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Abstract – Over the past centuries, coregonines have been exposed to a range of stressors that have led to
extinctions, extirpations, and speciation reversals. Given that some populations remain at risk and fishery
managers have begun restoring coregonines where they have been extirpated, we reviewed the primary and
gray literature to describe the diversity of coregonine restoration or conservation actions that have been
previously used. Although stocking of hatchery-reared fish has been commonly used for supplementing
existing coregonine fisheries, we considered stocking efforts only with specifically conservation or
restoration goals. Likewise, conservation-driven efforts of translocation were not widespread, except in the
United Kingdom for the creation of refuge populations to supplement the distribution of declining stocks.
Habitat restoration efforts have occurred more broadly and have included improving spawning habitat,
connectivity, or nutrient concentrations. Although harvest regulations are commonly used to regulate
coregonine fisheries, we found fewer examples of the creation of protected areas or outright closures.
Finally, interactions with invasive species can be a considerable stressor, yet we found relatively few
examples of invasive species control undertaken for the direct benefit of coregonines. In conclusion, our
review of the literature and prior Coregonid symposia revealed relatively limited direct emphasis on
coregonine conservation or restoration relative to more traditional fishery approaches (e.g., supplementation
of fisheries, stock assessment) or studying life history and genetics. Ideally, by providing this broad review
of conservation and restoration strategies, future management efforts will benefit from learning about a
greater diversity of potential actions that could be locally applied.
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1 Introduction

Freshwater fish and fisheries occupying both lotic and
lentic habitats have endured a litany of human-induced
stressors over the past century (see Reid et al., 2018;
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Díaz et al., 2019; Birk et al., 2020). As a result, the rate of
extinctions in freshwater fish species is higher than in most
other habitats (Strayer and Dudgeon, 2010; Burkhead, 2012;
Darwall and Freyhof, 2016). Species in the sub-family
Coregoninae (hereafter, coregonines) are widely distributed
in circumpolar, northern lentic and lotic habitats (i.e., region of
North America, Europe and Asia) and are emblematic of fish
and fisheries challenged by anthropogenic stressors. Species
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Table 1. Description of queries used to identify peer-reviewed literature and reports describing coregonine conservation or restoration efforts.

Search engine 1st word 2nd word 3rd word

Google scholar whitefish restoration

whitefish conservation
whitefish habitat restoration
whitefish refuge
whitefish harvest regulation
cisco restoration
cisco conservation
cisco refuge
cisco habitat restoration
cisco harvest regulation

Web of science coregon* restor* stock*
coregon* conserv* stock*
coregon* restor* habitat*
coregon* conserv* habitat*
coregon* restor* invas*
coregon* conserv* invas*
coregon* restor* harvest
coregon* conserv* harvest
cisco restor* stock*
cisco conserv* stock*
cisco restor* habitat*
cisco conserv* habitat*
cisco restor* invas*
cisco conserv* invas*
cisco restor* harvest
cisco conserv* harvest
whitefish restor* stock*
whitefish conserv* stock*
whitefish restor* habitat*
whitefish conserv* habitat*
whitefish restor* invas*
whitefish conserv* invas*
whitefish restor* harvest
whitefish conserv* harvest
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and population extinctions of coregonines are common in both
North America (Bailey and Smith, 1981; Eshenroder et al.,
2016; Bunnell et al., 2023) and Europe (Steinmann, 1950;
Freyhof and Schöter, 2005; Vonlanthen et al., 2012) owing to
exposure to various stressors. One of the primary stressors has
been eutrophication, which can have multiple negative effects
on populations. First, eutrophication can lead to insufficient
oxygen concentrations in preferred deeper waters, causing
coregonines to occupy potentially lethal warmer shallower
water and lead to population declines or extirpations (e.g.,
Evans et al., 1996; Kumar et al., 2013; Lyons et al., 2018).
Furthermore, eutrophication can reduce egg survival within the
diffusive boundary layer when carbon-rich sediments cause
high oxygen uptake (Ventling-Schwank and Müller, 1991;
Müller, 1992; Müller and Stadelmann, 2004; Wahl and Löffler,
2009). In lakes harboring multiple species, eutrophication can
also result in speciation reversal if natural selection forces
leading to ecological speciation are relaxed (Vonlanthen et al.,
2012; Frei et al., 2022). Beyond nutrient pollution, other
anthropogenic stressors, including sedimentation or the
construction of dams, have led to the deterioration or even
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blockage of spawning and nursery habitats (Steinmann, 1950;
Ventling-Schwank and Livingstone, 1994; Winfield, 2004;
Haakana and Huuskonen, 2012; Schaefer et al., 2022).
Negative interactions with invasive species also have
contributed to declines in coregonines, affecting multiple life
stages from eggs to adults (e.g., Christie, 1973; Hrabik et al.,
1998; Myers et al., 2009; Bhat et al., 2014; Rösch et al., 2018;
Cunningham and Dunlop, 2023). Overfishing also was likely a
primary driver of the loss of some coregonines in both North
America (Smith, 1964; Eshenroder et al., 2016) and Europe
(Dottrens, 1950; Steinmann, 1950; Bardel, 1956; Laurent,
1972) in the 20th century. Another challenge to maintaining
biodiversity has been introgression arising from erroneous or
intentional stocking of more common European whitefish
species into areas with more rare, locally adapted whitefish
species (e.g., Douglas and Brunner, 2002; Hudson et al., 2011;
Dierking et al., 2014; Selz and Seehausen, 2023). Finally,
climate change (e.g., declining ice cover, increased occurrence
of high rainfall events or droughts, warming water tempera-
ture, shorter lake turnover time) poses a relatively new and
emerging threat to coregonine sustainability for fishery
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managers to consider (Elliott and Bell, 2011; Jacobson et al.,
2012; Salmaso et al., 2018; Brown et al., 2022).

Within the broad distribution of coregonines, some
historically important stressors have been improving in recent
decades. For example, many ecosystems that once experienced
eutrophication are now undergoing oligotrophication owing to
stricter regulations on nutrient inputs (Anderson et al., 2005;
Bunnell et al., 2014). These regulations have led to widespread
ecosystem benefits (e.g., better water quality, increased
recreational opportunities), including improved oxythermal
habitat for many coregonine species (e.g., Gerdeaux et al.,
2006; Madenjian et al., 2011) that, in some cases, has led to the
re-emergence of coregonine diversity (e.g., Müller, 2007;
Jacobs et al., 2019). Another emerging trend in some countries
is the removal of dams, many of which are deteriorating and
considered too expensive to maintain (O’Connor et al., 2015).
Coregonines are one of several groups of fishes that can benefit
from the removal of dams or construction of fish passages by
colonizing new upstream habitat (e.g., Kiffney et al., 2018). In
other ecosystems, fishery managers have sought to improve the
spawning substrate of lithophilic spawners (primarily salmo-
nids), by either enhancing habitat or even building new reefs
(e.g., Tolentino and Moon, 2012; Fischer et al., 2018; Baetz
et al., 2020). An increasing awareness of the potential for
habitat enhancement to facilitate fish production, even over
more traditional tools such as stocking, was supported by a
recent replicated, 6 yr, 20-lake experiment in Germany
(Radinger et al., 2023).

Over the last several decades, many countries have passed
conservation legislation to protect the environment, as well as
imperiled fish populations (including coregonines) and their
habitat. For example, in the United Kingdom (U.K.) managers
have sought to preserve the limited number of Coregonus
lavaretus (Linnaeus; Common whitefish or European white-
fish) and C. albula (Linnaeus; Vendace or European cisco)
populations that remain on the islands (Winfield et al., 2002;
Winfield et al., 2012; Winfield et al., 2013a). In Nova Scotia,
Canada, managers are seeking to conserve endangered
C. huntsmani (Scott; Atlantic whitefish) that are restricted
to three lakes within one watershed now that connectivity has
become reduced (Fisheries and Oceans Canada, 2018).
Restoration, on the other hand, can be broadly defined as
actions to help an ecosystem that has been damaged, degraded,
or destroyed (see Society for Ecological Restoration: https://
ser-rrc.org/what-is-ecological-restoration/), which could in-
clude reintroducing extirpated species. An example of
restoration is in the Laurentian Great Lakes, where fishery
managers recently endorsed an adaptive management strategy
to restore Coregonus spp. (see Bunnell et al., 2023) and
where C. hoyi (Milner; Bloater) in Lake Ontario (Canada,
United States (U.S.): 43.638, �77.811) are currently being
reintroduced from existing populations in Lake Michigan
(U.S.: 43.900, �87.044; Weidel et al., 2022).

Given the recent momentum towards coregonine conser-
vation and restoration, we sought to conduct a review of the
management actions that have been undertaken to conserve
imperiled coregonine populations or restore coregonines that
have been locally extirpated. For the purposes of this review,
we generally will not distinguish between restoration or
conservation because our goal is to summarize any tools and
actions that have been used to potentially support either
Page 3 o
management action. We argue that a comprehensive survey
and review could be helpful for emerging coregonine
restoration efforts in the Laurentian Great Lakes and future
conservation or restoration efforts across their broader
distribution. We emphasize that coregonine fishery manage-
ment actions where the primary short-term objective was the
supplementation or creation of fisheries was beyond the scope
of this paper. For example, studies describing stocking of
hatchery-reared fish to support fisheries (even when conserva-
tion genetics are evaluated therein) would not be included in
this paper. We note, however, that several studies have
evaluated the efficacy of stocking on coregonine yield or year-
class strength: some reporting little or no effect (Christie,
1963; Salojärvi, 1992; Wanke et al., 2017, Baer et al., 2023),
whereas others reporting increased harvest (Anneville et al.,
2009; Wanke et al., 2016; Wedekind et al., 2022).

Herein, our approach was to first use online databases of
scholarly literature (Google Scholar, Web of Science) to
identify peer-reviewed papers and reports using key words
inclusive of coregonine taxonomy and conservation and
restoration tools (see Tab. 1). Next, we searched the titles of the
14 previous Coregonid Symposia proceedings (i.e., Biology
and Management of Coregonid fishes) that have been
published starting from 1970 (e.g., Lindsey and Woods,
1970) through 2021 (Karjalainen et al., 2021). Since the 1995
proceedings (e.g., Luczynski et al., 1995), the titles have been
organized in a table of contents by theme area; we recorded the
names or key phrases used in all theme areas to create a
“wordcloud” to depict the most common words or phrases that
have been used. Finally, we supplemented our review by
recruiting co-authors with regional expertise to help us
uncover unpublished, “gray” literature. Attempts to access
more regional experts from Asia were unsuccessful.

This review is organized below by different categories of
fishery management actions for the purposes of conservation
or restoration: 1) stocking of hatchery-reared fish; 2)
translocation of wild fish (at multiple life stages) to new
ecosystems; 3) habitat restoration, including improving
spawning areas, connectivity, or nutrients concentrations; 4)
eliminating harvest or the creation of protected areas; and 5)
the control of invasive species. We conclude this review by
assessing how frequently each action has been used and by
providing some suggestions for future consideration. Ideally,
by providing this broad review, future coregonine restoration
or conservation efforts can be better informed about the
diversity of options that could be locally applied within their
jurisdictions.

2 Stocking of hatchery-reared fish

Stocking of hatchery-reared coregonines is widespread
throughout its range and dates to the 19th century (e.g., Ilmast
and Sterligova, 2004; Eckmann, 2012; Wood, 2016). Although
we use the term “hatchery-reared” for simplicity, we
acknowledge that the time spent in hatcheries can be quite
variable across coregonine rearing practices. For example,
many agencies rear fish in hatcheries from embryos to late-
stage juveniles prior to stocking, whereas other agencies move
hatchery-reared larvae into rearing ponds where they can
experience more natural food supplies and photoperiod
f 16
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conditions before being stocked (e.g., Gerdeaux, 2004;
Leskelä et al., 2004). Regardless of rearing method, the
primary goal of most hatchery-reared coregonines to be
stocked has been for the creation or supplementation of
fisheries rather than conservation or restoration (e.g., Müller
and Stadelmann, 2004; Wood, 2016; Wedekind et al., 2022).
Perhaps not surprising given its prevalence, coregonine
stocking can lead to negative impacts on other native fishes
(Svärdson, 1976; Sandlund et al., 2013) but also on existing
coregonine populations through its potential to reduce genetic
diversity through introgression or hybridization, selection
towards undesirable traits, or introduction of disease (see
Waples, 1991; Kahilainen et al., 2011; McMillan et al., 2023).
As a result, we found that the most common use of stocking
hatchery-reared fish in the realm of conservation or restoration
was for reintroducing extirpated populations. Furthermore,
ideally a reintroduction would not occur unless all previous
threats that led to their extirpation have been removed and a
population viability analysis has occurred (see Bunnell et al.,
2023).

In Europe, one restoration example is the re-introduction of
anadromous C. oxyrinchus (Linnaeus; North Sea Houting) into
the German section of the Rhine River (54.926, 8.714), where
it was extirpated owing to overfishing and habitat degradation
(e.g., eutrophication, dams) in the 1940s (De Groot and
Nijssen, 1997). Because many of these stressors had been
ameliorated by the 1980s, C. oxyrinchus from one population
that has persisted in the river Vidå (Denmark: 54.926, 8.714)
was reared in hatcheries and stocked into the Rhine beginning
in the late 1990s and early 2000s and evidence for natural
reproduction has been provided (Borcherding et al., 2010).
Although our use of this example is to illustrate the use of
stocking for the intent of reintroduction, we should acknowl-
edge ongoing scientific debate regarding C. oxyrinchus. First,
one study has argued that the population from the Vidå is
C. maraena (Bloch; Maraena whitefish), instead of C.
oxyrinchus, based on morphological data (Freyhof and
Schöter, 2005) although Hertz et al. (2019) noted the need
for additional genetic evidence. Second, Kroes et al. (2023)
recently used mitochondrial DNA evidence from historical and
contemporary samples to argue that C. oxyrinchus should not
be considered its own species (and therefore ‘extinct’) because
they found minimal genetic differentiation from C. lavaretus.

In North America, one example of using hatchery-reared
fish for reintroduction was for Prosopium cylindraceum
(Pennant; Round Whitefish) in water bodies throughout the
Adirondack region (∼ 44.125,�73.869) of the U.S. They once
were distributed in more than 80 lakes or ponds in this region,
but became extirpated in 75 of them by the early 2000s owing
primarily to negative interactions with invasive species or
acidification of the lakes (Steinhart et al., 2007). The state of
New York instituted a reintroduction program using hatchery-
reared fish that targeted 24 of these 75 lakes, but has
documented natural reproduction in only four of them to date
(Conley et al., 2021; Holst, 2023). Another example is in Lake
Ontario where a multi-agency team initiated the reintroduction
of C. hoyi in 2012 through stocking of hatchery-reared animals
originating from Lake Michigan (see Weidel et al., 2022). The
first decade of the program has focused on developing
hatchery-rearing, stocking, and monitoring programs
that would allow the management agencies to implement a
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lake-wide restoration program. The initial objectives of the
program have been met and there is positive momentum in
many areas (e.g., rearing success, evidence of some survival
based on limited recaptures of stocked fish), however, there are
still some challenges to overcome (e.g., potentially poor
survival of stocked fish and difficulty maintaining captive
broodstock, Weidel et al., 2022). Lake Ontario fishery
managers are developing a more detailed restoration strategy
based on past successes and lessons learned since 2012
(C. Legard, New York State Department of Environmental
Conservation, personal communication, November 9, 2023),
consistent with the adaptive nature of the Laurentian Great
Lakes Coregonine restoration framework (Bunnell et al.,
2023).

Another example from North America is an ongoing effort
in Nova Scotia, Canada, to conserve endangered anadromous
C. huntsmani (Fisheries and Oceans Canada, 2018), which
only occurs within one of its two original watersheds in Nova
Scotia owing to negative interactions with invasive piscivo-
rous species, acidification of the aquatic habitat, and barriers to
inland spawning habitats (COSEWIC, 2010). One of the
strategies was an attempt to create a “back-up” (also known as
“refuge”) population by stocking hatchery-reared fishes from
2005-2008 in Anderson Lake (44.727, �63.620), which is
outside of its known range. As of 2018, no evidence of an
established refuge population had been confirmed (Fisheries
and Oceans Canada, 2018).

One other case study in the U.S. waters of Lake Huron
(44.816, �82.849) illustrates the management concern of
seeking to avoid introgression when using hatchery-reared fish
for a reintroduction program. C. artedi (Lesueur; Cisco) once
enjoyed a lake-wide distribution in this large water body in the
early 20th century, but several environmental stressors caused
it to become extirpated within one of its most important
habitats, Saginaw Bay (43.970, �83.504), by the 1950s
(Cottrill et al., 2020; Kao et al., 2022). In 2018, fishery
managers began a “reintroduction” of C. artedi into Saginaw
Bay to enhance its distribution within the main basin. We
acknowledge that this could also be classified as a conservation
action given that C. artedi is present in other parts of Lake
Huron but has failed to colonize this historically important
embayment over the past several decades. Hence, this effort
has involved collecting gametes in the Les Cheneaux Islands
region (45.956, �84.312) of Lake Huron (more than 265 km
from Saginaw Bay), rearing those animals in the hatchery until
they are juveniles (<100mm total length), and then stocking
them in Saginaw Bay. Fishery managers chose to start the
program with gametes from the same lake rather than using
gametes from another lake owing to concerns about
outbreeding depression, given the potential that any reintro-
duced C. artedi from another lake could eventually reproduce
with the locally adapted northern Lake Huron stock and reduce
its genetic diversity (Lake Huron Technical Committee, 2023).
Evidence of success has recently emerged with the recapture of
nearly 50 mature hatchery-origin fish in Saginaw Bay during
the 2022 spawning season (J. Bonilla-Gomez, personal
communication, January 23, 2024).

Any additions of hatchery-reared coregonines would
benefit from the use of conservation-based rearing practices
that seek to lessen potential negative genetic or ecological
effects (e.g., Flagg and Nash, 1999). There are many examples
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where introgression between hatchery reared coregonines and
wild coregonines has occurred (see Winkler et al., 2011;
Anneville et al., 2015). Wedekind et al. (2022) offers a
comprehensive review of the risks that can occur with stocking
hatchery reared fishes that can be applied to coregonines.
Eckmann (2012) argued that the stocking of C. lavaretus in
Lake Constance (Germany, Switzerland: 47.616, 9.415) may
be leading to hatchery fish outcompeting wild recruits and
could be inducing unwanted evolutionary changes by using
less than 10% of possible spawners when making hatchery
crosses. Likewise, Hirsch et al. (2013) argued that the
hatchery-reared fish do not represent the known within-species
diversity of C. lavaretus in the lake (e.g., spawners should be
collected from both shallower and deeper regions). Finally, it
can be logistically difficult and cost prohibitive to replicate the
natural temperatures under which hatchery coregonine
embryos and larvae are incubated and reared, respectively.
Recent studies have demonstrated that both the water
temperature during egg incubation and its variability can
affect coregonine embryonic development (Lim et al., 2017),
larval survival (Stewart et al., 2022), and even growth and
muscle mass achieved at later life stages (Steinbacher et al.,
2017). Given these potential challenges and risks in rearing
hatchery-reared animals for restoration or conservation
purposes, it is not surprising the fishery managers have
sought out other conservation or restoration tools or strategies
to achieve their objectives.

3 Translocations

Translocating wildlife to new ecosystems for the purpose
of restoration or conservation has enjoyed some high-profile
successes (Morris et al., 2021; Seddon, 2023). As a restoration
or conservation strategy for aquatic ecosystems, the movement
of fish directly between water bodies (i.e., translocation) or
minimizing how much time early life stages spend in the
hatchery (i.e., stocking unfed, yolk-sac larvae or rearing larvae
in natural ponds with natural food) can be advantageous
because it does not encumber the resources associated with
rearing while also limiting the potential for artificial selection
(i.e., selection of traits for the hatchery rather than in the wild,
see Flagg and Nash, 1999). At the same time, translocation
may increase the risks associated with movement of unwanted
pathogens or parasites between water bodies (Cunningham,
1996; Sainsbury and Vaughan-Higgins, 2012; Gaywood and
Stanley-Price, 2023). Additionally, if too few fish are
successfully translocated, this can lead to population bottle-
necks which can result in high levels of inbreeding and loss of
genetic diversity which, in turn, can negatively affect the long-
term viability of translocated populations (Stockwell et al.,
1996; Furlan et al., 2020; Præbel et al., 2021). The only
examples we found where translocations were directly used for
coregonines in a conservation or restoration context was in the
U.K. (see overviews in Maitland and Lyle, 2013; Adams et al.,
2014). The recommended criteria to facilitate translocation
with minimal impact on the source population is described in
Maitland and Lyle (1992) and the recommended criteria to
select receptor sites is described in Adams et al. (2014).

Within the U.K., the primary objective of translocations
was to increase the distribution and long-term security of
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endangered C. lavaretus and C. albula stocks by creating
“refuge” populations. Almost all of these have involved the
establishment of new populations in reservoirs where no
damage can be done to native biodiversity but where
conditions are likely sufficient for completion of coregonine
life cycles. Maitland and Lyle (1990) described the limited
native distribution of C. lavaretus in only seven water bodies-
two in Scotland (Loch Lomond (56.074, �4.595) and Loch
Eck (56.082, �4.994), where C. lavaretus is known locally as
Powan), four in England (known locally as Schelly), and one in
Wales (known locally as Gwyniad). Despite being described as
three separate species (see Kottelat and Freyhof, 2007) and
included as such within the International Union for
Conservation of Nature Red List, Crotti et al. (2020, 2021a)
could find no genetic evidence to support this conclusion. The
first attempt to create “refuge” C. lavaretus populations used
donor stock from Loch Lomond in Scotland, and transferred
eggs, embryos, juveniles, and adults to two other water bodies
within the Loch Lomond watershed (i.e., Carron Valley
Reservoir (56.030, �4.101) and Loch Sloy (56.273, �4.777);
Maitland and Lyle, 1990, 1992). Despite translocating less
than 15,000 unfed, yolk-sac larvae (with limited hatchery
rearing) and/or 100 adults to these two Scottish refuge water
bodies between 1988-1991, the creation of self-sustaining
refuge populations was successful. Sampling between
2005-2006 revealed differences in head morphology, size,
and growth among the source population and the two refuge
populations (Etheridge et al., 2010). Whether these morpho-
logical or ecological changes in the refuge populations were
due to founder effects owing to limited genetic diversity during
translocation, differential selection in the new habitat, genetic
drift, or phenotypic plasticity was not clear, but Etheridge et al.
(2010) discussed how further divergences between the Loch
Lomond donor stock and refuge populations could limit the
usefulness of the creation of refuge stocks.

The Scottish conservation program for C. lavaretus
continued in 2007 when stressors increased for Loch Eck and
one of the original refuge populations (Adams et al., 2014). The
first step was a suitability study to determine ideal refuge lakes,
ideallywith characteristics including 1) being sufficient size and
depth to provide coolwater habitat, 2) having limited water
drawdown during egg incubation, 3) being oligotrophic to
mesotrophic in productivity, 4) having a fish communitywith no
Salvelinus alpinus (Linnaeus; Arctic charr), Esox lucius
(Linnaeus; Northern pike), Perca fluviatilis (Linnaeus; Perch),
and Gymnocephalus cernuus (Linnaeus; Ruffe) (Adams et al.,
2014). Based on this study, four reservoirs received trans-
locations of eggs, yolk-sac, unfed larvae (with limited hatchery
rearing) and adults of C. lavaretus between 2009 and 2011; two
received animals from Loch Lomond and two received
animals from Loch Eck. By 2017, Crotti et al. (2021b)
collected C. lavaretus from all source and refuge lakes and
sought to determine whether there were differences geneti-
cally, morphologically, and ecologically (with stable iso-
topes). Similar to Etheridge et al. (2010), differences in fish
shape were detected between the source and refuge
populations. But Crotti et al. (2021b) also revealed novel
differences in their ecological niches, likely owing to more
diverse diets in the refuge populations. Genetic differentiation
between source and refuge populations was relatively low,
however genetic diversity was reduced in refuge populations
f 16
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relative to the source populations (Crotti et al., 2021b; Præbel
et al., 2021). Interestingly, there was also evidence of some
new genetic diversity arising in the refuge populations, owing
either to drift (Præbel et al., 2021) or potentially even local
adaptation (Crotti et al., 2021b). These findings were
consistent with Adams et al. (2016) that revealed the genetic
differences in C. lavaretus between its two native populations
(Lochs Lemond and Eck) and relatively weak within-lake
genetic structuring within the Loch Lomond population.
Furthermore, small estimates of effective population sizes for
lochs Lomond and Eck (Adams et al., 2016) suggest limited
capacity to adapt to future environmental change and, perhaps
even more limited capacity for their refuge populations. The
rigorous evaluations of these translocation efforts revealed
the importance of avoiding founder effects by seeking to
translocate relatively large numbers (e.g., >100) of geneti-
cally representative animals (Fischer and Lindenmayer, 2000)
to not only maximize survival but also to prevent bottlenecks
and founder effects in the refuge populations.

AnotherC. lavaretus translocation effort was undertaken in
Wales, where a native population only existed in Llyn Tegid
(52.888, �3.623). Thomas et al. (2013) described how the
population had remained relatively stable despite several
stressors, including periodic hypoxic conditions, potentially
detrimental water level fluctuations, and the introduction of
G. cernuus (an egg predator). Following the precautionary
approach, however, managers sought to create a refuge
population by translocating more than 80,000 embryos
(crossed from 366 males and 50 females) to nearby Llyn
Arenig Fawr (52.927, �3.717) between 2005-2007. Evalua-
tions revealed high egg hatching rates and the presence of one
gravid female during a 2009 sampling survey (Thomas et al.,
2013). Subsequent sampling in 2012 revealed two additional
age-1 fish sampled providing further evidence that the
translocation not only produced adult fish but that those
fishes were ultimately successful in their own reproduction by
at least 2011 (Winfield et al., 2013c).

A final translocation effort for C. lavaretuswas undertaken
in England where the Haweswater reservoir (54.521, �2.803)
population was of conservation concern. The goal was to
create two refuge populations in two lakes in the same
watershed that were believed to be environmentally suitable.
The details are described in Winfield et al. (1997), but are
summarized below. Spawning C. lavaretus were caught in
overnight gill net sets; gametes from five females and 21 males
were stripped, and eggs were immediately fertilized. The
embyros were then separated into one of 12 incubation boxes
(each approximated 0.2 m2) fitted with synthetic grass. Six
boxes each were transferred to Blea Water (54.489, �2.852)
and Small Water (54.483, �2.843) within 24 h. Within these
refuge lakes, the boxes were installed only about 5m offshore
at a depth of around 0.7m and secured to prevent movement
during possible wave actions during the next 4 months of
incubation. Although only about 24,000 embyros were
estimated to be translocated to each lake, juvenile whitefish
were sampled during that year of translocation from Blea
Water (Winfield et al., 1997) and later monitoring provided
evidence of wild reproduction in both refuge waters (Winfield
et al., 2003; Winfield et al., 2013a).

Translocation has also been attempted as a conservation
strategy for C. albula, which are more endangered in the
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British Isles than C. lavaretus, given that C. albula historically
occurred in only two water bodies in Scotland and two water
bodies in England (Maitland and Lyle, 1990; Winfield et al.,
2012; Bean et al., 2016; Lyle et al., 2019). C. albula has been
extirpated from Scottish waters since the 1970s, however
(Maitland, 2007), and was declared extirpated from Bas-
senthwaite Lake (54.650, �3.214) in England after extensive
surveys failed to yield one fish during 2007-2008 (Winfield
et al., 2008). Prior to the extirpation, however, initial refuge
populations were attempted into two Scottish water bodies in
1988 (Maitland and Lyle, 1990), but those efforts failed
(Winfield et al., 2012). A later attempt to create a refuge
population in two more Scottish water bodies via translocation
of embryos and larvae was undertaken in 1997 and 1999; a
viable population was subsequently created in one (i.e., Loch
Skeen (55.435, �3.311)), such that the Bassenthwaite
population now lives on in a new water body (Winfield
et al., 2012). In all these translocation efforts to conserve C.
albula, Winfield et al. (2012) noted that they avoided “...the
use of hatcheries completely or limited their use to vendace
development only to eyed-egg or swim-up larvae stages to
guard against any inadvertent but significant genetic selection
which is almost inevitable if older life stages are retained in
captivity.”

Outside of the purposes of conservation or restoration, our
review also revealed widespread use of translocations
throughout Europe for the purposes of creating or enhancing
fisheries. For example, the translocations of age-0, age-1, and
age-2 C. albula have been very common in Finland, although
success was relatively low owing to high transport mortality
(see Jurvelius et al., 1995; Huuskonen et al., 2004). Likewise,
in Switzerland, translocations were common for fishery
interests for more than a century (e.g., Steinmann, 1950;
Svarvar and Müller, 1982) until the practice was federally
banned in 1991 (BGF 6 1 b; https://www.fedlex.admin.ch/eli/
cc/1991/2259_2259_2259/de) after realizing that transloca-
tions led to introgressions with locally adapted whitefish
populations or endangerment of other native species. One
Swiss case study, however, is worth noting. Whitefish species
from Lake Zug (47.132, 8.485) were translocated to non-
whitefish lakes, including Lake Maggiore (46.135, 8.768) and
Lake Lugano (45.991, 8.970) at the beginning of the 20th
century for the purposes of creating whitefish fisheries. Yet
decades later the three whitefish species in Lake Zug either
became extinct or survived as an introgressed species (e.g.,
C. supersum, Selz and Seehausen, 2023). Hudson et al. (2011)
revealed that the populations of whitefish that are present in
lakes Maggiore and Lugano group in a neighbor-joining tree
with the extant population of whitefish from Lake Zug. Thus,
ironically, the historically translocated whitefish from Lake
Zug into lakes Maggiore and Lugano may be important �
albeit possibly introgressed- conservation units in Switzerland
today.

Our review revealed that translocation can be an effective
restoration or conservation tool, but that it has been rarely used
for this purpose. Given how commonly it has been used in
Europe for both conservation and fishery supplementation
purposes, the methods for this strategy are likely relatively
well developed and could easily be transferred to other regions
such as North America where it has been far less commonly
used. One key step to evaluate prior to undertaking
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translocation, however, is confirming that the recipient
ecosystem can likely support survival for all life stages of
the translocated species (sensu Adams et al., 2014).

4 Habitat restoration

A diversity of habitat restoration strategies was identified
in our review. Broadly speaking, we categorized them as to
whether they targeted improving spawning habitat, improving
connectivity, or targeting nutrients to improve oxygen, primary
or even secondary production. Either directly or indirectly
improving spawning habitat was the most common target
strategy. In fact, the diversity of coregonines in North America,
Europe, and Asia likely arose and was maintained owing to
habitat complexity that facilitated differences in spawning
habitats (e.g., depths, tributaries) and timing (e.g., Koelz,
1929; Smirnov, 1992; Vonlanthen et al., 2012). Anthropogenic
stressors have reduced the quality and/or quantity of
coregonine spawning habitat across continents. For example,
efforts to conserve C. albula in Bassenthwaite Lake were
negatively affected by high levels of sedimentation that
reduced egg survival (Winfield et al., 2012). Artificial
spawning substrates were developed to overcome this
impediment, but continued inputs of winter sediments led to
the eventual abandonment of this approach (Winfield et al.,
2006). Another stressor to nearshore coregonine spawning
habitat in reservoirs has been steep winter drawdowns that
expose optimal spawning habitat. To ameliorate this potential
bottleneck, new spawning habitat (7.75m2 plots of artificial
grass) that could be moved to deeper depths during a
drawdown was placed in known spawning regions for C.
lavaretus in Haweswater (Winfield et al., 2002). Although
eggs were recorded on the experimental plots for over a month,
unusually high rainfall precluded the need to move the eggs in
response to a drawdown, so the method was not fully tested.
Winfield et al. (2002) described additional plans to deploy
this technique at a larger scale but it has not yet occurred to
date. Winfield et al. (2013a) also described how reservoir
managers modified their hydrological regimes to benefit
C. lavaretus reproduction, but there was no evidence that this
effort ever improved recruitment. Finally, there were
widespread efforts in Swiss lakes to introduce gravel substrates
for lithophilic spawners and they were documented to benefit
S. alpinus (e.g., Ruhlé, 1977), but also likely benefitted
coregonines.

Beyond the smaller scale habitat improvements described
above, we also found two examples of reef construction
designed to benefit coregonine spawning habitat in North
America. In Bear Lake (U.S.: 40.846, �110.399) four rocky
reefs (each covering about 100 m2, with 153 m3 of rock) were
constructed in 10m of water to enhance spawning habitat and
recruitment of three endemic Prosopium spp. (Tolentino and
Moon, 2012). The motivation was to provide additional deeper
spawning habitat because shallower spawning habitats were
commonly exposed during drought years, and initial evalua-
tion revealed that all three species used the reefs for spawning
(Tolentino and Moon 2012). In the Detroit River (Canada and
U.S.: 42.191, �83.132), nearly 6000 ha of cobble and bedrock
was lost as a result of construction of shipping channels and
dredge spoil dumping more than a century ago (Bennion and
Manny, 2011). Given that removal of the substrate has been
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hypothesized to limit the recovery of several lithophilic
species, include C. clupeaformis (Mitchill; Lake whitefish)
within this river system (Hondorp et al., 2014), seven rock
reefs were constructed near areas documented to be
historically important for spawning, totaling more than
50,000 m2 (Manny et al., 2015; Vaccaro et al., 2016; Fischer
et al., 2018). Evaluation of whether the reefs increased egg
deposition relative to elsewhere revealed no increase for
C. clupeaformis, but higher deposition for other species (e.g.,
Acipenser fulvescens Rafinesque; Lake Sturgeon, Fischer
et al., 2018). Hydrodynamics (e.g., currents and velocity) in
addition to variables like depth and substrate likely play a key
role for coregonine spawning habitat selection (Lahti et al.,
1979; Zuromska, 1982; Meng and Müller, 1988; Ventling-
Schwank and Livingstone, 1994; Weidel et al., 2023),
indicating the importance of baseline understanding of key
habitat characteristics prior to determining how best to invest
in spawning habitat creation or amelioration.

Ensuring connectivity between critical habitats is a
common conservation strategy for many different taxa
(Moilanen et al., 2005; Magris et al., 2018). For coregonines,
Hondorp et al. (2014) described the importance of under-
standing whether there was sufficient connectivity between
spawning and nursery habitats forC. clupeaformis larvae in the
Detroit River. In the Arctic, Leppi et al. (2023) likewise
speculated as to how climate change could affect the
connectivity of several key habitats for migratory C. nasus
(Pallas; Broad Whitefish). Kiffney et al. (2018) described how
P. williamsoni (Girard; Mountain Whitefish) exploited a newly
installed fishway on the Cedar River (U.S.: 47.374,�121.970)
to colonize habitat at least 15 km above the dam (Kiffney et al.,
2018). Even though P. williamsoni was not the intended
beneficiary, the study demonstrates how large coregonines can
take advantage of passage opportunities designed for salmon
and trout. Finally, the C. huntsmani recovery plan included the
completion of a new fish passage facility to allow access into
the upper Petite Lakes (44.343,�64.566), which are presumed
to possess critical spawning habitat (Fisheries and Oceans
Canada, 2018).

One final tool that has been used to restore or conserve
coregonine habitat is nutrient management. Across the broad
distribution of coregonines, natural resource management
policies differ such that in some jurisdictions, nutrient
management is under the purview of a non-fisheries authority
(i.e., water quality managers) whereas in other cases fishery
managers can regulate nutrient inputs. There are several
examples in both North America and Europe where benthic
fish habitat has improved because of land or water policies that
have sought to improve oxygen concentrations in the lake
(Ludsin et al., 2001; Wanzenböck et al., 2002, Vonlanthen
et al., 2012). In Switzerland, for example, hypoxic waters have
been ameliorated by diffusing oxygen over the bottom of the
lake during the growing season and then using compressed air
to improve vertical circulation and bring oxygen deficient
deepwater to the surface where it can more easily absorb
oxygen during the winter months (see Gächter, 1987;
Vonlanthen et al., 2019). This approach has benefitted many
fish species, including whitefishes. Below, however, we
describe specific examples where scientists or fishery
managers have sought to alter nutrient inputs for the direct
benefit of coregonines.
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In the U.K., eutrophication has not only threatened both
C. lavaretus and C. albula, but also cited as a cause of the local
extinction of the only two native populations of C. albula in
Scotland (Maitland and Lyle, 2013). In Wales, one strategy to
conserve C. lavaretus in Llyn Tegid was to reduce nutrient
inputs by altering farming practices within two tributaries
(Owens et al., 2006). Likewise, in England, a strategy to
conserve C. albula in Bassenthwaite Lake involved improving
the capacity of a local upstream sewage treatment facility to
remove phosphorus and ideally improve egg survival
(Winfield et al., 2012). In Hamilton Harbor (43.285,
�79.851) in Lake Ontario, a Remedial Action Plan has been
developed that includes a goal to improve dissolved oxygen
based on the needs of C. artedi (Bowlby et al., 2016). In the U.
S. state ofMinnesota, a model was developed to identify which
lakes were sufficiently deep and of current good water quality
to sustain C. artedi, even with warming climate scenarios
(Fang et al., 2012; Jacobson et al., 2013). To maintain the
water quality in these so-called “refuge” lakes for C. artedi,
however, several different agencies have collaborated to
protect 75% of the watershed from agricultural or urban
development (Paukert et al., 2016) and this target has been
achieved for three of those previously identified refuge lakes
(P. Jacobson, personal communication, January 5, 2024).
Although most efforts to improve coregonine habitat have
involved the reduction of nutrient inputs, one example was also
identified where aquatic habitat was fertilized to enhance fish
production. Hardy et al. (2022) describe the application of
ammonium polyphosphate over a 20-km stretch of the
Kootenai River (U.S.: 48.620, �116.049) because the habitat
below the dam had become ultra-oligotrophic following the
dam construction. P. williamsoni was one of several species
that increased in abundance and biomass in response to the
fertilization, likely owing to increased primary and secondary
production to support improved its recruitment (Hardy et al.,
2022).

5 Eliminating harvest or creation
of protected areas

A common strategy to reduce mortality among imperiled
fish populations or populations that are being reintroduced is to
reduce fishing mortality (Walters and Martell, 2004). Among
coregonine populations, there are several examples of
regulating harvest to manage or sustain fisheries (e.g.,
Nümann, 1972; Gassner et al., 2004; Ebener et al., 2008),
but we found relatively few examples of eliminating harvest
altogether or creating a “protected area” (akin to a marine
protected area where fish are protected from harvest) in a
conservation or restoration context. Lake Constance is an
excellent case study of altering harvest regulations through
time. There are three whitefish species in Lake Constance
targeted by local fisheries and they have undergone dramatic
changes in abundance over time, largely corresponding with
changing trophic conditions from oligotrophic (1900–1955) to
mesotrophic (1955–1965) to eutrophic (1965–1990) to
mesotrophic (1990–2005) and finally back to oligotrophic
(2005-present); the highest yield occurred during the most
recent mesotrophic phase (Baer et al., 2017). Nutrient
management and fisheries management are decoupled in the
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Lake Constance watershed, and the strict controls on nutrient
inputs (Baer et al., 2017) coupled with the negative impacts of
invasive Dreissena bugensis (Andrusov; Quagga mussel) and
Gasterosteus aculeatus (Linnaeus; Threespine stickleback) on
whitefishes (Rösch et al., 2018) have reduced whitefish
population abundance to near unprecedented low levels. As a
result, the interagency fisheries management group recently
imposed a 3 yr ban on using nets and fish hooks to harvest
whitefish, beginning in 2024 (see https://ibkf.org/pressemittei
lungen/; accessed 10 August 2023). The next decade or so in
Lake Constance will reveal whether fishery closures are
sufficient to conserve imperiled populations already experienc-
ing multiple stressors. Lake Lucerne (47.018, 8.408) in
Switzerland offers another case study of a fishery closure to
conserve an imperiled coregonine population. C. nobilis
(Haack; Edelfisch) was historically the second most abundant
whitefish species in the lake prior to succumbing first to high
fishing pressure and then second to eutrophication (Vonlanthen
et al., 2012) and was even believed to be extinct by the 1980s
prior to being rediscovered in the 2000s (Müller, 2007). Since
this time, C. nobilis has been afforded protection from the
fishery year-round to help sustain its recovery (Selz and
Seehausen, 2023).

We found two other case studies where a coregonine
fishery was closed in response to low population abundance.
The first was the C. albula fishery in the Estonian waters of
Lake Peipsi (58.667, 27.296) from 2000-2006 (Kangur et al.,
2020). When environmental conditions improved, a lower
level of harvest was resumed but the population is still low
enough that it is subject to future closures to sustain the
population (K. Kangur, personal communication, September
14, 2023). The only other documented closure that we found
was from Lake Michigan in the 1970s. The deepwater cisco
assemblage had collapsed from a once diverse group of 8
species down to only 1 � C. hoyi, which was the smallest
species in the former assemblage (Smith, 1964; Wells and
McLain, 1973). By the early 1970s, even C. hoyi yield had
dropped to near record-low levels (Brown et al., 1985). By
1976, a commercial fishing closure was approved after
overcoming legal challenges, but it was relatively short-lived
with an interagency technical committee recommending a
return to lower levels of fishing by 1978 (Brown et al., 1985).
Over the next several years,C. hoyi recruitment reached record
levels and led to high levels of population abundance in
subsequent fisheries independent assessments, although the
commercial fishery yields never recovered to levels that were
once attained in the 1960s likely owing to changing market
conditions (Bunnell et al., 2006). With these two case studies,
it appears that the closure of coregonine fisheries can
contribute to a population recovery. Use of this management
action is certainly within the realm of traditional fishery
management strategies that could be used for future
conservation or restoration efforts.

The designation of protected areas or reserves have
become another fishery management tool, particularly in
marine ecosystems, to protect both fish and their habitat from
the potential negative effects of fishing (e.g., Agardy, 1997;
Gill et al., 2017). Protected areas, however, are less commonly
used in freshwater ecosystems than in marine ones (Saunders
et al., 2002), and we found only a few examples of creating
protected areas to directly benefit coregonine species. Even so,
f 16

https://ibkf.org/pressemitteilungen/
https://ibkf.org/pressemitteilungen/


Fig. 1. The number of water bodies in which we documented a given targeted restoration or conservation action for coregonines during our
review. Note that stocking of hatchery-reared fish did not include water bodies where the primary short-term objective was the supplementation
or creation of fisheries.
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one advantage of creating a protected area is that multiple
species can benefit. In the Lake Superior (U.S., Canada:
47.921, �87.411), for example, coregonines benefitted from
no-take protected areas that were designed to restore and
conserve Salvelinus namaycush (Walbaum; Lake trout; see
Zuccarino-Crowe et al., 2016; Dray Carl, Wisconsin Depart-
ment of Natural Resources, personal communication, February
27, 2024). Another illustrative case study is in Sweden, where
more than 205 lakes have been reported to have some area
closed to fishing at least part of the year. Sandström et al.
(2016) surveyed these lakes and found that they generally
occupied relatively small surface areas (e.g., 1.6% of the lake,
on average) and only rarely was fishing banned throughout the
year, with Salmo trutta (Linnaeus; Trout) typically the focal
species. An exception was in Lake Vättern (58.322, 14.501),
where a reserve has been in place since 2005 and protects at
least 16% of the lake surface area, with protecting whitefish
stocks identified as one of the target conservation goals
(Sandström et al., 2016). A second example of creating a
protected area specifically for coregonines occurred in a
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coastal region (∼ 61.127, 17.303) of the Gulf of Bothnia in the
northern Baltic Sea. In 2011, both a no-take reserve of 147 km2

and an even larger seasonal closure during the spawning period
were established to protect sea-spawning C. maraena.
Bergström et al. (2022) summarized the results of monitoring
adult densities during the late fall spawning season and young-
of-year (YOY) fishes in the spring. They reported significant
increases in adult densities in both protected areas relative to
reference areas during 2011–2016, but no increase in YOY
abundance. When the no-take reserve was reopened to fishing
in 2016, however, annual monitoring through 2021 revealed
declines in catch per unit effort in the former protected areas
and no differences in densities from the reference areas.
Bergström et al. (2022) concluded that C. maraena responded
quickly and positively to the protected areas, but that those
positive effects can quickly be lost once restrictions are lifted.
Although there is limited knowledge regarding the effective-
ness of creating protected areas for coregonines, the potential
positive benefits that this management tool has exhibited for
other fish species (e.g., Gill et al., 2017) suggests it could also
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Fig. 2. “Wordcloud” (generated using www.wordclouds.com) based on the theme area words or phrases that have organized the proceedings of
the 10 Coregonid Symposia that have been published since 1995. The size of the word or phrases is positively related to the frequency that the
word was used (e.g., genetics was used the most, N= 9). Conservation (N= 3) is highlighted with green to show that the word has been relatively
rarely used as a theme area in recently published proceedings.
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be an effective conservation or restoration tool for whitefishes
and ciscoes.
6 Control of invasive species

Invasive species have been identified as a threat or stressor
to coregonine populations across their distribution (e.g.,
Adams andMaitland, 1998;Winfield et al., 1998; Hrabik et al.,
1998; Etheridge et al., 2011; Wood, 2016; DeWeber et al.,
2022). Even if resources are available, controlling invasive
species can often be challenging (Simberloff, 2013), especially
those that have high reproductive output or wide physiological
tolerance (e.g., Marchetti et al., 2004). In aquatic ecosystems,
Page 10
there are examples of intensive invasive species control to
protect fish and fisheries, including invasive Petromyzon
marinus (Linnaeus; Sea Lamprey) control to protect salmonine
fisheries in the Laurentian Great Lakes (Christie and Goddard,
2003) or the concerted effort to suppress invasive S.
namaycush in Yellowstone Lake (U.S.: 44.456, �110.340)
to protect endemic Oncorhynchus clarkii bouvieri (Jordan and
Gilbert; Cutthroat trout; Koel et al., 2020). In our review, we
also found several examples describing some level of effort to
reduce the impacts of invasive species on imperiled coregonine
populations.

Conservation efforts to reduce invasive species impacts on
coregonines have ranged from exploratory modeling to
preventative legislation to intensive control through the
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applications of chemicals or physical removal. For example,
Conley et al. (2021) modeled the potential effectiveness of
applying rotenone chemical treatments to water bodies in the
Adirondack region (U.S.) to eradicate them of potential
competitors or predators of P. cylindraceum, when the other
physical and chemical habitat was otherwise viable (see
Conley et al., 2021). In England, the use of live baits was
banned in 14 lakes in 2002 to protect threatened coregonines
(e.g., C. albula, C. lavaretus) and S. alpinus from further
spread of potentially harmful invasive species (Winfield and
Durie, 2004). In Nova Scotia, Canada, one of the exploratory
recovery actions to conserve C. huntsmani was electrofishing
to reduce the densities of invasive piscivores, although the
effectiveness of the program has not yet been reported
(Fisheries and Oceans Canada, 2018). Finally, a more intensive
control effort was undertaken in Lake Päijänne (Finland:
61.662, 25.504) where less desirable percids and cyprinids
were targeted for removal to improve the survival of
production and survival of larval coregonines (Urpanen
et al., 2012). Although most of the fish species that were
removed from this 15,700 ha lake were native, they were
perceived to be detrimental to the diminishing coregonine
assemblage. Nonetheless, with a before-after-control-impact
design, no positive effect of the removal was detected on the
larval coregonines in the 5 yr after the 4 yr of intensive removal
(Urpanen et al., 2012). Finally, in Lake Constance, scientists
and managers are speculating possible strategies to control
invasive D. bugensis and G. aculeatus that are hypothesized to
be contributing to the declining whitefish populations. For
example, fishery managers could consider actions aimed at
boosting the densities of existing molluscivorous fishes in the
lake to reduce D. bugensis densities (Baer et al., 2022),
although any biomanipulation effort can still lead to
unexpected outcomes (Jeppesen et al., 2012). Likewise,
scientists have already begun evaluating the efficacy of
different techniques (e.g., fall trawling at depths 9-12m) to
remove high densities of G. aculeatus (Gugele et al., 2020).
Although controlling invasive species can be extremely
challenging, our review revealed relatively widespread interest
across both North America and Europe in researching and
developing techniques that could be feasible in the future. At
the same time, we were unable to document any examples
where managers have sought to control invasive species for the
direct benefit of coregonines and been successful, to date.
7 Conclusions

Our review revealed a diversity of management actions
that have been used to restore or conserve coregonines across
their wide distribution. Although we acknowledge our review
was assuredly incomplete given that some efforts were likely
not reported or easily accessible based on our collection
methods, we counted the frequency of water bodies for which
each coregonine restoration or conservation strategy was
applied (N= 74 total). Our estimates of how commonly each
strategy was used, illustrated that stocking of hatchery-reared
fish was the most frequent (N= 28, 38% of all strategies,
Fig. 1), which perhaps is not surprising given how commonly
fishery managers have exploited stocking of hatchery-reared
coregonines for other purposes such as fishery supplementation.
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Even in this review, we scrutinized several case studies to come
to the sometimes-difficult decision of the primary objective of
the stocking. Regardless, we note this relatively high frequency
of stocking was skewed by the inclusion of 24 water bodies in
New York (U.S.) where P. cylindraceum were stocked for the
purposes of reintroduction. One explanation for stocking of
hatchery-rearedfishbeingnotevenmore frequentlydocumented
for conservation purposes is legitimate genetic concerns about
stockinghatchery rearedfish in the samewaterbodyas imperiled
populations (see Flagg and Nash, 1999; McMillan et al., 2023).
At the same time, the use of hatchery-reared fish will likely
continue to be a critical component of restoration efforts where
reintroduction of a coregonine species is the primary objective,
as was the case for P. cylindraceum in Adirondackwater bodies,
C. oxyrinchus in the Rhine River, or C. hoyi in Lake Ontario.

The second most frequent (N= 16, 22%, Fig. 1) conserva-
tion or restoration strategy that we found was controlling
invasive species to benefit coregonines. Given the widespread
prevalence of non-indigenous species affecting aquatic
ecosystems (Walsh et al., 2016; Reynolds and Aldridge,
2021), it is not surprising that they can be stressor to sustaining
coregonine populations. At the same time, the relatively high
frequency was skewed by the inclusion of 14 lakes in the U.K.
where live baits were banned to protect threatened coregonine
populations (Winfield and Durie, 2004). This more preventa-
tive measure requires much less effort than more active control
measures that were reviewed, such as targeted electrofishing or
trawling to remove unwanted invasive fishes (e.g., Fisheries
and Oceans, 2018; Gugele et al., 2020).

The next most frequent strategies were translocations
(N = 13, 17%) and habitat restoration (N= 11; 15%). Using
translocations to conserve or restore coregonines was
documented only in lakes in the U.K., and the primary
purpose was to create “refuge” populations in cases where
populations were threatened in their native water bodies and
were translocated to nearby water bodies to reduce the chances
of regional extirpation. Several success stories were docu-
mented, including successful translocation of C. lavaretus into
several Scottish, English, and Welsh water bodies (see
Etheridge et al., 2010; Winfield et al., 2008; Winfield et al.,
2013b; Winfield et al., 2013c, Crotti et al., 2021b). Given that
translocations have also been commonly deployed in other
European countries to support fisheries (e.g., Jurvelius et al.,
1995), translocation methods are sufficiently developed and
could be transferred to other regions with limited use of this
strategy, such as North America where there are ongoing
attempts to reintroduce coregonines into the lakes where they
have been extirpated (see Bunnell et al., 2023). Examples of
habitat restoration were documented across several countries
and in both riverine and lake habitats. For the studies where
new spawning habitat was created, there was documentation of
coregonines quickly exploiting this new resource (e.g.,
Winfield et al., 2002; Tolentino and Moon, 2012). Broadly
speaking, investing resources on habitat restoration that can
allow fishes to overcome critical bottlenecks in their life
history may ultimately outperform other strategies that require
annual investment to sustain or enhance fish populations (e.g.,
Sass et al., 2017; Radinger et al., 2023). Hence, one key
consideration for managers that are considering habitat
restoration as a conservation or restoration strategy is to first
identify critical habitat that has been degraded to maximize the
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probability that investment to improve or create comparable
critical habitat will, indeed, lead to long term returns in higher
population densities.

Imposing strict harvest regulations or the creation of
protected areas was found in 6 lakes (i.e., 8%). That this
number was not higher was somewhat surprising, especially
given that managing harvest is a relatively common action for
managers to use in fisheries. Hence, we suspect that there may
be more examples of fishery closures to protect imperiled
populations than we documented through our methods. The
creation of protected areas, however, to explicitly protect
imperiled coregonine species from fishing mortality was only
documented in two areas (see Sandström et al., 2016;
Bergström et al., 2022) and only one of them was in
freshwater. Broadly speaking, the use of reserves to protect
freshwater or estuarine fish populations has lagged the usage
for marine fish populations (Saunders et al., 2002). At the
global policy level, momentum is growing towards attaining
ambitious goals such as ensuring that 30% of the Earth’s
“degraded terrestrial, inland water, and marine and coastal
ecosystems are under effective restoration” by 2030
(Convention on Biological Diversity, 2022). Hence the
creation of freshwater reserves for broader ecosystem benefits
(e.g., protecting habitat and broader biodiversity) may become
increasingly frequent in the coming decade and could provide a
leveraging opportunity for fishery managers targeting conser-
vation or restoration of coregonines.

In conclusion, this review revealed that the documentation
of conservation or restoration strategies targeting coregonine
species is not as well documented as one might have predicted
given the stressors that they are enduring or the extirpations
and extinctions that have occurred. One possible explanation is
that coregonines are not as commonly the focus of
conservation or restoration relative to other salmon or trout
in the Salmonidae family (see existing books or reviews on
salmon restoration: Verspoor et al., 2007; Naish et al., 2007; de
Leaniz et al., 2007), but it is possible that coregonines still
indirectly benefit from restoration efforts targeting other
species in their same family. For example, a review of
restoration projects in the national Swedish database indicated
more than 2000 projects, but only 0.2% noted coregonines as
the target species (unpublished data). In fact, our best examples
of targeted restoration or conservation was in the U.K., where
coregonines are rare and where legislative protection has
undoubtedly spurred action. Another indicator of the limited
focus on restoration or conservation even within the
coregonine scientific community was the review of the theme
area names that have organized the proceedings of the 10
Coregonid Symposia that have been published since 1995 (the
symposia proceedings published prior to 1995 did not organize
papers into theme areas). Of the 36 words or phrases that were
included in the wordcloud, genetics was the most common
(N= 9), followed by “biology”, “fisheries”, and “population
dynamics” (each with N= 5, Fig. 2). “Conservation” was only
the 9th most common (N = 3) and “restoration” was never
included in a theme area name, revealing the relatively small
number of times that symposia papers have reported efforts
related to coregonine conservation or restoration. Furthermore,
the appearance of “conservation” first occurred in the 2008
symposium (Tallman et al., 2012) and then reappeared in the
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2011 (Wanzenböck and Winfield, 2013) and 2020 symposia
(Karjalainen et al., 2021). Given this increasing frequency, it
appears that these topics are increasingly being studied and
potentially implemented to the benefit of coregonine
populations. Whether future symposia place even greater
emphasis on conservation and restoration topics remains to be
seen, but ideally this review will allow fishery scientists and
managers to consider a broader diversity of restoration or
conservation strategies when these objectives are prioritized.
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