
Commentary

Optimal photosynthesis requires
a balanced diet of ions

Optimal macro- and micronutrient supply is crucial for the
efficient growth of plants. The chloroplast, a key organelle in plant
cells, is essential for producing energy, amino acids, fatty acids, and
hormones. It requires a well-balanced ion homeostasis to function
effectively. Understanding the mechanisms of chloroplast ion
homeostasis is therefore crucial for optimizing plant growth and
maximizing crop yield, especially regarding its impact on
photosynthesis. Published in this issue of New Phytologist, the
Tansley review by Kunz et al. (2024; pp. 543–559), provides a
comprehensive update on the relevance of mineral ions and their
respective transportmechanisms in chloroplasts (Fig. 1), alongwith
recommendations on areas of research, which should be prioritized
in the future.

‘. . .the rise of molecular biology and deciphering of the

Arabidopsis genome has ushered in a new era of discovery of

the molecular players, for example transporters and

channels of chloroplast ion homeostasis.’

Forty years ago, before the emergence of genomic tools and
before Arabidopsis was designated as the model organism for plant
biology, the elemental ion composition from isolated chloroplasts
and thylakoids was measured in peas and spinach (Demmig &
Gimmler, 1983). These early studies still form the basis of our
current understanding of chloroplast ion homeostasis (Pottosin &
Shabala, 2016). However, the rise of molecular biology and
deciphering of the Arabidopsis genome has ushered in a new era of
discovery of the molecular players, for example transporters and
channels of chloroplast ion homeostasis.

This breakthrough paved the way for the identification of several
ion transporters, almost 20 years after the first work in this field,
triggering a wave of research on ion transport in the chloroplast and
its effects onphotosynthesis functioning. In their review,Kunz et al.
highlight the different ways in which chloroplast ion homeostasis
impacts photosynthesis.

Ions are necessary for the structure and functioning of pigments
and proteins involved in photosynthesis. For example, magnesium
(Mg2+) is the central ion in the porphyrin structure of chlorophyll
(Wang&Grimm, 2021). The oxygen-evolving complex contains a
cluster (Mn4CaO5) made of manganese (Mn2+) and calcium

(Ca2+), and chloride anions (Cl�) are located in the vicinity of this
cluster (Umena et al., 2011). Iron (Fe2+) is also essential for the
electron transport chain (Kroh & Pilon, 2020).

An imbalance in plastid ion homeostasis can also negatively
affect plastid gene expression. This was demonstrated in kea1 kea2
mutants, where altered secondary structures of stromal mRNAs
and decreased plastid gene expression were observed. Disrupted
plastid gene expression leads to a delay in chloroplast development,
in part explained by a reduced production of photosynthetic
proteins (DeTar et al., 2021).

During photosynthesis, absorbed light energy generates a
reducing power, which drives electron transfer reactions, these
are coupled to the transfer of protons into the thylakoid lumen,
generating a proton motive force (pmf) necessary for the synthesis
of ATP (Armbruster et al., 2017) (Fig. 1b).When photosynthesis is
challenged by excessive light exposure, the pH of the thylakoid
lumen decreases significantly as more protons are transferred there.
This decrease in pH is a key signal that triggers certain
photoprotective mechanisms in the photosynthetic chain (also
known as nonphotochemical quenching, NPQ) (Bassi & Dal-
l’osto, 2021).NPQallows the conversion of excess light energy into
heat, preventing the production of reactive oxygen species. Ion
homeostasis is of paramount importance in this process: during the
transition from high to low light conditions, it has been shown that
KEA3 K+/H+ exchange is necessary to inactivate the NPQ, as
conditions are again favourable for photosynthesis (Wang
et al., 2017). However, a more active KEA3 leads to a faster
inactivation of NPQ (Armbruster et al., 2016), because lessDpH is
maintained in this line. Another ion involved in NPQ regulation is
chloride ion (Cl�), which based on studies on the thylakoid
BESTROPHIN-LIKE PROTEIN/voltage-dependent Cl� chan-
nel 1 (VCCN1) suggested a role in dissipating membrane
potential to enable timely NPQ activation during transition from
low to high light (Herdean et al., 2016). Excitingly, accelerating
NPQ relaxation has already found practical application in
optimizing photosynthesis in crops, thereby boosting yield
(Leister, 2023).

The Tansley review by Kunz et al. also serves as a comprehensive
guide to understanding the main challenges that researchers will
have to face to better understand ion homeostasis within the
chloroplast.

First is the study of ion concentrations in the chloroplast, which
could be revolutionized thanks to genetically encoded ion sensors,
as suggested by the authors. Starting with the development of Ca2+

sensors, now sensors for K+, Mg2+, Cl�, and other ions have been
successfully tested in various organisms (Sadoine et al., 2023).
Sensors that function within the correct concentration range can be
titrated and expressed in bothWT andmutant plant cells, and they
can then be targeted to the plastid stroma and thylakoid lumen.
Therefore, using genetically encoded ion sensors for imaging willThis article is a Commentary on Kunz et al. (2024), 243: 543–559.
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increasingly provide a valuable method to investigate plastid
transport proteins directly within plants.

Second, to better understand the dynamics of ions flux into the
stroma and the lumen of chloroplast, new techniques will have to
emerge. For identifying new candidate genes encoding plastid ion
transporters or channels, the authors suggested that developed
genome-wide multi-targeted artificial micro-RNA and CRISPR
libraries could be a solution. However, the newly created libraries
should exclusively target the plastid proteome to improve the plant
ionome (Baxter, 2010).

Third, structural knowledge of plastidial ion transporters is also
an area in need of improvement. For that, the authors recommend
more frequent use of solid-state membrane electrophysiology: this
method allows multiple recordings of liposomal or membrane
samples adsorbed on a sensor, and it is sufficiently sensitive to detect
the transport currents of moderate flux transporters that are
inaccessible to traditional electrophysiology techniques (Thomas
et al., 2021). For in vivo analysis, x-raymicroscopy is recommended
to visualize the spatial distribution of ions within the chloroplast
and understand their dynamics in real time (Fittschen et al., 2017).

Fig. 1 Physiological relevance of mineral ions
and their respective transport mechanisms in
chloroplasts (adapted from Kunz et al., 2024,
in this issue of New Phytologist, pp. 543–
559). (a) The proteins and pathways
mentioned in this Commentary on Kunz
et al. with the names and locations based on
work in Arabidopsis thaliana. Question
marks (?) indicate unknown genes, locations,
or substrates. BICAT2, BIVALENT CATION
TRANSPORTER 2; CBB, Calvin-Benson-
Basham cycle; cMCU, CHLOROPLAST
MITOCHONDRIAL CALCIUM UNIPORTER;
CMT1, CALCIUM/MANGANESE CATION
TRANSPORTER 1; DLDG1, DAY-LENGTH-
DEPENDENT DELAYED-GREENING 1; KEA1/
2, K EFFLUX ANTIPORTER 1/2; MGR8/9,
Magnesium Release 8/9; MGT10,
MAGNESIUM TRANSPORTER 10; PEC 1/2,
plastid envelope channel 1/2; RuBisCO,
Ribulose-1,5-bisphosphate carboxylase/
oxygenase; Ycf10, homolog of the nuclear-
encoded DLDG1. (b) Simplified overview of
the generation and dynamics of proton
motive force (pmf ) and role of ion carriers. A,
antheraxanthin; ATP Synt, ATP synthase; b6f,
cytochrome b6f complex; F, Faraday
constant; Fd, ferredoxin; FNR, ferredoxin-
NADP+ reductase; OEC, oxygen-evolving
complex; PbsS, photosystem II subunit S; PC,
plastocyanin; PQ, plastoquinone/
plastoquinol pool; PSI, photosystem I; PSII,
photosystem II; R, ideal gas constant; SOD,
superoxide dismutase; T, temperature; V,
violaxanthine; VDE, violaxanthin de-
epoxydase; Z, zeaxanthine; ZE, zeaxathine
Epoxydase; DpH, proton gradient; DΨ,
membrane potential.
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One drawback is that it is necessary to work at the synchrotron
facilities to obtain the highest resolutions. Another strategy would
be the combination of cryo-electron microscopy and structural
prediction software such as ALPHAFOLD. This approach will not
only deepen our understanding of predicted protein structures but
also provide clues about their substrates, potential regulatory
mechanisms and functions. Studying the regulatorymechanisms of
ion transporters is important, as these mechanisms appear to
contribute tomaintaining ionic balance in the chloroplast. Some of
these ion transporters exist in large complexes, increasing the
likelihood of regulation. Proximity labelling with TurboID fusions
can be used for stromal targeting and has already produced
promising results in Arabidopsis (Wurzinger et al., 2022).

Finally, understanding the roles of chloroplast ion homeostasis
during stress conditions and its impact onplant growthwill be crucial.
Furthermore, ion homeostasis may also play a role in molecular
signalling pathways within plastids. Themost extensively studied ion,
as a signallingmolecule to date, is Ca2+. It has been shown to fluctuate
in response to changes in light intensity, temperature, osmotic
pressure, and pathogen infection (Costa et al., 2018). We have also
started identifying sensors for calcium in the chloroplasts (such as the
Ca2+-sensing receptor or the calredoxin in Chlamydomonas reinhard-
tii) (Petroutsos et al., 2011; Hochmal et al., 2016).

The insights gained from these advancements will not only
enhance our understanding of chloroplast ion homeostasis but also
hold immense potential for practical applications in agriculture.
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