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A B S T R A C T

Forest stress monitoring and in-time identification of forest disturbances are important to improve forest resil-
ience to climate change. Fast-developing drone techniques and hyperspectral imagery provide tools for under-
standing the forest decline process under stress and contribute to focused monitoring. This study explored and
developed hyperspectral drone imagery for early detection of forest stress caused by European spruce bark beetle
Ips typographus (L.), before offspring emergence, which is crucial in controlling the spread but has been shown to
be challenging.

This study challenges the highest possible detectability of infested trees using a hyperspectral drone system
that provided images with very high spectral, spatial, and temporal resolutions in Southern Finland. Images were
acquired bi-weekly, four times (T1, T2, T3, T4), covering 8 weeks from trees being attacked by the first filial
generation (F1) to the beginning of second filial generation (F2) brood emergence. Very low separability was
observed for the reflectance from healthy and attacked trees, but the first and second derivative reflectance
captured vitality changes, with the green shoulder region (wavelengths 490–550 nm) exhibiting the highest
separability of all wavelengths (400–1700 nm). We discovered that the peak and valley values of the first and
second derivative curves in the green shoulder region consistently shifted with longer infestation time.

Based on this finding, we developed green shoulder indices. The detection rates were 0.24–0.31 and 0.76–0.83
for T3 and T4, higher than commonly used VIs such as the Photochemical Reflectance Index and the Red Edge
Inflection Position, with detection rates of 0.69 and 0.34 for T4, respectively. We also proposed simplified green
shoulder indices using the reflectance from three bands that can be used with multispectral cameras and satellite
images for large area monitoring of forest health. We concluded that the detectability of infestations was very
low for the first month after attack, and then rapidly increased before brood emergence. We highlighted the great
potential of green shoulder indices in quantifying the photochemical functioning of the vegetation under stress.
The methodology can potentially be applied for early identification of forests with declining vitality caused by
various sources of forest stress and disturbances, such as infestations, diseases and drought.

1. Introduction

Forest decline is becoming more frequent due to climate change
(Pureswaran et al., 2018). Extreme weather events such as droughts and
storms weaken forests and make them vulnerable to insect attacks.
Forest insect disturbances have increased in frequency and magnitude,
causing significant effects on the forest ecosystem, biodiversity, carbon

cycle, and the timber industry (Battisti and Larsson, 2023; Pureswaran
et al., 2018). European spruce bark beetle Ips typographus (L.) is one of
the most devastating insects in Europe (Battisti and Larsson, 2023). It
has significantly increased the mortality of Norway spruce Picea abies
(L.), both in natural and managed forests. Huge financial losses have
been estimated for the timber industry (Knoke et al., 2021) and the
outbreaks also interfere with the sustainable use and management of
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forest resources long-term. Therefore, forest health monitoring and
strategic damage control are needed for a climate-resilient industry.
Forest digitalization and remote sensing techniques are under develop-
ment to meet such needs, such as early detection of forest infestation,
large-area mapping of damaged areas, forest predisposition evaluation,
and environmental factor analysis of high-risk areas.

One of the critical questions in forest remote sensing is how early
infestations can be identified using remote sensing data (Marvasti-Zadeh
et al., 2024; Estrada et al., 2023). Such technical development is driven
by the need to remove infested trees from the forest before the emer-
gence of the next bark beetle generation to prevent the spread and
reduce the population of the bark beetle (Dobor et al., 2020), since
logging after this critical period has been shown to have minimal impact
on bark beetle dynamics and forest damage level (Dobor et al., 2020;
Fora and Balog, 2021). The overwintered bark beetles attack trees in the
spring and lay eggs in the phloem. The developmental time from egg to
imago is determined by the temperature e.g. 8–15 weeks as shown in a
study in Sweden from 2006 to 2010 (Öhrn et al., 2014a, 2014b), with
shorter development times occurring in warmer areas (Wermelinger,
2004). Another study in Sweden recorded swarming from the new
generation starting 10 weeks after the initial attack in 2021 (Huo et al.,
2023). Therefore, detecting infested trees within such a time is the
target, with the feasibility of this having been investigated in many
studies (Marvasti-Zadeh et al., 2024; Zabihi et al., 2021). This critical
period is also often called the green attack phase because most infested
trees stay green without visible crown changes during this time.

Pre-emergence or green attack detection has been shown to be very
challenging, even with specialized remote sensing data, which has the
capability to reveal subtle pigment and physiological changes in plants
(Marvasti-Zadeh et al., 2024; Estrada et al., 2023; Zabihi et al., 2021;
Luo et al., 2022). When using satellite images, the resolution is often the
limiting factor and the small number of infested trees(Kärvemo et al.,
2023; Persson et al., 2024) relative to large pixels makes it challenging
to differentiate forests in the early stages of infestation from healthy
ones (Bárta et al., 2021; Huo et al., 2021; Dalponte et al., 2023; Jamali
et al., 2023; Olsson et al., 2023; Abdullah et al., 2019). When using
images with resolution lower than the crown radius, the spectral signals
can be affected by the forest structure, forest floors, and even forest
vitality and vulnerability. Although spectral differences can be signifi-
cant between healthy forests and forests in the early stages of infesta-
tion, those differences often exist before attacks (Bárta et al., 2021;
Trubin et al., 2023; Huo et al., 2021), implying high false positive es-
timations when implementing the methods on an unknown area at an
unknown time. Overfitting is also an issue for implementation when
using complex machine learning structures and many variables with
data that derive from a small sample (Huo et al., 2023).

Drone images and airborne images can have a high resolution (e.g.≤
0.5 m) and therefore support spectral analysis focusing on the tree
crown with less influence from the surrounding trees and canopy gaps.
Using airborne and drone imagery, trees whose vitality is declining can
be detected and mapped with high accuracy (Fassnacht et al., 2014;
Junttila et al., 2022; Safonova et al., 2022; Turkulainen et al., 2023).
However, studies focusing on pre-emergence detection have rarely been
undertaken, or have had relatively low accuracy. To date, only four
studies have quantified the detectability of green attacks using drone
imagery (Huo et al., 2023; Minařík et al., 2021; Honkavaara et al., 2020;
Bárta et al., 2022). From those studies, a good methodology was
developed to quantify the detectability of green attacks according to the
duration of infestation (Huo et al., 2023). Using multispectral drone
images, the detectability after the first five weeks of infestation was very
low, while it was sufficient at 10 weeks of infestation and twice the
detectability of the field inventory based on discoloration. However, this
study also pointed out that the F1 filial generation started 10 weeks after
the first swarming, illustrating the need to detect infestation earlier for
damage control (Huo et al., 2023). Compared to multispectral imagery,
hyperspectral imagery can capture reflectance in much narrower bands,

covering a broader range of wavelengths. Therefore, it has the potential
to enhance pre-emergence detection (Honkavaara et al., 2020).

Previous studies using hyperspectral images still relied on the se-
lection of vegetation indices (VIs) based on experiences with multi-
spectral images or other plant stress scenarios, while the potential
offered by an expanded spectral range and diverse hyperspectral vege-
tation indices still remains unexplored. For example, two studies found
the Photochemical Reflectance Index (PRI) has similar good sensitivity
as Red Edge Inflection Position (REIP), but the potential of PRI was not
highlighted (Bárta et al., 2022; Einzmann et al., 2021). Studies carried
out using hyperspectral imagery on stressed crops under controlled
conditions such as nitrogen limitation, drought, poisoning, and diseases
(Peñuelas et al., 1994; Zahir et al., 2022; Zhang et al., 2019), have
demonstrated the capability of hyperspectral characteristics to indicate
physiological changes. Thus, we assumed that high-resolution hyper-
spectral images would provide better detection than other sources of
optical data and, if not, that there would be a low probability of success
using other optical data.

To test this assumption, we carried out studies to quantify the
detectability range, using multi-temporal hyperspectral drone images
with 448 bands covering 400–1700 nm with 0.1 m resolution. The
overall objectives were (1) quantifying the detectability of infested trees
depending on the duration of infestation, (2) carrying out a compre-
hensive comparison of the separability of the full wavelength range and
finding spectral indicators of the duration of infestation. For a robust
performance, the indicators should: (a) show little difference between
healthy and attacked trees before infestation, (b) continuously increase/
decrease with longer duration of infestation, and (c) be less affected by
phenology i.e. show little fluctuation over time for healthy trees. In
addition, (3) we aimed to propose simplified spectral indicators that
were feasible for multispectral sensors to reduce the potential opera-
tional cost of using hyperspectral cameras. For this study, we first
investigated the separability of each spectral band and the derivatives
and then focused on the green region that showed the highest potential
in the separability analysis. Further investigation of the red edge, NIR,
and SWIR bands is planned for future studies.

2. Materials

2.1. Test area and sample trees

The test area was located in Helsinki city central park
(60◦15′25.200″N, 24◦55′19.200″E, Fig. 1). The area is dominated by
mature Norway spruce trees and is known to have ongoing infestation by
I. typographus. An area of 20 ha was selected for the remote sensing
study. The temperature data were obtained from the nearest weather
station (6 km from the field site), and the daily thermal sum (dd) since 1
April was calculated, using 5◦ as the base temperature, to indicate the
swarming time and development of bark beetles (Fig. 1f). From 11 July
2021 (week 27) to 24 July 2021 (week 29), the thermal sum was be-
tween 800 and 1000 dd, which indicated the peak time of the F1 filial
generation swarming and attacks. Nine weeks later, on 11 September
2021 (week 36), the temperature sum reached 1500 dd, indicating the
F2 filial beetle was fully developed and starting to overwinter under
barks or underground (Öhrn et al., 2014b; Annila, 1969). This study
focused on the early detection of the infestation by the F1 filial gener-
ation and tested the detectability before the beginning of the filial beetle
emergence in week 36.

Tree health data were collected by experts in field surveys on 6–9
September 2021. Various symptoms were evaluated and classified
visually on a discrete numerical scale representing the severity of the
symptom (Table 1). The health data were recorded for individual spruce
trees dispersed throughout the area, with the aim of having a uniform
distribution of different health statuses (Junttila et al., 2022). The po-
sitions of the trees were obtained from orthophotos collected before
fieldwork. The recorded health symptoms were crown color, defoliation,
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resin flow, bark damage, and decreased canopy height. The scoring was
0–5 for the crown color, 0–4 for defoliation, and 0–2 for resin flow and
bark damage.

The healthy and infested trees during F1 filial generation swarming
were selected as samples according to the field data and visual inter-
pretation using RGB orthophotos acquired on 7 September 2021 and 21
June 2022. The healthy trees without any symptoms (i.e. scoring 0) were
selected from the field data, and the ones with visible discoloration on
the orthophoto acquired on 7 September 2021 were excluded, resulting
in 56 healthy trees used as samples. Trees attacked by the F1 filial
generation were usually green without discoloration during the first six

weeks of infestation and appeared dead with red or grey crowns in the
following summer. Based on this criteria, 41 trees were identified as
attacked by the F1 filial generation i.e. without discoloration on 7
September 2021, and appearing to be dead on 21 June 2022.

2.2. Remote sensing datasets

The DJI Matrice M600 hexacopter drone was employed as the plat-
form for the two pushbroom hyperspectral cameras, Specim AFX10
VNIR and AFX17 SWIR cameras, flown in separate flights (Fig. 2). The
cameras were mounted on a Gremzy T7 gimbal weighing 1.86 kg and
having a payload of 3.175 kg. The Specim AFX hyperspectral cameras
integrated a computer and a high-end GNSS/IMU unit. The AFX10 VNIR
camera (2.1 kg, 400–1000 nm, spectral binning of 2) had a spectral
resolution of 5.5 nm, a spectral sampling of 2.68 nm, 224 bands, 1024
spatial pixels, and a 15 mm focal length. The AFX17 SWIR camera (2.4
kg, 900–1700 nm, no spectral binning) had a spectral resolution of 8 nm,
a spectral sampling of 3.5 nm, 224 bands, 640 spatial pixels, and an 18
mm focal length (Specim, 2022). Details of the camera settings are given
in Table 1. Determined by the sensors used, this study references the
spectral region as:

Fig. 1. (a) Study area in southern Finland, (b–d) the plots shown on RGB orthophotos, (e) the temperature, and (f) thermal sum. (b) Healthy and infested trees shown
on an RGB orthophoto acquired on 7 September 2021. (c–d) Examples of healthy and trees suffering green attack in the RGB images acquired on 7 September 2021
(c) and 21 June 2022 (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Camera settings during the flights.

Camera setting AFX10 VNIR AFX17 SWIR

Spatial: Binning; pixels 1; 1024 1; 640
Spectral: Binning; bands 2; 224 1; 224
FPS; Exposure time (ms) 71.72; 13.69 35.845; 13.94
Flight speed (m/s) 7 7
Flight height (m) 100 100
GSD (cm): tree tops, ground 5.6, 7 8, 10
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• Visible bands, covering blue, green, red bands (400–670 nm)
• Red edge bands, covering 670–780 nm
• NIR bands, covering 780–1100 nm
• SWIR bands, covering 1100–1350 nm (SWIR1) and 1500–1700 nm
(SWIR2).

Time series of hyperspectral VNIR and SWIR images were collected
during the summer of 2021, when the F1 filial generation of
I. typographus was swarming. Altogether, four flights were carried out
from 26 July to 7 September 2021 (Table 2). The hyperspectral images
were acquired at weeks 30, 32, 34, and 36 of the year and the thermal
sum was 1041 dd, 1217 dd, 1367 dd, and 1470 dd, respectively (Fig. 1f),
indicating the trees were in the early infestation stage before F2 brood
emergence. In the following sections, we denote the time of the four
image acquisition flights as T1, T2, T3, and T4. The flights were carried
out approximately 100 m above ground level using the same flight plan
every time for the AFX 10 and 17 cameras. The area was covered with
eight flight lines of length 200–240 m; the flight lines were planned with
side overlaps of 36 % at ground level and 20 % at treetops. The flight
speed was 7 m/s. Details of camera settings during flights are given in
Table 1 and flight condition information during each campaign is shown
in Table 2.

The hyperspectral AFX10 VNIR and AFX17 SWIR datasets were
georectified using the Specim CaliGeoPRO v2.3.12 software. The post-
processed kinematic (PPK) GNSS/IMU solutions were calculated for
the flight trajectories using the Applanix PosUAV v 8.6 software. The
GNSS base station data were obtained from the National Land Survey
FINPOS service using the virtual reference station method. A digital
surface model (DSM) collected in the summer of 2021 with a GSD of 1 m
and smoothed with a Gaussian filter was used in the georectification
phase. The boresight calibration was carried out in a signalized test field.
The orthophotos were sampled with a 10 cm GSD. The raw image pixel
values of AFX datasets were transformed to the units of radiance using
the Specim CaliGeoPRO v2.3.12 software. The radiance images were
transformed to reflectance data using the empirical line method by
forcing the line to cross the y-axis at point (0,0) and determining the
slope by using a panel with 25 % nominal reflectance.

3. Methods

This study had four stages. Sections 3.1 and 4.1 describe the evalu-
ation of the crown segmentation and reflectance calculation. Sections
3.2 and 4.2 describe finding the spectral region and wavelengths with
the highest potential for indicating infestation. In Sections 3.3 and 4.3,
we describe the characterization of the green shoulder spectrum using
peak and valley values from the spectral curves, and present how they
shift over time during infestation. Green shoulder indices were con-
structed and simplified, and their performance was compared with other
VIs, as described in Sections 3.4 and 4.4.

3.1. Crown segmentation and reflectance calculation

Tree crowns were automatically segmented from orthomosaics using
a marker-controlled watershed algorithm, as described in Huo et al.
(2023). A single band of the orthomosaic (e.g. wavelengths 553 nm and
1109 nm from AFX10 VNIR and AFX17 SWIR, respectively) was first
used to make a segmentation mask, which was then applied to every
band. To make the segmentation mask, pixels with the maximum pixel
values from a smoothed single-band image were used as the markers,
and then a marker-controlled watershed segmentation was carried out
using the SegmentTrees tool in the Lidar Toolbox in Matlab (Math-
Works, Inc., 2021). We derived individual tree crown images after these
steps, with the markers as the tree tops (Fig. 3). The health status of the
trees shown in each image was determined by matching the markers and
the location of field data. In this way, tree crowns were segmented from
all orthomosaics acquired by the two cameras at four different times.
During this process, not all trees were successfully segmented from all
the images due to areas with low side overlap, undersegmentation, or
tree crowns that were too small. This study focused on the time series
spectral changes during tree vitality decline, thus, only the trees suc-
cessfully segmented from all eight images were used as samples, and
their spectral reflectance data were further analyzed. The reflectance of
each tree was calculated by averaging 75 % of the brightest pixels
(determined in a sensitivity analysis). To match the spectrum from
different times, the spectra were all normalized using the Frobenius
norm, which is the square root of the sum of squares of reflectance
values in the full spectra (Meurant, 1999). The spectral curves were also
smoothed using Savitzky-Golay smoothing with polynomial order 2 and
frame length 7.

3.2. Spectral signatures and sensitive bands

We analyzed the normalized and smoothed spectral values (denoted
as reflectance in the following sections) and their first and second de-
rivatives (denoted as 1st and 2nd derivatives, Eq. (1) and Eq. (2). De-
rivative analysis techniques were developed for spectroscopy during
1990 s, which have been shown to be less sensitive to illumination
changes caused by sun angle and topography (Tsai and Philpot, 1998). A

Fig. 2. Specim AFX10 VNIR camera onboard the DJI Matrice 600 Pro hexa-
copter drone.

Table 2
Flight details.

Date Camera UTC Time* Sun
zenith

Sun
azimuth

Illumination
conditions

26 July
2021

AFX10
VNIR

07:31–07:42 51◦ 123◦ Sunny
(uniform)

26 July
2021

AFX17
SWIR

08:00–08:11 48◦ 131◦ Sunny
(uniform)

09 August
2021

AFX10
VNIR

08:31–08:46 49◦ 142◦ Cloudy (quite
uniform)

09 August
2021

AFX17
SWIR

10:10–10:25 45◦ 175◦ Cloudy (quite
uniform)

23 August
2021

AFX10
VNIR

07:15–07:26 60◦ 123◦ Varying

23 August
2021

AFX17
SWIR

08:49–09:00 52◦ 150◦ Varying

07
September
2021

AFX10
VNIR

07:40–07:50 62◦ 134◦ Sunny
(uniform)

07
September
2021

AFX17
SWIR

10:03–10:12 54◦ 175◦ Sunny
(uniform)

* Local time was UTC+03 h.
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1st derivative describes the slope of a reflectance curve at a certain
wavelength, while a 2nd derivative describes the curvature of the
reflectance curve.

Ŕ =
dR
dW

=
Reflectancebandi+1 − Reflectancebandi
Wavelengthbandi+1 − Wavelengthbandi

(1)

Ŕʹ= d2R
dW2

=
d
dW

(
dR
dW

)

(2)

At each point during the infestation, reflectance, 1st and 2nd de-
rivatives between healthy and attacked trees were compared. Bands

with significant differences between the two groups at p < 0.01 level
were highlighted using a two-sided Wilcoxon rank-sum test. The sepa-
rability between the two groups at each band and each time was
quantified using a linear discriminant analysis (LDA) and labeled with
the kappa coefficient of the LDA classification.

As a good indicator of the infestation stage should consistently in-
crease or decrease as vitality declines, we considered bands with
increasing separability over time as sensitive bands. We aimed to find
the bands that responded to the infestation and further develop indices
using those responsive bands.

Fig. 3. An example of tree crown segmentation including (a) local maximum detection, (b) watershed segmentation, (c) matching with reference data, and crown
segments of (d) healthy and (e) infested trees.
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3.3. Green shoulder spectrum

3.3.1. Green shoulder Inflection Point and green shoulder curvature point
Healthy plants usually have high chlorophyll content and, thus, the

spectral signature has high absorption in the red and blue regions. When
under stress, photosynthesis is limited, resulting in a decrease in the
chlorophyll content (Abdullah et al., 2018; Li et al., 2022). For some
plants, the carotenoid content increases to protect the plant from dam-
age caused by excessive light or free radicals, so there is less absorption
in the green shoulder region (500–550 nm) of the spectrum (Vilfan et al.,
2018). Xanthophylls, a class of pigments that belong to the carotenoid
group, help in dissipating excess light energy absorbed by chlorophyll
during photosynthesis under healthy conditions. Under stress, their
concentration increases and the xanthophyll cycle may shift involving
the interconversion of xanthophyll pigments, contributing to photo-
protection and antioxidant defense (Peguero-Pina et al., 2008). Certain
nutrient deficiencies can also lead to an increase in anthocyanin pro-
duction, which commonly has absorption peaks in the range of 490 to
560 nm (Latowski et al., 2011).

Therefore, we first focused on the spectral changes due to infestation
in the blue-green region (490–560 nm), denoted as the green shoulder
region. In this region, the reflectance increases with longer wavelengths,
showing two peaks on the 1st derivative curve at approximately 520 nm
and 545 nm, and one valley on the 2nd derivative curve at approxi-
mately 530 nm. In this study, we denoted them as Green Shoulder In-
flection Points (GSIPs) and Green Shoulder Curvature Points (GSCPs)
(Fig. 4, Table 3). We made scatter plots of the GSIPs and GSCPs to show
the differences between healthy and infested trees, and how they
changed over time.

3.3.2. Green shoulder indices from hyperspectral curves
Based on the results in 3.3.1, we proposed two green shoulder

indices, as given by Eqs. (3) and (4),
Green Shoulder Curvature Ratio 1

GSCR1 =
GSIP545

− GSCP530
(3)

Green Shoulder Curvature Ratio 2

GSCR2 =
GSIP545

GSIP520 × (− GSCP530)
(4)

To show the changes over time, we also calculated the index change
by comparing it to the first image acquired at T1, as

δVI =
⃒
⃒
⃒
⃒
(δVITi − δVIT1)

δVIT1

⃒
⃒
⃒
⃒ (5)

where δ VI refers to the tested indices GSIP545, GSCP530, GSCR1, GSCR2,
and Ti refers to the image acquired at Ti. These four tested indices
should be stable for healthy trees over time while increasing with longer
durations of the infestation.

3.3.3. Simplified green shoulder indices
We investigated simplified green shoulder indices using multiple

spectral bands instead of derivative curves. This approach can enable
detection using multispectral cameras rather than hyperspectral cam-
eras, which are more expensive and require heavy-lift drones for data
acquisition.

We proposed a Green Shoulder Stress Index (GSVI, Eq. (6) and
assumed that it had a linear relationship with GSCP530 (Eq. (7). GSCP530
describes the curvature of the reflectance curve at wavelength approx-
imately 530 nm i.e. the reflectance difference between 530 nm and the
average reflectance of 560 nm and 490 nm. GSIP520 and GSIP545
describe the slopes of the reflectance curve at wavelengths approxi-
mately 520 nm and 545 nm, thus we assumed GSIP520 had a linear
relationship with the reflectance difference between 530 nm and 490 nm
(Eq. (8), and assumed GSIP545 had a linear relationship with the
reflectance difference between 560 nm and 530 nm (Eq. (9). GSCR1 and
GSCR2 were obtained using the combination of GSCP530, GSIP520 and
GSIP545, and thus linear relationships were assumed, as shown in Eqs.
(10) and (11).

GVSI =
R550 + R490

2
− R530 (6)

GSCP530 = α1GVSI+ β1 = α1
(
R550 + R490

2
− R530

)

+ β1 (7)

GSIP520 = α2(R530 − R490)+ β2 (8)

GSIP545 = α3(R550 − R530)+ β3 (9)

GSCR1 = α4
(
R550 − R530

− GVSI

)

+ β4 = α4

⎛

⎜
⎜
⎝

R550 − R530

−

(
R550+R490

2 − R530

)

⎞

⎟
⎟
⎠+ β4

(10)

Fig. 4. Illustration of the Green Shoulder Inflection Point and Green Shoulder Curvature Point on the spectral curves. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 3
Abbreviation and calculation of the green shoulder indices.

Abbr. Term Calculation

GSIP Green Shoulder
Inflection Point

The point of maximum slope on the
reflectance spectrum in the green shoulder
range (490–560 nm), where the 1st
derivatives show peak values at approx. 520
nm and 545 nm.

GSIP520 1st derivative of GSIP at
approx. 520 nm

GSIP545 1st derivative of GSIP at
approx. 545 nm

GSCP Green Shoulder
Curvature Point

The point of maximum curvature on the
reflectance spectrum in the green shoulder
range (490–560 nm), where the 2nd
derivatives show valley values at approx.
530 nm.

GSCP530 2nd derivative of GSCP
at approx. 530 nm

L. Huo et al.
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GSCR2 = α5

⎛

⎜
⎜
⎝

R550 − R530

(R530 − R490) ×

(

−

(
R550 − R490

2 − R530

))

⎞

⎟
⎟
⎠+ β5 (11)

where R490, R530, and R560 are the reflectance, and α and β are the co-
efficients of the linear relationship. When the linear relationships were
confirmed in Eqs. (6)–(11), the GSCR indices could be simplified from
Eqs. (10) and (11) without the coefficients, only using the reflectance of
three bands, Blue490, Green530, and Green560 (Eqs. (12) and (13):

GSCR1MS =
R550 − R530

R530 −
R550+R490

2

(12)

GSCR2MS =
R550 − R530

(R530 − R490) ×

(

R530 −
R550+R490

2

) (13)

GSCR1MS and GSCR2MS were calculated for the healthy and infested
trees from images T1 to T4, and δ GSCR1MS and δ GSCR2MS were
calculated (Eq. (5) and evaluated using the same evaluation method as
described in 3.3.2.

3.4. Detection evaluation and comparing VIs

Twenty additional VIs were selected and tested (Table 4) to compare
the performance with the green shoulder indices. The tested VIs
included VIs 1–6 constructed using visible bands that are sensitive to
pigments, VIs 7–13 constructed using visible and red edge bands, VIs
14–16 constructed using red edge bands that are sensitive to plant stress,
and VIs 18–20 constructed using SWIR bands that are sensitive to water
content.

The detection performance of early infestation using a single VI was
quantified with two dimensions in this study: (1) the separability of
healthy and infested trees from each specific time data, T1, T2, T3, or T4,
quantified using the kappa coefficient of a linear discriminant analysis
(LDA) applied to healthy and infested groups. LDA calculates the mean
and covariance parameters of the two classes based on probability
density functions and determines a threshold to predict points from the
second class if the log of the likelihood ratios is bigger than the
threshold. Therefore, the classification accuracy (kappa coefficient)
could be used to quantify how much two groups overlapped and how
well they can be separated. Separability was denoted when using this
method, and it represented howwell the healthy and infested trees could
be separated at a specific time under supervised classification. (2)
Detectability, or detection rate, was calculated using images from all
acquisitions i.e. T1 + T2 + T3 + T4. We first calculated the 1 % or 99 %
percentile VI values (ThVIi ) for the healthy trees at all times T1 to T4, and
defined the range as a ‘healthy range’. Among the infested trees, the ones
with VIi outside this range were considered to be detectable and a pro-
portion of them treated as ‘detectability’. Detectability represented how
well the infested trees could be identified by unsupervised classification
i.e. using empirical thresholds.

The performance of all VIs in this study (including the new ones
proposed) was represented by both separability and detectability. A
vegetation index sensitive to phenology or illumination conditions
might result in high separability in a single image but low detectability,
as the values of healthy trees were not stable from different images. We
aimed to find and construct indices less sensitive to phenology, showing
high separability and high detectability.

4. Results

4.1. Crown segmentation

After individual trees were segmented, 47 healthy and 29 infested

trees were successfully segmented from both AFX10 VNIR and AFX17
SWIR images on all four revisited images (Table 5). Images of these 76
trees were used for further analysis and their spectral signatures are
given in Fig. 5. Several small trees close to deciduous trees were not
successfully segmented due to under-segmentation.

Table 4
Details of the vegetation indices (VIs) used.

No. Abbr. Name Definition for Sentinel-2
bands (https://www.indexdat
abase.de/)

References

1 PRI
531/
570

Photochemical
Reflectance
Index

R531 − R570

R531 + R570

(Peñuelas
et al.,
1994)

2 PRI
550/
530

Photochemical
Reflectance
Index

R550 − R530

R550 + R530

(Peñuelas
et al.,
1994)

3 NGRDI Normalized
Green-Red
Difference Index

R550 − R665

R550 + R665

(Tucker,
1979)

4 GLI Green Leaf
Index

(R550 − R665) + (R550 − R490)

(R550 + R665) + (R550 + R490)

(Louhaichi
et al.,
2001)

5 CIG Chlorophyll
Index Green

R865

R550
− 1 (Gitelson

et al.,
2003)

6 NDVI Normalized
Difference
Vegetation
Index

R865 − R550

R865 + R550

(Rouse
et al.,
1973)

7 CVI Chlorophyll
Vegetation
Index

R865 × R705

R550 × R550

(Vincini
et al.,
2008)

8 ARI Anthocyanin
reflectance
index

1
550nm

−
1

700nm
(Anatoly A.

Gitelson
et al.,
2001)

9 GNDVI Green
Normalized
Difference
Vegetation
Index

R780 − R550

R780 + R550

(Gitelson
et al.,
1996)

10 MR-
DSWI1

Multiple Ratio
Disease–Water
Stress Index 1

R705 × R705

R550 × R783

(Huo et al.,
2023)

11 MR-
DSWI2

Multiple Ratio
Disease–Water
Stress Index 2

R705 × R705×R865

R550 × R783 × R783

(Huo et al.,
2023)

12 MR-
DSWI3

Multiple Ratio
Disease–Water
Stress Index 3

R705 × R705×R665

R550 × R783 × R550

(Huo et al.,
2023)

13 MR-
DSWI4

Multiple Ratio
Disease–Water
Stress Index 4

R705 × R705×R865×R665

R550 × R783 × R783×R550

(Huo et al.,
2023)

14 NDRE Normalized
Difference Red
Edge Index

R790 − R720

R790 + R720

(Barnes
et al.,
2000)

15 RVSI Red Edge
Vegetation
Stress Index

R718 + R748

2
− R733

(Merton,
1998)

16 REIP Red Edge
Inflection Point
(linear
interpolation)

700 + 40×
⎛

⎜
⎝

R670 + R780

2
− R700

R740 − R700

⎞

⎟
⎠

(Guyot
et al.,
1988)

17 DRS Difference Red
& SWIR

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R665

2 + R1610
2

√ (Huo et al.,
2021)

18 NDII Normalized
Difference
Infrared Index

R819 − R1649

R819 + R1649

(Hardisky
et al.,
1983)

19 NDWI Normalized
Difference
Water Index

R857 − R1241

R857 + R1241

(Jackson
et al.,
2004)

20 MSI Moisture Stress
Index

R1600

R820

(HUNTJR
and ROCK,
1989)
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4.2. Spectral signatures and sensitive bands

4.2.1. Reflectance curves
The crown reflectance of each wavelength was first compared be-

tween healthy and infested trees at T1, T2, T3, and T4 (Fig. 6). At T1, the
healthy and infested trees showed no significant difference at any
wavelength. The visible bands (400–670 nm) did not show significant
differences between the two groups until T4 when differences were
observed between 600 and 650 nm. Within the red edge range (670–780
nm), reflectance data around 760 nm first showed significance at T3 and
most of them were significantly different at T4. Several spectral bands
from 1000 to 1580 nm were significant at T2 but not at later infestation
stages, except for the bands 1120–1170 nm which were significant in T2
and T3, and bands 1320–1340 nm which were significant in T2, T3 and
T4. As hyperspectral reflectance data are sensitive to many factors other
than physiological properties, such as branch structures and light con-
ditions during data acquisition, we only focused on the spectral bands
showing increasing separability between healthy and infested trees.

The separability of the reflectance between healthy and infested
trees showed how much the two groups overlap and the possibility of
separating them with a single threshold. We plotted the separability of
each band at each time, and marked the wavelengths with increasing
separability over time (Fig. 6 b1–b4), indicating the infestation stages.
The bands with increasing separability over time included wavelengths
around 800 nm with the highest separability at T4, followed by bands
around 700 nm, 600 nm, and 1000 nm, which showed higher separa-
bility at T3 than 800 nm. The SWIR bands around 1300 nm and 1500 nm
also showed significant differences or relatively high separability at T2,
T3, or T4, but the separability did not consistently increase over time.
SWIR bands with wavelengths > 1500 nm showed good separability at
T1, T2, and T4, but no separability at T3.

4.2.2. First derivative reflectance curves
Using the same analysis method, we showed how the 1st derivatives

corresponded to the infestation over time (Fig. 7). Of the bands showing
increasing separability between healthy and infested trees, the band
552 nm showed the highest separability of 0.23, 0.44, 0.53, and 0.67 at
T1, T2, T3, T4, respectively. The separability was also higher than the
reflectance separability in 4.2.1. However, proven separability at T1
implied sensitivity to factors other than an infestation, as the health of
attacked trees usually does not decline immediately after the attack.
Bands with wavelengths around 722 nm also had high separability of
0.40, 0.49, and 0.58 at T2, T3, T4, respectively, but 0 at T1. Bands with
wavelengths around 800 nm also showed increasing separability but the
separability was not as high as those for 552 nm and 722 nm. Using
derivative analysis, some bands in the SWIR region showed increasing
separability, and bands with wavelengths around 1650 nm showed
relatively high separability (0.46) at T4.

4.2.3. Second derivative reflectance curves
The 2nd derivative curves are shown with wavelengths marked as

significant differences between the healthy and infested trees (Fig. 8).
Two peaks of separability were found, one peak at 530 nm, which had
the highest separability of 0.71 at T4, and the other peak at 715 nmwith
separability of 0.65 for that week. At T2 and T3, the separability was
higher at 715 nm than at 530 nm, however, at T1, the separability was
0.24 at 715 nm while 0 at 530 nm. As the attacked trees should show
little effect from the bark beetle colorization at 1–3 weeks of infestation,
we considered lower detectability at T1 to be more reasonable. In
addition, the separability at 530 nm increased the most over time i.e.
0.00, 0.19, 0.33, and 0.71 from T1 to T4, matching the vitality decline
process of infested trees. Therefore, we considered the 2nd derivative at
530 nm to be a better indicator of infestation than at 715 nm, and to
have a high potential to be the indicator of infestation stages.

Many bands in SWIR1 region had high separability at T2 and T3 e.g.
0.57 at 1280 nm at T2, 0.60 at 1092 nm and 1168 nm at T3. The
separability was higher than the VNIR bands, but the consistency was
low over time i.e. separability decreased with longer infestation times.

To sum up, the highest separability of healthy and infested trees at T4
was shown to be the 2nd derivative of the 530 nm wavelength (0.71),
followed by the 1st derivative of the 552 nm wavelength (0.67). The
result highlighted the sensitivity of green shoulder bands. The red edge
bands also showed good separability at the 2nd derivative of the 715 nm
wavelength (0.65), reflectance at 765 nm (0.65), 1st derivative of the
722 nm wavelength (0.58), reflectance at 710 nm (0.52), illustrating
good potential of red edge bands for the early identification of in-
festations. These two regions, green shoulder and red edge, also showed
relatively high separability at T2 (0.45 and 0.32, for green shoulder and

Table 5
Number of sample trees and segmented trees from the images.

Data resource Number of trees
(Segmentation rates)

Healthy Infested

Trees with health records from the field and RGB images 56 41
Segmented from AFX10 VNIR image at T1 53 (95 %) 40 (98 %)
Segmented from AFX17 SWIR image at T1 52 (93 %) 37 (90 %)
Segmented from AFX10 VNIR image at T2 52 (93 %) 39 (95 %)
Segmented from AFX17 SWIR image at T2 56 (100 %) 36 (88 %)
Segmented from AFX10 VNIR image at T3 55 (98 %) 39 (95 %)
Segmented from AFX17 SWIR image at T3 54 (96 %) 34 (83 %)
Segmented from AFX10 VNIR image at T4 55 (98 %) 38 (93 %)
Segmented from AFX17 SWIR image at T4 56 (100 %) 39 (95 %)
Number of trees segmented from all above eight images 47 (84 %) 29 (71 %)

Fig. 5. Spectral curves of (a) healthy and (b) infested trees at different dates. The solid lines are the average reflectance and the shadows are the range of
sampled trees.
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red edge, respectively) and T3 (0.58 and 0.49, for green shoulder and
red edge, respectively) compared to the other bands.

Many NIR and SWIR bands showed higher separability than the
visible and red edge bands at T2 or T3, especially the 2nd derivative
reflectance from SWIR1 bands. However, the separability decreased
with longer infestation times. One possible reason could be that SWIR
bands were sensitive to illumination conditions, so they contained
additional noise information. Another possible reason could be that
SWIR bands were sensitive to the tree defense reaction (e.g. releasing
resin to trap bark beetles) at the beginning of the attacks until the
colonization succeeded.

4.3. Green shoulder Inflection Point and green shoulder Curvature Point

4.3.1. Green shoulder Inflection Point and green shoulder Curvature Point
Both healthy and infested trees had increasing reflectance with

longer wavelength in the green shoulder region, with two peaks for 1st
derivative curves and one valley for the 2nd derivative curves. However,

the slope and curvature of the spectral signatures were different between
healthy and infested trees (Fig. 9). Compared to healthy ones, trees with
longer infestation times had bigger slopes for the second Green Shoulder
Inflection Point (GSIP, Fig. 9a) i.e. larger values of 1st derivatives at
GSIP545 (Fig. 9b). Spectral curves from the infested trees also had
smaller curvatures at the Green Shoulder Curvature Point (GSCP) i.e.
smaller absolute values of 2nd derivatives at GSCP530 (Fig. 9c).

Fig. 10 shows the distribution of GSIP520 and GSCP530 for healthy
and infested trees from T1 to T4. At T1 and T2, the three points of
healthy and infested trees were distributed at similar wavelengths and
derivative values. At T3 and T4, GSIP520 for infested trees decreased
slightly, while GSIP545 and GSCP530 increased compared to those of the
healthy trees. At T4, the GSCP530 of healthy and infested trees were
greatly separated. These three points did not show a clear trend of
shifting the wavelengths after infestation (Fig. 10a, 10b, 10c). The
scatter plot (Fig. 10d) of GSCP530 vs. the ratio of GSIP545 and GSIP520
showed a clear trend of the indices for infested trees separating from the
healthy ones from T2 to T4.

Fig. 6. (a) Reflectance curves and (b) the separability of each spectral band from healthy and attacked trees at T1 (a1, b1), T2 (a2, b2), T3 (a3, b3), and T4 (a4, b4),
and (c) a heatmap of the separability of the responding bands. Grey lines in (a) mark the wavelengths with significant differences (p < 0.01 in a two-sided Wilcoxon
rank-sum test) between healthy and attacked trees, and in (b) mark the wavelengths with increasing separability from T1 to T4.

L. Huo et al.



ISPRS Journal of Photogrammetry and Remote Sensing 216 (2024) 200–216

209

4.3.2. Green shoulder indices
When comparing the green shoulder VI values of a single tree over

time, the values from healthy trees were more stable for GSCR1 and
GSCR2, while most infested trees had increasing green shoulder VIs over
time (Fig. 11 c1, d1). When normalizing these green shoulder VIs of
individual trees by comparing them to the values from T1, the inner-
group variation became smaller (Fig. 11, c2, d2). Table 6 shows the
separability of the green shoulder VIs from healthy and attacked trees.
GSIP545 and GSCR1 showed around 0.2 separability at T1, which was
unlikely to have been caused by ongoing infestation, while GSIP520 and
GSCP530 had separability close to 0 at T1 and increased during T2 to T4.
This illustrated that the LDA classification might be driven by the data
from certain images, while not generic enough for images from different
times. The detectability presented in Table 6 using thresholds derived
from healthy trees in all images or using the δVIs (Eq. (5), gave solutions
to the mentioned problem. It showed that infested trees at T1 and T2 still

had VIs and δVIs within the healthy range, and the highest detectability
was 0.36 at T3 and 0.80 at T4.

To simplify the green shoulder VIs using reflectance instead of de-
rivatives, linear relationships were assumed and validated (Appendix).
Then the classification using GSCR1MS, GSCR2MS, and their changes,
respectively, were tested using the same method as above. After
simplification, the green shoulder VIs obtained similar results as before
simplification i.e. no separation of healthy and infested trees at T1 and
T2, but the highest detectability of 0.43 at T3 and 0.80 at T4 (Fig. 11e,
11f, and Table 6).

4.4. Comparing VIs

Most VIs had higher separability for a single infestation time than the
detectability using thresholds obtained from all infestation times
(Table 7), showing their sensitivity to phenology or illumination

Fig. 7. (a) First derivative reflectance curves and (b) the separability of healthy and attacked trees at T1 (a1, b1), T2 (a2, b2), T3 (a3, b3), and T4 (a4, b4), and (c) a
heatmap of the separability of the responding bands. Grey lines in (a) figures mark the wavelengths with significant differences between healthy and attacked trees,
and in (b) figures mark the wavelengths with increasing separability from T1 to T4.
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conditions during the data acquisition. The detectability for both stra-
tegies, varying percentile and crown radii, were very low and unstable at
T1 and T2 (around 0–0.2), and increased at T3 and T4. The PRI indices
obtained the highest detectability, 0.43 at T3 and 0.70 at T4, followed by
REIP with a detectability of 0.33 at T3 and 0.54 at T4, and followed by
MR-DSWI1 with a detectability of 0.15 at T3 and 0.50 at T4 (Table 7).
All the other VIs had detectability lower than 0.20 at T3 and 0.50 at T4,
which indicated that it was challenging to early detect infestations. The
VIs with SWIR bands such as DRS, DNII, and MSI, had relatively high
separability around 0.3 at T2. However, the separability at T3 was 0,
which might have been influenced by insufficient light during T3 image
acquisition, making the detectability very low when using all times of
images. This illustrated the potential of using SWIR bands for early
detection, but it might be sensitive to the illumination factors.

5. Discussion

5.1. Spectral properties in the green region

This study highlighted the greater potential of the green shoulder
over the green peak for the early identification of bark beetle in-
festations. It is common to use indices containing green peak reflectance
to detect forest mortality, but the detection rates have been low when
detecting green attacks. Results from this study illustrated that the
spectrum around 530 nm contained more information relating to the
tree health status than the green peak around 550 nm. Therefore, this
study used the term ‘green shoulder’ instead of green to be more specific
and highlight the ‘shoulder’ part of the green spectrum. In some studies,
this same spectral region was also included as part of the green region or
alternatively was called the ‘blue edge’ (Li et al., 2024; Zhang et al.,
2019).

Fig. 8. (a) Second derivative reflectance curves and (b) the separability of healthy and attacked trees at T1 (a1, b1), T2 (a2, b2), T3 (a3, b3), and T4 (a4, b4), and (c)
a heatmap of the separability of the responding bands. Grey lines in (a) figures mark the wavelengths with significant differences between healthy and attacked trees,
and in (b) figures mark the wavelengths with increasing separability from T1 to T4.
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Fig. 9. (a) Green Shoulder Inflection Point and Green Shoulder Curvature Point shown on the reflectance curves, (b, c) 1st and 2nd derivative curves at T1 (a1, b1,
c1), T2 (a2, b2, c2), T3 (a3, b3, c3), and T4 (a4, b4, c4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 10. (a) Distribution of the derivatives and wavelengths of GSIP520, (b) GSIP545, and (c) GSCP530 of healthy and infested trees, and GSCP530 vs. GSIP545 / GSIP520
at T1, T2, T3 and T4.
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This study also proposed how to use the green shoulder spectrum.
The indices were developed based on first and second derivative analysis
instead of the reflectance, which improved detection compared to e.g.
PRI developed using the reflectance. Compared to some previous studies
that used the maximum derivatives in the green region (Li et al., 2024;
Zhang et al., 2019; Peñuelas et al., 1994), this study decomposed the
curves with two peaks. The minor peak, ignored in the past, was shown

to be more sensitive to health decline than the major peak, and therefore
showed better performance when used for stress detection.

Several studies in the 1990 s showed that the spectral signature in the
green shoulder region was decidedly related to the photochemical
functioning of the plant, such as photosynthetic efficiency and the
epoxidation state of the xanthophyll cycle (EPS) (Peñuelas et al., 1994,
1995). Three components in the green region were highlighted in this
study: 520 nm, 545 nm, and 530 nm. GSIP520 was the point with the
maximum 1st derivatives in the green region, which has been found to
be correlated with diurnal photosynthetic rate and with seasonal chlo-
rophyll and nitrogen changes (Peñuelas et al., 1994). GSCP530 was the
point with the minimum 2nd derivative in the green region, and its 2nd
derivative was found to be correlated with water potential (Peñuelas
et al., 1994). The wavelength 530 nm has also been used as the
‘xanthophyll’ wavelength (Peñuelas et al., 1994). The 545 nm compo-
nent, corresponding to the minor peak of 1st derivative curves in the
green region that shifted the most in this study, has had less attention in
the past. Gamon et al. (1997) demonstrated the dominance of a 545 nm
component in low incident photosynthetic photon flux density (PPFD).
The 530 nm and 545 nm components were discovered by comparing the
correlation with photosynthetic parameters band by band, while this
study explained the selection of the wavelengths by derivative analysis.

Although many studies showed a positive correlation between PRI
and light use efficiency (Garbulsky et al., 2011), the relationship is more

Table 6
Separability of healthy and infested trees and detectability of infested trees using
different indices.

Indices Separability Detectability

T1 T2 T3 T4 T1 T2 T3 T4

GSIP520 0.08 0.00 0.00 0.43 0.07 0.14 0.10 0.00
GSIP545 0.17 0.25 0.55 0.59 0.03 0.03 0.24 0.62
GSCP530 0.00 0.20 0.25 0.69 0.00 0.00 0.14 0.72
GSCR1 0.22 0.43 0.43 0.67 0.00 0.03 0.31 0.76
GSCR2 0.04 0.40 0.27 0.67 0.00 0.00 0.24 0.79
δGSCR1 0.00 0.44 0.49 0.76 0.00 0.00 0.28 0.83
δGSCR2 0.00 0.39 0.33 0.73 0.00 0.00 0.28 0.79
GSCR1MS 0.29 0.44 0.52 0.70 0.00 0.00 0.38 0.79
GSCR2MS 0.06 0.37 0.40 0.70 0.00 0.00 0.28 0.79
δGSCR1MS 0.00 0.40 0.56 0.73 0.00 0.00 0.38 0.79
δGSCR2MS 0.00 0.39 0.34 0.73 0.00 0.00 0.31 0.79

Fig. 11. Changes of GSIP545 (a1), GSCP530 (b1), GSCR1(c1), GSCR2 (d1), GSCR1MS (e1), GSCR2MS (f1) over time for healthy and infested trees and their difference
compared to the T1 image (a2, b2, c2, d2, e2, f2).

Table 7
Separability and detectability using different vegetation indices (VIs). The VIs with relatively better performance are highlighted with a yellow background.

No. Indices Separability Detectability

T1 T2 T3 T4 T1 T2 T3 T4

1 PRI 531/570 0.29 0.42 0.37 0.71 0.00 0.00 0.34 0.66
2 PRI 550/530 0.33 0.44 0.41 0.68 0.00 0.00 0.38 0.69
3 NGRDI 0.28 0.25 0.00 0.45 0.03 0.00 0.03 0.21
4 GLI 0.23 0.23 0.00 0.31 0.03 0.24 0.03 0.21
5 CIG 0.00 0.00 0.00 0.20 0.10 0.21 0.14 0.28
6 NDVI 0.00 0.00 0.00 0.27 0.10 0.21 0.14 0.28
7 CVI 0.00 0.00 0.12 0.22 0.00 0.00 0.10 0.00
8 ARI 0.00 0.00 0.12 0.68 0.03 0.00 0.17 0.00
9 GNDVI 0.00 0.04 0.17 0.29 0.17 0.21 0.21 0.31
10 MR-DSWI1 0.00 0.06 0.36 0.58 0.03 0.03 0.17 0.45
11 MR-DSWI2 0.00 0.06 0.36 0.61 0.03 0.03 0.17 0.34
12 MR-DSWI3 0.00 0.00 0.14 0.51 0.14 0.17 0.17 0.28
13 MR-DSWI4 0.00 0.00 0.10 0.54 0.14 0.14 0.17 0.24
14 NDRE 0.00 0.00 0.48 0.49 0.14 0.00 0.17 0.41
15 RVSI 0.00 0.39 0.00 − 0.03 0.00 0.00 0.00 0.00
16 REIP 0.20 0.04 0.37 0.40 0.03 0.00 0.21 0.34
17 DRS 0.00 0.31 0.00 0.35 0.00 0.00 0.00 0.14
18 NDII 0.12 0.31 0.04 0.26 0.00 0.00 0.00 0.10
19 NDWI 0.00 0.00 0.00 0.42 0.00 0.10 0.00 0.00
20 MSI 0.12 0.29 0.00 0.35 0.00 0.00 0.00 0.10
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complex in different stress conditions such as short-term or chronic
stress, water or nutrient stress. In this study, the green shoulder indices,
including PRI, increased during a longer infestation period, indicating
physiological changes after being attacked by bark beetles. A study at
the folia level showed larger PRI under nitrogen stress and lower PRI
under water stress (Peñuelas et al., 1994). A study using airborne im-
agery at 2m resolution showed that PRI increased with lower stemwater
potential, indicating larger water stress (Suárez et al., 2008). Studies
have also shown that diurnal PRI is sensitive to the bidirectional
reflectance distribution function (BRDF) of the aerial images and is
greatly affected by atmospheric scattering, canopy structure and back-
ground (Suárez et al., 2008; Moncholi-Estornell et al., 2022). The green
shoulder indices may also be sensitive to those factors and will need
further investigation.

The results of this study also yielded a new methodology for vege-
tation stress detection, by detecting the photochemical adaptions
(xanthophyll changes) when the stressor occurs, instead of waiting for
the stress symptoms (chlorophyll and water content changes) that take
some time to develop and appear. The xanthophyll-sensitive indices,
including green shoulder indices and PRI, responded earlier than the
chlorophyll-sensitive indices including red edge bands and water-
sensitive indices including SWIR bands. In the past, insufficient atten-
tion has been paid to the adaptation of vegetation to stress, probably
because of the limited time window when adaptions occur before mor-
tality. This study achieved better detection, likely because of the capture
of photosynthetic adaptions during frequent spectral acquisition. This
new methodology needs to be further validated in more forests and
environments.

5.2. Detectability of green attacks

In this study, we did not have field monitoring data on when indi-
vidual trees were attacked, but the thermal sum data could be used to
estimate the approximate time of the attack and brood development.
The thermal sumwas 800 dd to 1000 dd during weeks 27 to 29, when we
could assume the trees were being attacked by the F1 filial generation.
Based on this assumption, trees experienced 1–3 weeks of infestation at
T1, 3–5 weeks at T2, 5–7 weeks at T3, and 7–9 weeks at T4. Visual
interpretation of the RGB orthophotos and low separability of the visible
bands confirmed that all the infested trees were in the green attack phase
without discoloration from T1 to T4. Nevertheless, attacking time might
differ between individual trees; therefore, this study could not specify
the detectability to certain weeks of infestation but roughly estimated it.
Another limitation of the study is the restricted study area and sample
size, which were limited by the natural outbreak level. Therefore, this
study could not analyze the variance in detectability from different
stands, but only compare the results with other studies (Huo et al. 2023).

The infestation detectability was close to zero at T1 and T2, and then
rapidly increased to around 0.4 at T3 and around 0.8 at T4. Occasion-
ally, higher separability was shown when using some VIs or derivatives,
but those VIs or derivatives showed lower separability at T3 and T4,
indicating an inconsistency in capturing tree stress. The rapid change of
the detectability during 5–9 weeks of infestation was consistent with a
previous study in southern Sweden, where the detection rates of infested
trees rapidly increased from 15 % to 90 % at five and ten weeks of
infestation from the first swarming (Huo et al. 2023). The same study
also pointed out lower detectability of trees attacked from the F1 filial
generation, with only a detection rate of 67 % at 12 weeks of infestation.
Compared to the previous study, this study obtained higher detection
rates i.e. around 80 % during 7–9 weeks of infestation from the F1 filial
generation. Three probable reasons can be considered. First, this study
used hyperspectral imagery with narrower bands, which could be more
sensitive to the decline in health than wider bands provided by multi-
spectral cameras. Our results also showed higher detection rates using
the simplified green shoulder indices with smaller bandwidths. Second,
using green shoulder indices achieved higher detection rates compared

to other VIs. The indices used 530 nm reflectance, which was not
available in the multispectral data in the other study. Third, the trees in
this study might experience higher intensity of attacks or lower vitality
before the attacks, resulting in faster vitality decline. The two study
areas in southern Sweden and southern Finland had similar thermal
conditions, and both experienced drought and high temperatures in
2021. However, the forest in Sweden was managed actively, while the
forest in Finland was in a nature reserve, and they might experience
different severity of beetle outbreaks.

Using the developed method in this study, around 40 % and 80 % of
trees could be detected and removed 5–7 and 7–9 weeks after the initial
attack from the F1 filial generation. Although the detection rate was the
highest compared to those presented in similar studies using airborne
and drone imagery, the time window for detection and sanitation cutting
was still very limited, bringing into doubt the feasibility of early
detection and early removal for damage control using current remote
sensing techniques. The low detectability observed from close to the
ground also contradicted some studies that claimed pre-emergence
detection using satellite images. With much lower resolution images,
it is unlikely to detect green attacks e.g. in May in middle and southern
Europe, and in June in northern Europe. As suggested by a critical re-
view of recent research on early detection, field validation on the
infestation stages is crucial to draw conclusions on how early remote
sensing can detect infestations (Kautz et al., 2024).

5.3. Feasibility of forest health monitoring and damage control

Using hyperspectral drone images for pre-emergence detection is not
directly feasible for practical use, given the high cost of the sensors and
the limited area covered. However, although this study used hyper-
spectral data, it developed and proposed indices targeted to be used by
multispectral sensors e.g. on small drones, airships, and satellites. The
simplified indices only need three broad bands, and such sensors will be
significantly lighter, providing increased acquisition capabilities for
focused forest monitoring. For example, the hyperspectral drone system
(448 bands) used in this project costs about eight times the multispectral
drone system (8 bands) used by Huo et al. (2023), and about 50 times
one of the commonly used multispectral drones (e.g. DJI Mavic 3, 4
bands). The hyperspectral drone system weighs almost 25 kg, while a 4-
band multispectral drone such as DJI Mavic 3 weighs 335.5 g. The data
acquisition and processing of hyperspectral images requires many more
steps and much greater time than multispectral images. Therefore,
developing methodologies using hyperspectral drone systems for the
fundamental research but investigating sensitive bands and VIs using
multispectral sensors is crucial for practical use.

Various platforms carrying sensors are also being developed to
include automation and cost less, such as unmanned airships that can
cover larger areas, and autonomous drones that can deploy from, and
return to, self-contained stations with data downloading and processing
functions. Compared to machine learning-based approaches, for
instance, as described by Minarik et al., (2021), Junttila et al. (2022),
Safonova et al., (2022) and Turkulainen et al., (2023), this study pro-
posed VIs that can be implemented without requiring hyperspectral
bands as input and without extensive training materials. This would
facilitate the development of entirely unsupervised, direct analysis
techniques for detecting bark beetle green attacks.

This study proposed the use of an additional band at 530 nm, which
has not been commonly covered by satellite images thus far, but is
covered by the Planetscpe SuperDove satellite images available from
2022 with the additional band Green 1 (centered at 531 nm with 36 nm
bandwidth, 3.7 m resolution) (Dalponte et al., 2023). Further studies are
needed to test the robustness of the green shoulder indices on different
datasets and acquired from different sensors, including the Planetscope
superDove images. If they result in a stable performance, the Green 1
band could be used by more satellites, contributing to the large-area
monitoring of forest disturbances under a changing climate. For large-
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area monitoring of early bark beetle infestation symptoms, the spatial
and spectral resolution of satellite images are still limiting factors at
present. However, satellite sensors are also being developed with higher
spatial resolutions and a greater band coverage e.g. the WorldView-3
multispectral images with 0.31 m resolution (Yu et al., 2020), middle-
resolution hyperspectral satellite EnMAP (Stuffler et al., 2007) and
PRISMA (Cogliati et al., 2021).

6. Conclusions

This study tested the detectability of trees affected by green attack
using hyperspectral images with narrow bands and high resolution in
the spectral range of 400–1700 nm. We discovered that the peak and
valley points of the first and second derivative curves in the green
shoulder spectral region consistently shift with longer infestation times.
Using suggested green shoulder indices based on the calculation of green
shoulder inflection and curvature points, more infested trees can be
detected compared to using other VIs including commonly used red edge
indices. The proposed indices could also be simplified by the combina-
tion of three bands: blue (490 nm), green (550 nm), and green 1 (530
nm). These could be potentially used with multispectral cameras at a
lower cost without obviously sacrificing detection rates. The results
were consistent with studies showing spectral features in the green
shoulder region being sensitive to the xanthophyll cycle during photo-
synthesis and its changes under nutrition stress.

Using the indices developed in this study, a detectability of 0, 0.3,
and 0.8 during 3–5, 5–7, and 7–9 weeks of infestation was achieved i.e.
pre-emergence detection using hyperspectral drone images. The
detectability was higher than that recorded in any other similar studies
with field validation, while the time window for removing the infested
trees was still limited. This study also highlighted the potential of
tracking photosynthesis adaptions in early stress detection. More case
studies from different regions and different thermal conditions are
needed to verify the superiority of hyperspectral drone images in
detecting infestations. More studies are needed to explore further the
methodology of using red edge, NIR, and SWIR bands with such a
hyperspectral drone system.
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Appendix

Validation of the linear relationships proposed in Eqs. (7)–(11) is shown in Figure 12, which also shows R2.

Fig. 12. Linear relationships proposed in Equations .
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Latowski, D., Kuczyńska, P., Strzałka, K., 2011. Xanthophyll cycle–a mechanism
protecting plants against oxidative stress. Redox Report : Communications in Free
Radical Research 16, 78–90.

Li, N., Huo, L., Zhang, X., 2022. Classification of pine wilt disease at different infection
stages by diagnostic hyperspectral bands. Ecol. Ind. 142, 109198.

Li, N., Huo, L., Zhang, X., 2024. Using only the red-edge bands is sufficient to detect tree
stress: A case study on the early detection of PWD using hyperspectral drone images.
Comput. Electron. Agric. 217, 108665.

Louhaichi, M., Borman, M.M., Johnson, D.E., 2001. Spatially located platform and aerial
photography for documentation of grazing impacts on wheat. Geocarto Int. 16,
65–70.

Luo, Y., Huang, H., Roques, A., 2022. Early monitoring of forest wood-boring pests with
remote sensing. Annu. Rev. Entomol.

Marvasti-Zadeh, S.M., Goodsman, D., Ray, N., Erbilgin, N., 2024. Early detection of bark
beetle attack using remote sensing and machine learning: A review. ACM Comput.
Surv. 56, 1–40.

Merton, R.N., 1998. Monitoring community hysteresis using spectral shift analysis and
the red-edge vegetation stress index. Seventh Annual JPL Airborne Earth Science
Workshop.

Meurant, G. (Ed.), 1999. Studies in Mathematics and Its Applications : Computer Solution
of Large Linear Systems. Elsevier.
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