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Gesa A. Weyhenmeyer

Warmer Winters: Are Planktonic Algal
Populations in Sweden’s Largest Lakes

Affected?

Figure 1. Sampling sites in the lakes Mélaren,
Vanern and Véttern and some morphometric data.

Winters in Sweden have become warmer in the 1990s, and
as a consequence the timing of ice break-up and the
growth and decline of spring phytoplankton has shifted,
starting earlier. Even spring temperatures have become
warmer, leading to an earlier beginning of the summer
phytoplankton growth. The spring-ward shift in phyto-
plankton population growth has resulted in an extension
of the growing season by at least one month. Although
mean total phytoplankton biomass from May to October
has not increased, the spring and early summer biomass
of temperature-sensitive phytoplankton groups, such as
cyanobacteria and chlorophytes, has increased in the
1990s. No increase was noted for other phytoplankton
groups. Considering that some species of cyanobacteria
that commonly occur during a summer bloom, such as
Anabaena, Aphanizomenon, and Microcystis, can be toxic,
the effect of warmer winters on aquatic ecosystems is
potentially far-reaching.

INTRODUCTION

The debates on climate change have increased in frequency and
intensity since reports that global mean surface air temperature
has increased (1, 2) and natural catastrophes like hurricanes and
floods are devastating the landscape. Although forecasts of cli-
mate change are not fully reliable, due to uncertainties in quan-
tifying natural and anthropogenic-induced climate change, Allen
et al. (3) contend that global mean temperatures will increase
by 1 to 2.5 K between the decade from 2036 to 2046. Similar
results are suggested for air temperatures in Sweden. Annual
mean air temperature in Sweden is expected to increase by 3 to
4 K in the next 100 years according to climate simulations done
by the Swedish Climate Prediction Center (Rossby) (4). Increases
in winter (December through February) air temperatures are ex-
pected to be even more pronounced in Sweden; about 5 K
warmer in the next 100 years.

Increases in air temperatures can affect aquatic ecosystems
through multiple pathways and mechanisms. For example,
Magnuson et al. (5), analyzing a dataset of 39 lakes and rivers
in the Northern Hemisphere, found that an air temperature in-
crease of about 1.2 K during the past 100 years has resulted in
an earlier ice break-up by, on average, 6.5 days. Since the tim-
ing of ice break-up may affect the timing and development of
individual species and communities (e.g. 6-8), increases in air
temperature can have profound ecosystem-level effects.

In this study, I have analyzed air temperature and ice break-
up data from Sweden’s three largest lakes over the past 40 years.
In particular, I was interested in determining if and how the win-
ter and spring climate affects the development of spring (e.g. dia-
tom) and summer phytoplankton populations. Phytoplankton was
chosen because this group of organisms is dominated by short-
lived organisms that respond rapidly to changes in the weather,
i.e. they may be considered as an ideal sentinel of a tempera-
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ture change (9). At the end of this paper I address the question
of possible responses of aquatic ecosystems towards the fore-
casted future global warming

STUDY SITES AND DATA COLLECTION

Morphological and hydrological characteristics of Sweden’s
three largest lakes Vénern, Vittern and Mélaren are described
in detail by Kvarnés (10). Data on phytoplankton, zooplankton,
phosphate-phosphorus, nitrate- and nitrite-nitrogen, reactive
silica, lake water color (measured as the absorbance at 420 nm
of 0.45 pm filtered water in a 5 cm cuvette) and water tempera-
ture are taken from a national dataset of monthly monitoring
which regularly runs from May through October. In order to
make among-lake comparisons, analyses were restricted to data
collected between 1979 and 1999. Before 1979, sampling was
too infrequent, especially in L. Véanern. Descriptions of the moni-
toring programs and the methods used can be found in Wilander
and Willén (11). Seasonal mean values of phytoplankton growth
were only calculated for 1979 to 1995, since from 1996 and on-
wards the monitoring program was reduced to 4 sampling oc-
casions per year. In 1992, the method used for counting
phytoplankton was modified (11). This modification might re-
sult in higher estimates of especially summer biomass, but here
a significant difference of summer (July to September)
phytoplankton biomass before and after 1992 was not revealed
(Wilcoxon test).

The dataset consisted of 6 sites in L. Mélaren, 2 sites in L.
Vinern and 2 sites in L. Vittern (Fig. 1). At the site Gorviln in
L. Milaren also ice break-up data, received by the Swedish Me-
teorological and Hydrological Institute (SMHI), were available.
In addition, ice break-up was measured at other sites in Mélaren,
Vinern, and Vittern by SMHI. Those sites usually do not show
large differences in ice break-up during 1 year (the between-site
variations in one lake are much smaller than year-to-year varia-
tions, determined by a standard least squares model fitting).
Therefore, the sites where ice break-up was measured can be
used for interpretation of phytoplankton data. SMHI also deliv-
ered air temperature data at meteorological stations close to L.
Mailaren, L. Vinern and L. Vittern.

WARMER WINTERS IN THE 1990s

Year-to-year variations of winter air temperatures at meteoro-
logical stations close to Sweden’s three largest lakes are strik-
ingly similar (Fig. 2). The highest winter air temperatures are
registered close to L. Vénern, but increases in winter air tem-
peratures were noted at all stations. Except for the winter 1995/
1996, which was very cold again, all winter air temperatures in
the 1990s exceeded the long-term average values (1961-1990)
by 0.1 to 4.8 K. In particular, the winters of 1988/1989 and 1989/
1990 were exceptionally warm. Comparing a cold period 1982—
1988 with a warm period 1989-1995, the mean winter air tem-
peratures differed at all three lakes (#-test; p < 0.002 for Vésteras-
Hassleholm at L. Mélaren, p < 0.009 for Satends at L. Vinern,
p < 0.005 for Jonkoping at L. Vittern). Also April air tempera-
tures differed significantly between the 2 time periods 1982—
1988 and 1989-1995 while May, June, and July air temperatures
did not reveal a significant change.

EARLIER ICE BREAK-UP IN THE 1990 s

Weather changes in the late 1980s and in the 1990s have resulted
in changes in the timing of ice break-up. Time series data of ice
break-up for Mélaren, Vinern, and Vittern show a marked
change in the timing of ice break-up since the very warm win-
ter 1988/1989 (Fig. 3). In the basin of Gorviln in L. Mélaren,
for example, ice break-up had always occurred between March
24 and May 2 from 1964 to 1988. In 1989 and 1990 this basin
had no ice-cover at all and quite early ice break-up during the
1990s. Other basins in L. Mélaren as well as sites in Védnern and
Vittern show a similar pattern, i.e. no ice or very early ice break-
up in 1989 and 1990 and early ice break-up during the 1990s
(Fig. 3). Similar to winter air temperatures, the mean in the tim-
ing of ice break-up for the period 1982—-1988 differed from the
mean of the period 1989—1995 (#-test; p < 0.01 at Gorviln in L.
Malaren, p < 0.01 at Brandsfjorden in L. Vénern, p < 0.05 at
Soédra in Lake Vittern). Considering global warming, the ten-
dency towards earlier ice break-up in lakes is likely to continue,
although individual years might occur with a long-lasting ice-
cover.
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SHIFT OF THE PHYTOPLANKTON
SPRING SEASON

Ice-cover on lakes, both thickness and dura-
tion, strongly affects phytoplankton develop-
ment due to reduced light conditions and re-
duced turbulence (12). A spring (e.g. diatom)
phytoplankton peak usually appears around
ice break-up when light conditions in the wa-
ter become nonlimiting. The only exception
is a spring phytoplankton bloom dominated
by phytoplankton species (e.g. small dino-
flagellates) which can develop under ice, at
low light intensities, if the ice is clear (13).
However, such clear ice conditions are rare
in Sweden’s three largest lakes. Conse-
quently, it can be expected that in Mélaren,
Vinern, and Vittern, an earlier ice break-up
generally leads to an earlier spring phyto-
plankton bloom development. A relationship
between ice break-up and the timing of a
spring phytoplankton bloom has already been
observed in, e.g., L. Erken in central Sweden
(13) and in Miiggelsee in Germany (14).
The exact timing of the phytoplankton
spring peak in Mélaren, Vinern, and Vittern
cannot be reliably determined using the long-
term datasets, since sampling is only monthly
and does not start before May when the
spring phytoplankton biomass is already de-
clining during some years. Hence, instead of
analyzing the timing of the phytoplankton
spring peak, I focused my analyses on the
timing of population declines of the spring
phytoplankton. The decline of spring phyto-
plankton is not directly linked to ice break-
up, but an early ice break-up and a follow-
ing early spring phytoplankton bloom is
likely to cause an early nutrient depletion and
consequently an early spring phytoplankton
decline. In addition, the decline of spring
phytoplankton is caused by grazing losses,
leading to a clear-water phase (15) that has
also been found to be strongly dependent on
winter climatic conditions (16, 17). Compar-
ing nutrient concentrations of the cold period
1982-1988 with nutrient concentrations of
the warm period 1989-1995 it becomes ob-
vious that during the warm period much less
bioavailable nutrients were in the water col-
umn in May than during the cold period (Ta-
ble 1), indicating that the depletion of nutri-
ents began earlier during the warm period. In
addition to the earlier nutrient depletion af-
ter warm winters, zooplankton biomass was
higher in May as a result of warmer water
temperatures (Table 1). An early nutrient de-
pletion and a higher zooplankton bio-
mass should affect the timing of the spring
phytoplankton decline. Here, I use diatoms as
a representative of the spring phytoplankton
because they are known to be one of the most
typical spring phytoplankton groups (15).
During the warm period 1989-1995 diatoms
at some lake sites obviously declined earlier
in the year than during the cold period 1982—
1988. The shift in the decline of spring
phytoplankton can best be seen in the west-
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Figure 3. Ice break-up dates at different stations in the lakes A. Malaren (1961—
1999); B. Vanern (1981-1999); and C. Vattern (1968-1999). In each lake the
station that has most observations is represented by a solid line.
Table 1. Concentrations of phosphate-phosphorus (PO ), nitrate- and nitrite-nitrogen
(NO; + NO,) and reactive silica (Si), absorbance at 420 nm of 0.45  pum filtered water in
a 5-cm cuvette (Abs f 405), water temperature (T ) and zooplankton biomass (zoo) in
May. The values are mean values of the cold period 1982—-1988 and the warm period
1989-1995 at 6 sites in L. Malaren (A-F), 2 sites in L. Vanern (G-H) and 2 sites in
L. Vattern (I-J).
PO,-P NO;+ NO,N Si Abs Tz Z00
(gL (gL (MmgL™)  (fees) (C)  (Mm’L7)
A. Galten Mean 82-88 10.1 460 3.0 0.152 10.3 not
Mean 89-95 11.1 364 2.1 0.171 115 available
B. Granfjarden Mean 82-88 9.0 604 2.2 0.114 8.3 169
Mean 89-95 7.9 519 0.9 0.099 10.0 319
C. Bjorkfjarden Mean 82—-88 13.6 326 0.6 0.055 4.7 155
Mean 89-95 4.4 172 0.2 0.040 75 250
D. Gorvaln Mean 82—88 12.9 405 1.2 0.063 6.4 not
Mean 89-95 4.6 187 0.3 0.044 8.6  available
E. Skarven Mean 82-88 317 1223 4.3 0.123 8.3 not
Mean 89-95 16.3 1070 3.3 0.098 9.4  available
F. Ekoln Mean 82—-88 37.8 1353 4.3 0.158 7.1 131
Mean 89-95 23.7 1519 3.8 0.142 7.7 240
G. Megrundet Mean 82—-88 1.3 571 0.3 0.038 3.2 not
Mean 89-95 19 536 0.2 0.030 6.0 available
H. Dagskéarsgrund Mean 82-88 15 592 0.4 0.043 5.6 24
Mean 89-95 1.9 556 0.3 0.033 8.2 32
1. Jungfrun Mean 82-88 2.1 449 0.4 0.007 2.9 not
Mean 89-95 1.7 507 0.2 0.007 6.3 available
J. Edeskvarna Mean 82—-88 1.2 454 0.4 0.010 2.7 not
Mean 89-95 14 510 0.2 0.009 7.4  available
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consequence, the hydrological flow regime is very unu-
sual, causing a different phytoplankton succession at

Skarven compared to the other sites in L. Milaren.
Shifts in the phytoplankton spring bloom in Vinern
and Vittern were not as obvious as in L. Milaren, pre-

Figure 4. Mean diatom biomass for May through October for 2 time periods;
1982-1988 (a cold period) compared to 1989-1995 (a warm period). Diatom
biomass values are shown for 6 sites in L. Malaren (A-F), 2 sites in L. Vénern
(G, H), and 2 sites in L. Vattern (I, J). Note the y-axes are scaled differently.
At Edeskvarna in L. Vattern phytoplankton data from September and

sumably because the phytoplankton spring bloom occurs
even more outside the monitoring program than in L.
Mailaren due to a more southern location of these two
lakes. However, since the biomass of diatoms in May
during the cold period 1982—-1988 was much higher than
during the warm period 1989-1995 (Fig. 4 G-J) it can
beassumed that the declining of diatoms began earlier in
the year after warm winters.

EXTENDED PHYTOPLANKTON GROWING SEASON

The observed shift of the spring phytoplankton season after warm
winters implies that the total growth period was extended by at
least one month during the early 1990s. An extended
phytoplankton growing season might lead to changes in the an-
nual (January through December) mean total phytoplankton
biomass. Studies in a number of European lakes could not sup-
port this hypothesis (18) because nutrients and not meteorologi-
cal factors seem to limit the annual mean phytoplankton biomass.
In the lakes Milaren, Vinern, and Vittern the annual mean
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October are missing for some years so no mean was calculated.

phytoplankton biomass cannot be calculated because phyto-
plankton was only sampled during the main growing season from
May to October. The May to October mean phytoplankton
biomass did not significantly change from 1982—1988 to 1989—
1995 (Wilcoxon test not significant). However, years with very
warm winters, such as 1989 and 1990, caused the May—Octo-
ber mean phytoplankton biomass values to become very low, be-
cause the phytoplankton spring peak presumably occurred ear-
lier (i.e. prior to sampling), and hence these values are not in-
cluded in the May—October mean. This example shows that it
is important to adjust monitoring programs to new climatic con-
ditions. In Milaren, Vinern, and Vittern the monitoring pro-
grams were adjusted in 1995 when it was decided to start sam-
pling of phytoplankton in April.
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Sampling below Ice-cover.
Photo: G. Weyhenmeyer.

SHIFT OF THE PHYTOPLANKTON SUMMER
SEASON

Not only winter temperatures increased in the 1990s but also the
temperatures in April which could affect the beginning of the
summer phytoplankton development. Here, the beginning of the
summer phytoplankton development is defined as the first ap-
pearance of cyanobacteria in the water column. Cyanobacteria
represent a typical summer phytoplankton group (14). During
the 1990s cyanobacteria already occurred in May in the water
column, probably due to the warmer water temperatures (Table
1). Before 1989, cyanobacteria had never been recorded in the
water column of L. Vittern in May, while they have frequently
been observed in that month since 1989 (Fig. 5). Also in
L. Viénern, cyanobacteria suddenly appeared in May in 1989
(Fig. 5). In L. Malaren, cyanobacteria were found in the water
column in May on a few occasions before 1989, but biomass
was low compared to the 1990s. During the 1990s cyanobacteria
in L. Mélaren frequently occurred at all lake sites in May, and
the biomass was high (Fig. 5). The occurrence of cyanobacteria
already in May during warm springs indicates that the begin-

ning of the phytoplankton summer season shifts towards spring
during warm springs. Since warmer springs coincide with
warmer winters it is not possible to determine whether this shift
in the summer phytoplankton season is only dependent on the
spring situation or whether warmer winters and a consequent
earlier decline of spring phytoplankton favors an earlier begin-
ning of the summer phytoplankton development.

EFFECTS OF WARMER WINTERS AND SPRINGS ON
DIFFERENT PHYTOPLANKTON GROUPS

Phytoplankton groups differ in their response to changes in the
environment. Some groups are most sensitive to changes in nu-
trient conditions, others to changes in temperatures or to changes
in light conditions (19). The effects of warmer winters on dia-
toms have already been discussed here. It has also been shown
here that cyanobacteria respond to warmer temperatures since
they started to grow earlier in the year at all lake sites and in all
three lakes after warm winters/during warm springs. As a con-
sequence the cyanobacterial biomass in May during the warm
period 19891995 significantly exeeded the biomass of the cold

[N

Figure 5. May cyanobacterial
biomass at 10 different
stations in Malaren, Vanern
and Vattern for 1979 to 1999.
If no data points are visible
then no cyanobacteria were
recorded in May. The shaded
areas show the periods 1982—
1988 with cold winters and
1989-1995 with warm winters.
After 1995 the monitoring pro-
gram was changed resulting in
missing values for L. Mélaren
at Galten and Skarven 1996—
1999, at Granfjarden and
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Table 2. Comparison (Wilcoxon-test) of the mean biomass of different phytoplankton groups between the cold period 1982—
1988 and the warm period 1989-1995 at 6 sites in L. Malaren (A-F), 2 sites in L. Vanern (G-H) and and 2 sites in L. Vattern (I- J)
during May, June, and July. * means significant at the p < 0.05 level, ** means significant at the p < 0.01 level and n.s.
abbreviation for not significant; + indicates a significant increase and — a significant decrease.
Total biomass Cyanobacteria Diatoms Dinoflagellates

May  June July May  June July May  June July May  June July
A Galten S n.s. n.s. T +* n.s. S s n.s. n.s S n.s
B Granfjarden +** Bl n.s. 3% +* n.s. % 3 n.s. +* n.s n.s
C Bjorkfjarden n.s. HE -* +* n.s. n.s. n.s £ n.s. LR n.s n.s
D Gorvaln n.s. n.s. n.s. +5* n.s. n.s. n.s n.s n.s. n.s n.s n.s
E Skarven n.s. n.s. n.s. n.s. n.s. n.s. n.s n.s n.s. n.s n.s +**
F Ekoln n.s. n.s. n.s. n.s. n.s. n.s. n.s n.s n.s. n.s n.s +*
G Megrundet n.s. n.s. n.s. +** +* +* n.s n.s n.s. n.s n.s n.s
H Dagskarsgrund  n.s. n.s. n.s. xk +* n.s. n.s n.s n.s. n.s n.s n.s
1 Jungfrun n.s. n.s. n.s. +** +* n.s. n.s n.s n.s. n.s n.s n.s
J Edeskvarna n.s. n.s. n.s. +¥* +* +* n.s n.s n.s. n.s +* n.s

Chrysophytes Cryptophytes Chlorophytes

May  June July May  June July May  June July
A Galten +* n.s. n.s. n.s. n.s. n.s. n.s. +* +*
B Granfjarden n.s. n.s. +* n.s. n.s. n.s. n.s. +xx +**
C Bjorkfjarden +* n.s. +* +* n.s. S +Hx +*x +xx
D Gorvaln n.s. n.s. +* +* n.s. n.s. +* +** +**
E Skarven n.s. n.s. n.s. n.s. n.s. n.s. n.s. +* n.s.
F Ekoln n.s. n.s. +* n.s. n.s. n.s. n.s. n.s. n.s.
G Megrundet +* n.s. n.s. A% n.s. n.s. +*x n.s. +**
H Dagskarsgrund  n.s. n.s. n.s. n.s. n.s. Eaid +* n.s. +*
| Jungfrun n.s. +* +* n.s. n.s. n.s. n.s. n.s. n.s.
J Edeskvarna n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

period 19821988, except at the sites Ekoln and Skarven in L.
Milaren (Table 2), which are the sites with the least pronounced
water temperature increase in May from 1982-1988 to 1989—
1995 (Table 1). The increased cyanobacterial biomass in May
during the warm winter/spring period 1989—1995 lasted until
June at most stations (Table 2), although the June water tem-
peratures remained more or less the same from 1982-1988 to
1989-1995. Not until July, when water temperatures again re-
mained unchanged from 1982-1988 to 1989-1995, did the
cyanobacterial biomass during 1989-1995 reach values close to
those of 1982—1988 (Table 2). Since the main increase of
cyanobacteria occurred in May and not during the summer,
cyanobacterial biomass was still low even after the significant
increase; cyanobacterial biomass in May in 1989—1995 ranged
from 0.003 mm’ L' at Edeskvarna in L. Vittern to 0.017 mm’
L' at Galten in L. Milaren.

While cyanobacteria showed a response to temperature
changes at most sites in May, chlorophytes that are also known
to be a temperature sensitive phytoplankton group (19), only sig-
nificantly increased in May at lake sites which had similar light
conditions, expressed as the absorbance of filtered water (Ta-
bles 1 and 2). Not until June, when light conditions at other sites
reached values close to the ones at the sites where the increase
was registered, did chlorophytes also significantly increase at
these sites (Table 2). Chlorophytes changed even in July from
1982-1988 to 1989-1995. Changes in July cannot be directly
linked to changes in temperature since both air and water tem-
peratures do not show changes in June and July from 1982—1988
to 1989-1995.

Unlike cyanobacteria and chlorophytes, the biomass of other
phytoplankton groups such as dinoflagellates, chrysophytes, and
cryptophytes, in May and June, did not reveal a consistent re-
sponse to warmer temperatures. Only at some lake sites was a
significant change of one or more (maximum 3) other phyto-
plankton groups observed, but no clear patterns were evident (Ta-
ble 2). A combination of factors such as nutrient availability,
grazing pressure, turbulence, and light conditions are strong de-
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terminants of phytoplankton growth (19), hence these variables
may confound a temperature response.

FUTURE PERSPECTIVES: DIRECT AND INDIRECT
CLIMATIC EFFECTS ON PHYTOPLANKTON

Most of recent climate studies point to a continuous tempera-
ture increase in the near future. This temperature increase can
have direct effects on the phytoplankton biomass. However, also
indirect temperature effects have to be taken into account. The
most obvious indirect temperature effect on phytoplankton is ice
break-up. An increase in temperature leads to an earlier ice
break-up which again has a large impact on light conditions, tur-
bulence, and thereby nutrient availability. Increases in tempera-
ture should also result in increased mineralization and hence
changes in nutrient dynamics and availability. The complex in-
teractions of direct and indirect temperature effects should af-
fect different phytoplankton groups differently, and this may
partly explain why the response of biomass was different for
various phytoplankton groups and the same groups at different
stations in Milaren, Vénern, and Vittern (Table 2). Better knowl-
edge of the importance of indirect temperature effects is needed,
and should be the focus of future studies. In addition, changes
in precipitation and wind speed are also expected to occur, hence
a better understanding of how these variables affect
phytoplankton communities is needed.

CONCLUSION

There is evidence that warmer winters cause a shift in the
phytoplankton spring season. Due to an earlier ice break-up,
spring phytoplankton starts to grow earlier in the season; nutri-
ents are depleted earlier and as a consequence, the spring
phytoplankton declines earlier. In addition, warmer spring tem-
peratures cause an earlier growth of zooplankton, also leading
to an earlier decline of the spring phytoplankton. If the trend of
earlier ice break-up or no ice cover at all continues, monitoring
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programs should be adjusted to encompass early population
growth of spring phytoplankton communities.
Not only the phytoplankton spring season was affected by tem-

perature changes, but also the beginning of the summer
phytoplankton season. Summer phytoplankton began to grow
earlier, resulting in a higher biomass of cyanobacteria and
chlorophytes in spring and early summer. Dinoflagellates,
cryptophytes and chrysophytes in spring and early summer did
not reveal a consistent response to temperature changes in win-
ter and spring.
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