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Assessment of the state of the art in the performance and utilisation level of 
automated vehicles
Teshome Kumsa Kursea, Girma Gebresenbetb and Geleta Fikadu Dabaa

aMechanical Systems and Vehicle Engineering Department, Adama Science and Technology University, Adama, Ethiopia; bHead of Division of 
Automation and Logistics, Department of Energy and Technology, Swedish University of Agricultural Science, Uppsala, Sweden

ABSTRACT
The progress of technology in our current world continues to advance each day, benefiting human 
beings in various ways. One significant development in recent time is the emergency of automated 
vehicles, which have the potential to revolutionise transportation. These vehicles utilise electric power, 
sensors, cameras and sound navigators to carry out their intended operations without causing environ-
mental pollution. Currently, there are several autonomous companies, primarily located in California, 
cities like San Francisco (Cruise), Palo Alto (Tesla), Fremont (Pony.ai), Santa Monica (Motional), Mountain 
View (Waymo), and Foster city (Zoox). This paper aims to review the utilisation level and performance of 
autonomous vehicles, specially focusing on the goals set for 2023. By analysing various research studies 
and company profiles, this paper aims to provide insights into the current status of autonomous vehicles 
and their practical applications. It employs quantitative and statistical methods to extract valuable 
information from these studies. Also, this paper examines the state of the art in autonomous vehicles 
and the impact of gaps in machine learning algorithms, from perception to execution. The data used for 
this study are obtained from research reviews and updated profile of different companies. The assess-
ment reveals a significant increase in research and development activities related to autonomous and 
automated vehicles across various disciplines since 2010. Specifically, the number of research studies on 
autonomous driving vehicles has increased from 302 to 2718, while studies on automated vehicles have 
increased from 1379 to 6085. In the Engineering discipline alone, there have been 601 studies on 
autonomous driving vehicles and 341 studies on automated vehicle-related research, which have 
increased to 2685 and 1865, respectively in the specified time.
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1. Introduction

The traditional transportation system is becoming increasing 
mixed-up and inefficient. According to the Vienna convention 
(UN 1968) many countries signed at a time ‘every moving 
vehicle or combination of vehicles shall have a driver’ and 
‘every driver shall at all times be able to control his vehicle’. 
On 23 March 2016, a change to the Vienna Convention went 
into effect. As a result, ‘the driver, still in control of the vehicle, 
can be helped by a system under some conditions’ as long as the 
system can be overridden or shut off by the driver (Transport  
2015). However, it has been stated that other changes must 
allow automated vehicles on roads in many countries. Mitchell 
(2015), proposes a ‘new deoxyribonucleic acid (DNA)’ for auto-
mobile in their book ‘Reinventing the Automobile’, envisioning 
vehicle that are electrically driven, powered by electric motors, 
energised by electricity and hydrogen, electronically controlled, 
and intelligently interconnected with the goals of a sustainable 
future with zero emissions, renewable energy, crash avoidance, 
safe social networking while driving, autonomous driving (as an 
option), varied designs, and shrouded in mystery. Early forms of 
automation include electronic stability control (Af Wåhlberg 

and Dorn 2023), lane departure warning (Navarro et al. 2024), 
adaptive cruise control (Hidayatullah and Juang 2021), lane 
keeping and centring (Elzen 2015), pedestrian detection (day/ 
night), self-parking (Thunyapoo and Ratchadakorntham 2020, 
traffic sign and signal detection (Bai et al. 2023; Qiao 2023), and 
vehicle-to-vehicle communication (Dhurve and Soman 2021; 
Muslam 2024).

According to the Society of Automotive Engineering (Williams  
2021), vehicle automation has been adopted globally. It was 
updated level by level, step by step, for more improvements. 
Implies six levels of automation (from 0 to 5) are differentiated 
based on the onboard driver assistance systems, i.e. the distribu-
tion of driving task between the vehicle and the driver. On Table 1, 
some explanations are provided to offer an overview of self- 
driving vehicles. On level 0, there is no automation, however, on 
level 1, some automation is possible, with the car controlling either 
steering or acceleration/braking. A combination of autonomous 
functions on level 2 enables the automobile to take over steering 
and acceleration/braking tasks at the same time. On levels 3 and 4, 
the automobile generally accomplishes everything that the driver 
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would have to do otherwise, with the exception that on level 3, the 
automobile is unable to do everything in order to notify the driver 
when he or she must regain control. In contrast, no control may be 
reclaimed by the driver at level 4. The third and fourth levels of 
automation are meant when talking about self-driving or auton-
omous cars in this study because both include cars that are gen-
erally capable of doing all driving tasks on their own and in level 3 
only in some unknown situations the driver has to do the driving 
again. This paper contributes a comprehensive assessment on 
autonomous vehicles state of the arts based on different disciplines 
discussed in Section II. Picking five different research mortar 
apparatuses with different research disciplines complete this 
study paper.

It covers the sustainable systems of the world, which 
encompasses a discussion that covers status of zero tailpipe 

emission vehicles. The first Figure 1 below shows more clar-
ification symbolically on the levels of AV.

The automotive industry and media have muddled the 
language used to discuss automated driverless systems. 
Redundantly, the terms autonomous, driverless, and self- 
driving conceal more than they reveal. To clarify, SAE 
International created definitions for various levels of auto-
mation, which were elaborated on, and put them on 
a scale of decreasing reliance on the driver. The hierarchy 
offers some unexpected results. Level four automations, 
for example, may be more tractable than the preceding 
level, which is level three. The same is true for the next, 
i.e. level five automated systems-electronic chauffeurs cap-
able of handling every driving situation without human 
intervention, which are decades away.

Table 1. Impacts of AV on cities transportation/pros(right) and cons(left) (Maheshwari 2018).
● For pedestrians,
● For cyclists.

Less Mobility How will AVs 
impact cities?

More mobility ● For people with disabilities.
● For the ageing population.
● For children.

● Slower due to over cautious driving behaviour.
● Longer travel distance due to sprawling or 

remote.

Increased travel time Time efficient ● No more parking hassle.
● Door-to-door connectivity.
● Productive use of in-vehicle time.

● Car-dominated streets.
● Increased sprawling.

Efficient use of space Space 
efficiency

● Narrow lane width.
● Fewer street signs.
● More capacity due to smaller 

headway.
● New urban infill potential (parking 

garages, streets)
● Security issues due to hacking attacks.
● Loss of privacy.

New safety concerns More safety ● Fewer road accidents.

● Increased VMT and congestion due to induced 
demand.

● Public transportation walking and cycling may 
become less frequent.

Environmental 
Concerns

Environment 
friendly

● Fuel saving due to efficient driving.
● Better congestion management.
● Electric mobility.

Figure 1. Comparison of vehicle operating models of automated driving levels (Williams 2021).
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2. Contributions

This study attempts to provide a comprehensive and organised 
ways of the state of the arts to automated vehicles. It focuses on 
automated and/or autonomous vehicles research related status 
with different disciplines by selecting five goals, i.e. book 
chapters, conference abstracts, encyclopaedias, research papers 
and reviews. This study aims to fill the gap by providing 
a comprehensive overview of the existing literatures and pub-
lications on sustainable engineering. In addition, we discuss 
the existing conditions from both societal and industrial per-
spective. This paper covers companies, the state of arts in their 
present condition, gaps and challenges related to machine 
learning algorithms of automated vehicles plus their vulner-
ability, and their implementations. Finally, we outline future 
research directions as per our findings.

3. Methods

In this review work, the literature coverage is considered in 
comparison of open scientific sources published recently, 
which is not greater than 5 years except some conventions 
and mandatory reference books. To obtain sufficient coverage 
of the works related with AV, we used the following scientific 
databases to search through the literature: Scopus, Elsevier, 
Google scholar, Hindawi, Springer, MPDI, Research gate, 
SAGE, BASE, SCISPACE, semantic scholar, and others. To 
fit the objectives as uttered on the titles, we used different 
English language keywords such as autonomous vehicle, auto-
mated system, AV companies, controllers, AV environmental 
perception, impacts of AV, AV machine learning algorithms 
etc. Analytical systems for scrutiny were part of it, and current 
statistical data were used to assess the status of AV plus plots in 
graphical style on an Excel sheet.

4. Theories on positive and negative aspects of 
transportation automation

As per scholars for the past 20 years, there has been an enor-
mous advancement in the field of automated driving 
technologies.

Frankly speaking, it significantly increases the vehicles’ 
active safety and efficiency from an energy saving point of 
view. Thus, now a day its frontier in automotive engineering 
research, a new path of the automobile industry and beside this 
one it’s a new source of financial growth for stakeholders 
(Teixeira, d’Orey, and Kokkinogenis 2020). At present, the 
benefits or hazards of AVs are just hypothetical. For AV 
transitions to have a substantial impact, nearly full market 
penetration of automated vehicles is required, and predictions 
for such a lengthy time horizon are necessarily uncertain 
(Maheshwari 2018). Different challenges such as traffic condi-
tions (Funke et al. 2016; Zhang, Zhao, and Jiao 2023) in which 
they are expected to drive with other autonomous vehicles on 
the same road while also monitoring pedestrian movements, 
road conditions (Park, Lee, and Han 2015), while it operates 
on automated vehicle roads it should be recommended to 
follow the predefined ways; Accident liability (Uzair 2021), 
implies when they react to situations when their attention is 

desired, it may be too late to prevent the conditions. Lidar and 
Radar effect (Bilik et al. 2019; Hassan 2022) can be shown as, 
Radar cannot pass through walls with high accuracy because 
the beams scatter as they reach the wall, resulting in a false 
positive which means information is incorrect and other arti-
ficial and emotional intelligence is affected. Table 1 shows the 
compiled pros and cons of automated vehicles as follows.

At the moment, the pros or cons of AVs are just hypothe-
tical. For the AV revolution’s effects to be seen, almost full 
market penetration of fully autonomous cars is required, and 
predictions for such a lengthy time horizon are necessarily 
uncertain. Each mobility, time, space, safety, and environmen-
tal concerns have own impact whether positive or negative. As 
is obvious, the benefits of automation might just as readily 
translate to threats, depending on the underlying assumptions. 
Planning and decisions might improve one region while jeo-
pardising another. Many concepts of urban design have been 
proposed that address both sides of the spectrum. Concepts on 
Table 1 described as follow.

4.1. Mobility

It concerns allowing some people to move while confining 
others (Millard-Ball 2018). Unfortunately, AVs provide pre-
viously unserved populations with unfamiliar mobility alter-
natives, such as those with impairments, elders, and children. 
However, in order to maximise the effectiveness of AVs, even 
more limitations on walkers and bicycles, such as grade sepa-
rated sidewalks or barriers, may be imposed, effectively limit-
ing their movement.

4.2. Time

Effective use of time or travel time which is very mandatory 
point. Travellers may save time by using a better-managed and 
integrated transportation systems, parking, and more produc-
tive in vehicle time (Litman 2023; Lutin 2015). On the other 
hand, increased demand from better managed traffic may, 
ironically, contribute to congestion. New demand from indi-
viduals who were previously unable to drive, as well as excur-
sions away from healthy modes like walking and cycling, might 
all contribute to congestion.

4.3. Space

It determines either better expansion or better spatial effi-
ciency. In perspective, AVs condition will be predicted as it 
occupies less space and can drive with higher precision, hence 
current street design regulations should be altered. For exam-
ple, changing four lane roadways to five lane highway with the 
help of minimum cost of investment (Hayeri 2015). However, 
the research of (Litman 2018) indicate that as AVs become 
available, the attraction of suburban residential districts that 
are greener or cheaper would grow.

4.4. Safety

Because the majority of road accidents are caused by driver 
error, AVs are assumed to have the potential to drastically 
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reduce accidents (Fagnant and Kockelman 2015; Litman  
2020). However, there may still unanswered problems regard-
ing culpability in the event of an accident, its vulnerability to 
cyber-attacks, and loss of privacy owing to continuous location 
tracking.

4.5. Emissions

Shorter headways, coordinated platoons, and more effective 
route choices are predicted to allow AVs to use existing roads 
and junctions more efficiently, resulting in fuel savings 
(Fagnant and Kockelman 2015; Hayeri 2015). On the other 
hand, we can predict increasing overall travel distance owing 
to expansion, additional non driver travel demand, and stimu-
lated demand due to travel time reductions, decreased conges-
tion, and, paradoxically, fuel savings.

On the other hand, the sustainability of the system influ-
ences the benefits of AVs through emissions, accidents, traffic 
congestion, and legislation. First, emissions cause environ-
mental hazards to living things. When compared to a human- 
driven vehicle, autonomous vehicles utilise less gasoline and 
energy. The majority of gas is consumed when travelling at 
high speeds, stopping, and often re-accelerating. Self-driving 
vehicles eliminate these elements from their driving style, 
resulting in less gasoline used or battery power utilised, and 
hence less air pollution. Driverless cars also imply fewer auto-
mobiles per family. One autonomous car can literally take you 
to all of your places, so families may avoid having two or three 
automobiles to accommodate the demands of each individual. 
It is also projected that as driverless car technology advances, 
the weight of automobiles will decrease because of lower bat-
teries, modifications to the engine, and a reduced need for 
hefty safety features. Second, safety is most important for 
human survival. For sure, crashing is caused by humans, not 
cars. Human drivers are the most dangerous component of the 
driving experience, whether due to reckless driving, human 
mistakes, texting, driving, or simply being preoccupied behind 
the wheel. The third is traffic congestion, which is another title. 
In addition to pollutants and city haze, most city inhabitants 
find traffic congestion inconvenient. Highways and thorough-
fares take up valuable urban real estate, leaving little to no 
space for pedestrians, bicycles, or parks. When all vehicles on 
the road are autonomous, congested city streets and highways 
will become a distant memory. Lastly, while the technology 
appears to be too attractive in terms of possible advantages and 
enhanced safety, the government remains concerned about 
autonomous vehicles. Driverless automobiles are now per-
mitted in some developed countries, such as California, 
Michigan, and Florida, other states by considering legislation. 
Therefore, introducing autonomous vehicles is part of sustain-
able engineering for environmental conservation.

Even though the system will be designed to extend human 
life by reducing risks through crashes that are hunting human 
beings in millions. Colleagues (Sharath and Mehran 2021) 
from Canada state two basic plausible cases resulting in 
a crash: environmental perception and motion planning. If 
a crash has occurred, the mean is summarised by three points. 
First, both are imperfect. Second, it could be solely attributed 
to erroneous environmental perception and lastly, sole 

imperfections of motion planning, while the other is reversed. 
They are considered non-sociable because they cannot interact 
with other drivers by definition. This results as they fail to 
consider other vehicles, for example, during mergers. On the 
other hand (Jiang, Xie, and Evans 2023), the systems of auto-
mated vehicles, even though they depend on AI, it is difficult to 
implement courtesy in the algorithms. Based on the research 
analysis done on traffic accidents from 2015 to 2017 (Petrović, 
Mijailović, and Pešić 2020), inspects the severity of rear end 
collisions on automated vehicles is greater than that on con-
ventional vehicles based on the assessment and results, the 
collision of automated vehicle is 35.9% greater than the crash 
with conventional vehicles. This simply implies that rear end 
collision of an AV is higher comparatively based on the US 
state of California DMV reports. Figure 2 shows figurative 
statistics of the accident level comparison.

In Figure 2, on the other hand, the data from the same 
source from 2015 to 2019 shown on (Song, Chitturi, and 
Noyce 2021) explains that the most common types of AV 
collisions were rear-ended (62%) and sideswipe (21%). 
Injuries were reported in 12% of the collisions, with no dis-
tinction between light and major.

4.6. Automated vehicle implementation predictions

As seen via the lens of AV technology, most of our auto makers 
are working on SAE-3rd and SAE-4th level vehicle (SAE 2023). 
It has been said, might be available on the road in short terms. 
However, in spite of the optimistic announcements made by 
some companies, most forecasts agree as shown below in 
Tables 2 and 3. It might take a long time to make SAE level 
5, which means fully automated vehicles, and much more to 
achieve a significant implementation rate with the whole vehi-
cle fleet (Martínez-Díaz and Soriguera 2018).

Victoria Transport Policy Institute forecasts the develop-
ment and implementation of autonomous vehicles from var-
ious perspectives, as shown in Table 2. The assumptions 
include the availability of level 5 autonomous vehicles, which 
is discussed in Section IV, in the late 2020s. However, it should 
be noted that these vehicles are initially expensive and have 
limited performance. Additionally, without regulations in 
place, it may take several decades for the market to become 
saturated with autonomous vehicles, as some drivers may still 
prefer human-operated vehicles due to cost and personal pre-
ference. These estimations are a compilation of (Grush and 
Niles 2016; Lavasani, Jin, and Du 2016; Simonite 2016).

Different research reviews state, a sort of factors that influence 
the deployment of self-driving vehicles. Litman (2023) introduces 
those factors like the rate of technological advancement or the 
speed of technological developments is somehow long i.e. before 
automobiles may run independently under all usual settings, 
significant technological advancements are required (level-4). 
According to the present conditions, the most outstanding 
level, which is last in our review, will be available in 5 to 25  
years. Second, their testing and regulatory approvals are manda-
tory in autonomous vehicles. Although it is currently under 
development, it may take many years for these standards to be 
implemented in most jurisdictions, and more time will be needed 
for large-scale testing. The others include Incremental costs, 
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service quality and affordability, consumer travel and housing 
preferences and development practices. The other very crucial 
point is public policies, which are another backbone for the 
implementation of autonomous vehicles. Chen et al. (2022) target 
to synthesise on the past research regarding public acceptance 
attitude towards AVs and elaborate significant issues such as the 
uncertainty of AV adoption experiments, policy implement and 
action plans, AV related infrastructure uncertainties and demand 
models as future approaches for analysing AV consequences.

On the other hand, when it is seen from an AV tech-
nological perspective, most of our auto makers are working 
on SAE-3rd and SAE-4th level vehicles. As it has been said, 
might be available on the road in short terms. However, in 
spite of the optimistic announcements made by some 

companies, most forecasts agree as shown in the below 
tables. It might take a long time to make SAE level 5, 
which means fully automated vehicles, and much more to 
achieve a significant implementation rate with the whole 
vehicle fleet.

Table 3 shows different data sources with different 
points of view on their implementations depending on 
their own reasons for SAE-L4, SAE-L5 and CAV environ-
mental setups for applications. On the other hand (Zhao 
et al. 2021), highlights and emphasises potential improve-
ments to the high-level driving strategy design by classify-
ing existing autonomous vehicle driving to defensive 
driving strategies, competitive driving strategies, negotiated 
driving strategies, and cooperative driving strategies.

Figure 2. Performance of the automated vehicle from the conventional vehicle perspective in rear-end collisions.

Table 2. AV implementation stage and its impacts (Litman 2023).

Stage Decade New Sales Fleet Travel

Development and testing 2020s 0% 0% 0%
Available with large price premium 2030s 2–5% 1–2% 1–4%
Available with moderate price premium 2040s 20–40% 10–20% 10–30%
Available with minimal price premium 2050s 40–60% 20–40% 30–50%
Standard features included in most new vehicles 2060s 80–100% 40–60% 50–80%
Saturation (everybody who wants it has it) 2070s – – –
Required for all new and operating vehicles – 100% 100% 100%

Table 3. AV implementation predictions set its levels per year.

Source SAE-L4 SAE-L5 CAV Environment

Underwood (2014) 2019 – 2024 2025 – 2035 240–2060
Godsmark and Kirk (2015) 2020 2020 –2025 2020 – 2030
Shladover (2016) 2020 –2030 2075 –
Zmud and Goodin (2017); Zmud and Sener (2017) 2021 2025 –2030 –
Bloomberg (2017) 2018–2020 2028–2030 2040–2060
Litman (2018) 2020 – 2030 2020–2040 2060–2080
Kuhnert and Stürmer (2018) 2020–2030 2025–2030 –
Gehrke, Felix, and Reardon (2019); Steven (2018) 2018–2021 2018–2021 2040–2050
Ssctcc (2018) 2018 – 2020 2040–2050 2040–2060
Shaheen and Totte (2018) 2018–2021 2023–2040 2045–2070
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5. Results

Before explaining the statistical conditions, most researchers 
are upgrade the system operations by compiling those manda-
tory components. Perception of execution steps may pass 
through different struggling and hardy ways even though the 
operation could be completed in a second. Making decisions is 
one of the most difficult tasks that automated vehicles perform, 
especially in awkward situations. It may include prediction, 
path planning, and obstacle avoidance. All of which are based 
on previous perceptions done (Martínez-Díaz and Soriguera  
2018).

Figure 3 above under this section (V), explains the pro-
cesses that take place in automated vehicles input to output, 
following steps sequentially form sensors, perception, plan-
ning and decision, motion and vehicle control, and the actua-
tors that take place for operations cooperatively one to the 
others.

Since 2010, there has been an increase in the involvement of 
different disciplines in autonomous and automated vehicle 
areas. Our focus is on 2010 and beyond, targeting to provide 
the latest information regarding these vehicles. Figures 4–7 
below show research on autonomous and automated vehicles 
in all disciplines and engineering disciplines until the end of 
2022. Autonomous vehicles, which are self-driving and can 
have self-decision capacity, are researched in different disci-
plines as follows: All disciplines i.e. Engineering, Computer 
Science, Social Sciences, Environmental Sciences, Energy, 
Decision Sciences, Medicine and Dentistry, Biochemistry, 
Genetics and Molecular Biology, Business, Management and 
Accounting, Agricultural and Biological Sciences are included 
in the research areas. Engineering is one of the target disci-
plines for our study. By defining their areas of application and 
similarity, the research is conducted by synonyms for different 
reasons. The basic reason this can be done in this area is to get 
acceptance from different h-index publishers around the 
world. Therefore, autonomous driving vehicles Figure 4 and 
automated vehicles Figure 5 in this discipline’s research are 
also increasing. Let’s see the automated vehicle research done 
from 2010 on, like the figures shown below with all disciplines.

Figure 4, depicts a decrease in the number of research 
articles published on autonomous driving vehicles across all 
disciplines from 2010 t0 2011, followed by a slight increase 
from 2011 to 2018. From 2018 to 2022, the variation is doubled 
(1164 to 2718), while conference papers are almost the same. 
In Figure 5 below, the same variables were used for testimony, 
but the subject was automated vehicles.

Autonomous driving vehicle Figure 6 and Automated vehi-
cles Figure 7 with engineering discipline may include almost 
all of them, such as Mechanical, Environmental, Computer, 
System, Electrical, Industrial, Electronic, computer science and 
Engineering, Civil, Aerospace, Nuclear, Safety and other dis-
ciplines included in these scenarios shown on Figures 6 and 7.

Figure 3. Input to output process of the AV.

Figure 4. Autonomous vehicle driving all disciplinary research status.
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These have been collected by survey done with the biggest 
data holding institution with immense guarantees called back-
bone for researchers worldwide, which is Science direct.

5.1. Current companies in autonomous vehicle research 
and utilization level

There are more than 55 companies of AV for both software 
and hardware installation, however there are no commer-
cially viable autonomous vehicles that go beyond 2nd and 3rd 

automation. It worth nothing that new companies are 

challenging conventional manufacturers, while some are 
already on the market, such as Tesla and others, are testing 
and adjusting different setups for the future. Test driving, on 
the other hand, is already common. In late 2009, Nevada 
granted Google permission to test autonomous vehicles. In 
Europe, countries such as Germany, the Netherlands, and 
the UK allow AV testing. On the other hand, a number of 
federal states in the US have approved or amended rules to 
enable autonomous test driving under specific situations. It 
is unforgettable that in 2018, Singapore completed a test of 
self-driving taxis. Japan intends to use driverless taxis on 

Figure 5. Automated vehicle for all disciplinary research status.

Figure 6. Autonomous vehicle driving engineering (only) discipline research status.

INTERNATIONAL JOURNAL OF SUSTAINABLE ENGINEERING 7



a significant scale during the 2020 Tokyo Olympics. 
Furthermore, autonomous buses are used in a various loca-
tion, mainly in controlled environments. There are about 55 
companies with autonomous vehicle research status in our 
current world. Most of them are working on software for AI, 
while others are on the technical side. A summary of their 
research status is shown in Table 4.

5.2. Gaps and challenges in machine learning algorithms 
for AV driving applications

Algorithms for AVs are inputs because they operate without 
human intercession. Lack of these properly set algorithms 
makes the system faulty in some actions. This deficiency 
includes; techniques and sensors used in AV, uninclusiveness 
of different country scenarios, and problems with some system 
components such as varying climatic conditions, especially in 
the case of navigation systems. Radar interference, climatic, 
traffic, and street conditions are the front facing challenges in 
navigation systems (Prasath 2020). Beyond those, security risks 
of adversarial attacks, which are not considered primarily 
a safety, rather a security limitations and procedural safeguards 
for machine learning safety, which focus on diminishing the 
misuse of system due to lack of instructions and unawareness 
(Carlini 2017; Mohseni 2019). Obviously stated, machine 
learning is a subtype of artificial intelligence that enables 
users to equip their systems to operate in the grey region of 
fuzzy logic, which perhaps looks like human intelligence. This 
problem with machine learning algorithms may affects the 
entire operating system. The reason behind this is that all 
localisation, tracking, and detection are performed by first 
contact with the objects, which is called perception. All other 
followers are enhanced either positive or negative ways. This 
implies that all identification, decision, control, and executions 
are succeeding. Thus, still today, there is lack of very successful 

and matching algorithms that are 100% proper for completely 
remove errors and made transportation more comforted in 
current genuine world. But hope for future transportation 
systems, it will happen.

5.3. Gaps and challenges with machine learning methods 
include the following

5.3.1. Data quality and quantity
A large amount of high-quality data is required to train effec-
tively. These data can be difficult and expensive to collect, 
especially for rare or unexpected events (Hussain and 
Zeadally 2018).

5.3.2. Bias
Machine learning algorithms can learn biases from the data on 
which they are trained. This can lead to autonomous vehicles 
making discriminatory or unsafe decisions (Danks 2017).

5.3.3. Explain ability
It can be difficult to explain why machine learning makes 
a particular decision. This can make it difficult to identify 
and fix errors in the algorithm (Kolekar et al. 2022).

5.3.4. Robustness
Machine learning algorithms can be vulnerable to adversarial 
attacks, where carefully crafted inputs are designed to fool the 
algorithm (Fényes et al. 2021; Phan 2023).

5.3.5. Cybersecurity
AVs are vulnerable to cyberattacks, which could cause 
them to malfunction or even be hacked (Aurangzeb  
2023; Giannaros et al. 2023; Sadaf et al. 2023). It is impor-
tant to develop robust cybersecurity measures to protect 
AVs from these threats. Ghosh et al. (2023) provides 

Figure 7. Automated vehicle engineering discipline (only) research status.
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Table 4. Summary of automated vehicle companies and their background.

Companies name and year 
of founding Country Current status and level of autonomy

1. ABB (1988) Netherland (Zurich) Manufactures technologies for self-driving cars, industrial automation, robotics, and electrification.
2. AIMOTIVE INC (2017) California 

(Mountain view)
This company is an AI software developer for autonomous vehicles. The company’s software is designed to 

enable self-driving cars to perceive their surroundings, make decisions, and plan their routes. Audi, 
Hyundai, and Mercedes-Benz use Aimotive’s software.

3. APEX.AI (2015) California (Mountain 
view)

Developer of open-source software for autonomous vehicles. The company’s software is designed to provide 
a common platform for developing and deploying autonomous driving applications. Bosch, Continental, 
and Toyota use their software.

4. APOLLO 
AUTONOMOUS 
DRIVING USA LLC 
(2017)

California 
(Sunnyvale)

Subsidiary of Baidu, a Chinese technology company. Develops autonomous driving technology for use in 
passenger cars, trucks, and busses. Testing its technology in the United States, including Phoenix, Arizona, 
Pittsburgh and Pennsylvania.

5. APPLE INC (1976) California 
(Cupertino)

It is American technology. It is developing autonomous driving technology for its own cars. Not announced 
any plans to release, but the company is believed to be making significant progress.

6. ARITY (2016) US (Chicago) Originated in insurance and, is ideally positioned to foresee and manage risk through data and behavioural 
insights.

7. AURORA (2017) California (Mountain 
view)

Aurora intends to introduce Horizon, the first autonomous service powered by the Aurora Driver, in 2024, 
with the goal of bringing safety, value, and efficiency to carriers and fleet owners. Uses multimodal fusion 
algorithms (CNNs, RNNs, RL).

8. AUTOX (2016) California (San Jose) AutoX provides software solutions for self-driving cars. The company offers a camera-first self-driving 
solution and self-driving vehicles based on autonomous driving technology. AutoX was the first firm in 
Shenzhen and Shanghai to offer a fully driverless robo-taxi service on public highways, covering the 
world’s largest driverless territory.

9. BEEP (2022) California 
(Mountain view)

It is developer of self-driving shuttles for use in low-speed environments such as college campuses, airports, 
and retirement communities. Shuttles are currently used in several locations across the US.

10. BLACK SESAME 
TECHNOLOGIES 
(2018)

California 
(Santa Clara)

Develop AI chips for autonomous vehicles. Designed to provide the high-performance computing power 
required to run complex autonomous driving algorithms. It is partner with SAIC Motor and Dongfeng 
Motor.

11. BLUESPACE.AI, INC 
(2020)

California 
(Mountain View)

Developer of LiDAR sensors for AVs that helps to create a 3D map of the surrounding environment. 
Partnered with Ford and Hyundai.

12. BOSCH (1886) California 
(Sunnyvale)

A German company, is developing autonomous driving technology for use in various vehicles, including 
passenger cars, trucks, and busses. Partnered with Daimler, Volkswagen, and Volvo.

13. CLOUDMADE (2007) UK (London) Develop, deploy, and integrate smart solutions for the automotive industry and deliver smart real-time 
suggestions to a desirable prototype, to increase the adoption of ACC features among the drivers.

14. CRUISE (2013) California (San 
Francisco)

The corporation operates 100 robotaxis in the city as of September 2022 and plan to expand its fleet to 5K 
however, it has generated criticism. Uses the ensemble learning algorithm.

15. DiDi RESEARCH 
AMERICA. LLC 
(2018)

California 
(Sunnyvale)

A Chinese ride hailing company. Developing autonomous driving technology for use in own ride-hailing 
services. Partnered with Toyota and Honda.

16. EMBARK TRUCKS 
(2016)

California (San 
Francisco)

It develops self-driving software for the automobile industry that can transform any fleet into an 
autonomous one. We are collaborating with the trucking industry to integrate self-driving technology 
into their operations as seamlessly as possible.

17. GATIK AI INC (2021) California 
(Mountain view)

Developer of autonomous driving technology for use in trucks. It is designed to enable trucks to make short- 
haul deliveries between warehouses and distribution centres. Operating in some locations.

18. GHOST AUTONOMY 
(2019)

California 
(Mountain view)

It is an American autonomous driving company. It is based on a novel approach to AI that it claims is more 
efficient and scalable than traditional approaches.

19. HAAS ALERT (2015) Illinois (Chicago) The safety Cloud integrates first responders, towing and recovery services, and road workers with vehicles 
and motorists to provide real-time digital notifications that avert collisions and improve overall road 
safety.

20. HELM.AI INC (2021) California 
(Mountain view)

It develops unsupervised learning technology for AI and autonomous vehicles. It is designed to allow AI 
systems to learn from data without the need for human annotation or simulation.

21. IMAGRY INC (2016) California 
(Mountain view)

The company develops computer vision software for autonomous vehicles. The software is designed to 
understand AV surroundings and make safe decisions.

22. LUMOTIVE(2017) Washington 
(Redmond)

Lidar 2.0 production for consumer, mobility, and industrial markets.

23. MAGNA 
INTERNATIONAL 
(1957)

Michigan (Troy) Actively upgrading and working to be first 
(Magna 2023)

24. MAY MOBILITY (2017) Michigan (Ann Arbor) 
—

On April 2023, the first inauguration of Arizona’s, on the demand of public transit service using AVs in the 
retirement town of Sun city, was announced. The power will be transit tech. (via the global leader).

25. MERC BENZ (1886) California 
(Sunnyvale)

It is a German automaker that is developing autonomous driving technology. The company’s technology is 
currently in the testing phase, and, it is expected to be available in production vehicles in the next few 
years.

26. MOBILEYE (1999) California 
(Sunnyvale)

An Israeli company. Develops computer vision and machine learning technology for AVs. Mobileye’s 
technology is used in autonomous vehicles from a various automaker.

27. MOTIONAL (2020) California(Santa 
Monica)

Developing self-driving vehicles with lidar and more than 30 camera and radar sensors to ensure 360° sight 
and object identification.

28. NAUTO (2015) California (Palo Alto) Nauto is the only real-time, AI-enabled driver and fleet safety technology in the mobility ecosystem that can 
predict, avoid, and reduce high-risk occurrences. Nauto’s machine learning algorithms continually 
improve and influence driver behaviour before events occur by analysing billions of data points from over 
1 billion AI-analysed video miles.

29. NIO USA INC (2017) California (San Jose) A Chinese automaker that develops electric vehicles. It also develops autonomous driving technology. It will 
be in production in a few years.

(Continued)
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a rigorous threat analysis and risk assessment approach 
based on mathematical modelling to detect cyber-physical 
risks to AV perception systems that are crucial for AV 
driving behaviour and complex intersections in their 
operational design area.

5.3.6. Legal and ethical considerations (Altunyaldiz 2020; 
Landini 2020; Poszler 2021)
A number of legal and ethical considerations need to be 
addressed before AVs can be widely deployed. For example, 
how should liability be determined in the event of an accident 

Table 4. (Continued).

Companies name and year 
of founding Country Current status and level of autonomy

30. NISSAN (1933) California 
(Sunnyvale)

Japanese automaker. The company’s technology is currently in the testing phase and, it is expected to be 
available in production vehicles in the next few years.

31. NODAR (2008) Massachusetts 
(Boston)

NODAR uses triangulation and widely spaced cameras to calculate depth at a great distance with high 
precision. It introduces low-cost, high-performance, long-range 3D sensing to the ADAS and AV 
businesses, as well as other verticals where performance vs. price must be extremely high.

32. NURO, INC (2016) California 
(Mountain view)

Develops autonomous delivery vehicles. Their vehicles are designed to deliver goods to customers without 
the need for a human driver. Partnered with retail and food delivery industries.

33. NVIDIA CORPORATION 
(1993)

California 
(Santa Clara)

American multinational company. The company is developing AI and autonomous driving technology next 
to GPUs for gaming and professional markets.

34. OUSTER (2015) California (San 
Francisco)

Ouster is a global leader in high-resolution scanning and solid-state digital lidar sensors, as well as Velodyne 
Lidar sensors and software solutions for the automotive, industrial, robotics, and smart infrastructure 
industries.

35. PEGASUS 
TECHNOLOGY 
HOLDINGS (2021)

California 
(Mountain view)

An American technology company is developing a lidar-based system that it claims is more accurate and 
reliable than traditional camera-based systems.

36. PLUSAI, INC (2017) California 
(Sunnyvale)

A Chinese company that develops autonomous driving technology for trucks. It is currently in the testing 
phase.

37. PONY.AI (2016) California (Fremont) The first AV driving company to obtain a taxi licence in China. It is third behind Waymo and Cruise in the 
number of miles driven by 2021. Uses multitask learning type algorithms. L4-autonomy.

38. QUALCOMM 
TECHNOLOGIES, INC 
(1985)

California 
(San Diego)

It designs and manufactures semiconductors and software for the automotive industry, as well as 
developing AI and autonomous driving technology.

39. RIDECELL INC. (2015) California 
(San Francisco)

The company develops software for ride-hailing and car-sharing services. The company’s software is used by 
a various company, including Car2Go, Via, and Lyft.

40. RIVIAN (2009) California (Irvine) Working on autonomous vehicle technology called “Driver +”.
41. SEEVA TECHNOLOGIES 

(2017)
Washington (Seattle) SEEVA Technologies develops vehicle visibility systems. SEEVA’s technologies improve the most cutting- 

edge automobile experiences, including applications in driverless cars and advanced driver support 
systems for passenger and commercial vehicle lineups.

42. SWIFT NAVIGATION 
(2012)

California (San 
Francisco)

Swift Navigation’s lane-level positioning manufacturing solution was built to scale for automobiles and was 
geared for autonomous driving.

43. TELENAV, INC. (1988) California 
(San Francisco)

Develops navigation and location-based services. Their software is used by a variety of companies such as; 
Uber, Ford, and Hyundai.

44. TESLA (2003) California (Palo Alto) According to the CEO, it will achieve full autonomy by 2023. Tesla offers the most range of any EV on the 
market. They are also among the most secure in the world. They are also a lot of fun to drive. L4- 
Autonomy.

45. TOYOTA (1937) Fully remote Toyota is using its automated driving technology to develop new mobility solutions, such as robots with 
increased vision, reasoning, and manipulation that can provide extended freedom of movement for all, 
including persons with limited mobility.

46. UNITY (2004) California (San 
Francisco)

It is the world’s top real-time 3D rendering tool for game development and other interactive content 
creation. In AV, key features are scripting flexibility, speed, rich interactivity, high end graphics, etc.

47. VALEO NORTH 
AMERICA, INC.

France (Paris) Develops and manufactures several automotive products, including lighting, powertrain, and thermal 
systems. Valeo is also developing AI and autonomous driving technology.

48. VINFAST LLC Vietnam 
(Hanoi)

It’s a member of Vingroup, the largest private corporation in Vietnam. With in just 21 months of launching in 
Vietnam, they become number one car seller in all of their competing segments.

49. VUERON TECHNOLOGY 
USA, INC

South Korea (Seoul) They are developing autonomous driving technology that will allow their cars to drive autonomously in 
urban areas. The company’s sensors use lidar and other technologies to create a 3D map of the vehicle’s 
environment.

50. WAYMO (2009) California (Mountain 
view)

With great initiatives, it is going to illustrate 4th level AV cars. Uses a various ML algorithm to power its self- 
driving cars, including CNNs, RNNs, and RL.

51. WeRide Corp DBA China Developer of autonomous vehicle software in Chinese. The software is designed to enable self-driving cars 
to navigate complex urban environments.

52. WITRICITY (2007) Massachusetts 
(Watertown)

Automatic wireless charging for mobile robots, AGVs, and cordless tools and instruments, removing the 
need for complex docking procedures and time-consuming manual recharging and battery replacement.

53. WOVEN PLANET 
NORTH AMERICA, 
INC

California 
(Palo Alto)

They are working on a system that will allow their cars to drive autonomously on highways.

54. XMOTORS.AI, INC California 
(Santa Clara)

It is a developer of autonomous vehicle hardware and software. The company’s technology is designed to 
enable self-driving cars to operate in both urban and rural environments.

55. ZOOX INC (2014) California (Foster City) Applies robotaxis for transport on specific public route (between two main offices travelling up to 
56.327 km/h). The company is developing a self-driving car that is designed to be bidirectional (it can 
drive both forward and reverse without the need to turn around).
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involving an AV? How should AVs be programmed to make 
decisions in complex ethical situations?

5.3.7. System failures
Autonomous vehicles rely on complex software and hardware 
systems, and any failure in these systems could lead to an 
accident (Mishler and Chen 2023).

5.3.8. Human error
Even though autonomous vehicles are designed to operate 
without human input, there are still situations where human 

intervention may be necessary. If the human driver does not 
take appropriate action in these situations, an accident could 
occur (Mueller, Cicchino, and Zuby 2020).

5.3.9. Unforeseen circumstances
Autonomous vehicles are trained on large datasets of real- 
world data, but it is impossible to anticipate every possible 
situation that a vehicle may encounter on the road. This means 
that autonomous vehicles may not be able to respond appro-
priately to unforeseen circumstances, such as a sudden con-
struction zone or pedestrian jaywalking. Despite these 

Table 5. Comparable table based on different automated vehicle machine learning algorithms.

Algorithm Task Strengths Weaknesses

Bayesian Inference (Ma et al. 2021; Riboni 
et al. 2022)

Object detection, classification, 
prediction, and decision 
making.

Can handle uncertainty in the data and, can 
be used to combine information from 
multiple sensors.

Can be computationally expensive.

Deep neural networks (DNNs) (Fingscheidt  
2022)

Object detection, classification, 
tracking, perception, and 
prediction.

Highly accurate and efficient, can learn 
complex patterns from data.

Can be computationally expensive 
and, require large data sets to 
train.

DeepLabv3+ (Memon et al. 2022; Wang, He, 
and Ma 2023)

Semantic segmentation Accurate and fast Can be computationally expensive.

Faster R-CNN (Alam et al. 2023; Nguyen  
2019)

Object detection Accurate and fast Can be computationally expensive.

High transform (Gupta 2018) Lane detection Simple and robust Can be in accurate in complex 
scenes.

Kalman filter (Kim and Bang 2018; Vignarca, 
Arrigoni, and Sabbioni 2023)

Motion prediction Simple and robust Can be in accurate in complex 
scenes

Random Forests (Sruthi 2021) Object detection, classification, 
and prediction.

Can handle high-dimensional data and is 
robust to outliers.

Can be less accurate than DNNs for 
complex tasks.

Reinforcement Learning (RL) (Pérez-Gil et al.  
2022; Reda and Vásárhelyi 2023)

Decision making, and control Can learn to perform tasks without explicit 
programing and, can adapt to changing 
environments.

Can be computationally expensive 
and, require large amounts of 
data to train.

Support Vector Machines (SVMs) (Feng, Yan, 
and Zhang 2022; Velmurugan and 
Mathumitha 2019)

Object detection, classification, 
and prediction.

Good for tasks with small datasets and, 
robust to outliers.

Can be computationally expensive 
for large datasets.

Table 6. Current autonomous vehicle driverless testing permitted companies, algorithms, challenges and gaps, and their vulnerability.

Companies Current status
Machine learning 
algorithms used

Challenges and gaps in machine learning 
methods Vulnerabilities in autonomous driving

Apollo  
Autonomous 
Driving USA 
LLC. (Cloud  
2020)

Has a permit for both 
driverless and 
driver-assisted 
testing.

CNNs, RNNs, and RRT. Can be biased, which can lead to unfair and 
discriminatory outcomes. 
It can be fooled by adversarial examples, which 
are carefully crafted inputs that are designed 
to cause the model to make incorrect 
predictions.

It can be hacked. 
Can be susceptible to noise in the data, 
which can lead to inaccurate predictions.

Autox 
Technologies 
Inc. (Xiao  
2021)

Has a permit for both 
driverless and 
driver-assisted 
testing.

Lidar Point Cloud 
Segmentation

Requires a large amount of data to train, which 
can be expensive and time consuming to 
collect. 
It is complex and difficult to understand, which 
can make it difficult to debug and 
troubleshoot.

Can be poisoned by malicious actors who 
inject bad data into the training dataset. 
It can also overfit the training data, which 
can lead to poor performance on real- 
world data.

Nuro INC. 
(Nuro.ai)

Has a permit for both 
driverless and 
driver-assisted 
testing.

CNNs. It can be computationally expensive to train and 
run. 
This model can be slow to adapt to new 
changes in the environment.

It can be confused with unexpected or rare 
events. 
Can be fooled by physical attacks, such as 
covering up traffic signs or projecting 
misleading images onto the road.

Waymo LLC. 
(Waymo 2022)

Has a permit for both 
driverless and 
driver-assisted 
testing.

CNNs, RNNS, and RL. This model can be difficult to verify and validate. 
It can be opaque, which can make it difficult to 
understand how they make decisions.

It can be susceptible to cyberattacks. 
In addition, it can be fooled by adversarial 
examples.

Weride corp. 
(Weride)

Has permit for 
driverless testing.

CNNs, Mask R-CNN, 
RNNs, DeepLabv3+, 
LSTM, GRU, DQN, 
and RRT.

It is sensitive to changes in the environment, such 
as weather or lighting. 
Difficult to generalise to new environments.

It can be fooled by sensor spoofing, which is 
a technique in which an attacker sends 
false sensor data to the autonomous 
vehicle. 
It can be hacked to take control of the 
vehicle.

Zoox INC. (Inc) Has a permit for 
driverless testing.

CNNs, LSTM, RNNs, and 
GANs,

It can also be slow to learn from new data. 
It is difficult to deploy at scale.

It can be fooled by adversarial examples. 
It can be susceptible to sensor noise.
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vulnerabilities, autonomous vehicles have the potential to 
revolutionise transportation. They can make roads safer and 
more efficient, and to provide new mobility options for people 
with disabilities and other underserved populations. As tech-
nology continues to develop and be tested, we can expect to see 
autonomous vehicles become increasingly common on our 
roads. Sample algorithms and their relevant configurations 
are shown in the Table 5 below.

These are only a small sample of the many machine learning 
algorithms that can be used for AVs. The best algorithm and 
configuration for a particular task will depend on a variety of 
factors, such as the specific requirement of the task, available 
computational resources, and developer expertise.

5.4. Current status of DMV autonomous vehicle driverless 
testing permitted companies with ML algorithms

The following (Table 6) shows summary of the current status 
of some of the DMV Autonomous Vehicle Driverless Testing 
permitted companies, with a focus on the challenges and gaps 
with machine learning methods and their vulnerabilities in 
autonomous driving.

According to (Nations 2019), a combination of different 
functions in particular are required to develop the functional 
performance of automated/autonomous vehicles. Of those func-
tions for driving, minimum risk manoeuvre, transition demand, 
environmental monitoring (headway, side, rear), lateral control 
(i.e. lateral discipline), longitudinal control (acceleration, brak-
ing and road speed), transition demand, Human machine inter-
face (HMI) both internal and external and Drive monitoring for 
applications. ISO (2018) defined functional safety as the absence 
of unreasonable risk due to any potential source of harm caused 
by malfunctioning behaviour of electrical and/or electronic sys-
tems. This means that a malfunctioning behaviour is not limited 
to failures but also includes unintended behaviour (with respect 
to design intents).

5.5. Principles of functional performance requirements

Hence, functional performance was the backbone for vehicle 
operations, guided by principles for fitness of ideas. 
A requirement that focusses on functional be a formal indicat-
ing ‘shall statement’ that specifies a task or activity carried out 
by an ITS unit. While saying this, wants to elaborate that each 
functional need is unique and discrete, specifying the tasks that 
an ITS system obliged to execute. This needs introductory 

comments like (Unec 2020) vehicle definitions and classifica-
tions, high level approach, operational domain, autonomy, 
accidents, free of unreasonable safety risks, disruption of the 
flow of normal traffic, destruction of property, and rational vs 
reasonable before knowing operational design domains, i.e. 
describes the operating conditions under which an ADS or 
feature thereof is specifically designed to function (Standard).

Operational design domain (Environmental conditions): 
weather, geolocation, road features, and manoeuvres. 
Machine operates based on the manufacturer’s settings either 
editable by user or once set. To be productive, following the 
route set by producer should be enhanced per the agenda. 
Light, radio waves, forces, and sounds must be sensed as the 
first message from the ordered instrument and localised. The 
localised message could be perceived to predict the conditions 
next to that and adjust for planning. Hence, planning deter-
mines the order of all good or bad messages. The planned 
information based on predictions controlled for steering, 
brake, throttle, and commands that are tangibly applied. 
Figure 8 explains briefly as follows.

Figure 8 shows very basic AV functional architectures that 
have been elaborated in more detail (Badue et al. 2021; Yurtsever 
et al. 2020). Sense a various sensing modality. While map prior 
provides static map data and localises’ to calculate position, 
orientation, and motion of vehicles, it will perceive to calculate 
drivable area and obstacle location and motions.

To estimate future motion of dynamic objects, it predicts 
the perceived information.

Later, plan the predicted information to calculate a desired 
trajectory for the vehicle and control it to execute the trajectory 
as steering, brake, and throttle commands for applications.

Software impacts the implementation of perceiving and 
controlling information in either positive or negative ways. 
Table 7 shares more information on functional performance 
as follows.

The table presents definitions and compiles dependability 
terms and concepts from the ECSE, IEEE, and ISO standards. 
The functional requirements of San Francisco Bay area regio-
nal ITS architecture was selected based on the area’s ITS 
services. As a result, these requirements have been tailored to 
the specific stakeholders, inventory, and regional objectives 
(Bay Area 2022; Transportation 2023). The mandatory func-
tional requirements include Archive Data Repository, Archive 
government reporting, archive online analysis and mining, 
archive situation data archival, BIAC Data Collection, Border 
Inspection, Border Inspection administration, and others.

Figure 8. AV functional performance hierarchies.
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5.6. Operational requirements

The ITS operational concept is a stakeholder-focused 
approach to ITS operational features.

While the service packages depict the flow of information 
between ITS elements to fulfil activities, the operational model 
explains the roles and duties of stakeholders in establishing, 
running and maintaining the regions’ ITS. Each stakeholder’s 
tasks and obligations are defined in the operational concept. 
These are associated with the implementation and operation of 
ITS. The operational concept describes what each stakeholder is 
required to do on a managerial and operational level in order to 
fulfil some area stakeholder’s current and prospective roles and 
responsibilities. While operational safety is enhanced, operational 
requirements succeed. There should be a universal approach as 
on Figure 9, for the evaluation of AV safety, as shown below.

Figure 9 explains, operational safety as a result of vehicle 
safety, functional safety, and cybersecurity for automated vehi-
cles. Vehicle safety encompasses the physical vehicle itself, 
including its hardware and software (Nhtsa 2022; Wang et al.  
2020). Ensures whether the vehicle is physically capable of 
safety operating in its environment. This includes components 
such as brakes, airbags, and tyres, as well as the software 
responsible for controlling the vehicle’s systems. Functional 
safety, on the other hand, focuses on the safety of the vehicle’s 

functions (Joseph 2021). This includes its ability to perceive its 
surroundings and make informed decisions which are safe and 
appropriate. It involves elements like sensors, cameras, and 
algorithms that enable the vehicle to understand its environ-
ment. Cybersecurity, the third crucial factor, involves protect-
ing the vehicle’s systems from cyberattacks (Kim et al. 2021). 
This encompasses measures such as firewalls, intrusion detec-
tion systems, and secure coding practices. All three of these 
factors play vital role in ensuring the operational safety of 
automated vehicles. If any of these factors are compromised, 
it could result in a safety-critical incident.

6. Conclusions

Autonomous vehicles are currently the focus of research in 
today’s world. Researchers and scientists are working on sus-
tainable systems for the environment, which has gained accep-
tance from manufacturers and societies. According to 
researchers, automated driving systems (ADSs) promise 
a safe, comfortable, and efficient driving experience. 
However, users are still not fully ready to accept this system. 
Unfortunately, the number accidents involving vehicles 
equipped ADSs is increasing, as seen in daily and monthly 
reports. The lack machine learning algorithms is the main 

Table 7. (SAE 2018) Reliability requirements, functions, and software information.

System reliability requirements Its functions Software functions for information

System prediction tolerance Reliability models Failure system component tolerance. 
Fault recovery tolerance. 
Error data component tolerance.

System maturity Reliability assessment Error handling input. 
Error in producing output. 
Error in producing correct output.

System fault tolerance Fault prevention. 
Fault detection. 
Fault removal.

System recoverability Failure operation. 
Failure mechanism.

Figure 9. Overall approach for evaluation of AV safety.
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reason for environmental perception. Until the state-of-the-art 
technology is strengthened and given more attention, the full 
potential of ADSs cannot be realised in our current reality. 
There is a lack of trust in societies when it comes to accepting 
driverless vehicles. Companies are transitioning from produc-
tion to the trial/intern stage on their own roads. California is 
the city with the highest number companies manufacturing 
autonomous vehicles, and the California Department of Motor 
Vehicle reports every crash with automated vehicles on a daily 
basis. Statistical data collected from Science Direct was used 
for research conducted in 2010 and later to end of 2022. The 
research covered various disciplines such as health, computer 
science, environmental science, social science, decision 
science, and engineering. Graphical representations were 
used to analyse autonomous and automated vehicles sepa-
rately, based on research articles, reviews, book chapters, ency-
clopaedias, and conference abstracts. The utilisation levels of 
different companies were identified based on abstracts, with 
Tesla, Waymo (Google), and Cruise being the most prominent 
in autonomous vehicle production and system investigations. 
Based on the reviewed research papers, articles, and conference 
papers, the researchers conclude:

(a) From a statistical point, it has been observed that the 
state of the art for automated vehicle related research 
slowly increasing since 2010, while autonomous vehi-
cles started to rise in 2011 across all disciplines. On the 
other hand, in engineering (only) disciplines, research 
on automated vehicles is increasing more than auton-
omous driving vehicles.

(b) All operations of autonomous/automated vehicles 
depend on algorithms to perceive the environment. 
Therefore, machine learning algorithms should be 
improved to reduce the risk of crashes.

6.1. Future works for researcher

Hence, research related to automated and autonomous vehi-
cles is currently underway, but there may be some deficiencies 
in the field. Therefore, future researchers should focus on the 
following areas:

(1) Investigating the shortcomings of algorithms used in 
automated and autonomous vehicles to improve the 
overall research on this AI system.

(2) Conducting research specifically on companies that 
offer software and system related packages to identify 
and review their capabilities.

(3) Developing enhanced algorithms to reduce vehicle 
accidents and comparing them with existing systems.

(4) Identifying the algorithms used by each autonomous 
vehicle company and assessing their reliability to 
ensure the production of error free and safe vehicles. 
Additionally, it is important to consider cost and con-
sumer preference when studying the adoption of auto-
mated and autonomous vehicles.
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