion.
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7 October, and 16 June 2019 (Figure 6). The most selected indices were the 
normalized differences between Green and Red, RedEdge2 and NIR, Green and 
Red, Red and SWIR1, and Green and SWIR1, while the most selected band was 
SWIR1.

4.3. Bayesian classifier versus random forest

The two classifiers produced comparable results in terms of best OA at varying BA 
proportion and class set, with limited differences (Figure 7). Specifically, RF tended 

Table 4. Best confusion matrix (with OA and No. of images) per basal area proportion considering class 
set 2. Birch and other Broadleaf, Norway Spruce, Scots pine, Lodgepole pine, Mixed Conifer, Mixed 
Broadleaf.

P
re

di
ct

io
n

Reference

70 Mixed 
Broadleaf

Mixed
Conifer Birch Lodgepole

Pine
Scots
Pine

Norway 
Spruce

Mixed Broadleaf 6 2 5 0 1 6

Mixed Conifer 0 25 1 1 15 20

Birch 7 3 17 0 0 6

Lodgepole Pine 0 8 0 15 17 6

Scots Pine 0 16 0 3 81 24

Norway Spruce 1 21 0 0 22 131
OA = 60.00%; 9 images

80 Mixed 
Broadleaf

Mixed
Conifer Birch Lodgepole 

Pine
Scots 
Pine

Norway 
Spruce

Mixed Broadleaf 1 0 1 0 1 1
Mixed Conifer 0 51 1 1 36 28
Birch 4 1 12 0 2 4
Lodgepole Pine 0 6 0 9 8 4
Scots Pine 0 23 0 3 67 17
Norway Spruce 1 25 0 1 9 95

OA = 57.04%; 6, and 8 images

90 Mixed 
Broadleaf

Mixed
Conifer Birch Lodgepole 

Pine
Scots 
Pine

Norway 
Spruce

Mixed Broadleaf 0 0 0 0 0 0
Mixed Conifer 0 58 0 1 26 18
Birch 3 0 6 0 0 1
Lodgepole Pine 0 16 0 7 6 6
Scots Pine 0 8 1 2 57 8
Norway Spruce 0 20 0 2 3 54

OA = 60.10%; 4, and 5 images

100 Mixed 
Broadleaf

Mixed
Conifer Birch Lodgepole 

Pine
Scots 
Pine

Norway 
Spruce

Mixed Broadleaf 0 0 3 0 0 0
Mixed Conifer 0 52 0 0 13 10
Birch 2 0 1 0 0 0
Lodgepole Pine 0 2 0 12 2 0
Scots Pine 0 14 0 2 36 4
Norway Spruce 1 31 0 0 2 35

OA = 61.26%, 8 images
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to achieve the greatest OA with mixed classes (class sets 1 and 2), while the 
Bayesian approach had comparable results for pure classes (class set 3) and was 
better in the classification of coniferous and broadleaf species (class set 4). 
Considering the proportions of BA, with tree species pure plot (BA = 100%), except 
for class set 2, the Bayesian method always achieved a greater OA than RF. 
Otherwise, with the lowest plot homogeneity considered (BA = 70%), the OA 
achieved by RF was greater for all class sets.

5. Discussion

The present study evaluated the use of Sentinel-2 time series for tree species 
classification, considering several progressively more homogeneous classes and 
comparing Bayesian inference and RF in a test area located in the central part of 
Sweden. The use of multi-temporal data provided greater accuracy than data from 

Table 5. Best confusion matrix (with OA and No. of images) per basal area 
proportion considering class set 3. Birch and other Broadleaf, Norway Spruce, 
Scots pine, Lodgepole pine.

P
re

di
ct

io
n 

Reference 

70 Birch Lodgepole 
Pine 

Scots 
Pine 

Norway 
Spruce 

Birch 17 0 3 6 
Lodgepole Pine 1 10 20 17 
Scots Pine 1 4 81 24 
Norway Spruce 1 3 17 125 

OA = 70.61%; 7, and 8 images 

80 Birch Lodgepole 
Pine 

Scots 
Pine 

Norway 
Spruce 

Birch 13 0 2 2 
Lodgepole Pine 0 7 9 4 
Scots Pine 0 3 87 17 
Norway Spruce 0 1 11 106 

OA = 81.30%; 5, and 6 images 

90 Birch Lodgepole 
Pine 

Scots 
Pine 

Norway 
Spruce 

Birch 10 0 0 3 

Lodgepole Pine 0 3 4 1 
Scots Pine 0 4 65 12 
Norway Spruce 1 3 9 80 

OA = 81.03%; 7 images 

100 Birch Lodgepole 
Pine 

Scots 
Pine 

Norway 
Spruce 

Birch 2 0 0 0 
Lodgepole Pine 0 8 4 1 
Scots Pine 0 2 42 3 
Norway Spruce 2 0 6 43 

OA = 84.07%; 4, 7, 8, and 9 images 
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a single date image, as seen in previous studies (Axelsson et al. 2021; Persson, 
Lindberg, and Reese 2018). It also offers the advantage of producing and integrating 
new data quickly and economically at various scales, thus facilitating decision- 
making (Hussain et al. 2023). In tree species mapping, environmental conditions, 
such as cloud cover and atmospheric and topographical effects are relevant issues. 
These problems are overcome i. partly by the short revisit time of twin Sentinel-2 
satellites, ii. by the proposed method (Axelsson et al. 2021), in which the same 
images are not required for the entire study area.

The use of Z-value for image selection was confirmed to improve the overall accuracy 
of classification, identifying mainly cloud-free images with good radiometric quality. 
Indeed, the higher cloudiness in the study area during the year 2019 led to fewer images 
selected from that year. Overall, out of 34 images selected at least once, only 11 were 
acquired in 2019. Considering the four-class sets of class combinations and the selected 
images, we see that, for class sets 1 and 2, containing mixed classes, the most selected 
images were the same even with varying species homogeneity. Images from 5, 10, 25, and 
30 May,1 and 16 July, 7 and 14 October 2018 and 17 May 2019 were selected from at least 
three of the four class sets considered. Data from the month of May, with five images (four 
from 2018 and one from 2019), appear to be the most occurring and therefore the most 
effective in discriminating between mixed species. As reported by Persson et al. (2018), 
late spring is particularly effective for discriminating species because of the greater 
phenological variation among them due to differences between species in the leaf-out 
period.

Table 6. Best confusion matrix (with OA 
and No. of images) per basal area proportion 
considering class set 4. Broadleaf, Conifer.

P
re

di
ct

io
n 

Reference 

70 Mixed 
Broadleaf 

Mixed  
Conifer 

Mixed Broadleaf 31 20 
Mixed Conifer 2 402 

OA = 95.16%; 9 images 

80 Mixed 
Broadleaf 

Mixed  
Conifer 

Mixed Broadleaf 19 9 
Mixed Conifer 2 311 

OA = 96.77%; 6, 7, 9, and 11 images 

90 Mixed 
Broadleaf 

Mixed  
Conifer 

Mixed Broadleaf 16 2 
Mixed Conifer 1 252 

OA = 98.89%; 5, and 6 images 

100 Mixed 
Broadleaf 

Mixed  
Conifer 

Mixed Broadleaf 6 0 
Mixed Conifer 0 191 

OA = 100%; 2-14 images 
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Regarding Z-values, pure tree species classes (BA = 100%) generally showed higher 
values. The homogeneity of classes, in fact, results in reduced noise in predictors that 
promote greater discrimination among species. Class set 1 contains mixed forests, based 
on the Z-value, the period starting in May and ending in August was the best for 
discriminating mixed broadleaf forests, while for mixed coniferous forests, the period 
from May to October presented the best values.

Considering class set 2, the highest Z-values for discrimination between mixed con-
iferous and deciduous forests were obtained from images taken in the spring. Among the 
most difficult classes to discriminate are mixed deciduous and birch-dominated forests, 
with Z-values tending to be low, especially for a BA threshold lower than 90%, with the 
selected images distributed throughout the growing season. In class set 3, on the other 
hand, where mixed classes were excluded, 13 images were selected for at least three class 
sets out of four. The selected images mainly belonged to the months of May (5th and 30th 

Figure 6. Comparison of image selection per class set and BA threshold with ranking (from Z-values, 
Table 2) and VSURF colored by class. The VSURF point size varies according to the number of indices 
(n) selected for each image.
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−2018 and 17th −2019), July (1st, 16th, 24th −2018) and October (7th, 14th, 19th, 22nd, 24th 

−2018) (Table 2). Therefore, the best seasons for differentiating pure classes were autumn 
images from the period in which leaf colour change occurs, and spring images when leaf- 
out occurs. Considering Z-values, spring and autumn images provided a better basis to 
discriminate between spruce and the two pine species. In contrast, to distinguish 
between conifers and broadleaf trees (class set 4), the best images in at least three of 
the BA thresholds were acquired in the summer, with five images between late June and 
early August (2018: 26 June, 1, 16, and 24 July, and 3 August) and in the spring (2018: 
30 May). This agreed with Lisein et al. (2015), who found that late spring and early summer 
images are optimal for species discrimination. Accordingly, higher Z-values were obtained 
between June and July for discriminating between coniferous and broadleaf trees, with 
the highest values recorded for greater BA thresholds.

The VSURF approach for image selection selected a total of 29 images at least once. Of 
these, three differed from the Z-value selection (2018: 4 September 2019: 20 August and 
27 September). Of the 34 images selected with Z-value, eight were excluded from the 
VSURF selection (2018: 4 June, 15 August, 19 September, 2019: 17 May, 11 June, 26 July, 
15 and 28 August).

The frequent presence of clouds in the study area led to the partial selection of cloud- 
covered images even with VSURF (11 images). However, cloud-free images were highly 
selected, with a median of eight images, compared to cloud-covered images (median of 
three images). Similarly to Z-values image selection, the most informative images with 
VSURF resulted in 1 July 2018 and 7 and 14 October.

Considering the VSURF image selection for class sets 1 and 2, containing mixed classes, the 
most selected images were mainly in late May (2018, 30th), July (2018, 1st), and October 

Figure 7. Scatterplot of the best overall accuracy of Bayesian versus RF approach.
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(2018, 7th, 14th, and 22nd), with other images selected in September (2018, 2nd) and June 
(2019, 16th). In class set 3, with only pure classes, except for 1 July 2018 and 16 June 2019 
images, the summer period appeared less informative, with four images selected in 
the second half of October (14th, 19th, 22nd, and 24th). In class set 4, with only mixed conifer 
and broadleaf classes, even with VSURF selection, the summer period is the most informative 
with images mainly selected in July, along with some images selected in October.

Although the images selected by the two methods considered generally ranged over 
the same periods of the year, some points should be noted. First, class separability allows 
the identification of images (i.e. period) in which, even for species with similar spectral 
properties, classes can best be distinguished from each other. Image selection with VSURF 
and other model-based classification methods ensures the collection of predictors that 
provide more robust models. However, the selection of images with higher spectral 
separability between classes allows more opportunity to generalize classifications when 
there are classes with similar spectral properties or unbalanced datasets (Su 2020). For 
instance, it was found that in half of the cases, the image with the highest Z-value ranking 
(Table 2) was not included in the VSURF selection.

For national or continental applications, cloud-based platform approaches offer sig-
nificant opportunities allowing to process vast datasets without extensive local hardware. 
Particularly promising are the approaches based on pixel-based composite images where 
best available pixel (BAP) (White et al. 2014) and medoid (Flood 2013; Kennedy et al. 2018) 
are the most common (Francini et al. 2023).

Our results show that the use of multi-temporal images provided better results than single 
images. In addition, the OA improved as the mixed classes were excluded from the analysis 
and as the proportion of plot basal area where a plot was defined as homogeneous increased. 
Regarding individual species, Birch, Lodgepole pine, Scots pine, and Norway spruce were 
classified quite accurately with the selected combinations of images at different proportions 
of BA. However, given the spectral similarity between different conifer species, the classifica-
tion of only the two classes coniferous and deciduous led to a major increase in accuracy.

These results demonstrate the impact in classification accuracy of using different basal 
area thresholds to assign plots to a class. Although pure tree species plots (BA = 100%) 
ensure the best results, given the homogeneity of the spectral response of the pixels, classes 
are usually assigned considering a lower BA threshold (Bravo-Oviedo et al. 2014). 
Nevertheless, if mixed classes are excluded (e.g. in class sets 3 and 4), the 80% BA threshold 
which is commonly used to discriminate between classes gives accuracies that are compar-
able with the ones obtained using higher BA thresholds. Particularly, limiting in terms of OA 
is the use of mixed classes. The extensive presence of conifers, already unbalanced in plot 
proportion (Table 1), has affected the frequent misclassifications. However, the effect of 
mixed classes on classification should be investigated in other environmental contexts 
characterized by the presence of other forest species (Oreti et al. 2021).

Comparing the results achieved by the Bayesian approach and the RF approach, 
chosen as the benchmark for machine learning given its simplicity of implementation 
and wide popularity, some aspects emerge. The OA generally increases for both the 
Bayesian approach and the RF approach as the homogeneity of the plot increases, 
independently of the classes considered and the BA threshold. However, it has been 
noted that under more challenging conditions such as in cases of low homogeneity in 
plots (BA = 70%) and with mixed classes (class sets 1 and 2), where spectral properties 

INTERNATIONAL JOURNAL OF REMOTE SENSING 5069



tend to be mixed up between classes, RF achieves better results (Nasiri et al. 2023). On the 
other hand, under the conditions typically investigated, with both the limited presence of 
mixed classes and high BA thresholds to ensure spectral differences for training classifica-
tion models, the Bayesian method was particularly effective.

Simultaneously, by decreasing the number of classes considered, the best results were 
obtained by selecting fewer S2 metrics. In the simplest situation, with only coniferous and 
broadleaf classes and plots characterized by 100% BA, only six metrics ensured the best 
results. However, to discriminate between more than two classes, a larger number of 
metrics, such as to provide greater spectral differentiation between classes, were selected 
(Vangi et al. 2021). Among the selected metrics, SWIR1, SWIR2, and NIR were the most 
frequent, followed by the normalized difference SWIR1/Red-Edge1, Red/Green, and NIR/ 
Red-Edge3. In tree species mapping, the highest reflectance values occur mainly in the 
infrared region as compared to the visible region. On the other hand, canopy reflectance 
is known to be high in the near-infrared bands, while chlorophyll levels in leaves and their 
variations result in absorption features that are particularly sensitive in the red edge 
regions (Fassnacht et al. 2016; Immitzer et al. 2019; Puletti, Chianucci, and Castaldi 2018).

The critical metrics identified in this study predominantly originate from the bands 
provided at 20 m resolution. According to the findings reported by Alonso et al. (2021) in 
a study on forest classification in northern Spain, the use of S2 imagery with a 10-metre 
resolution yielded improved accuracy solely for land uses of anthropogenic origin. 
Nonetheless, with recent advancements in image downscaling techniques (Wu et al.  
2023), and the capability to conduct analyses on cloud computing platforms that offer 
unrestricted access to comprehensive satellite data repositories, it might be advantageous 
to employ higher-resolution imagery even for studies focused on mapping tree species.

Among the classification algorithms available and used with remote sensing data, 
Bayesian inference has beneficial properties. Although any machine learning method 
can provide pixel-wise probabilities for each tree species in each image, to incorporate 
new available images into the classification results, implementation of ex-novo models is 
required. On the other hand, the Bayesian inference method used in this study makes it 
easy to update the classification with new images as they become available, representing 
an approach to automate classification from remotely sensed data. The Z-value provides 
information on the quality of the new images, selecting those to be used to improve the 
previous classification. Implementation of the presented approach might prove suitable 
as a method of continuous mapping of large area forests.

6. Conclusion

In this study, the data homogeneity impact in forest trees species classification was 
analysed. Based on Sentinel-2 images available in a central Sweden study area, we 
mapped forest species, considering four class sets of species aggregations and different 
single-species proportions of basal area as the definition of a homogenous plot. To do 
this, a Bayesian inference was sequentially applied accumulating the likelihoods to 
calculate the a posteriori probability from a stream of remote sensing images. With the 
aim of testing, the same images were then used with an RF model. Based on the 
combinations of the 16 best selected images, we calculated the classification overall 
accuracy. The main results were that when using only the two class sets of coniferous 
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and broadleaf trees and basal area of 100% with at least 10 images the OA was equal to 
99% and the OA was always greater than 90% even with different proportions of basal 
area. All things being equal, the accuracy of RF is slightly lower. Excluding mixed classes, 
then with individual tree species classes (class set 3), the highest OA of 81% for both BA =  
80% and 90% and OA = 84% for BA = 100% were obtained with combinations of 6 or 7 
images. While in the more challenging situations with mixed classes and lower basal area 
thresholds (BA = 70% and 80%), RF provided slightly higher accuracies. The Bayesian 
approach, within our study area, proves efficient for tree species classification. The 
mapping of forest species supports the development of policies for forest conservation, 
fostering sustainable forest management critical to achieving the SDGs.
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