
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14227  | https://doi.org/10.1038/s41598-024-62623-w

www.nature.com/scientificreports

Maize yield prediction 
and condition monitoring 
at the sub‑county scale in Kenya: 
synthesis of remote sensing 
information and crop modeling
Harison K. Kipkulei 1,2,3,11*, Sonoko D. Bellingrath‑Kimura 1,2, Marcos Lana 4, 
Gohar Ghazaryan 1,5, Roland Baatz 1, Custodio Matavel 6, Mark K. Boitt 7, Charles B. Chisanga 8, 
Brian Rotich 9, Rodrigo M. Moreira 10 & Stefan Sieber 1,2

Agricultural production assessments are crucial for formulating strategies for closing yield gaps and 
enhancing production efficiencies. While in situ crop yield measurements can provide valuable and 
accurate information, such approaches are costly and lack scalability for large‑scale assessments. 
Therefore, crop modeling and remote sensing (RS) technologies are essential for assessing crop 
conditions and predicting yields at larger scales. In this study, we combined RS and a crop growth 
model to assess phenology, evapotranspiration (ET), and yield dynamics at grid and sub‑county 
scales in Kenya. We synthesized RS information from the Food and Agriculture Organization (FAO) 
Water Productivity Open‑access portal (WaPOR) to retrieve sowing date information for driving the 
model simulations. The findings showed that grid‑scale management information and progressive 
crop growth could be accurately derived, reducing the model output uncertainties. Performance 
assessment of the modeled phenology yielded satisfactory accuracies at the sub‑county scale during 
two representative seasons. The agreement between the simulated ET and yield was improved with 
the combined RS‑crop model approach relative to the crop model only, demonstrating the value of 
additional large‑scale RS information. The proposed approach supports crop yield estimation in data‑
scarce environments and provides valuable insights for agricultural resource management enabling 
countermeasures, especially when shortages are perceived in advance, thus enhancing agricultural 
production.
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The increasing global population and adverse climate impacts are among the main threats to future food  security1. 
In sub-Saharan Africa (SSA), the maize output must be increased fourfold to meet its self-sufficiency demand 
by  20502. Given the future climatic conditions and existing challenges affecting production, the above projected 
estimate may not be feasible, thus hampering future food security efforts in the continent. Biotic and abiotic 
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influences might result in low production and insufficient food for the rising population in SSA. As a counterac-
tive measure, governments, policy-makers, and researchers should deploy the necessary technologies to better 
understand and avert the decline in future production while equally maximizing the available opportunities to 
enhance  production3. Among these strategies, agricultural production assessment and crop condition monitoring 
studies at diverse spatial scales are useful for identifying marginally productive areas and identifying opportuni-
ties for optimizing production.

Information on crop conditions, growth and production estimates is important to agricultural extension 
workers, planners, and governments. Such information can be obtained through field experiments and surveys 
conducted at the household and field levels. Although these approaches have gained increasing relevance in 
agricultural policy-making, they are costly, especially when conducted at large scales. As an alternative, crop 
modelling and remote sensing (RS) have been proposed to explore crop conditions and the response of various 
agronomic measures at relatively low  costs4. Although these two techniques can be applied independently, their 
synergistic combination complements their respective strengths, facilitating more robust analysis of agricultural 
landscapes. For example, RS provides synoptic coverage of the crop status from quantifiable crop condition 
proxies and estimators of reflectances in specific spectral bands and  indices5. One important feature of vegeta-
tion progression that can be detected through RS is the land surface phenology (LSP). LSP reflects the distinct 
cyclic pattern of the change in terrestrial vegetation  species6. Exploring LSP offers opportunities for improving 
cropland monitoring processes and influences. Similarly, crop models can be used to simulate crop growth and 
development under diverse environmental conditions and agronomic management practices. The application 
of these tools focuses more on the biological and physiochemical interactions in the plant‒soil‒atmosphere 
continuum and entails incorporating several parameters to model various plant  processes7.

In recent decades, there has been an increase in crop growth simulation models used in agricultural planning 
and decision-making. The models are categorized widely as carbon-driven, water-driven or radiation-driven 
based on the driving  mechanism8. The Decision Support Systems for Agrotechnology Transfer (DSSAT)-CERES-
Maize model is one of the simulation models falling under the radiation-driven category as it derives plant 
biomass from intercepted solar radiation and incorporates the radiation use efficiency (RUE)  coefficient9. The 
dynamic simulation model for the maize crop is among the larger family within the DSSAT group of models. 
The model has shown a remarkable capability for characterizing production in diverse  environments10,11. It 
simulates leaf area index (LAI) and root growth variables. It also simulates ET processes, nitrogen dynamics 
and soil water balance. Furthermore, the model integrates plant-soil-atmosphere processes and outputs vari-
ables, including biomass, yield and other variables related to crop production. In simulating the above variables, 
the model uses algorithms representing various plant, soil and atmosphere processes to describe plant growth 
and development. The model simulates processes such as ET using the Priestley-Taylor (PT) and FAO-56 Pen-
man–Monteith (PM)  options8.

Combining crop modeling and RS provides opportunities for assessing crop conditions and production, 
especially in data-scarce environments. These techniques can be coupled to provide an improved understanding 
of the underlying environmental processes and cropland status at any given time during the growing season. 
The advantage of the latter is that it captures the variability in croplands as moderated by climatic effects and 
socioeconomic factors. In this way, information can easily be integrated into crop modeling frameworks for 
simulating daily growth and  development12. Furthermore, Gao et al.13 noted the reliability of sensor products 
for deriving within-season phenological information, including sowing dates.

In existing studies, RS and crop models have been coupled to study maize conditions and development in 
diverse  regions14–16. In these studies, various biophysical variables derived from RS have been integrated and 
assimilated into crop modeling platforms. These assimilation studies have been extensively covered in the litera-
ture; however, little research has focused on the retrieval of agronomic management  information. Few studies on 
the derivation of agronomic management information from RS data have confirmed the reliability of data sources 
in crop model simulations. For example, Rezaei et al.12 showed that sowing dates could be derived from Moderate 
Resolution Imaging Spectroradiometer (MODIS) satellite data, although with minimal uncertainties. Moreover, 
Leo et al.17 showed the significance of RS information in deriving management zone information and optimizing 
management, for example, fertilizer application using crop modeling. Other researchers have used RS to evalu-
ate management information  retrieval18,19. However, more research is still needed to improve the estimation of 
crop model inputs using RS data and to provide a greater understanding of the yield variation at various spatial 
scales. Furthermore, assessing the model performance in simulating ET at large scales is yet to be addressed. This 
study, therefore, bridges these research gaps in three aspects. First, the aim of this study is to derive important 
phenological information from RS and integrate it with the DSSAT-CERES-Maize model for yield prediction. 
The second objective is to evaluate the integration approach at the sub-county level, the yield-reporting scale 
in Kenya. The final objective of the study is to evaluate the performance of the DSSAT-CERES-Maize model in 
simulating ET and examine the implications of the performance on yield prediction at the sub-county scale. 
The study is important in providing county and national governments and decision-makers in the agricultural 
sector with an effective approach to yield estimation using state-of-the-art and low-cost technologies towards 
improved crop production and food security.

Materials and methods
Study area
This analysis was performed for the sub-counties of Trans Nzoia and Uasin Gishu Counties in northwestern 
Kenya (Fig. 1), collectively covering an area of 5430  km2 and producing approximately 30% of the total maize 
harvest in  Kenya20. Rainfed farming is the dominant cultivation pattern of maize and other crops in the study 
area. The annual precipitation in the region varies between 900 and 1800 mm. The rainfall pattern is bimodal, 
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with long rains experienced between March and July, whereas short rains occur between October and December. 
The annual mean temperature varies between 9 and 26 °C. The altitudinal range is high in Trans Nzoia County 
(1500–4226 m above sea level), while in Uasin Gishu, the altitude ranges from 1500 to 2800 m. The dominant eco-
nomic activity in the rural and peri-urban areas is agriculture, with crop farming and livestock rearing practised.

Remote sensing‑based land surface phenology
The land surface phenology (LSP) from 2017 to 2021 was derived from RS data. The selected period corresponds 
with the availability of the observed yield data at the sub-county level to allow for model performance assessment. 
Satellite LSP derivations can capture the cyclic pattern of the change in terrestrial  vegetation6. Thus, important 
indicators of crop growth, such as the emergence date, start of the season (SOS), maximum season (MS), and 
end of the season (EOS), can be derived. In this study, we utilized the seasonal phenology data obtained from 
the Food and Agricultural Organization (FAO), delivered through the Water Productivity Open-access portal 
(WaPOR) portal. The WaPOR portal delivers processed satellite information, including seasonal phenology used 
to monitor water and land productivity at various regional scales. Multisource LSP data were used to estimate 
the probable sowing dates at the grid scale. LSP in the WaPOR data is represented by the SOS, MS, and EOS 
temporal attributes. The data were created from a time series of normalized difference vegetation index (NDVI) 
composites from Proba-V and Sentinel-2 images. The Proba-V satellite data covered 2009 to 2019. However, 
from 2019 onwards, the base NDVI layers were derived from the Copernicus Sentinel-2 mission following the 
decommissioning of the Proba-V satellite. The seasonal cycles of the WaPOR LSP data are delivered using raster 
files, with each file indicating a dekadal value showing when the respective season was attained. According to the 
WaPOR data, the NDVI time series covers exactly three calendar years, equivalent to 108 dekads. The target year 
in the data occurs in the middle (dekad 37–72). Thus, for a given target year, dekad 37 corresponds to the first 
ten days of January, and dekad 72 corresponds to the last ten days of December. We downloaded and processed 
the raster files to derive SOS, MS and EOS for each simulation grid. The methodology followed in this study is 
summarized in Fig. 2.

Additionally, time series of the NDVI from the Landsat 8 OLI/TIRS sensor were derived for each grid in the 
study area. Landsat data provided additional temporal information on crop growth progress before the SOS. 
This information is crucial to estimate the probable sowing window. We fitted a harmonic function to the time 
series of NDVI data to overcome the problem of noise and gaps in the time series data. The harmonic function 
models the temporal signal of the NDVI as the sum of additive and harmonic terms, which are then expressed by 
phase and  amplitude21. The analysis of temporal patterns of NDVI  was performed in the Google Earth Engine 
 platform22. The NDVI and WaPOR datasets were evaluated for the condition that the sowing date in each grid 

Figure 1.  Map of the study sub-counties and simulation grids superimposed on the agroecological zones of the 
region (left) and the context of the study area in Kenya with an overlay of croplands mask from the Digital Earth 
Africa (right).
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must occur before the SOS, as the SOS indicates the time lag after sowing (Fig. 3). Thus, the sowing date for each 
grid was estimated as the lowest point on the curve (zero gradient) before SOS attainment. False minor peaks 
before the estimated probable sowing date were ignored as they could probably indicate the re-growth of weeds 
after land  preparation23. As each grid comprises several pixels, the median value was assumed as the probable 
sowing date for a given grid.

The derived sowing dates were then used as input to drive the DSSAT-CERES-Maize simulations. The density 
distribution of the WaPOR SOS and MS for maize pixels in the study area is shown in Fig. 4. 

DSSAT‑CERES‑Maize modeling
The estimated sowing dates for each grid were used as model input data for the DSSAT-CERES-Maize model. 
Combined with other model input files, including soil and weather data, the model could be used to simulate 
the phenology, leaf area index (LAI), biomass and yield during the growing season. For reliable simulations and 
characterization of crop growth and development, it is paramount that the processes that drive the crop model 
outputs must be represented as accurately as possible. Thus, the model should be parameterized and evaluated 
under nonlimited water and nitrogen stress conditions. In a recent study in the study area, on-farm experiments 
were conducted to parameterize and evaluate the DSSAT-CERES-Maize  model24. The model was parameterized 
using observed weather and soil data for 82 fields during two maize-growing seasons in Trans Nzoia County, 
which is part of the scope of this study. Daily weather variables, including solar radiation, precipitation, and daily 
maximum and minimum temperatures, were obtained from local weather stations in the study area. Additionally, 
soil sampling and analysis were conducted in each field to quantify the soil physical and chemical characteristics. 
The model was run using the parameterized cultivar coefficients to simulate the phenological development, LAI, 

Figure 2.  The adopted methodology for the study, where LSP stands for Land surface phenology, ET for 
evapotranspiration, SR for surface reflectance, SOS for start of the season, WaPOR for Water Productivity Open-
access portal, R for Red, NIR for Near Infrared, NDVI for Normalized Difference Vegetation Index, LAI for Leaf 
Area Index, CERES for Crop Environment Resource Synthesis and MoA&LD for Ministry of Agriculture and 
Livestock development.
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Figure 3.  Temporal profile of maize from a selected grid in the study area. The dotted black line shows NDVI 
raw values and the brown solid line indicates the temporal pattern modeled with the harmonic functions. The 
vertical red line is the estimated sowing day of the year, and the vertical green line is the median SOS value for 
the grid derived from the WaPOR data. The label (a) indicates the estimated sowing date, (b) is the median SOS 
value for the grid, (c) shows a false minor peak before the sowing date, and (d) is a low peak due to low-quality 
pixels from atmospheric artefacts.

Figure 4.  Density distribution for the Start of the Season and Maximum Season values for the 2017–2021 maize 
growing seasons. The phenological data were extracted for pure maize pixels classified from remote sensing 
satellite data. The Y axis indicates the SOS and MS in the respective years, and the X axis shows the days of the 
year (doy). SOS stands for the Start of the Season, and MS stands for Maximum Season.
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and yield in the various maize grids. The model simulates phenological development, including the number of 
days needed to attain anthesis and physiological  maturity25. These attributes, together with the seasonal pro-
gression of the LAI, can be used to infer crop growth progress. In this study, we used the simulated maximum 
LAI value as an indicator for the peak season. Thus, the value was compared against RS MS observations from 
archived sources such as WaPOR. Additionally, the simulated yield was aggregated to the sub-county scale and 
compared to the observed yield to assess the model robustness in representing the yield at larger scales.

Evaluation of DSSAT‑CERES‑Maize phenology and yield simulations
The maize phenology simulated by the DSSAT-CERES-Maize model was compared to the MS phenology obtained 
from RS data during the two seasons. The accuracy metric of the coefficient of determination  (R2) was used to 
evaluate the DSSAT-CERES-Maize-simulated and RS-derived LSP values during the peak season. Furthermore, 
the simulated and observed maize yields were compared at the field and sub-county scales.

Evaluation of the DSSAT‑CERES‑model simulated evapotranspiration
In this study, we also assessed the potential of the DSSAT-CERES-Maize model in simulating ET at the grid scale. 
The soil water balance module of the model is the driver behind ET estimation, usually partitioned into water 
lost through evaporation and  transpiration26. The partitioned components are then modified by the extractable 
water and root growth to determine the crop evapotranspiration (ET). In this study, we adopted the PT method 
to estimate the potential ET. The technique uses solar radiation and temperature to calculate ET. The method is 
recommended for humid environments, a characteristic of the study area.

The DSSAT-CERES-Maize ET simulations were compared to the WaPOR retrieved datasets for the study area. 
The product has been evaluated across Africa with in situ data obtained from multiple eddy covariance (EC) 
stations and found to exhibit satisfactory  agreement27. The advantage of this product is that it provides extensive 
coverage over Africa and the Middle East, enabling low-cost, large-scale assessments in data-scarce environments. 
Therefore, the cumulative ET over the growing season in each grid was compared to cumulative ET observations 
from the WaPOR data. Since the WaPOR data are provided on dekadal temporal scales, raster functions were 
used to compute the WaPOR-derived ET for each grid over the entire season. The evaluation was conducted for 
all five growing seasons in this study, spanning different weather and plant water availability regimes.

RS‑derived information analysis of the yield and ET simulation results
We assessed the potential of the estimated RS sowing dates and their influence on yield and ET representation 
across the study area. To achieve this, we generated distributed sowing dates at ten intervals spanning 30 days 
before and after the estimated sowing date. The window chosen was ideal for capturing both possible early and 
late sowing dates in the study region. The DSSAT-CERES model was applied to simulate the yield and ET at the 
six selected dates from 2017 to 2021. The simulated results were aggregated to the sub-county scale by obtaining 
the mean value in each year. We then used Pearson’s correlation analysis to examine the relationship between 
the simulated and observed outputs for both variables.

Ethics declarations
All methods of experimental research and field studies used in this study comply with relevant institutional, 
national, and international guidelines and legislations. During the field study, our test did not involve endangered 
or protected species, and no specific permissions were needed for conducting the field study because it was not 
carried out in a protected area.

Results
Evaluation of the DSSAT‑CERES‑Maize phenology simulations selected seasons
Two maize growing seasons (2018 and 2021) were selected to evaluate the DSSAT-CERES-Maize model-simu-
lated MS values, represented by the maximum LAI. Figure 5 shows the correlation plots between the DSSAT-
CERES-Maize modelled MS and WaPOR MS LSP indicator values. The plots reveal a high correlation of the 
seasonal information between the WaPOR-derived phenology and the DSSAT-CERES-Maize model MS estima-
tions. The correlation coefficient  R2 between the RS-observed LSP and crop-modelled phenology during both 
seasons exceeded 0.6, suggesting favourable agreement between the derivation methods. However, the simulated 
phenology for 2021 exhibited a higher correlation with the RS maximum phenology than that in 2018, which 
might be explained by the high range of MS values capturing regional phenology dynamics. Nevertheless, the 
two representative seasons could be used to adequately characterize the MS phenology. Thus, the results of the 
DSSAT-CERES-Maize model growth phenology were reliable and suitable for informing yield prediction in the 
region.

Evaluation of the DSSAT‑CERES‑Maize yield simulations
The DSSAT-CERES-Maize gridded simulations (Fig. 6) were aggregated to the sub-county level and compared 
with the reported yield records from the Ministry of Agriculture and Livestock Development (MoA&LD)20. 
The results showed that the DSSAT-CERES-Maize model suitably reflected the reported harvests in the various 
sub-counties during the different growing seasons (Fig. 7). The agreement was satisfactory in 2017 and 2019 in 
most sub-counties. There was a slight difference between the simulated and observed yields in 2018 and 2020. 
In 2021, maize production was characterized well in the humid sub-counties of Trans Nzoia County, whereas 
the sub-counties in Uasin Gishu revealed low to moderate yield differences.
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The yield overestimations and underestimations of the DSSAT-CERES-Maize model were notable. In 2017, 
the model slightly overestimated the yield in most counties (Fig. 7). The yield was underestimated in almost all 
sub-counties in 2018. Despite the slight underestimation of the yield, the production was suitably characterized 
in 2019, especially in the humid sub-counties of Trans Nzoia County. However, the yield in Uasin Gishu County 
was overestimated in most sub-counties. A similar pattern was observed in 2020, although a slight difference 
between the modeled and observed yields was observed. The yield was characterized well in 2021, except for a 
few sub-counties in Uasin Gishu County. The DSSAT-CERES-Maize model demonstrated reliability in simulat-
ing yields across most counties and growing seasons.

Evaluation of DSSAT‑CERES‑model evapotranspiration simulations
The WaPOR ET data were compared with the DSSAT simulated ET values to establish the model reliability in 
characterizing ET across space and time. Subsequently, the deviation between the model simulations and the 
WaPOR data was mapped for every simulation grid. The results showed minimal to medium deviations between 
the sources across the study region, which also varied during the various growing seasons (Fig. 8). Slight devia-
tions (± 10%) were notable in 2017 and 2019. In contrast, the deviation between the WaPOR and the model-
simulated ET values was high in 2018 and 2020. In Soy and Turbo sub-counties in Uasin Gishu, high deviations 
of > 20% were recorded. Additionally, in the sub-counties in Trans Nzoia County, for instance, Endebess and 
Kwanza, slightly high deviations were obtained. The findings on the basis of ET evaluation are closely related to 
the performance of yield prediction. For example, the high yield simulation performance in 2017 and 2019 is 
associated with slight deviations of the ET estimates. In contrast, the poor yield simulations in 2018, 2020, and 
2021 could be attributed to poor ET estimation by the crop model, as shown by the large deviation from the 
WaPOR data. The evaluation of the simulated ET values suggests that accurate estimation of ET and plant‒soil 
water exchange is crucial for yield prediction.

RS‑derived information analysis of the yield and ET simulation results
The correlation plots (Fig. 9) show that the yield and ET predictions are satisfactory when sowing information 
estimated from remote sensing data is applied. This is indicated by the high correlation between the observed and 
simulated variables. The performance of the DSSAT-CERES-Maize model in characterizing the yield under the 
provision of RS-estimated dates was favourable (the correlation coefficients varied between 0.6 and 0.9) across 
the sub-counties. Similarly, the ET simulation performance under the influence of RS-estimated dates varied 
between 0.42 and 0.68. There were notable differences in the yield and ET simulations for the other modeled 
dates. A low correlation between the observed and simulated variables was particularly evident with increasing 
departure from the RS-estimated date. The results further showed better correlations in regions with humid 
conditions. The best correlation coefficient (r value = 0.9) for the yield occurred in the Endebess sub-county, 
which is relatively humid.

Regarding ET, the highest correlation was achieved in the Turbo sub-county with moderate humid conditions. 
Despite the good relationship between the observed and the simulated ET and yield, especially for the RS-derived 
sowing dates, the correlations were low. This is because the correlation analysis was conducted based on the aggre-
gated yield at the sub-county scale and different years. In this instance, the data points used for correlation were 

Figure 5.  Scatter plots of the correlation between the day of the year for the RS MS LSP and the DSSAT-
CERES-Maize-simulated maximum leaf area: (left) 2018 and (right) 2021 growing seasons.
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fewer, and small differences in the yield observations and simulations can yield poor comparisons. Nonetheless, 
proper estimation of crop models driving variables can be used to predict yield and ET accurately at sub-county 
scales. Furthermore, the results show that driving model simulations with poorly estimated information leads 
to compromised prediction accuracies.

Figure 6.  Simulated maize yield across various sub-counties for the 2017–2021 period.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14227  | https://doi.org/10.1038/s41598-024-62623-w

www.nature.com/scientificreports/

Discussion
Phenology characterization and integration in the crop modeling framework
Our study provides a yield prediction approach integrating RS information and crop modeling to derive agro-
nomic management information and to further improve maize yield estimation in Kenya. The study assessed the 
robustness of estimating sowing dates based on SOS and MS phenology information derived from RS data. This is 
founded on a strong link between RS-derived parameters and seasonal phenological cycles obtained from locally 
calibrated process-based  models28. In addition, we assessed the reliability of the derived management information 
approach by evaluating the simulated yield at the sub-county level. The above information is critical to inform 
food production management and security planning at downscaled spatial scales, for example, grid scales.

Our findings indicate suitable agreement between the RS-derived phenology and simulated maize growth 
results. This is indicated by the satisfactory accuracy evaluation metrics during the maize peak season derived 
from both techniques. The accuracy of peak season derivation from crop modeling frameworks highly depends 
on the accuracy of the sowing  dates29. Other researchers similarly noted the application of RS-derived SOS as 
crucial in estimating sowing dates for obtaining crop model  inputs30,31. The variation in sowing dates across 
agricultural landscapes leads to distinct phenological characterization, influencing the yield and other outputs 
retrieved from modeling platforms. Furthermore, varied sowing windows influence plant–weather interactions, 
especially in rainfed cropping  systems32. Therefore, accurate estimation of this information is useful for determin-
ing the prevailing seasonal crop conditions and progression in agricultural landscapes.

Evaluation of the DSSAT‑CERES‑Maize yield simulations
Yield simulation involving more reliable agronomic management estimations from WaPOR data is integral for 
multiscale analysis. Our results indicated suitable maize yield simulation at the sub-county scale resulting from 

Figure 7.  Comparison of the observed average yield with the simulated average yield in the various sub-
counties for the 2017–2021 period.
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the improved approximation of sowing dates. The findings corroborate those of previous studies,  including33–35, 
who obtained suitable yield estimates at the regional and national scales using integration approaches of crop 
modelling and RS phenology. Evaluation of the simulated yield at finer scales, for example, at the grid scale, was 
impossible due to the lack of observed data in Kenya. Nonetheless, the presented findings are crucial for evalu-
ating the integrated approach in areas with sufficient gridded observations. The maize yield was characterized 
well across the years, and the maize performance differed among the studied sub-counties. The performance was 
attributed to the high variability in soil and weather conditions across the sub-counties, also characterized by 

Figure 8.  ET deviation (%) between the simulated DSSAT-CERES-Maize ET and WaPOR ET values.
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different agro-ecologies. The results showed that the DSSAT-CERES-Maize model could capture diverse condi-
tions across the growing seasons. The accuracy of the model in representing maize conditions across similar 
spatial scales has also been indicated in other studies in Kenya and other SSA production  systems36,37. Despite 
the attained overestimations in a few sub-counties, the model simulated the maize yield accurately, and the 
simulations indicated a better year in terms of production. The overestimation of yield could also result from the 
failure of the model to account for yield reductions due to biotic factors, for instance, the fall armyworm inva-
sion, a common phenomenon in the  region38. The conditions in each year were substantiated by food security 
outlook reports from the Famine Early Warning Systems  Network39, indicating reliable off-season rains in July 
in the study area. Usually, this month coincides with the MS in the region, and the sufficient soil moisture at the 
vegetative tasselling and silking stage causes improvement in flower formation and pollen fertilization and an 
increase in the grain-filling duration, leading to high yields.

Furthermore, the model could be used to simulate high yields in most sub-counties in 2020, conforming with 
the respective observed yields. The year was characterized by enhanced rainfall between March and May during 
the long rainy  season40. The model, however, did not capture the yield well in some humid sub-counties, which is 
also reflected by the high ET estimation deviation between the model and WaPOR data. Accurate water balance 
determination allows satisfactory crop development and growth prediction, especially under humid  conditions41.

Evaluation of the DSSAT‑CERES‑model evapotranspiration simulations
The ET model simulations revealed low to medium deviations from the WaPOR ET data in most of the study 
area. This demonstrated that the DSSAT-CERES-Maize model is suitable for examining water and energy fluxes 
in maize cropping systems. The deviation in the northeastern sub-counties of the study area was lower than that 
in the humid western and southern zones. In addition to 2020, the deviation between the model-simulated and 
WaPOR ET values was low. The year 2019 revealed low ET deviation in most sub-counties, matching the high 
agreement between the simulated and observed yields. Certain sub-counties, for example, Kwanza and Cheran-
gany, exhibited a relatively low deviation and were also among the regions whose yield was well represented 
across the years. Evapotranspiration was poorly represented in humid zones (western and southern regions) and 
in part of the central region of the study area. The western region lies in the high-altitude zones of the Mt. Elgon 
ecosystem, which experiences high humidity and low evapotranspiration  rates42. The ET deviation in this zone 
was high, and the DSSAT-CERES-Maize model could not capture the ET dynamics well in the region. This is 
also confirmed by the underestimation of the yield by the model in four out of the five seasons studied. A similar 
finding was also obtained  by43, who observed low yield and biomass simulation results under humid conditions.

Similarly, some parts of the Moiben and Soy sub-counties with relatively low rainfall showed high deviation 
in the ET estimation results. The area is also dominated by Ferralsols, with high permeability and poor chemical 
composition, which might be the reasons for the high deviation in the ET  values44. The model simulations and 
the WaPOR ET data agreed well, as reflected in the predicted yield across the various sub-counties and growing 
seasons.

RS‑derived information analysis of the yield and ET simulation results
The study shows that RS-derived variables are reliable for parameterizing crop models at the grid level and for 
predicting the yield at the sub-county scale, as indicated by the favourable agreement between the DSSAT-
CERES-Maize and WaPOR-derived phenology data. The RS-derived phenology coupled with additional Earth 
observation data enabled the estimation of sowing information at the grid level. Rezaei et al.12 found that RS 
information can facilitate an improvement in the estimation of sowing dates for crop modeling purposes. Addi-
tionally, Sadeh et al.45 applied RS data to detect sowing dates across Australia and reported reliable model outputs. 
Moreover, Urban et al.18 used multisource RS data to extract the phenology and sowing dates in the United States 
(US) and found that satellite techniques were reliable in capturing field information.  Diao46 characterized the 

Figure 9.  Correlation coefficients between (left) the simulated and observed yields and (right) simulated and 
WaPOR ET values based on the RS-estimated sowing date (baseline) and ± 30 days from the estimated date 
across the various sub-counties.
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phenology of corn and soybean and achieved suitable accuracy in obtaining the transitional dates of different 
years. RS-derived information is indispensable in enriching crop models and improving their outputs in data-
scarce  environments47. Specifically, phenological information can lead to improved intracropland thematic detail 
distinction and better estimation of yields and crop area  statistics48. Yield estimations can be further improved 
by coupling the DSSAT-CERES-Maize model with other RS-based information, such as leaf area index and 
 biomass49,50.

The present study reveals a satisfactory performance of the DSSAT-CERES-Maize model in simulating the 
yield and ET at the sub-county scale with the integration of large-scale RS information. The model performance 
was evaluated at the sub-county scale. This was limited by the availability of yield data given this spatial coverage 
provided by the ministry responsible for crop production in  Kenya51. Nonetheless, our results demonstrate the 
potential for reducing uncertainties associated with process-based crop models by improving poor-quality and 
coarse data inputs associated with crop models at the grid scale. The study results could contribute to revealing 
yield gap areas and suggesting management options for optimizing production.

Conclusion
The study provides valuable insights into how phenology can be used to derive crop model input information 
for improving yield prediction at sub-county scales. The study concludes that remote sensing (RS) informa-
tion is crucial for determining agronomic information in the study area. In particular, the information can 
be used to obtain distributed sowing practices, which can serve as crop model inputs for yield prediction and 
effective decision-making for enhancing production. Furthermore, the study results indicated the reliability of 
the DSSAT-CERES-Maize model in simulating evapotranspiration (ET) across the region and during various 
growing seasons. Areas with better ET characterization also exhibited accurate yield predictions. To enhance the 
assessment of seasonal crop conditions and crop yields, agricultural extension officers and departments at the 
sub-county and county levels should integrate user-friendly and freely available crop modeling platforms such 
as the DSSAT-CERES-Maize model and readily available RS information, such as the WaPOR products. These 
approaches could provide cost-effective ways to evaluate production across various scales. Implementing these 
methods significantly contributes to a better understanding of crop conditions, growth and their driving factors, 
which is crucial for addressing yield gaps and adapting production strategies to changing climatic conditions. 
We recommend extending this approach to other regions to facilitate the formulation of effective policies and 
strategies for enhancing agricultural production.

Data availability
The DSSAT-CERES-Maize model parameters used in this study are accessible at https:// doi. org/ 10. 1007/ s42106- 
022- 00220-5. Other datasets are freely available from the respective data portals. Remote sensing phenology data 
can be accessed from the FAO portal to monitor water productivity through open access of remotely sensed 
derived data (WaPOR) https:// wapor. apps. fao. org/ catal og/ WAPOR_2/2. The global high-resolution soil profile 
dataset can be obtained from the Harvard University dataverse website https:// datav erse. harva rd. edu/ datas et. 
xhtml? persi stent Id= doi: 10. 7910/ DVN/ 1PEEY0. The precipitation data can be accessed from the CHIRPS website 
(ftp:// ftp. chg. ucsb. edu/ pub/ org/ chg/ produ cts/ CHIRPS- 2.0/). The Daily solar radiation was obtained from the 
National Aeronautics and Space Administration website https:// power. larc. nasa. gov/. The daily minimum and 
maximum temperatures were synthesized from the global dataset of the daily maximum and minimum near-
surface air temperatures over land accessible from https:// doi. org/ 10. 25380/ iasta te. 19714 901. v2 for 2017–2020 
simulations and the NASA POWER website for 2021 simulations.
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