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Abstract

The Precautionary Approach to Fisheries Management requires an assessment of the

impact of uncertainty on the risk of achieving management objectives. However, the main

quantities, such as spawning stock biomass (SSB) and fish mortality (F), used in manage-

ment metrics cannot be directly observed. This requires the use of models to provide guid-

ance, for which there are three paradigms: the best assessment, model ensemble, and

Management Strategy Evaluation (MSE). It is important to validate the models used to pro-

vide advice. In this study, we demonstrate how stock assessment models can be validated

using a diagnostic toolbox, with a specific focus on prediction skill. Prediction skill measures

the precision of a predicted value, which is unknown to the model, in relation to its observed

value. By evaluating the accuracy of model predictions against observed data, prediction

skill establishes an objective framework for accepting or rejecting model hypotheses, as

well as for assigning weights to models within an ensemble. Our analysis uncovers the limi-

tations of traditional stock assessment methods. Through the quantification of uncertainties

and the integration of multiple models, our objective is to improve the reliability of manage-

ment advice considering the complex interplay of factors that influence the dynamics of fish

stocks.

Introduction

The main objectives of fisheries management are to ensure that stocks provide the maximum

sustainable yield (MSY) and are maintained with high probability above a point where produc-

tivity is impaired. Therefore, the provision of fisheries management advice requires the assess-

ment of the state of the stock relative to target and limit reference points, the prediction of the
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response of the stock to management, and the verification that the predictions are consistent

with observations. However, the main quantities of interest, spawning stock biomass (SSB)

and fishing mortality (F), cannot be observed. Therefore, models with latent variables are

required to assess the state of the stock, derive reference points, and propose management

actions.

Currently, the primary diagnostics used to select and reject assessment models are to exam-

ine residuals to verify goodness of fit and to perform a retrospective analysis to verify stability.

However, residual patterns can be removed by adding more parameters than justified by the

data, and retrospective patterns by ignoring the data [1]. Validation using empirical data plays

an important role in sustainability science [2], and models must be validated if they are to pro-

vide robust and credible advice [3]. This requires assessing whether it is plausible that a system

equivalent to the model generated the data [4] and whether assumptions are violated. There-

fore, an alternative to residual and retrospective analysis is to perform a hindcast by omitting

recent observations and then predicting their out-of-sample values [5]. Prediction skill is a

measure of the precision of a predicted value unknown to the model relative to its observed

value. Prediction skill can be used to explore model misspecification and data conflicts, to help

identify alternative hypotheses, and can be used as objective methods to select, reject, and

assign weights to models [6].

To ensure that advice on the consequences of tactical and strategic management actions is

robust, the Precautionary Approach to Fisheries Management [7] requires the quantification

of uncertainty and reduces the risk that uncertainty hinders the achievement of management

objectives. Ideally, risk equivalence should be considered so that objective-based management

decisions can be maintained within acceptable risk levels and deliver results consistent with

expectations and trade-offs between them [8]. In the context of single species advice, this

means that in situations with poor or limited data and consequently greater uncertainty, man-

agement should not allow greater risks as required in tiered assessment frameworks [9].

There are three main modelling paradigms to provide advice: the best assessment, the

model ensemble, and Management Strategy Evaluation (MSE). Each has its own means of

determining quality that implies plausibility, but plausibility is rarely objectively defined. In

the best-assessment paradigm, alternative models are fitted to historical time series of indepen-

dent and fishery-dependent data, and then a single scenario is selected based on goodness-of-

fit diagnostics [10]. However, there is often a lack of information in stock assessment data on

system processes [11–14], and the data sets may conflict. Therefore, ensembles in which model

estimates are combined, consisting of as few as two [15] or thousands [16] of models, may be

preferred. The third paradigm, MSE, is a formal way of simulation-testing feedback control

[17]. The aim is to design robust and fault-tolerant control systems that allow management

objectives to be met despite the uncertainty represented by Operating Models that represent

resource dynamics [18]. In MSE, advice may be provided by an empirical control rule using an

indicator based on data rather than a stock assessment. The indicator should be able to track

the status or trends in the stock, and after implementation a review should be performed to

evaluate whether management objectives have been achieved. Therefore, prediction skill is

valuable for selecting Operating Models which may be conditioned on a stock assessment, the

selection of indicators, and in assessments conducted as part of implementation reviews.

An assumption under the best assessment and ensemble paradigms is that model outputs

quantify the consequences of the uncertainties in model inputs. To do this requires an uncer-

tainty analysis, for example, in the best assessment, sampling the values of fixed parameters

from prespecified distributions, or for an ensemble by including all plausible models. In the

latter case, multiple models are run for scenarios related to alternative model structures and

values for prespecified parameters, and the results are combined to provide advice [19]. [20]

PLOS ONE Empirical validation and risk equivalence

PLOS ONE | https://doi.org/10.1371/journal.pone.0302576 July 2, 2024 2 / 21

https://doi.org/10.1371/journal.pone.0302576


used a set of southern bluefin assessment scenarios to cover the range of interpretations of the

main uncertainties. However, multiple alternative model structures may be equally plausible

and therefore the number of model scenarios required to perform a full uncertainty analysis

may be infeasibly large. Instead, sensitivity analyses are generally preferred, i.e. systematic

investigation of the reaction of model outputs to extreme values of the model inputs and dras-

tic changes in the model structure. It is possible to perform a sensitivity analysis of the model

around a reference case and then use it as part of a first-order uncertainty analysis [21]. In any

case, an objective approach should be used for selecting, screening, and weighting hypotheses,

to overcome artefacts and biases introduced by a “cherry picking” approach [22]. In particular,

since divergent views and beliefs mean that uncertainties can be used to support stakeholder

positions and to strengthen or weaken management measures [23].

Providing probabilistic advice involves determining the uncertainty of the model output

derived from uncertain inputs and assumptions of the model [24]. Increasingly, multiple mod-

els are used to develop advice [19, 25], either combined to make probability statements or as

Operating Models in MSE to represent alternative hypotheses reflecting uncertainty about

resource dynamics to which management should be robust. Multiple models may be com-

bined using an ensemble that treats each model scenario as an alternative hypothesis and

implicitly recognises that each may explain the data equally well or be weighted based on an

estimate of plausibility [26, 27]. In the case of the best assessment, uncertainty is based on con-

fidence or credible intervals, whereas in an ensemble estimates are combined across models.

Although ensembles can improve model predictions, they must themselves be validated,

formed from a diverse set of models to minimise redundancy, and built on a data set represen-

tative of the population to which they are applied [28]. In MSE, a set of references or a single

reference case is developed. These scenarios are a limited set of Operating Model scenarios

that include the most significant uncertainties in the structure, parameters, and data of the

model. Alternative scenarios should be highly plausible and have a significant impact on the

performance statistics of candidate MPs. In addition, a robustness set should be developed to

assess performance across a wider range of plausible scenarios. These should represent hypoth-

eses that are less plausible than those in the reference set and focus on challenging circum-

stances with potentially negative consequences that should be avoided.

In all paradigms, plausibility is rarely objectively defined. Therefore, we first explore the

impact of uncertainty and then demonstrate ways to define the plausibility of alternative mod-

els by evaluating criteria based on retrospective bias and prediction skill [1]. We then compare

model weighting schemes and discuss how the process can be generalised.

Material and methods

The choice of scenarios for assessment models and methods of estimating uncertainty has an

impact on the risk of exceeding the limit and missing target reference points. The procedure

for selecting and rejecting scenarios in all paradigms will determine the advice. To better

understand the impact of uncertainty on stock assessment advice and the risk of not meeting

conservation and sustainability objectives, we used the uncertainty grid developed by the

Indian Ocean Tuna Commission (IOTC) for albacore tuna (Thunnus alalunga) as an example.

The data set for the Indian Ocean albacore assessment includes records of catches and land-

ings, abundance indices based on catch per unit of effort (CPUE) and samples of length com-

position. The assessment partitions the Indian Ocean into four regions, divided latitudinally

along the 25˚S parallel and longitudinally along the 75˚E meridian. Fig 1 shows the distribu-

tion of catches between the four regions. The assessment includes 11 fisheries, including an

aggregated longline fishery for each region [29], and a set of standardised CPUE indices that
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have been derived from the longline catch and effort data provided by Japan, Korea, and Tai-

wan, China [30]. Area 3 is considered to represent the core of the distribution of the stock.

Uncertainty grid

Tuna Regional Fisheries Management Organisations commonly develop uncertainty grids to

condition models in integrated stock assessments to account for uncertainties in parameters

that cannot be estimated from the data, and data conflicts [19, 31–36]. Grids consist of differ-

ent plausible combinations of assumptions, fixed parameter values, and data sets. However, it

is not always clear whether this is intended as an uncertainty analysis or a sensitivity analysis.

The uncertainty grid developed by the IOTC for albacore tuna (Thunnus alalunga), is a full

factorial design with 1,440 model configurations [37] (Table 1). This is sufficient to provide

contrast, but not too large to be unmanageable. We used Bayesian Markov Chain Monte Carlo

(MCMC) methods [38] to estimate the uncertainty of the parameters for the base case. The

uncertainty grid includes multiple configurations of integrated assessment models based on

Fig 1. Relative distribution of Indian Ocean albacore tuna catches by assessment region.

https://doi.org/10.1371/journal.pone.0302576.g001

Table 1. Operating Model scenarios; reference case values in bold.

Key Factor Levels (N) ∏ N Values

M Natural mortality (M, juveniles/adults) 5 5 0.2, 0.3, 0.4, 0.4/0.3, 0.4/0.2

h Steepness of the stock-recruitment relationship 3 15 0.7, 0.8, 0.9

SigmaR Variability of recruitment (sigmaR) 2 30 0.4, 0.6

ESS Effective Sampling Size of the length composition data (ESS) 3 90 20, 50, 100

CV CV for fit to CPUE (cpuecv) 4 360 0.2, 0.3, 0.4, 0.5

q Yearly increase in catchability coefficient of CPUE (llq) 2 720 0%, 1%

sel Selectivity (llsel) 2 1440 logistic, double normal

https://doi.org/10.1371/journal.pone.0302576.t001
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current best-knowledge and available data [39]. The grid was conditioned using stock synthe-

ses [40].

In the Indian Ocean albacore stock case, several factors limit the ability to obtain robust

model fits. These include problems with data completeness and quality [41], not limited to but

including total catch statistics, length distribution in catches, and biological information.

Therefore, a full factorial design of alternative model configurations based on parameter

choices for which there is insufficient information in the data to estimate them or to decide

between alternative options was used to construct the uncertainty grid (Table 1).

The reference case, considered by the IOTC the most plausible among a set of candidate

models, was extended by selecting alternative values for fixed-parameter values and data

weighting to develop the grid. Factors include i) alternative values of natural mortality (M) for

juveniles (ages 0 to 4) and adults (age 5 or older); ii) two values for recruitment variability (sig-

maR) of 0.4 and 0.6; iii) three values for the steepness (h) of the stock-recruitment relationship

0.7, 0.8, and 0.9; iv) four values for the coefficient of variation in the CPUE series of 0.2, 0.3,

0.4 and 0.5; v) three values for the relative weight of length sampling data in the total likelihood

through changes in the effective sampling size parameter, 20, 50 and 100; vi) two scenarios for

the effective catchability of the CPUE fleet: It was assumed that the fleet had not improved

catchability plus an alternative scenario that considered a 1.0% yearly increase; vii) two possi-

ble functional forms for the long-line fleet selectivity were considered: a logistic function

(Log), where selectivity stays at the maximum level for older sizes, or a double normal

(DoNorm), where selectivity decreases for larger sizes. This resulted in a grid of 1,440 individ-

ual models, which covers most, but not all, plausible sources of uncertainty.

Model estimates. Provision of fisheries management advice requires the assessment of

stock status relative to reference points to prevent growth, recruitment, economic and target

overfishing. Growth and recruitment overfishing are generally associated with threshold or

limit reference points, while economic overfishing can be expressed in terms of targets or lim-

its [42]. The difference between targets and limits is that indicators may fluctuate around tar-

gets, but in general limits should not be crossed. Target overfishing occurs when a target is

overshot, while variations around a target are not necessarily considered serious unless a con-

sistent over or undershoot becomes apparent. In contrast, even a low probability of violating a

limit reference point (LRP) may indicate the need for immediate action. FMSY is often consid-

ered a limit and thresholds or triggers can also be implemented to initiate a management

action.

Patterns or fluctuations generated by a model have an impact on advice [43]. Therefore,

two key properties of the output of the assessment model are the production function and the

process error. The former is used to calculate analytical reference points [44], while the latter is

a source of additional variability that is not represented by the main structure of the model

[45]. Process error may be due to variations in biotic or abiotic processes; that is, the drivers of

population fluctuations that ecologists are interested in quantifying [46]. Process errors arise

when a deterministic component of a population model incorrectly describes population pro-

cesses. Such process variation can be found, for example, in recruitment, fishery selectivity, or

sampling processes [47].

If the stock size is represented by biomass and changes by the time-accounting equation

[48]

logðBtþ1Þ ¼ logðBt � Ct þ PðBtÞ ð1Þ

where B is exploitable biomass and C is catch, then surplus production (P(Bt)) is the net change
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in biomass if C = 0, and represents the net addition to biomass due to the recruitment of fish

too small to be taken into account in B, plus growth minus loss of natural mortality.

In integrated stock assessment models, the process error �t can be estimated as the differ-

ence between the deterministic expectation and the stochastic realisation for biomass Bt+1, i.e.

�t ¼ log
Bt � Ct þ Pt

Btþ1

� �

ð2Þ

Full details of the methods in the next section are provided in Supporting Information.

Goodness of fit. Goodness of fit involves assessing the fit of the model through the exami-

nation of residual patterns to identify any systematic misfits, such as bias or trends, that could

indicate misspecification of the model. Simple residual plots are used along with statistical

tests, including the Runs test [49], to detect deviations from expected patterns. Information-

theoretic criteria, such as Akaike’s Information Criterion (AIC) and its variants (AICc for

small sample sizes), [50], GIC [51], DIC [52] and WAIC [53]), are often applied to select mod-

els that best balance fit and complexity, considering both frequentist and Bayesian approaches.

However, since the scenarios included different weightings due to data conflicts, Information-

theoretic criteria cannot be used for weighting in such cases.

Model consistency. We evaluated model consistency through retrospective analysis, spe-

cifically using Mohn’s rho (rhoM), to measure systematic errors over time as data are sequen-

tially omitted from the analysis [54]. This approach helps identify biases that could affect

management decisions.

Model validation. Validation focused on the model’s ability to predict unseen data,

employing hindcasting in which data points are removed using a tail cutting approach, i.e.

removing data sequentially from the most recent years backward. and predicted by the model

[1]. This was primarily applied to catch-per-unit-effort (CPUE) data due to limitations in data

availability, especially from regions beyond national jurisdiction. The prediction skill of the

model was quantified using the Mean Absolute Scaled Error (MASE) [55], comparing the

model forecasts with a naïve forecast over specified forecast horizons. MASE values less than 1

indicate predictions more accurate than the naïve forecast, offering a clear criterion to evaluate

model performance.

The Diebold-Mariano test can be applied to compare the predictive precision of our model

against a naive benchmark, providing a statistical basis to evaluate the significance of differ-

ences in performance prediction [56].

Results

Time series analysis

Time series of the yield, fishing mortality, and SSB relative to their corresponding MSY refer-

ence points is summarised in Fig 2. Absolute estimates of biomass and fishing mortality are

uncertain because M is not well known and the use of relative values allows focus to be on

trends and proportional changes. The reference case (black line) and the main effects where

the levels of each factor vary one by one are shown; the ribbons delimit the range across all

1440 scenarios. The base case trajectories are in the middle of the range, as the scenarios were

based on varying factors around the base case. Trajectories exhibit similar variability within a

quantity, but tend not to intersect as they change at similar rates. Catches vary the most reflect-

ing the impact of operational and environmental factors, while SSB the least as it is a modelled

quantity and process error is accounted for in recruitment and selectivity. SSB estimates

decreased while harvest rate and catches increased, that is, they are inversely correlated, as a

large stock with low exploitation or vice versa can explain the observed catches. The yield,
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which represents the recorded catch, exhibits significant interannual variations, and since

2000, the catches have been above or close to MSY. Estimates are sensitive to the assumed level

of M, since the scenarios for M = 0.2 and 0.4 bracket the other main scenarios. SSB remains

above BMSY, but shows a downward trend. The harvest rate follows a trend similar to the yield

but with less variability. For most time series, the harvest rate remains below FMSY. In recent

years, some scenarios have shown that harvest rates reach or exceed FMSY. SSB scenarios were

based on, but remain above, BMSY.

Stock status

The status of the stock in the terminal year for all 1440 scenarios is summarised in a Kobe

phase plot (Fig 3). The green quadrant provides an assessment of sustainability, as it indicates

a well-managed fishery where SSB/BMSY> 1 and (F/FMSY< 1). The red zone shows where a

stock is overfished and where overfishing occurs. Two sets of data points are plotted: mustard

points for the 1440 deterministic model estimates within the uncertainty grid and blue points

for the MCMC base case posteriors, which account for uncertainty in the model parameters.

Marginal distributions, depicted along the plot’s axes, allow probabilities from model estimates

and the MCMC analysis to be compared, i.e. targets by the central tendency and limits by the

tails. The Kobe phase plot reveals a tendency for the deterministic model estimates to fall

within the red zone, indicating overexploitation. However, the MCMC posteriors cluster

toward the green zone, suggesting a more sustainable stock status. The contrast highlights the

role of uncertainty in stock evaluations and decision making.

The current yield, F, and SSB relative to their MSY benchmarks are summarised in Fig 4)

by natural mortality and steepness. The ratios are derived from the uncertainty grid, which

Fig 2. Time series of yield, harvest rate, and spawning stock biomass, relative to MSY reference points, for the

main effects in the uncertainty grid; thick black line is the base case.

https://doi.org/10.1371/journal.pone.0302576.g002

PLOS ONE Empirical validation and risk equivalence

PLOS ONE | https://doi.org/10.1371/journal.pone.0302576 July 2, 2024 7 / 21

https://doi.org/10.1371/journal.pone.0302576.g002
https://doi.org/10.1371/journal.pone.0302576


also considers, but is not significantly influenced, factors such as juvenile M, ESS, CPUE CV,

catchability, and selectivity. Therefore, these additional factors are integrated into the box and

whisker plots. There is a compensatory relationship between steepness and M, since high

steepness and low M result in outcomes comparable to those with low steepness and high M.

The figure further illustrates that an increase in M is correlated with a decrease in F/FMSY. A

relationship that has implications for data-deficient situations where M is used as a substitute

for FMSY. As seen in the Kobe Phase plot, there is an inverse relationship between SSB/BMSY

and F/FMSY; scenarios with higher values of M and steepness are associated with lower fishing

mortality ratios and higher biomass ratios of the spawning stock relative to MSY. This suggests

that for model configurations with higher M and steepness, the stock is less exploited and has

healthier spawning biomass compared to the MSY benchmarks.

Production functions

Plots of the relationship between equilibrium yield and equilibrium biomass, which are used

to derive MSY benchmarks, are commonly called production functions. To understand the

impact of the uncertainty grid on the production function, these are summarised in Fig 5 by

the natural mortality rates of adults (M) and the steepness of the stock-recruitment relation-

ship. The shading within the plots indicates the effective sample size, a measure of the amount

of size information available to estimate the status of the stock. The shape and peak of these

curves vary with the natural mortality rate and steepness, illustrating how sensitive the fishery’s

productivity is to these key life history parameters. Again, M and steepness have a large effect;

increasing adult M results in higher productivity, and therefore MSY, while increasing

Fig 3. Kobe phase plot showing spawning biomass and fishing mortality, relative to MSY target reference points.

Yellow points correspond to all the deterministic model estimates in the uncertainty grid, and blue points to the

MCMC posteriors for the base case.

https://doi.org/10.1371/journal.pone.0302576.g003
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steepness shifts the curve to the left, increasing FMSY (since F is equivalent to catch/biomass),

making the stock more resilient to fishing pressure.

Process error

A property of the model estimates is process error, modelled in this case by recruitment devi-

ates. Fig 6 show the recruitment deviates and Fig 7 process error. M has the greatest effect,

since if adult M is large, then recruitment and variability in the strength of the year class have a

great effect on biomass. Steepness and other factors have less of an impact.

Decision tree analysis

The retrospective analysis using Mohn’s ρ is summarised in Fig 8. The black line identifies the

reference case, and the main effects are indicated by the coloured lines. The base case fails with

the lowest score, and the scenarios with the lowest retrospective bias are for M 0.4 and 0.2 and

CPUE with a CV of 50%. The impact of factors and levels of the uncertainty grid is explored

using a regression tree in Fig 9 using Mohn’s ρ as response variable. Below the regression tree,

the clusters are summarised by their MASE values, production functions, and Kobe plots.

Where Mohn’s rho is greater than a value of -0.15 within a cluster, the values are indicated by

blue.

The key factors that influence Mohn’s rho are ESS, CPUE CV, catchability, and adult M.

The analysis did not select Sigma R, steepness, or selection pattern as influential factors. There-

fore, adult M and the relative weights given to the CPUE and the length composition data have

the main impact. First clusters are summarised by their MASE values, with a red vertical line

Fig 4. Deterministic estimates in the final year from the uncertainty grid of biomass, harvest rate, and yield

relative to MSY reference points; summarised by adult M and steepness.

https://doi.org/10.1371/journal.pone.0302576.g004
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indicating a MASE value of 1. MASE is a measure of forecast accuracy, with values less than 1

indicating good predictive performance. Clusters with a median MASE less than 1 are consid-

ered to have passed the test, suggesting both stability in assessment and prediction skill. Next,

we have the production functions, with those that pass Mohn’s rho test showing the lowest val-

ues for MSY, BMSY and the carrying capacity (K). The last row shows the Kobe phase plots,

where the clusters that pass the Mohn’s ρ test tend to be those where overfishing is occurring

and a stock is overexploited.

Discussion

The Kobe Phase plot in Fig 3 compared the estimation error of the base case with the model

error of the uncertainty grid. The blue points, which denote the posteriors of the MCMC for

the base case, are more tightly clustered and suggest sustainable stock status, as F is around

FMSY and there is only a small probability that the stock falls below BMSY. In contrast, the yel-

low points of the uncertainty grid representing deterministic model estimates show a wide dis-

persion and a high uncertainty about the current status.

Fig 5. Plots of equilibrium yield against equilibrium biomass (i.e. the production functions) by natural mortality

of adults (column), steepness (row), and effective sample size (shading).

https://doi.org/10.1371/journal.pone.0302576.g005
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Fig 6. Time series of recruitment estimates by natural mortality of adults (column), steepness (row) and effective

sample size (shading).

https://doi.org/10.1371/journal.pone.0302576.g006

Fig 7. Time series of estimates of surplus production, i.e. By+1 − By + Cy, by natural mortality of adults (column),

steepness (row) and effective sample size (shading).

https://doi.org/10.1371/journal.pone.0302576.g007
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Variability in the predictions of the deterministic models implies that management advice

is actually more uncertain than if the base case or a best assessment and MCMC had been used

to provide advice. Since Figs 10 and 11 show that depending on the choice of scenarios, the

stock is being fished sustainably or unsustainablely and may result in conscious or unconcious

Fig 8. Summary of Mohn’s ρ for the uncertainty grid, main effects are indicated by the vertical lines, and pass

criteria is when −0.15< ρ< 0.2.

https://doi.org/10.1371/journal.pone.0302576.g008

Fig 9. Regression tree identifying the inputs, i.e. grid factors and levels, that influence Mohn’s ρ for the 3-step

ahead procedure. Below the regression tree are summaries by cluster of MASE (red vertical line is MASE = 1),

production functions, and Kobe phase plots.

https://doi.org/10.1371/journal.pone.0302576.g009
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bias. This shows the importance of having a pre-greed procedure for selecting, rejecting, and

weighting scenarios.

Although 1440 scenarios were evaluated, the uncertainty mainly affected the shape of the

production function, scale, and level of process error. The status of the stock relative to the ref-

erence points was primarily influenced by fixed variables, e.g., adult M and steepness, while

absolute biomass was affected by the relative importance of the CPUE and length data and the

level of process error by adult M. There was confounding between the effects of steepness and

natural mortality, both of which are crucial in determining sustainability, since higher natural

mortality and steepness are associated with a steep slope at the origin and a skewed production

Fig 10. Kobe phase plots for uncertainty grid, where the equally weighted assessments (yellow) are compared to the scenarios which pass

the Mohn’s ρ test.

https://doi.org/10.1371/journal.pone.0302576.g010
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function. The production function in turn determines the reference points for fishing mortal-

ity and how far below BMSY or virgin biomass a stock can fall below productivity is impaired.

The sensitivity of the assessment outputs to critical but commonly fixed biological factors such

as natural mortality and steepness underscores the limitations of the best assessment if the

fixed inputs do not fully capture the range of uncertainties inherent in fish stock assessments.

Plausibility

The initial choice of scenarios and subsequent rejection, acceptance, and weighting is impor-

tant in determining the status of the stock and subsequent management action. However, esti-

mates from an ensemble may be biased if the models are a subset of all plausible models, some

are less likely than others, or the models are non-unique causing redundancy [57]. Therefore,

assuming the same reliability to all models could introduce bias, so ideally, each model should

be assigned a weight [58] based on plausibility. Although the importance of plausibility is

widely acknowledged, it is rarely formally defined. This lack of formal definition poses chal-

lenges in assessing the credibility and reliability of modelling results, potentially undermining

the effectiveness of management strategies. Plausibility refers to the quality of seeming reason-

able or probable based on the available evidence and logical coherence. A good example of the

value of using observations not used in model fitting is that of [59], where a model was rejected

based on alternative data that were not used in the assessment model, in this case fisher-

derived data showing that one model was implausible. In another case in the ICCAT bluefin

assessment conducted using virtual population analysis in which numbers alone are used, the

predictions of adult biomass were inconsistent with observations of mean size of older individ-

uals that identified model misspecification [60].

Fig 11. Kobe phase plots for uncertainty grid, where the equally weighted assessments (yellow) are compared to

scenarios chosen based on prediction skill, i.e. MASE<1.

https://doi.org/10.1371/journal.pone.0302576.g011
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Fisheries management advice

Managing fisheries poses challenges due to uncertainties and risks that arise from natural vari-

ability, imperfect information on aquatic ecosystems, and the inability to fully control fisheries

[61]. Therefore, a stock assessment is performed to provide probabilistic statements about the

status of stocks and their response to management. The risk of stock depletion or failure to

consistently achieve objectives should be equivalent across all data quality categories and

assessment methods [62]. The consideration of risk equivalence allows for a formal treatment

of uncertainty so that management decisions can deliver consistent results [8] as required in

tiered assessment frameworks and move toward an ecosystem approach to fishing (EAF).

However, estimating probabilities in stock assessments is difficult and requires a compre-

hensive approach to incorporate uncertainties and associated risks. Uncertainty sources

include parameters for which there is minimal information in the data, model structure, and

process variability. Bayesian MCMC methods can handle parameter uncertainty, and revers-

ible jump MCMC methods model structure [63]. However, computational demands and the

potential for misspecification of MCMC limit its application in the time frame of stock assess-

ment working groups. Instead, assessment groups often use scenario testing as a robustness

check, but they may then combine scenarios to provide advice [19], thus confusing sensitivity

and uncertainty analysis.

The choice between sensitivity analysis and uncertainty analysis depends on the objectives

of the assessment and the nature of the available data. Sensitivity analysis is beneficial to priori-

tise research efforts, while uncertainty analysis is crucial for a comprehensive understanding of

potential outcomes. An objective approach for selecting, screening, and weighting hypotheses

should be preagreed, to avoid “cherry picking”. The validation of the model should be per-

formed using a diagnostic toolbox [10] with focus on prediction skill [64]. Prediction skill can

be used to help identify and test alternative hypotheses to compare different modelling frame-

works, to explore model misspecification and data conflicts, and to weight scenarios.

Once a sensitivity analysis has been performed, it can be used to determine whether esti-

mates from alternative models fall outside the confidence or credibility intervals of a reference

case. If the estimation error is less than the model error, this can indicate a lack of information

in the data. The estimation error is related to the type and quality of the data, the estimable

parameters and the variance assumed for priors and observations. Therefore, a high estimation

error can indicate a lack of contrast in the data or a violation of the assumptions of the model.

If the model error is greater than the estimation error, then statements about achieving targets

and avoiding limits are model-dependent, and so an ensemble of models should be built.

However, conducting a full uncertainty analysis is difficult, especially when there is a great

uncertainty. Therefore, sensitivity analysis is generally preferred to identify factors that are of

high risk. For example, as in this case, it was found that the natural mortality of juveniles had

little impact, but that of adults had a large effect on the production function, reference points,

and the level of process error. The weight given to the length data determined the scale, that is,

the absolute biomass and MSY. A sensitivity analysis can be used to agree Operating Models

for the evaluation of management strategies to evaluate robust management strategies. How-

ever, after the implementation of an agreed management strategy, performance must be

reviewed. This should be done less frequently than stock assessments used to set catch limits

and, if possible, a comprehensive assessment conducted using an uncertainty analysis. This

will provide an opportunity to learn from the implementation and apply lessons learnt in

future iterations of the management cycle. By continuously refining strategies based on empir-

ical evidence and practical experience, the management process becomes more dynamic and

responsive to changing conditions and new information helping in moving towards EAF.
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In MSE conditioning Operating Models in the form of an uncertainty grid, and then inte-

grating outcomes to derive probabilities for performance metrics might obscure critical risk

assessments. For example, the risk of falling below acceptable limits is commonly found from

the tails of probability distributions. They may be captured more usefully through scenarios,

i.e. a subset of Operating Models that embody specific uncertainties, and concerns of stake-

holders. In this study, we showed that despite 1440 scenarios, there were 3 main outcomes; the

shape of the production function, the scale, and the level of process error. An empirical man-

agement procedure could be tuned to provide robust advice on a much reduced subset of

Operating Models. Therefore, our results support the use of sensitivity rather than uncertainty

analysis for conditioning Operating Models, which examines the effects of varying key param-

eters and model structures. Therefore, provide a clearer identification of scenarios that signifi-

cantly influence management outcomes. This helps to achieve the pragmatic goals of MSE by

identifying robust management strategies and research priorities. To ensure that management

advice is comprehensive and resilient, we advocate for a more deliberate and scenario-focused

analysis to inform fisheries management decisions.

Model development

Developing and validating models is crucial to address the complexities and uncertainties in

fisheries management. Therefore, we propose a systematic and transparent approach to sup-

port a robust decision based on the following stages.

Identifying key uncertainties. The process begins by identifying critical uncertainties

that affect stock assessments, including data quality, model structure, parameter estimation,

and variability in fish population and fishing. Integrating stakeholder concerns is also increas-

ingly vital as we transition to an EAF, ensuring that the models reflect the varied values and

priorities within the fisheries system. For example, eliciting concerns, preferences, and objec-

tives through interviews, workshops, and surveys enables the inclusion of various perspectives,

such as those of fishermen, conservationists, industry representatives, and indigenous commu-

nities [65]. This approach promotes a transparent and inclusive fisheries management process

that leads to sustainable and equitable results. Stakeholder participation during model develop-

ment helps build ownership and trust, crucial for effective implementation of advice.

Selection of model candidates. Once uncertainties have been identified, a diverse suite of

model candidates can be proposed, where the model may represent different hypotheses

regarding stock dynamics, but also variations in life history traits, fishing pressure, environ-

mental impacts, and ecosystem interactions. The selection depends on the focus, for example,

whether it is on a single species or an ecosystem approach as we transition toward more inte-

grated fisheries management practices.

Development of individual models. The next stage is the development and independent

diagnostic evaluation of individual models. This involves structuring the model, fixing param-

eters or agreeing priors, and then fitting the model to the available data.

Weighting and integration of models. Algorithm. Therefore, we propose the following

algorithm to develop stock assessment models used to provide and review the implementation

of advice.

1. Run pre-agreed diagnostics to develop a reference case

2. Develop scenarios for plausible hypotheses that have a large effect

3. if model error is less than estimation error, then you can use the reference case for advice

(i.e. best assessment paradigm)
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4. If model error is greater than estimation error agree on scenarios, then an ensemble may

better reflect uncertainty (i.e. ensemble paradigm) and the associated risks and should be

preferred over a best-case scenario. This will be context-sensitive, but the rationale should

be clearly stated

5. Fit scenarios and repeat diagnostics

6. Weight model scenarios in the ensemble based on diagnostics

A way forward is to use a discrete weight system (W(D)) based on diagnostic scores [66] to

provide an estimate of plausibility based on the fit to the data.

The components W(D) can be calculated based on a series of interconnected diagnostic

tests [10].

WðD1Þ þWðD1Þ . . .þWðD1ÞPn
i¼1

WðDiÞ
ð3Þ

Each component W is assigned a value of 1 when the run passes the diagnostic test and a 0

if it fails. In addition, different weights could be assigned for the different diagnostic tests used.

This provides an extension of current practice, and as more research is conducted on model

weighting, this can be adapted.

Management advice. Models should be validated against independent data to evaluate the

robustness and reliability of their outputs as part of an iterative process of development and

refinement to maintain the relevance and accuracy of the models as new data emerge and our

understanding of ecosystems evolves. This allows decision makers to account for uncertainties

and risks. This structured approach, by continuously integrating and comparing various mod-

els, supports adaptive fisheries management.

Conclusions

The three paradigms of best assessment, model ensemble, and MSE are all critical to adopting

a precautionary approach to fisheries management, as they require the quantification of uncer-

tainties and the associated risks that may impede the achievement of management goals. State-

ments of plausibility need to be supplemented by judgments of imprecise probability and

knowledge strength. That an event or scenario is plausible is a vague statement and a scientific

approach requires precision on both likelihood and knowledge [67]. Model validation, using

prediction skill, provides a rigorous assessment of the plausibility of models and scenarios,

using empirical evidence. Thus ensuring that advice is both credible and reliable. While,

ensemble models, which incorporate an extensive array of plausible scenarios, will enhance

our ability to encapsulate the inherent variability and uncertainty characteristic of fish stock

assessments.

Moving toward an EAF requires continuous refinement and adjustments in response to

evolving data and emerging insights, ensuring that management strategies take into account

changing conditions and incorporate the latest evidence, thus improving their effectiveness.

The incorporation of prediction skill as a metric for validation across all paradigms will

improve the robustness of the management advice provided. Prediction skill provides an

objective framework for the selection, rejection, and weighting of models or Operating Models

ensuring that they are based on plausible hypotheses. By adhering to the principles of risk

equivalence and embracing model validation through prediction skill, fisheries management

can develop strategies that are not only resilient and sustainable, but also informed by a deep

understanding of ecosystem dynamics and supported by empirical validation.
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