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Abstract. Microbial-explicit soil organic carbon (SOC) cy-
cling models are increasingly being recognized for their ad-
vantages over linear models in describing SOC dynamics.
These models are known to exhibit oscillations, but it is not
clear when they yield stable vs. unstable equilibrium points
(EPs) – i.e., EPs that exist analytically but are not stable in
relation to small perturbations and cannot be reached by tran-
sient simulations. The occurrence of such unstable EPs can
lead to unexpected model behavior in transient simulations
or unrealistic predictions of steady-state soil organic carbon
(SOC) stocks. Here, we ask when and why unstable EPs can
occur in an archetypal microbial-explicit model (representing
SOC, dissolved OC (DOC), microbial biomass, and extracel-
lular enzymes) and some simplified versions of it. Further,
if a model formulation allows for physically meaningful but
unstable EPs, can we find constraints in the model parame-
ters (i.e., environmental conditions and microbial traits) that
ensure stability of the EPs? We use analytical, numerical,
and descriptive tools to answer these questions. We found
that instability can occur when the resupply of a growth sub-
strate (DOC) is (via a positive feedback loop) dependent on
its abundance. We identified a conservative, sufficient con-
dition in terms of model parameters to ensure the stability
of EPs. Principally, three distinct strategies can avoid insta-
bility: (1) neglecting explicit DOC dynamics, (2) biomass-
independent uptake rate, or (3) correlation between parame-
ter values to obey the stability criterion. While the first two
approaches simplify some mechanistic processes, the third
approach points to the interactive effects of environmental
conditions and parameters describing microbial physiology,
highlighting the relevance of basic ecological principles for
the avoidance of unrealistic (i.e., unstable) simulation out-

comes. These insights can help to improve the applicability
of microbial-explicit models, aid our understanding of the
dynamics of these models, and highlight the relation between
mathematical requirements and (in silico) microbial ecology.

1 Introduction

Current Earth system models (ESMs) have very simpli-
fied representations of soil organic carbon (SOC) dynam-
ics (Bradford et al., 2016; Todd-Brown et al., 2013; Varney
et al., 2022). Accuracy in matching observed SOC stocks
and turnover times has not significantly improved in the lat-
est ensemble of ESMs used in the Coupled Model Inter-
comparison Project (CMIP, CMIP6) (Varney et al., 2022),
with uncertainty about SOC responses to climate change
remaining high (Todd-Brown et al., 2013; Varney et al.,
2022). Consequently, a need to improve and diversify the
description of SOC dynamics in ESMs has been identified
(Bradford et al., 2016; Todd-Brown et al., 2013; Varney
et al., 2022; Wieder et al., 2015, 2018). Current ESMs em-
ploy linear degradation kinetics to simulate SOC degrada-
tion (Todd-Brown et al., 2013). Thereby, they miss to in-
tegrate important aspects of our current understanding of
major controls on SOC fate and to acknowledge the un-
certainties in describing these processes (Abramoff et al.,
2018; Abs et al., 2023; Bradford et al., 2016; Wieder et al.,
2015, 2018). Non-linear, microbial-explicit SOC models
can improve model–data agreement (Hararuk et al., 2015;
Wieder et al., 2013). These models vary in terms of the num-
ber and identity of C pools and the degree of non-linearity
(e.g., Allison et al., 2010; Manzoni and Porporato, 2009;
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Schimel and Weintraub, 2003; Wang et al., 2013, 2015;
Wieder et al., 2014, 2015). Among these models, the AWB
(Allison–Wallenstein–Bradford) model (Allison et al., 2010)
has emerged as an archetypal model structure to study the in-
fluence of soil microbial processes on carbon stocks (e.g.,
Abs et al., 2022; Calabrese et al., 2022; Georgiou et al.,
2017; Hararuk et al., 2015; Tao et al., 2023; Wieder et al.,
2015). The AWB model explicitly represents pools of micro-
bial biomass, extracellular enzymes produced by microbes,
polymeric SOC that is not available for microbial uptake, and
a pool of available dissolved organic carbon (DOC) produced
from enzymatic depolymerization of SOC (Allison et al.,
2010, Fig. 1a). With only four C pools and, commonly, two
non-linear terms, the AWB model retains a comparably sim-
ple structure and remains somewhat analytically tractable.

While better at predicting modern-day SOC stocks,
microbial-explicit SOC models are known to exhibit oscil-
latory behavior (e.g., Georgiou et al., 2017; Manzoni and
Porporato, 2007; Sierra and Müller, 2015; Wang et al.,
2014, 2016). Such oscillations can represent carbon–microbe
dynamics observed at small spatial scales (see, e.g., discus-
sion in Manzoni and Porporato, 2007) but are unfavorable
for application at larger spatial and temporal scales, where
such oscillations are generally not observed (Georgiou et al.,
2017; Wang et al., 2014). A few studies have analyzed the os-
cillatory properties of some microbial-explicit SOC models
(Georgiou et al., 2017; Manzoni and Porporato, 2007; Wang
et al., 2014, 2016). These studies characterized the dynam-
ics exhibited after a perturbation around a model’s equilib-
rium (i.e., when all state variables are at steady state): does
a model directly converge back to its previous equilibrium
or does it approach the equilibrium with dampened oscil-
lations? Different degrees of oscillatory behavior have been
described, but, generally, these models were found to be sta-
ble (that is, they do converge back to their previous equi-
librium) for given parameterizations or if they follow ba-
sic principles such as mass conservation and dependence of
fluxes on source pools (Sierra and Müller, 2015; Wang et al.,
2014, 2016). Stable oscillatory behavior, however, is only
one of the possible dynamics such non-linear models can ex-
hibit. In fact, these models can also be unstable (that is, after
perturbation, a model does not converge back to its previous
equilibrium) (Abs et al., 2022; Raupach, 2007; Schimel and
Weintraub, 2003; Sierra and Müller, 2015), but the occur-
rence of unstable equilibria in microbial-explicit SOC mod-
els remains largely unexplored. While unstable equilibrium
points exist analytically, they can never be reached by tran-
sient simulations. Thus, model parameterizations that yield
unstable equilibria can lead to unpredictable simulation out-
comes as amplifying oscillations can occur; expected equi-
librium states may not be reached (because they are unsta-
ble), hindering convergence in model spin-up; or (some) state
variables might collapse (e.g., Fig. 1b, yellow line). Further,
if C stocks are predicted based on analytical steady-state so-
lutions, unstable equilibria might lead to unrealistic predic-

tions, causing mismatched outcomes from dynamic simula-
tions. To increase the reliability of model predictions and
model applicability, it is important to understand when and
for what reasons microbial-explicit SOC models become un-
stable.

Here, we study an archetypal microbial-explicit SOC
model (based on the AWB model of Allison et al., 2010,
and some simplified versions of it) to answer the follow-
ing questions: (1) what mechanisms in microbial-explicit
SOC models (model structures, used kinetic formulations,
and parameter values) cause unstable equilibrium points to
emerge? (2) How can we select model structures and/or con-
strain model parameters to ensure the stability of equilibrium
points?

2 Methods

2.1 Archetypal microbial-explicit SOC model

We start by defining the C mass balance equations for a sys-
tem encompassing SOC (S), dissolved organic C (DOC, D),
microbial biomass C (MBC, B), and extracellular enzyme C
(ENZ, E) (Eqs. 1–4). The C compartments and flows are il-
lustrated in Fig. 1a, and symbols for the variables and fluxes
are defined in Tables 1 and 3. The C mass balance equa-
tions are written as a system of ordinary differential equa-
tions (ODEs).

dS
dt
= fI I −P + fDrBDB −LS (1)

dD
dt
= (1− fI )I +P −U + (1− fD)rBDB

+DE −LD (2)
dB
dt
= yBU −RE −DB (3)

dE
dt
= (ym− yB)U +RE −DE −LE (4)

Organic matter enters the system with flux I , which is par-
titioned between SOC and DOC depending on the fraction
fI . SOC is depolymerized by extracellular enzymes at rate
P and then is transferred to the DOC pool. DOC is directly
available for microbial uptake at rate U . Both P and U are
non-linear functions that can take on various forms (Table 2).

Microbes assimilate the substrate with a maximal effi-
ciency ym ≤ 1 that is limited by physiological and/or thermo-
dynamic constraints (Chakrawal et al., 2022) and use the sub-
strate either for growth (i.e., biomass production at rate yBU )
or to produce extracellular enzymes (at rate (ym− yB)U ).
We refer to this uptake-dependent pathway of extracellu-
lar enzyme production as “inducible” ENZ production. An
alternative or complementary mode of ENZ production is
the biomass-dependent “constitutive” ENZ production at rate
RE , given by

RE =mEB, (5)
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Figure 1. Model schematics of the archetypal microbial-explicit SOC model (a) and its relevant stability behaviors (b). Colored boxes
in (a) indicate the state variables of soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), and
extracellular enzymes (ENZs). Solid arrows indicate carbon fluxes, and dashed arrows connected to valve symbols indicate controls over the
non-linear kinetic. Gray arrows indicate processes neglected in some analyses. The dotted box delineates the system’s boundary. Colored lines
in (b) illustrate the dynamics of a state variable relative to its steady-state value (C∗) following a perturbation for a stable node (damping
coefficient = 1; blue line), a stable focus (0< damping coefficient < 1; red line), and an unstable focus (−1< damping coefficient < 0;
yellow line). The subplot axes are centered around the value of their respective damping coefficient.

where mE is the rate constant of constitutive ENZ produc-
tion. In both formulations, we assumed that respiratory costs
associated with enzyme production are already included in
the growth respiration (proportional to 1−ym). Two limiting
cases can be derived from this general description of extra-
cellular enzyme production:

Only constitutive ENZ production: yB = ym. (6)
Only inducible ENZ production: mE = 0. (7)

Both MBC and ENZ are assumed to decay with a linear
decay rate Di :

Di = di i, (i = B,E), (8)

but we also consider density-dependent microbial decay to
be an alternative to the linear kinetic (D′B = d

′

BB
b, with

1< b ≤ 2; Georgiou et al., 2017). All decayed ENZs are as-
sumed to return to the DOC pool, while only a fraction rB of
the decayed microbial biomass is recycled in the system and
partitioned between SOC and DOC according to the factor
fD . In turn, (1− rB)DB represents linear microbial mainte-
nance respiration. SOC, DOC, and ENZs can have abiotic
losses Li (e.g., erosion, leaching).

Li = li i, (i = S,D,E) (9)

The system of Eqs. (1)–(4) constitutes a model of SOC
cycling of varying complexity depending on the chosen ki-
netics. We refer to this four-pool model version as the SDBE
model according to the represented state variables. We use
this system as a starting point for our analysis but reduce
it to simpler variants to derive specific analytical results
(Sect. 2.2).

Commonly, depolymerization of SOC by extracellular
enzymes is described by either multiplicative (m), for-
ward Michaelis–Menten (f ), reverse Michaelis–Menten (r)
(Schimel and Weintraub, 2003), or equilibrium chemistry ap-
proximation (ECA, e) (Tang and Riley, 2013) kinetics. Ta-
ble 2 lists the respective formulations of Pi (i =m,f,r,e),
where vpi is the maximal depolymerization rate coefficient,
and Kp

i is the respective half-saturation constant (if appli-
cable). The uptake of DOC by microbes can be described
with similar formulations, such as Uj (j =m,f ), simply by
replacing S with D and E with B (Table 2), where vuj is
the maximal uptake rate coefficient, and Ku

f is the respective
half-saturation constant.

Many combinations of depolymerization and uptake ki-
netics are possible. For model versions with both non-linear
terms, we limit our analysis to only a few combinations of
depolymerization and uptake kinetics (indicated by the sub-
script i× j for the ith depolymerization kinetic and j th up-
take kinetic), namely m×m, f ×f , and r×f (see the sum-
mary of analyzed scenarios in Table 4). The first combina-
tion employing only multiplicative kinetics facilitates analyt-
ical tractability, the second combination is commonly used in
other models (e.g., Allison et al., 2010; Georgiou et al., 2017;
Tao et al., 2023), and the third combination is based on the
conclusions of Tang and Riley (2019) that r × f might be
an appropriate (and analytically tractable) approximation of
ECA kinetics.

To improve the analytical tractability of the four-pool
model, we neglect abiotic losses of SOC and ENZ by setting
LS = LE = 0 and by limiting the analysis only to the case
of constitutive ENZ production (yB = ym, Eq. 6) (Table 4).
The Jacobian matrix of partial derivatives for the four-pool
model J SDBE

i×j is given in Eq. (A17). The matrix J SDBE
i×j is
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Table 1. Description of all state variables and fluxes.

Symbol Description Unit

State variables

S Soil organic carbon (SOC) mg C g−1

D Dissolved organic carbon (DOC) mg C g−1

B Microbial biomass (MBC) mg C g−1

E Extracellular enzymes (ENZs) mg C g−1

Fluxes

I Organic carbon input mg C g−1 d−1

P Depolymerization of SOC mg C g−1 d−1

U Microbial uptake of DOC mg C g−1 d−1

LS Loss of SOC mg C g−1 d−1

LD Leaching of DOC mg C g−1 d−1

LE Leaching of extracellular enzymes mg C g−1 d−1

DB Decay of microbial biomass mg C g−1 d−1

DE Decay of extracellular enzymes mg C g−1 d−1

RE Constitutive production of extracellular enzymes mg C g−1 d−1

Table 2. Employed non-linear kinetics for the depolymerization rate
Pi and uptake rate Uj . Note that m indicates multiplicative, f in-
dicates forward Michaelis–Menten, r indicates reverse Michaelis–
Menten (Schimel and Weintraub, 2003), and e indicates equilibrium
chemistry approximation (Tang and Riley, 2013).Ur andUe are not
used in our analysis.

Kinetic (i|j ) Pi Uj

m v
p
mSE vumDB

f v
p
f

S

K
p
f+S

E vu
f

D
Kuf+D

B

r v
p
r S

E

K
p
r +E

–

e v
p
e

SE

K
p
e +S+E

–

expressed in terms of general depolymerization and uptake
kinetics Pi and Uj , which allows for stability analysis of the
SDBE model irrespective of the specific kinetics.

2.2 Reduced models for mathematical analysis

To identify which and how structural elements of the four-
pool model with two non-linear kinetics affect model stabil-
ity, we introduce two reduced model versions:

1. the SBE (SOC–MBC–ENZ) model, neglecting DOC
dynamics, and

2. the SDB (SOC–DOC–MBC) model, assuming ENZ to
be at a quasi-steady state.

Both model versions have only three pools but are differ-
ent as, in the SBE model, only one non-linear term remains,
while the SDB model still has both non-linear depolymeriza-

tion and uptake kinetics. We analyze the former, less non-
linear model, for all depolymerization kinetics listed in Ta-
ble 2 with both constitutive and inducible ENZ production
pathways and including abiotic losses of S and E (Table 4).
In contrast, we analyze the latter, more non-linear model,
after applying the same simplifying assumptions as for the
four-pool model (Table 4) – that is, we set LS = LE = 0,
yB = ym, and we only consider three combinations of de-
polymerization and uptake kinetics (m×m, f×f , and r×f ).

2.2.1 SBE model

DOC dynamics are neglected in the SBE (SOC–MBC–ENZ)
model. Instead, it is assumed that any organic carbon that is
made available by depolymerization of SOC is directly taken
up by microbes – that is, U = P . The flux of decayed ex-
tracellular enzymes DE enters the SOC pool, and the parti-
tioning factors fI and fD are set to 1. The resulting system
of equations is given for the ith kinetic formulation for P
(Table 2) by

dS
dt
= I −Pi + rBDB +DE −LS, (10)

dB
dt
= yBPi −RE −DB , (11)

dE
dt
= (ym− yB)Pi +RE −DE −LE . (12)

Note that, in this formulation, unless ENZ production is
purely constitutive (Eq. 6), ENZ production is (partly) in-
dependent of microbial biomass (as Pi only depends on E
and not on B). Consequently, as soon as there are extracellu-
lar enzymes that catalyze depolymerization, further enzyme
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production follows. The Jacobian matrix of the SBE model
J SBE
i is a 3× 3 matrix given by Eq. (A1).

2.2.2 SDB model

In the SDB (SOC–DOC–MBC) model, the extracellular en-
zyme pool is assumed to be at a quasi-steady state; that is,
dE
dt = 0. With LE = 0 and yB = ym, we obtain the quasi-

steady-state concentration of E from Eqs. (4), (5), and (8)
as

Eqss
=
mE

dE
B. (13)

The SDB model is obtained by substituting Eqss for E in
Eqs. (1)–(3), which yields the following after assumingLS =
0:

dS
dt
= fI I −P

qss
i + fDrBDB , (14)

dD
dt
= (1− fI )I +P

qss
i −Uj + (1− fD)rBDB

+D
qss
E −LD, (15)

dB
dt
= ymUj −RE −DB . (16)

In this model version, two non-linearities remain. Substitut-
ing Eqss for E in DE and Pi , we obtain Dqss

E = RE and
P

qss
i = f (S,B), respectively. The Jacobian matrix of the

SDB model, J SDB
i×j , is a 3× 3 matrix given by Eq. (A10).

2.3 Stability analysis

Here, stability behavior refers to how a model responds to
a small perturbation around an equilibrium point (illustrated
in Fig. 1b). The equilibrium points are obtained by assuming
that the system behavior does not change over time – i.e., by
setting the ODEs of all state variables C to be equal to zero
( dC

dt = 0). This yields their steady states C∗. For non-linear
systems, stability is determined by the signs of the eigen-
values (λ) of the Jacobian matrix J evaluated at an equi-
librium point (denoted as J

∣∣
∗
; eig(J

∣∣
∗
)= λ) (e.g., Argyris

et al., 2015). Briefly, if the real parts of all eigenvalues are
negative (Re(λ) < 0), the equilibrium point is stable: the sys-
tem will converge back to this equilibrium point after a per-
turbation. Instead, if one or more eigenvalues have positive
real parts (Re(λ) > 0), the equilibrium point is unstable, and
the system will not return to the same state. If the eigenvalues
additionally have non-zero imaginary parts (Im(λ) 6= 0), os-
cillations around the equilibrium point occur (Fig. 1b). Sta-
bility analysis is described in more detail in, e.g., Argyris
et al. (2015).

2.3.1 Analytical approach

Because the eigenvalues of the Jacobian matrix can be an-
alytically cumbersome, even in the comparably compact

three-pool models, we use the Routh–Hurwitz criterion (e.g.,
Argyris et al., 2015; Horn and Johnson, 1994) for J

∣∣
∗
. The

Routh–Hurwitz criterion states that all Re(λ) values have
negative signs if, and only if,

1. all coefficients ai of the characteristic polynomial
det(J

∣∣
∗
− 1λ)= 0 (where 1 is the identity matrix;

Eqs. 17 and 18) are positive (i.e., ai > 0), and

2. a1a2−a3 > 0 (if J
∣∣
∗

is a 3×3 matrix) or a1a2a3−a
2
3−

a2
1a4 > 0 (if J

∣∣
∗

is a 4× 4 matrix).

Thus, by applying the Routh–Hurwitz criterion we can ana-
lytically evaluate the stability around the equilibrium points
of the non-linear systems given by the three- and four-pool
models without directly evaluating λ analytically. The char-
acteristic polynomial for a 3× 3 matrix is given by

λ3
+ a1λ

2
+ a2λ+ a3 = 0, (17)

and for a 4× 4 matrix, it is given by

λ4
+ a1λ

3
+ a2λ

2
+ a3λ+ a4 = 0. (18)

In both cases, a1 is the negative trace of J
∣∣
∗

(a1 =−tr(J
∣∣
∗
)).

2.3.2 Numerical simulations

We also compute λ and the steady-state values of the state
variables numerically. If not otherwise specified, 100 000
Monte Carlo simulations were produced by randomly draw-
ing parameter values from (log-)uniform distributions using
a Latin hypercube sampling algorithm (MATLAB R2022b’s
lhsdesign function; The MathWorks Inc., 2022). All param-
eters and their respective ranges are listed in Table 3. Par-
titioning coefficients were sampled from uniform distribu-
tions, while rate constants were log10-transformed before
sampling.

Following Georgiou et al. (2017) and Sierra and Müller
(2015), the stability of equilibria was evaluated using the
damping coefficient given by

ζ =min

[
−Re(λ)√

Re(λ)2+ Im(λ)2

]
, (19)

which ranges between −1 and 1. Note that ζ has positive
values only if all Re(λ) < 0, indicating a stable equilibrium
point, and it has negative values if any Re(λ) > 0, indicat-
ing an unstable equilibrium point. For Im(λ)= 0, ζ is ei-
ther 1 or −1, indicating no oscillations, while −1< ζ < 1
for Im(λ) 6= 0 indicates that oscillations occur.

Numerical simulations were carried out in MATLAB
2022b (The MathWorks Inc., 2022), and color maps created
by (Crameri, 2018a, b) were used for visualization.

2.3.3 Classification of equilibrium points

Our analyses only consider physically meaningful equilib-
rium points – that is, only equilibrium points for which all
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Table 3. Description of all parameters, their units, and used ranges for Monte Carlo simulations. Where applicable, parameterizations of
limiting cases are separated by |. Parameter ranges where derived from Hararuk et al. (2015); Tao et al. (2023) and Cotrufo and Lavallee
(2022). Baseline values were based on “conventional” values defined by Tao et al. (2023). See Sect. S1 in the Supplement for the derivation
of parameter ranges for m, r , and l kinetics, as well as for d ′

B
and I .

Symbol Description Unit Baseline Range

Rate constants

I Organic C input rate mg C g−1 d−1 varied 1.88× 10−4
− 2.43× 10−2

v
p
m Depolymerization rate coefficient (m) g mg C−1 d−1 1.99× 10−1 9.13× 10−3

− 5.48× 103

v
p
f

Depolymerization rate coefficient (f ) d−1 5.96× 101 9.13− 2.74× 105

v
p
r Depolymerization rate coefficient (r) d−1 2.49× 10−1 9.13× 10−5

− 2.74
K
p
f

Depolymerization half-saturation constant (f ) mg C g−1 3.00× 102 5.00× 101
− 1.00× 103

K
p
r Depolymerization half-saturation constant (r) mg C g−1 2.00× 10−1 5.00× 10−4

− 1.00× 10−2

vum Uptake rate coefficient (m) g mg C−1 d−1 1.25 3.04× 10−2
− 1.10× 102

vu
f

Uptake rate coefficient (f ) d−1 2.49× 10−1 9.13× 10−2
− 2.74

vu
l

Linear uptake rate coefficient d−1 – 3.04× 10−3
− 1.10× 101

Ku
f

Uptake half-saturation constant (f ) mg C g−1 2.00× 10−1 2.50× 10−2
− 3.00

lS Loss rate coefficient of SOC d−1 0 –
lD Leaching rate coefficient of DOC d−1 varied | 0 2.74× 10−4

− 2.74× 10−1
| 0

lE Leaching rate coefficient of extracellular enzymes d−1 0 –
dB Decay rate coefficient of biomass d−1 4.81× 10−3 1.37× 10−3

− 2.74× 10−1

d ′
B

Density-dependent dB g mg C−1 d−1 – 1.37× 10−2
− 2.74

dE Decay rate coefficient of extracellular enzymes d−1 2.49× 10−2 2.74× 10−3
− 2.74

mE Constitutive enzyme production rate coefficient d−1 1.25× 10−4 8.22× 10−5
− 1.83× 10−4

| 0

Partitioning coefficients

rB Recycling efficiency of decayed biomass 1 1.00 0.20− 1.00
ym Maximal yield 1 0.60 0.01− 0.80
yB Fraction of uptake going to biomass production 1 ym 0< yB ≤ ym | ym
fI Fraction of input going to SOC 1 0.90 0.50− 1.00
fD Fraction of decayed biomass going to SOC 1 0.50 0.50− 1.00

Parameter groups

α Extracellular enzyme turnover d−1 α = dE + lE
β Microbial biomass turnover d−1 β = dB +mE
η Parameter group 1 d−1 η = (ym− yB )dB + ymmE ≥ 0
ω Parameter group 2 d−2 ω = αβ −αyBrBdB − ηdE ≥ 0

state variables are simultaneously positive and real. Within
the physically meaningful equilibrium points, we distinguish
three categories:

1. stable, where all physically meaningful equilibrium
points are stable (i.e., stable node or focus points; Ar-
gyris et al., 2015);

2. stable and plausible, where all physically meaningful
equilibrium points are stable and also give plausible nu-
merical results;

3. unstable, where all physically meaningful equilibrium
points are not stable (i.e., unstable node or focus points;
Argyris et al., 2015).

Based on data synthesized by Wang et al. (2013) and on
educated guesses, we applied the following conditions for
considering results to be plausible: tOC = SOC + DOC +
MBC + ENZ ≤ 500 mgC g−1 (= 50%), DOC/tOC < 0.01,
MBC/tOC < 0.05, and ENZ/MBC < 0.1, where tOC indi-
cates the total organic carbon content (the sum of all four
carbon pools).

2.3.4 Causal loop analysis

In addition to the mathematical analysis of equilibrium
points and their stability, we present causal loop diagrams
that qualitatively summarize causal links in a system and the
feedbacks they create (Haraldsson, 2004). This analysis can
help to understand the behavior a system exhibits after a per-
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Table 4. Summary of analyzed models, respective simplifying assumptions, and types of analysis (ana. – analytical, num. – numerical).

Model No. of pools Kinetics Simplifying assumptions Analysis

SBE 3 m,f,r,e none ana.
SDB 3 m×m,f × f,r × f LS = LE = 0 yB = ym ana.

SDBE 4 m×m,f × f,r × f LS = LE = 0
yB = ym ana. + num.
mE = 0 num.

Table 5. Summary of steady-state solutions of the three-pool SBE model for different kinetics of depolymerization. The “biotic” equilibrium
solutions for microbial biomass and extracellular enzymes have the same form for any chosen kinetic.

Kinetic (i) S∗
k,i

B∗
k,i

E∗
k,i

Abiotic (k = 0) i I
lS

0 0

Biotic (k = 1)

m
αβ
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ω lS

(
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e η
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v
p
e

turbation around an equilibrium point. In a causal loop di-
agram, causal connections are depicted by arrows, tying a
cause (at the tail of the arrow) to its direct effect (at the head
of the arrow) (Haraldsson, 2004). The sign of the causal rela-
tion (+ or −) depends on whether an isolated change in one
element causes another to change in the same (+) or opposite
(−) direction in relation to the initial change (relative to the
unchanged state) (Haraldsson, 2004; Richardson, 1986). For
example, a decrease in the microbial uptake rate would lead
to relatively less microbial biomass (compared to the case
where the uptake rate had not changed), describing a positive
causal relation. Closed loops with zero or an even number
of negative interactions are denoted as positive or reinforc-
ing feedback loops R, and closed loops with a odd number
of negative interactions are denoted as negative or balancing
feedback loops B (Haraldsson, 2004; Richardson, 1986).

3 Results

We analyzed three model versions with different model struc-
tures (number of state variables and/or non-linearities; Ta-
ble 4, Sect. 2.2). We first present analytical results for the
simpler three-pool models with one (SBE) and two non-
linear terms (SDB), followed by analytical and numerical re-
sults for the four-pool SDBE model (Table 4). We use causal
loop diagrams to qualitatively interpret these results.

3.1 SBE model: neglecting DOC dynamics

3.1.1 Steady-state solutions

For all kinetic descriptions of the depolymerization rate (Ta-
ble 2), the three-pool SBE model has two equilibrium points
(EPs). Of these, one is an “abiotic” equilibrium Q0, where
only SOC exists and where microbial biomass and extracel-
lular enzymes are zero; i.e., Q0 = (S

∗

0 ,0,0). Here, the as-
terisk indicates a state variable at steady state, and the sub-
script 0 signifies the abiotic solution. In turn, for each ki-
netic, there exists an alternative “biotic” equilibrium point
with non-zero microbial biomass and extracellular enzymes;
i.e., Q1,i = (S

∗

1,i,B
∗

1,i,E
∗

1,i). The steady-state solutions for
these equilibria depend on the ith formulation used to de-
scribe Pi . All solutions are reported in Table 5, where, for
convenience, parameters have been combined into parame-
ter groups: extracellular enzyme turnover α > 0, microbial
biomass turnover β > 0, and parameter groups η ≥ 0 and
ω ≥ 0 (Table 3).

While the abiotic equilibrium point is always positive, the
biotic one can only be positive (and thus physically meaning-
ful) if

S∗1,i < S
∗

0 → lSS
∗

1,i < I, (20)

i.e., if the linear SOC loss rate is smaller than SOC inputs.
Note that, for f and e kinetics, additional conditions apply
for positivity.

If the abiotic loss of SOC is neglected (i.e., lS = 0), the
abiotic equilibrium point does not exist (SOC would accumu-
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Figure 2. Simplified causal loop diagrams of the SBE (a) and SDB and SDBE models (b). Green arrows marked with “+” indicate positive
interactions, and red arrows marked with “−” indicate negative interactions. R signifies reinforcing loops, and B signifies balancing loops.
Pools are marked by gray boxes, and rates are marked by white boxes. The microbial growth substrate is highlighted in yellow with a
thick outline. In (a), the dashed green line (at R2) indicates the effect of inducible ENZ production and vanishes if only constitutive ENZ
production is considered. In (b), the dashed green line (at R2) indicates the effect of biomass-dependent non-linear uptake kinetics and
vanishes for biomass-independent uptake kinetics. In the SDB (SDBE) model P †

i
and ENZ† signify P qss

i
(Pi ) and Eqss

i×j
(E∗
i×j

). The seesaw
in (b) illustrates the balance between the partial derivatives in Eqs. (25) and (26) and how they affect stability. See Sect. 2.3.4 for details on
how to read the causal loop diagrams.

late at the constant rate I ), and, in accordance with Eq. (20),
the biotic equilibrium is always physically meaningful.

3.1.2 Stability analysis

To analyze whether a physically meaningful equilibrium
point is also stable, we apply the Routh–Hurwitz criterion to
the Jacobian matrix J SBE

i (Eq. A1 in the Appendix) evaluated
at the kth equilibrium point (J SBE

i

∣∣
∗,k

) – either the abiotic
(k = 0) or the biotic equilibrium (k = 1) (detailed in Sect. A1
in the Appendix and in Sect. S2.1 in the Supplement). From
this, we find that the stability of a physically meaningful abi-
otic equilibrium is conditional on

∂Pi

∂E

∣∣∣∣
∗,0
<
αβ

η
, (21)

whereas all physically meaningful biotic-equilibrium points
of the three-pool SBE model are also stable.

Figure 2a shows a simplified causal loop diagram of the
SBE model (sparing all loss and decay terms) that can help
to understand the dynamic behavior of the model after a per-
turbation around an equilibrium point. The reinforcing loop
R1 describes the increase in microbial biomass with an in-
creasing depolymerization rate (∝ uptake rate), leading to an
increased ENZ production rate; an increased ENZ concen-
tration; and, consequently, a further increasing depolymer-
ization rate. This reinforcing effect is dampened by the bal-
ancing loops B1 (the depletion of SOC by depolymerization)
and B2 (the carbon cost of ENZ production). The reinforcing
loop R2 exists only if inducible ENZ production is consid-
ered (yB < ym; higher depolymerization stipulates the pro-
duction of more extracellular enzymes, which promote de-
polymerization).R1 andR2 are not independent of each other

and have to obey mass balance – i.e., per unit of uptake, an
increase in inducible ENZ production (∝ ym− yB ) can only
be achieved by reducing the build-up of microbial biomass
(lowering yB ). An extreme case of this is yB = 0; in this case,
no microbial biomass is produced, and only B1 and R2 re-
main. From the stability analysis (Sect. A1 and Sect. S2.1
in the Supplement), we obtained no conditionality on the sta-
bility of physically meaningful equilibrium points in the SBE
model. Thus, for any proportion of constitutive vs. inducible
ENZ production, all physically meaningful biotic equilibria
are also stable. That is, the dynamic behavior of the model af-
ter a perturbation around its equilibrium point is dominated
by the balancing feedbacks, ensuring a convergence back to
the equilibrium point.

3.1.3 Exclusive stability of either abiotic or biotic
equilibrium

We recall that, for the biotic equilibrium to be physically
meaningful, it is required that S∗1,i < S

∗

0 (Eq. 20); whereas,
for the abiotic equilibrium point to be stable, it is required by
Eq. (21) that ∂Pi

∂E

∣∣
∗,0 <

αβ
η

. This condition translates for, e.g.,
multiplicative kinetics to

∂Pm

∂E

∣∣∣∣
∗,0
= v

p
mS
∗

0 <
αβ

η
→ S∗0 <

αβ

v
p
mη
= S∗1,m. (22)

This means that, when the biotic equilibrium is physically
meaningful, the abiotic equilibrium is unstable and vice
versa. Therefore, no region in the parameter space yields a
physically meaningful bi-stability in which biotic and abi-
otic equilibria are simultaneously physically meaningful and
stable. This holds for all evaluated kinetics (see Sect. S2.1 in
the Supplement for the remaining analytical derivations).
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Table 6. Summary of steady states for the three-pool SDB and four-pool SDBE model for different kinetics of depolymerization and uptake.
The abiotic steady state is only defined for lS > 0. Biotic steady states are given for lE = lS = 0 and yB = ym. E†

k,i×j
signifies Eqss

k,i×j
or

E∗
k,i×j

in the SDB and SDBE models, respectively. The biotic-equilibrium solutions for microbial biomass and enzymes have the same form
for all chosen kinetics.

Kinetics S∗
k,i×j

D∗
k,i×j

B∗
k,i×j

E
†
k,i×j

Abiotic (k = 0) i× j fI
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(1− fI ) IlD 0 0

Biotic (k = 1)
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mmE
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ym vum
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π
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ymv
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f
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ymv
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(
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p
r +E
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)
Ku
f
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ym v

u
f−β

3.2 SDB model: neglecting ENZ dynamics

3.2.1 Steady-state solutions

Table 6 reports the steady-state solutions of the three-pool
SDB model, where, for convenience, parameters were further
grouped into

γi×j = fDrBdBym+πfI
I

I − lDD
∗

1,i×j
(23)

and

π =
1
dE
ω(lE = 0,yB = ym)= (1− ym)︸ ︷︷ ︸

>0

mE

+ (1− ymrB)︸ ︷︷ ︸
>0

dB > 0. (24)

Because an abiotic equilibrium point exists only for lS > 0
(Table 6), we only evaluate the stability of the biotic equi-
librium and drop “1” from the subscript for conciseness.
Biotic steady states can only be physically meaningful for
I > lDD

∗

i×j , meaning that the DOC leaching flux cannot be
larger than the total OC input flux. With f × f and r × f
kinetics, it is additionally required that β < ym vuf , implying
that the maximal per-biomass assimilation rate ym vuf must
be larger than the microbial biomass turnover (β =mE+dB ;
Table 3). For f × f kinetics, it is additionally required that

dE
ymv

p
fmE

γf×f < 1 for steady states to be positive.

In the absence of DOC leaching (for lD = 0), with m×
m and f × f kinetics, S∗i×j becomes independent of I
(by Eq. 23), while B∗i×j and Eqssi×j are linear functions of
I . In contrast, for lD = 0, S∗r×f is linearly dependent on
OC input I . For lD > 0, S∗m×m is a function of I

I−lDD
∗
m×m

(Eq. 23), causing S∗m×m to decline with increasing inputs as
I

I−lDD
∗
m×m
→ 1 for I>>lDD∗m×m. Only in S∗r×f does I still

appear in a linear term for lD > 0 as well.

3.2.2 Stability analysis

The Jacobian matrix of the SDB model around the biotic
equilibrium, J SDB

i×j

∣∣
∗
, is given by Eq. (A10). Evaluating the

respective coefficients of the characteristic polynomial and
the requirement that a1a2−a3 > 0 yields a cumbersome suf-
ficient and necessary condition for the stability of the bi-
otic EPs of the SDB model (Eqs. A11–A13; see details in
Sect. A2 and Sect. S2.2 in the Supplement). The appearance
of such a conditional statement means that, in contrast to
the SBE model, the SDB model can have physically mean-
ingful but unstable EPs (i.e., if the conditions described by
Eqs. A11–A13 do not hold). A perturbation around such an
unstable EP will cause the system to diverge from the EP. In
this case, the biotic pools (MBC and quasi-steady-state ENZ)
will collapse, while DOC will reach a steady state as D∗0,i×j
(for lD > 0), and SOC will accumulate indefinitely.

The obtained sufficient and necessary condition given by
Eqs. (A11)–(A13) does not allow for easy interpretation or
application. We thus propose a sufficient (i.e., a more conser-
vative or strict) condition for stability that is easier to trace
analytically as follows:

∂P
qss
i

∂S

∣∣∣∣
∗

+ ymfDrBdB ≥ ym
∂P

qss
i

∂B

∣∣∣∣
∗

. (25)

This sufficient condition for the stability of the biotic-
equilibrium points of the SDB model holds for all cases rel-
evant to our analysis (Sect. S2.2 in the Supplement). De-
scribed in words, this condition requires the depolymeriza-
tion rate to be less sensitive to a change in microbial biomass
than to a proportional change in SOC. Figure 2b illustrates
this relation in a simplified causal loop diagram. The rein-
forcing loop R1 causes the depolymerization rate (P qss

i ) to
increase as the (quasi-steady-state) ENZ concentration in-

creases (quantified by ∂P
qss
i

∂B

∣∣
∗
). This then increases the DOC

concentration and uptake and ultimately causes a further in-
crease in microbial biomass and (quasi-steady-state) ENZs.
This positive feedback is accelerated by an additional rein-
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Figure 3. Numerical evaluation of the proposed sufficient condition for stability of the SDBE model with f × f kinetics and constitutive
ENZ production. The proposed stability condition Zf×f ≥ 0 (Eq. 26) is derived from an analytical evaluation of the simpler SDB model. A
total of 100 000 Monte Carlo simulations within the parameter ranges given in Table 3 were produced. Panel (a) illustrates the separation of
all physically meaningful equilibrium points by the positive and negative terms of Zf×f . Points on and below the black 1 : 1 line (indicating
Zf×f = 0) fulfill the condition Zf×f ≥ 0. The color code indicates the value of the damping coefficient ζ . Panels (b) and (c) show values
of ζ vs. values of Zf×f (for Zf×f ≥ 0 in b and for Zf×f < 0 in c). Legends in (b) and (c) state the percentages of stable and unstable
equilibrium points; rS in (b) gives the Spearman rank correlation coefficient (∗∗∗ indicates significant at p < 0.005).

forcing feedback loop (R2) that causes uptake to further in-
crease as microbial biomass increases. The balancing loops
B2 and B3, respectively, describe the depletion of DOC with
increasing uptake and the reduction of biomass as more ex-
tracellular enzymes are produced. Lastly, the balancing loop
B1 causes SOC to change in the opposite direction compared
to the depolymerization rate (i.e., SOC is depleted as depoly-
merization increases, and relatively more SOC remains as de-
polymerization decreases), counteracting the initial change

in P qss
i (quantified by ∂P

qss
i

∂S

∣∣
∗
). Therefore, the sufficient sta-

bility condition in Eq. (25) can be interpreted in the sense that
the negative feedbackB1 must be quantitatively stronger than
the positive feedback R1 (by some factor ym and buffered by
a constant term; Eq. 25).

In essence, the positive feedback R1 can drive the system
to overshoot or collapse: e.g., if the microbial biomass or
(quasi-steady-state) ENZ concentration happens to decrease
due to a perturbation, this will reduce the depolymerization
rate and, following the positive feedback, will result in fur-
ther reduced MBC and (quasi-steady-state) ENZ concentra-
tions. The biotic pools would collapse, and the system would
not be able to recover to its initial equilibrium (i.e., be unsta-
ble). Only if the resulting accumulation of SOC increases the
depolymerization rate more than it is reduced by the deple-
tion of (quasi-steady-state) ENZs will the system be able to
recover and retain the biotic components (i.e., be stable).

We note that, for linear uptake kinetics (i.e., Ul = v
u
l D),

additional terms in the necessary and sufficient conditions
can help to fulfill the Routh–Hurwitz criterion for stability

(see details in Sect. A2). In the causal loop diagram, linear
uptake kinetics remove the positive feedback between uptake
rate and biomass (R2 in Fig. 2b vanishes). Although we could
not show this analytically, numerical evaluation showed that,
for the chosen parameter spaces (Table 3) with linear uptake
kineticsUl, the physically meaningful EPs of the SDB model
were always stable (Fig. S3c–d in the Supplement).

3.3 SDBE model: full archetypal model

The four-pool SDBE model with LS = LE = 0 and yB = ym
has the same steady-state solutions as the three-pool SDB
model, but now the solution for the ENZ pool is denoted as
E∗i×j because ENZ is not considered to be at a quasi-steady
state as in the SDB model (Table 6).

3.3.1 Analytical stability analysis

In the four-pool SDBE model, the coefficients of the char-
acteristic polynomial of J SDBE

i×j

∣∣
∗

(Eq. A17) remain analyti-
cally tractable (Sect. S2.3 in the Supplement). The trace of
J SDBE
i×j

∣∣
∗

is always negative (and, thus,−tr(J SDBE
i×j

∣∣
∗
)= a1 >

0), and its determinant is always positive (det(J SDBE
i×j

∣∣
∗
)=

a4 > 0). However, the additional Routh–Hurwitz criterion
for the 4×4 matrix J SDBE

i×j

∣∣
∗

(given by a1a2a3−a
2
3−a

2
1a4 >

0) becomes analytically intractable. Despite this additional
complexity, we can still draw some conclusions based on
similarities between the SDB and SDBE models. Consider-
ing that, in the SDBE model, ENZ dynamics are explicitly

represented (and, thus, e.g., ∂P
qss
i

∂B
→

mE
dE

∂Pi
∂E

), similar condi-
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Figure 4. Changes in the damping coefficient with changes in environmental controls (a) and some microbial physiology parameters (b–d)
in the SDBE model with f × f kinetics. Panel (a) shows the damping coefficient as a function of I and lD , with all other parameters held
at their baseline values (Table 3). The black line indicates ζ = 0 (n.s. indicates no physically meaningful solution). Panels (b)–(d) show
variation in the damping coefficient for different combinations of I and lD values. Different line styles indicate scenarios with different DOC
leaching rate coefficients: solid lines indicate lD = 0, and dashed lines indicate lD = 1× 10−2 d−1. Different line colors indicate scenarios
with different OC input rates: turquoise lines indicate I = 5× 10−4 mgCg−1 d−1, violet lines indicate I = 1× 10−3 mgCg−1 d−1, and
black lines indicate I = 1× 10−2 mgCg−1 d−1. In (b) and (c), the baseline model with constitutive production of extracellular enzymes is
used, and ym and dB are varied, respectively. Baseline parameter values are indicated by vertical dashed lines. In (d), instead, only inducible
production of extracellular enzymes is considered, and yB is varied. Note the logarithmic scaling of x and y axes in panel (a) and of the x
axis in panel (c).

tions emerge for the positivity of the coefficients of the char-
acteristic polynomial, as in the SDB model (Sect. S2.3 in the
Supplement). Based on these similarities, we propose that
the sufficient condition for stability found for the three-pool
SDB model might also hold in the SDBE model. This pro-
posed sufficient condition is given by

Zi×j =
∂Pi

∂S

∣∣∣∣
∗

+ymfDrBdB−ym
mE

dE

∂Pi

∂E

∣∣∣∣
∗

; Zi×j ≥ 0. (26)

The simplified causal loop diagram of the SDBE model in
Fig. 2b gives rise to the same interpretation of this condition
as in the SDB model. In the following, we confirm that this
condition holds in the SDBE model via numerical analysis.

3.3.2 Numerical stability analysis

Testing the sufficient condition for stability

We produced 100 000 Monte Carlo simulations and com-
puted the damping coefficient ζ (Eq. 19) to numerically eval-
uate the stability of equilibrium points in the SDBE model.

Within the sampled parameter space (Table 3), physically
meaningful equilibrium points for which Zi×j ≥ 0 (Eq. 26)
also always had ζ > 0 and were thus stable (Fig. 3a–b,
Fig. S1 in the Supplement). Damping coefficients with ζ ≤ 0
were only observed when Zi×j < 0 (that is for points above
the black line in Fig. 3a or red points in Fig. 3c). While a
total of 46 932 evaluated equilibrium points were physically
meaningful and stable, fewer than half of these (22 386) also
fulfilled the conditionZi×j ≥ 0. In turn, the majority of these
equilibrium points (24 546) were stable despite contradict-
ing this condition – i.e., the condition given by Zi×j ≥ 0 is
very conservative. In case the condition is fulfilled, the value
of Zi×j correlates well with the value of ζ , meaning that,
for larger Zi×j , oscillations are generally more dampened
(Fig. 3b).
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Table 7. Indication of thresholds in parameter values for stability of the SDBE model. Analysis is based on exclusively varying one parameter
while keeping all others at their baseline value (Table 3, Fig. 4, Fig. S2 in the Supplement). The meaning of the different thresholds is
illustrated in the schematics on the right. This analysis applies to all evaluated combinations of kinetics (m×m, f×f , r×f ) using constitutive
ENZ production, except for the analysis of yB , where we considered only inducible ENZ production. Note: (i =m,f,r), (j =m,f ).

Threshold

Process Parameter Lower Upper None

Depolymerization
v
p
i

X
K
p
i

X

Assimilation
vu
j

X
Ku
f

X
ym X

ENZ production
mE X
yB X X

Decay
dB X
dE X

Mass balance losses
rB X
lD X

OC Input I X

SOC–DOC partition
fI X
fD X

Changing environmental conditions, microbial
physiology, and stability

Even for the simplified sufficient condition Zi×j ≥ 0, analy-
sis is cumbersome for kinetics other thanm×m (Sect. S2.3 in
the Supplement). We thus varied specific parameters individ-
ually and evaluated their effect on the numerically computed
damping coefficient ζ .

Keeping all microbial and enzymatic parameters constant
(set to their baseline value – that is for constitutive ENZ
production; Table 3), stability depends on the environmental
control parameters lD and I (Fig. 4a). At baseline parame-
ter values, most environmental conditions yield stable EPs,
but strong oscillations occur around these EPs (damping co-
efficient ζ < 1). As conditions become less favorable and as
either lD increases and/ or I decreases, equilibrium points
can become unstable (ζ < 0).

Next, we analyzed the influence of individual microbial
parameter values on the stability of EPs for a number of sce-
narios defined by combinations of I and lD (Fig. 4b–d; Ta-
ble 7). Generally, if DOC leaching is neglected (solid lines,
Fig. 4b–d), the variation in just one parameter rarely leads to
unstable equilibria (only at very high microbial decay rates
dB ). In contrast, if DOC leaching occurs, variation in key
physiological parameters can lead to a transition from sta-
ble to unstable EPs. This happens, e.g., as ym becomes too
low or dB becomes too high – i.e., for specific environmen-
tal conditions, there are lower threshold values for ym and
upper thresholds values for dB beyond which equilibria be-

come unstable (Fig. 4b–c, Table 7). With the exception of fD ,
the partitioning of decayed microbial biomass between SOC
and DOC, all parameters show such a threshold within the
explored ranges (Fig. S2 and Sect. S2.3 in the Supplement).

Using the alternative description of inducible production
of extracellular enzymes, the stability behavior with respect
to changes in yB is more varied (Fig. 4d). As for ym, there are
lower yB threshold values below which steady states become
unstable. However, there can also be upper thresholds for yB
above which too few enzymes are being produced to ensure
sufficient C acquisition.

In summary, by varying only individual parameters, in-
stabilities can arise when assimilation, depolymerization, or
ENZ production are too low or when abiotic C losses are too
high (Fig. 4b–d, Fig. S2 in the Supplement, Table 7). These
results are in line with the analytic analysis of the sufficient
condition (Eq. 26) for m×m kinetics (Sect. S2.3 in the Sup-
plement).

Density-dependent mortality

Alternatively to the conventional linear decay term, Geor-
giou et al. (2017) proposed a density-dependent formulation
of the microbial decay rate (D′B = d

′

BB
b, with 1< b ≤ 2)

that yields mostly stable non-oscillatory behavior (note that
this formulation causes both microbial mortality and mainte-
nance respiration to be density-dependent). For our SDBE
model with DOC leaching, we could only find an analyt-
ical steady-state solution for m×m kinetics and b = 2. In
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Figure 5. Physically meaningful (positive and real) steady-state solutions from 10 000 Monte Carlo simulations of the SDBE model with
f × f kinetics and constitutive ENZ production. Scatterplots of MBC vs. SOC concentrations are shown for lD > 0 (a) and lD = 0 (b).
Color-coded points are stable and plausible steady-state solutions, with the color code indicating the value of the damping coefficient. Gray
points are stable but not plausible steady-state solutions, and black points are physically meaningful but unstable steady-state solutions.
Legends indicate the numbers of physically meaningful and stable (stable + stable and plausible) or unstable EPs. Plot groups (c) and
(d) show empirical probability density functions of each state variable for stable, stable and plausible, and unstable physically meaningful
steady-state solutions for lD > 0 (c) and lD = 0 (d), respectively. Note that SOC contents > 1000 mg C g−1 are mathematically possible but
unphysical model outcomes as we neglect soil volume changes.

this case, the density-dependent formulation could vastly al-
leviate the previously observed instability and could result in
damping coefficients for plausible equilibrium points close
to 1 for most of the explored parameter spaces (Fig. S4a in
the Supplement). However, some physically meaningful but
unstable EPs were still observed. Only with negligible DOC
leaching did physically meaningful but unstable equilibrium
points vanish completely. This was numerically tested for
m×m, f × f , and r × f kinetics (Fig. S4b–d in the Sup-
plement).

Instability and predicted organic carbon pools

Figure 5a–b illustrate the joint distributions of physically
meaningful SOC and MBC pools in the f × f model for
scenarios where DOC leaching is either considered (Fig. 5a)
or neglected (Fig. 5b) (for 10 000 Monte Carlo simulations
within the parameter ranges given in Table 3). By accounting
for DOC leaching, just about half of the simulations yield
physically meaningful EPs – of which most (4698) were also

stable, but more than 10 % (687) were unstable. Neglecting
DOC leaching increases the total number of physically mean-
ingful results (6896) and simultaneously reduces the rela-
tive share of physically meaningful but unstable results to
< 5% (312). In both scenarios, most simulations yield im-
plausible results for steady-state C stocks – e.g., MBC be-
ing larger than SOC. However, in both scenarios, unstable
EPs largely overlap with stable and plausible outcomes in
the SOC–MBC solution space. This is also evident in the
empirical probability density functions of all four state vari-
ables (Fig. 5c–d). Especially if DOC leaching is considered
(lD > 0, Fig. 5c), values of plausible and unstable steady-
state SOC pools largely overlap. In contrast, the distributions
of plausible and unstable steady-state pool sizes of MBC,
DOC, and ENZ do not overlap as closely as those for SOC.
These distinctions are amplified in the cases where DOC
leaching is neglected (lD = 0, Fig. 5d), in particular for DOC.
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4 Discussion

4.1 Model structure matters: standard
microbial-explicit SOC models can have unstable
equilibria

Microbial-implicit models with linear decomposition kinet-
ics are stable as long as there is no inert pool, mass con-
servation applies, and rates are proportional to the amount
of carbon in the donor pool (Sierra and Müller, 2015). It
is more difficult to define general stability criteria for non-
linear models, whose structure and type of non-linearity af-
fects the model behavior around the equilibrium state. Man-
zoni and Porporato (2007) and Raupach (2007) showed an-
alytically that the non-trivial steady states of two-pool mod-
els, consisting of a substrate pool and a microbial pool (de-
noted as a “harvester” system in Raupach, 2007), are always
stable for multiplicative and forward Michaelis–Menten ki-
netics (but only under the assumption that the input to the
substrate (I ) is a constant; Raupach, 2007). We show here
that the same is also true for all physically meaningful, non-
trivial (biotic) equilibrium points if a third pool represent-
ing extracellular enzymes is added (SBE model). This result
holds irrespective of the kinetic laws used to describe SOC
depolymerization and whether ENZ production is considered
to be constitutive, inducible, or a combination of both.

Interestingly, by introducing a second non-linear term,
Raupach (2007) found that unstable equilibria could emerge
in their two-pool model. In contrast, Wang et al. (2014, 2016)
demonstrated for several versions of a three-pool (litter–
SOC–microbes) model with two non-linearities (microbial
degradation and subsequent uptake of litter and SOC) that
the equilibrium points of these models were always stable.
An underlying assumption in these models was that the avail-
able substrate pool (similarly to what we described as DOC)
was at a quasi-steady state. Our derivation of the SBE model
follows a similar simplification – and also does not yield un-
stable behavior. By contrast, unstable equilibrium points are
possible in our three- and four-pool model versions with two
non-linearities that explicitly consider DOC (SDB and SDBE
models; yellow boxes in Fig. 2). Whether equilibrium points
in microbial-explicit SOC models can become unstable is
thus not dependent on the number of pools or the number of
non-linearities per se but is rather dependent on the combi-
nation of non-linearities, the coupling of different pools and
rates, and what feedbacks they create.

Comparing our three- and four-pool models to the simpler
two-pool model analyzed by Raupach (2007) can help to un-
derstand why instability can occur in these models. Briefly,
their model describes human consumption of a food resource
but is similar in structure to our models (analogous terms in
our models are given in brackets): the resource (SOC in SBE
and DOC in SDB and SDBE models) is taken up by the hu-
man consumer (microbes) and thereby depleted. The uptake
process is always described as a non-linear term, equivalent

to our description of Uj . Raupach (2007) analyzed two dif-
ferent cases with respect to the resupply of the resource (I
in SBE and (1− fI )I +P

†
i in SDB and SDBE): (1) resup-

ply is independent of the available resource, and (2) resupply
is dependent on the resource itself. The first case is similar
to our SBE model, where the resource SOC is replenished
by the external input I and is thus independent of the SOC
availability itself. In these cases, the biotic (resource–human
coexistence in Raupach, 2007) equilibrium is always stable
if it is physically meaningful. In turn, the second case can be
compared to our SDB and SDBE models: unless the external
input to DOC is very high (for low fI ), the replenishment of
the resource DOC is dominated by the depolymerization rate
P

†
i – which, via the positive feedback loop R1, is dependent

on the available DOC (compare Fig. 2b). These models can
have unstable biotic equilibria (Raupach, 2007). Therefore,
the (more or less direct) dependency of the resource resupply
on the abundance of the resource itself can be identified as
the root cause that allows for instability in these models.

We further tested this hypothesis by setting fI = 0 in the
SDBE model (i.e., all external input goes into DOC directly),
bypassing the dependency of DOC replenishment on depoly-
merization. In line with our expectation (and the analytical
solution of Zm×m and Zf×f for fI = 0 in Sect. S2.3 in the
Supplement), this effectively prevented the occurrence of un-
stable EPs (Fig. S5 in the Supplement).

4.2 Avoiding instability

Our analysis of different model structures and their stability
behavior points to three approaches to avoid unstable EPs in
microbial-explicit SOC models:

1. Model structure. Avoid positive feedback coupling be-
tween the microbial growth substrate (here DOC) avail-
able for uptake and its resupply.

2. Kinetic formulations. Avoid accelerated depletion of
DOC by reducing the dependency of uptake on micro-
bial biomass.

3. Parameter values. Choose parameter values so that the
sufficient and/or necessary conditions for stability are
met.

The first approach is commonly taken in models that as-
sume DOC to be in a quasi-steady state (e.g., Wang et al.,
2014, 2016) but might have shortcomings in cases where
DOC dynamics become important – e.g., if drying–rewetting
dynamics or leaching are relevant (also see Wutzler and Re-
ichstein, 2013 for a discussion on timescale dependence of
appropriate abstraction level). If DOC leaching is not con-
sidered to be a relevant process, neglecting this process but
keeping a dynamic description of DOC can already consid-
erably reduce the likelihood of unstable EPs.

The second approach is used, e.g., in models that assume
DOC uptake to be independent of microbial biomass but de-
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pendent on the availability of DOC (e.g., Manzoni et al.,
2014). Alternatively, using, for instance, reverse Michaelis–
Menten kinetics to describe microbial uptake can dampen os-
cillations (Wang et al., 2016). Since uptake kinetics using
reverse Michaelis–Menten or the ECA formulation become
similar to linear uptake kinetics at relatively high concentra-
tions of microbial biomass, they could also help to allevi-
ate instability issues under these conditions. However, when
using forward Michaelis–Menten kinetics for decomposition
and DOC assimilation, the half-saturation constants can at-
tain large values after data assimilation, suggesting that de-
composition kinetics might be approximated by multiplica-
tive rather than linear kinetics, at least in large-scale model
applications (Tao et al., 2024b).

Lastly, the third approach might seem straightforward as
we could expect parameter values calibrated with measure-
ment data to yield both stable and plausible EPs. However,
our numerical simulations indicated that, especially if DOC
leaching is considered, calibrating parameter values with
SOC and microbial biomass data alone could still lead to
plausible yet unstable EPs (Fig. 5). While data on carbon
contents in the extracellular enzyme pool are still not avail-
able, combining microbial biomass data with quantitative
data on DOC pools (as in, e.g., Wang et al., 2013) could help
to avoid calibration according to parameter values that lead
to unstable EPs. Moreover, stability criteria can be obeyed
in various other ways, e.g., by considering correlations be-
tween parameter values or introducing additional constraints
on microbial physiology.

4.2.1 Correlations between parameter values

Correlations between parameter values could effectively al-
leviate the occurrence of unstable EPs by simultaneously
changing parameter values that appear on both sides of the
inequality given by Eqs. (25) or (26), thereby ensuring that
these conditions are always fulfilled even as parameter val-
ues change. Some evidence proving this to be effective is
provided by, e.g., Hararuk et al. (2015), who used the four-
pool AWB model (Allison et al., 2010) (similar to the SDBE
model) for predictions of global carbon stocks. They pre-
scribed, e.g., the uptake and depolymerization rate coeffi-
cients and the respective half-saturation constants to posi-
tively correlate with temperature. Thus, with the same direc-
tional change in temperature, these parameter values change
in opposite directions with respect to their threshold values
for stability (Table 7) – i.e., with a decrease in temperature,
v
p
f decreases, moving closer to its threshold; however, simul-

taneously, Kp
f also decreases, moving further away from its

threshold. Consequently, for a wide range of parameter val-
ues, the conditions for stability could be fulfilled. Indeed,
Hararuk et al. (2015) reported that they did not observe any
unstable equilibria with maximum-likelihood parameters in
their global study.

Beyond the qualitative assessment of parameter thresholds
(Table 7), explicit analytical expressions of the necessary or
sufficient conditions for stability (as for Zm×m in Sect. S2.3
in the Supplement) could be used to quantitatively assess
what parameter correlations are required to ensure stability of
equilibria across reasonable parameter ranges. However, for
other kinetic formulations besides m×m, these terms might
become difficult to trace analytically.

4.2.2 Eco-evolutionary constraints on microbial traits

The observation that stability thresholds for parameters shift
as environmental conditions change can further be inter-
preted in the light of expected variations in microbial func-
tional traits. While some kinetic rate parameters might be
correlated due to thermodynamics (e.g., temperature re-
sponse of rate parameters), correlations among other param-
eters, like the investment into growth or extracellular en-
zyme production, might rather emerge as outcomes of eco-
evolutionary processes that select specific combinations of
traits in a given environment (Abs et al., 2023, 2024). These
combinations of traits would manifest themselves as micro-
bial life history strategies under different environmental con-
ditions (e.g., Malik et al., 2020). Following this logic, chang-
ing environmental conditions could constrain the space for
microbial physiological adaptation because microbial traits
would need to ensure stability. For example, very inefficient
microbes (having a low ym) could not establish a stable equi-
librium under very unfavorable conditions (low OC input
and/or high DOC leaching, Fig. 4b) unless other traits change
simultaneously. This reflects a basic principle of ecology: or-
ganisms have to be adapted to the environment they inhabit,
and such adaptation is expressed through sets of coordinated
traits. Currently, this basic principle has not been integrated
into microbial-explicit SOC models (but see Abs et al., 2022,
for a recent attempt to address this challenge), which can lead
to matching specific environmental conditions with a (mod-
eled) microbial population that is not able to sustain itself
under those conditions.

While our results are restricted to equilibrium conditions
in the absence of external perturbations (e.g., fluctuating en-
vironmental conditions), we can speculate that trait coordi-
nation should also emerge in a fluctuating environment (for
an example of plant trait coordination under stochastic soil
moisture, see Bassiouni et al., 2023). In fact, changes in the
microbial community with relevance for SOC cycling can
happen on different timescales, from hours (stress response)
and weeks (changes in community composition) to years and
decades (mutations) (Abs et al., 2024). Environmental fluc-
tuations occur at all these scales, and microbial communities
are well equipped to adapt to these stochastically changing
environments.

Integrating soil microbial ecological understanding into
microbial-explicit SOC models could thus yield alternative
mathematical descriptions or parameter relations that could
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prevent mismatching between parameter values and environ-
mental conditions and ultimately improve model applicabil-
ity (Georgiou et al., 2017). Evidence regarding the impor-
tance of microbial ecology and evolution for SOC cycling
is accumulating (Abs et al., 2022, 2023). For instance, mi-
crobes have been found to invest more into the production
of extracellular enzymes in soils with lower SOC contents
(Calabrese et al., 2022; Malik et al., 2019), and density-
dependent microbial mortality, a concept derived from eco-
logical considerations, can effectively alleviate oscillatory
behavior (Georgiou et al., 2017).

Yet, revisiting the proposed stability criterion from an eco-
evolutionary perspective prompts a paradox. In a model that
obeys the proposed stability criterion (Eqs. 25 and 26), a
reduction in enzyme production will always lead to an in-
crease in the depolymerization rate – a strong disincentive
for microbial investment into enzyme production. We can re-
solve this paradox by realizing that, for the SDB and SDBE
models analyzed (and applied by, e.g., Hararuk et al., 2015,
but also including the original model formulation by Alli-
son et al., 2010), there is no process (such as competition
with other (micro-)organisms or abiotic removal of (accessi-
ble) SOC through, e.g., leaching or occlusion) that competes
with microbes for SOC. Consequently, the only alternative to
SOC degradation is its accumulation. In turn, this allows for
high depolymerization rates with minimal microbial invest-
ment into enzyme production. This outcome also emerges
from a mathematical analysis of optimal substrate utilization
– without losses of substrate due to abiotic processes or com-
petition, decomposers do not have any reason to invest in re-
source acquisition (Manzoni et al., 2023). Thus, a rigorous
eco-evolutionary optimization approach (that, for instance,
aims to maximize microbial growth rate) cannot be readily
implemented with the current model structure but would re-
quire an extension of the model to account for competition
for SOC. Our analysis instead demonstrates how (given the
model structure) microbes might adapt to environmental con-
ditions not to maximize their fitness but to attain a stable
population. Whether stability and evolutionary fitness maxi-
mization are convergent (i.e., an organism at an evolutionary
fitness maximum would also establish a stable population)
poses an interesting question for future research.

4.2.3 Comparing approaches to avoid instability

It is important to note that, while our analysis shows all three
of the approaches listed in Sect. 4.2 to be feasible means to
avoid instability, it gives no indication of which of the ap-
proaches should be preferred. As different objectives and re-
search questions have differing requirements (e.g., whether
the occurrence of instabilities should globally be avoided by
removing the positive DOC feedback or whether it suffices
to constrain the available parameter space), we cannot give a
general recommendation. However, an important distinction
between the different approaches is that, while the first two

(removal of an explicit DOC representation and the depen-
dency of uptake on microbial biomass) are simplifications of
the system that might require further justification for specific
use cases (Wutzler and Reichstein, 2013), the third approach
can add realism to the model by explicitly considering the
interaction between environmental conditions and the micro-
bial community. In line with Abs et al. (2022, 2023, 2024)
and Georgiou et al. (2017), we want to highlight the potential
of using such ecologically consistent mathematical descrip-
tions to improve current model formulations. In other words,
we cannot simply add a biotic component to models without
acknowledging that this component has to be “adapted” (as
species and communities are in the real world) to the envi-
ronmental conditions it is exposed to.

4.3 Implications

4.3.1 Mathematical insights into microbially mediated
SOC cycling

Currently, the debate on the implications of different model
formulations for microbially mediated SOC cycling is on-
going (He et al., 2024; Lennon et al., 2024; Tao et al.,
2023, 2024a). Our contribution provides an additional per-
spective to this discussion by leveraging mathematical re-
quirements for stability. Based on our analysis, we cannot
draw any conclusions regarding which (if any) model version
is most suitable to realistically represent microbially medi-
ated SOC cycling at the large scale. Microbial-explicit mod-
els including a DOC pool (SDB and SDBE models) create
a positive feedback loop that allows for instabilities to oc-
cur, but this finding by no means indicates a shortcoming of
such models. In fact, the positive feedback loop is a direct
consequence of our conceptual understanding of the micro-
bially mediated, enzymatically driven degradation of organic
carbon substrates in soils (Kuzyakov et al., 2000; Kuzyakov,
2010). At small spatial scales, oscillatory behavior can be re-
alistic (Manzoni and Porporato, 2007); additionally, the col-
lapse of a local microbial population is not difficult to imag-
ine (the alternative – and, perhaps, more realistic – outcome
that microbes turn dormant cannot be described by these
models). However, at large spatial scales, these behaviors are
not observed, indicating that SOC cycling is more stable at
these scales (Wang et al., 2014; Georgiou et al., 2017). This
can be seen as being indicative of a scaling problem – the
same process cannot be described by the same mathemati-
cal formulations across scales (Chakrawal et al., 2020; Wil-
son and Gerber, 2021). The proposed stability criterion, as
well as the outlined approaches to avoid instability, could, in
turn, guide the development of upscaled model formulations
– suitable upscaled kinetics might employ one of the pro-
posed approaches to avoid instability or could be designed to
obey the proposed (note: very conservative; see further dis-
cussion below) stability criteria.
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4.3.2 Applicability of the proposed stability criterion

We could identify a sufficient and necessary condition for the
stability of the SDB model (Eqs. A11–A13). However, the
condition we found is difficult to interpret and apply. We thus
proposed a stricter but simpler sufficient condition for stabil-
ity (Eq. 25). By comparing the SDB and SDBE model, we
proposed that a similar constraint (Zi×j ≥ 0, Eq. 26) would
also hold as a sufficient condition for the SDBE model de-
spite the Routh–Hurwitz stability criterion being not fully
tractable analytically for this model version. Numerical anal-
yses confirmed that the proposed sufficient condition ensures
stability of the SDBE model within the vast parameter space
we explored. However, these sufficient conditions are very
conservative and can exclude a substantial fraction of the
physically meaningful and stable equilibrium points. Further,
despite a clear correlation between Zi×j and the damping
coefficient ζ , the stability condition does not give direct in-
sights into the oscillation behavior. How useful the stricter
sufficient and necessary conditions would be in constrain-
ing model parameters – as compared to the simpler suffi-
cient conditions – might depend on the specific model appli-
cations. Despite the potential challenges in evaluating these
conditions, they can still be useful to understand the pro-
cesses or parameter interactions that cause unstable EPs to
occur and can guide ecology-informed model developments.

4.3.3 Conditions leading to instability

Our numerical analysis of the SDBE model indicates that in-
stability of equilibrium points becomes more likely with de-
creasing carbon inputs, increasing DOC leaching, and low
process rates (Fig. 4, Table 7). All these conditions are most
likely to be met in high-altitude and/or high-latitude envi-
ronments. This is in line with Hararuk et al. (2015), who
observed the strongest oscillations (longest time to dampen
oscillations, indicative of diminishing real parts of the eigen-
values) in their calibrated four-pool model in these regions.
Therefore, analytical steady states of microbial explicit SOC
models applied in high-altitude and/or high-latitude environ-
ments could be unstable, and analytical steady-state solutions
could thus not be used reliably for the initialization of simu-
lation runs or prediction of SOC stocks.

5 Conclusions

Microbial-explicit SOC models aim to improve the repre-
sentation of SOC dynamics by accounting for its biotic con-
trols. At very small spatial and temporal scales, their oscil-
latory behavior and potential for instability can reflect rele-
vant (micro-)ecosystem processes (Manzoni and Porporato,
2007). However, if applied at larger scales, such as in Earth
system models, these properties can result in unrealistic sim-
ulation outcomes (Georgiou et al., 2017; Wang et al., 2014).
Here, we analyzed what processes can lead to instability

in these models. By comparing the stability behavior of an
archetypal microbial-explicit SOC model (the AWB model;
Allison et al., 2010) with some reduced model versions and
with the stability analysis of similar models in the litera-
ture, we found that instability can occur in models that as-
sume a positive feedback between the resupply of a microbial
growth substrate (i.e., DOC) and its abundance. We found
that stability is (sufficiently) conditional on the balance be-
tween the sensitivity of the depolymerization rate to changes
in extracellular enzymes vs. SOC concentration. Based on
these analyses, we suggest that instability can be avoided by
selecting specific (1) model structures, (2) kinetic formula-
tions, and/or (3) parameter relations or values. While these
approaches can differ vastly, an emerging common theme
is that acknowledging ecological principles and processes
can be leveraged to improve model applicability. These find-
ings have implications for further development of microbial-
explicit models and potential upscaling approaches, calling
for ecologically consistent model formulations and rigorous
mathematical analysis of newly introduced models.

Appendix A: Details on stability analyses

A1 SBE model

The Jacobian matrix of the SBE model is given by

J SBE
i =


∂Ṡ

∂S
∂Ṡ
∂B

∂Ṡ
∂E

∂Ḃ
∂S

∂Ḃ
∂B

∂Ḃ
∂E

∂Ė
∂S

∂Ė
∂B

∂Ė
∂E



=

 −ls−
∂Pi

∂S
rBdB dE−

∂Pi
∂E

yB
∂Pi
∂S

−(dB+mE) yB
∂Pi
∂E

(ym−yB )
∂Pi
∂S

mE (ym−yB )
∂Pi
∂E
−(dE+lE)

 , (A1)

where ∂x
∂y

is the partial derivative of x with respect to y, and

ẋ is used to denote dx
dt so that, e.g., ∂Ṡ

∂S
=

∂
∂S

(
dS
dt

)
.

A1.1 Stability analysis of the abiotic equilibrium

First, we evaluate the parameter space in which the abiotic
equilibrium is stable. Substituting the steady-state solutions
for Q0 given in Table 5 into J SBE

i (Eq. A1) yields

J SBE
i

∣∣
∗,0 =

−ls rBdB dE −
∂Pi
∂E

∣∣
∗,0

0 −β yB
∂Pi
∂E

∣∣
∗,0

0 mE (ym− yB)
∂Pi
∂E

∣∣
∗,0−α

 . (A2)

For Q0 to be stable according to the Routh–Hurwitz crite-
rion, it is required that all the coefficients ai of the character-
istic polynomial of J SBE

i

∣∣
∗,0 and, additionally, a1a2− a3 be

positive. By these means, we find that the stability of Q0 is

https://doi.org/10.5194/bg-21-3441-2024 Biogeosciences, 21, 3441–3461, 2024



3458 E. Schwarz et al.: Instability in microbial-explicit SOC models

conditional on the following sufficient and necessary condi-
tion (Sect. S2.1 in the Supplement):

∂Pi

∂E

∣∣∣∣
∗,0
<
αβ

η
. (A3)

A1.2 Stability analysis of the biotic equilibrium

Next, we analyze the stability of the biotic equilibrium by
evaluating the Jacobian matrix J SBE

i (Eq. A1) according to
its biotic steady states Q1,i (Table 5):

J SBE
i

∣∣
∗,1 =

 −ls−
∂Pi

∂S
|∗,1 rBdB dE−

∂Pi
∂E
|∗,1

yB
∂Pi
∂S
|∗,1 −β yB

∂Pi
∂E
|∗,1

(ym−yB )
∂Pi
∂S
|∗,1 mE (ym−yB )

∂Pi
∂E
|∗,1−α

 . (A4)

To evaluate the Routh–Hurwitz criterion, it is convenient
to re-express Pi in terms of ∂Pi

∂E
as follows:

Pi =
∂Pi

∂E
x−1
i E, (A5)

where the factor xi is introduced to maintain the generality
of this substitution for any Pi , as defined in Table 2:

xi =


1 if (i =m,f )

1− E

K
p
r +E

if i = r

1− E

K
p
e +S+E

if i = e.

(A6)

xi has the convenient property 0< xi ≤ 1. The ensuing
derivations hold for all values of xi as long as 0< xi ≤ 1
and also for other kinetics Pj not explored here, for which a
0< xj ≤ 1 can be found in order to satisfy Eq. (A5).

Substituting Eq. (A5) and B∗1,i =
αyB
η
E∗1,i (Table 5) into

Eq. (12), evaluated at a steady state, yields

dEi
dt
= (ym− yB)

∂Pi

∂E

∣∣∣∣
∗,1
x−1
i

∣∣
∗,1E

∗

1,i +mE
αyB

η
E∗1,i

− dEE
∗

1,i − lEE
∗

1,i = 0, (A7)

from which, for E∗1,i 6= 0, we find

∂Pi

∂E

∣∣∣∣
∗,1
= αxi

∣∣
∗,1

1− mEyB
η

ym− yB
=
αβ

η
xi
∣∣
∗,1. (A8)

With this definition, we obtain

J SBE
i

∣∣
∗,1 =

 −ls−
∂Pi

∂S
|∗,1 rBdB dE−

αβ
η
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yB
∂Pi
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(
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mEyB
η
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)
 . (A9)

From this, it can be seen that the trace of J SBE
i

∣∣
∗,1 (the sum

of the diagonal entries) is always negative since ∂Pi
∂S

∣∣
∗,1 > 0

and xi
∣∣
∗,1 ≤ 1; thus, a1 > 0. Likewise, it can be shown that

all remaining coefficients of the characteristic polynomial are
always positive and that a1a2−a3 > 0 (see detailed analytical
derivations in Sect. S2.1 in the Supplement). Thus, all phys-
ically meaningful biotic equilibrium points of the three-pool
SBE model are stable.

A2 SDB model

The Jacobian matrix J SDB
i×j of the SDB model evaluated

around the biotic equilibrium is given by

J SDB
i×j

∣∣
∗
=


−

∂P
qss
i

∂S
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i
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i
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0 ym
∂Uj
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|∗ ym

∂Uj
∂B
|∗−mE−dB

 . (A10)

Since only the biotic EP of the SDB model is analyzed, we
dropped the subscript 1 here.

Evaluating the Routh–Hurwitz criterion for the SDB
model with the chosen kinetic formulations (Tables 2 and 4)
yields the sufficient and necessary condition for stability as
follows:

a1a2− a3 =Xi×j +Yi×j > 0, (A11)

with
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∂Uj

∂D

∣∣∣∣
∗

{(
∂Uj

∂D

∣∣∣∣
∗

+
∂P

qss
i

∂S

∣∣∣∣
∗

)
(
∂P

qss
i

∂S

∣∣∣∣
∗

+ ymfDrBdB − ym
∂P

qss
i

∂B

∣∣∣∣
∗

)
︸ ︷︷ ︸
Term giving rise to the sufficient condition (Eq. 25)
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and

Yi×j =−
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both shown for lD = 0 for conciseness (see full expressions
with lD ≥ 0 and detailed analysis of all coefficients of the
characteristic polynomial in Sect. S2.2 in the Supplement).
The sufficient condition for stability given by Eq. (25) in the
main text holds for any lD ≥ 0. Beyond this sufficient con-
dition for stability, the additional positive term π

∂Uj
∂D

∣∣
∗

in
Eq. (A12) might indicate the stabilizing influence of the bal-
ancing loop B2 (Fig. 2b) and the recycling of ENZ and MBC
to SOC (compare Eq. 24).

∂Ḃ
∂B

∣∣
∗,j

in Eq. (A13) is the lower-right entry of J SDB
i×j

∣∣
∗

(Eq. A10) and is given by

∂Ḃ

∂B

∣∣∣∣
∗,j

=
∂

∂B

dB
dt

∣∣∣∣
∗,j

= ym
∂Uj

∂B

∣∣∣∣
∗

−mE − dB . (A14)

For any choice of Uj that is linear in B (as is the case for
Um and Uf – compare Table 2), we find from solving dB

dt

(Eq. 16) at a steady state that ym
∂U(m,f )
∂B

∣∣
∗
=mE + dB ; thus
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∂Ḃ
∂B

∣∣
∗,(m,f )

= 0 so that Yi×(m,f ) = 0 (Eq. A13). The only nec-
essary and sufficient condition for the stability of the SDB
model in these cases is thus Xi×j > 0 (Eq. A12) (for lD = 0;
see Sect. S2.2 in the Supplement for the corresponding nec-
essary condition for lD > 0).

For linear uptake kinetics Ul, that is

Ul = v
u
l D, (A15)

Yi×l (Eq. A13) does not vanish from Eq. (A11) (since
∂Ul
∂B

∣∣
∗
= 0) or, consequently, from Eq. (A14).

−
∂Ḃ

∂B

∣∣∣∣
∗,l

=mE + dB > 0 (A16)

Because of its additional positive components, Yi×j can be
positive even if the sufficient condition of Eq. (25) is not
fulfilled. Thus, using Ul can help to ensure the positivity
of all the coefficients of the characteristic polynomial and
a1a2− a3 > 0.

A3 SDBE model

The Jacobian matrix of the four-pool SDBE model with
LS = LE = 0 and yB = ym (Eq. 6) (Table 4) and evaluated
around the biotic equilibrium is given by

J SDBE
i×j

∣∣
∗
=


−

∂Pi

∂S
|∗ 0 fDrBdB −

∂Pi
∂E
|∗

∂Pi
∂S
|∗ −lD−

∂Uj
∂D
|∗ (1−fD)rBdB−

∂Uj
∂B
|∗ dE+

∂Pi
∂E
|∗

0 ym
∂Uj
∂D
|∗ ym

∂Uj
∂B
|∗−(mE+dB ) 0

0 0 mE −dE

 . (A17)

Further details on the stability analysis of the SDBE model
are given in Sect. S2.3 in the Supplement.

Code availability. The code used for the numerical sta-
bility analysis and comparison with the proposed suf-
ficient stability condition is publicly available at Zenodo
https://doi.org/10.5281/zenodo.12749207 (Schwarz, 2024).

Data availability. All data used in this paper are from literature
sources (see Table 3, Sect. 2.3 and Sect. S1 in the Supplement).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-21-3441-2024-supplement.

Author contributions. ES led the study. ES and SM conceptualized
the study. ES and SG conducted the formal analysis and investiga-
tion. SM and SB assisted in the formal analysis and investigation.
All the authors discussed the results together. ES wrote the origi-
nal draft of the paper and produced the figures, with feedback from
SM. All authors reviewed and commented on the original draft of
the paper and its revisions.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank Björn Lindahl for the inspiring dis-
cussions and valuable comments on the paper and two anonymous
reviewers for their insightful comments and reflections.

Financial support. This research has been supported by the
European Research Council (ERC) under the European Union’s
Horizon 2020 Research and Innovation Programme (grant no.
101001608), the Vetenskapsrådet (grant no. 2020-03910), and the
Svenska Forskningsrådet FORMAS (grant no. 2021-02121).

The publication of this article was funded by the
Swedish Research Council, Forte, FORMAS, and Vinnova.

Review statement. This paper was edited by David Medvigy and
reviewed by two anonymous referees.

References

Abramoff, R., Xu, X., Hartman, M., O’Brien, S., Feng, W.,
Davidson, E., Finzi, A., Moorhead, D., Schimel, J., Torn,
M., and Mayes, M. A.: The Millennial model: in search
of measurable pools and transformations for modeling soil
carbon in the new century, Biogeochemistry, 137, 51–71,
https://doi.org/10.1007/s10533-017-0409-7, 2018.

Abs, E., Saleska, S., and Ferriere, R.: Microbial eco-evolutionary
responses amplify global soil carbon loss with climate warm-
ing, Research Sqaure [preprint], https://doi.org/10.21203/rs.3.rs-
1984500/v1, 2022.

Abs, E., Chase, A. B., and Allison, S. D.: How do soil
microbes shape ecosystem biogeochemistry in the con-
text of global change?, Environ. Microbiol., 25, 780–785,
https://doi.org/10.1111/1462-2920.16331, 2023.

Abs, E., Chase, A. B., Manzoni, S., Ciais, P., and Alli-
son, S. D.: Microbial evolution–An under-appreciated driver
of soil carbon cycling, Glob. Change Biol., 30, e17268,
https://doi.org/10.1111/gcb.17268, 2024.

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon
response to warming dependent on microbial physiology, Nat.
Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010.

Argyris, J. H., Faust, G., Haase, M., and Friedrich, R.: An Ex-
ploration of Dynamical Systems and Chaos: Completely Re-
vised and Enlarged Second Edition, Springer Berlin, Heidel-

https://doi.org/10.5194/bg-21-3441-2024 Biogeosciences, 21, 3441–3461, 2024

https://doi.org/10.5281/zenodo.12749207
https://doi.org/10.5194/bg-21-3441-2024-supplement
https://doi.org/10.1007/s10533-017-0409-7
https://doi.org/10.21203/rs.3.rs-1984500/v1
https://doi.org/10.21203/rs.3.rs-1984500/v1
https://doi.org/10.1111/1462-2920.16331
https://doi.org/10.1111/gcb.17268
https://doi.org/10.1038/ngeo846


3460 E. Schwarz et al.: Instability in microbial-explicit SOC models

berg, ISBN 978-3-662-46042-9, https://doi.org/10.1007/978-3-
662-46042-9, 2015.

Bassiouni, M., Manzoni, S., and Vico, G.: Optimal plant water use
strategies explain soil moisture variability, Adv. Water Resour.,
173, 104405, https://doi.org/10.1016/j.advwatres.2023.104405,
2023.

Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond,
P. A., and Crowther, T. W.: Managing uncertainty in soil carbon
feedbacks to climate change, Nat. Clim. Change, 6, 751–758,
https://doi.org/10.1038/nclimate3071, 2016.

Calabrese, S., Mohanty, B. P., and Malik, A. A.: Soil mi-
croorganisms regulate extracellular enzyme production to max-
imize their growth rate, Biogeochemistry, 158, 303–312,
https://doi.org/10.1007/s10533-022-00899-8, 2022.

Crameri, F.: Geodynamic diagnostics, scientific visualisation
and StagLab 3.0, Geosci. Model Dev., 11, 2541–2562,
https://doi.org/10.5194/gmd-11-2541-2018, 2018a.

Crameri, F.: Scientific colour maps (4.0), Zenodo [code],
https://doi.org/10.5281/zenodo.1243862, 2018b.

Chakrawal, A., Herrmann, A. M., Koestel, J., Jarsjö, J., Nunan, N.,
Kätterer, T., and Manzoni, S.: Dynamic upscaling of decomposi-
tion kinetics for carbon cycling models, Geosci. Model Dev., 13,
1399–1429, https://doi.org/10.5194/gmd-13-1399-2020, 2020.

Chakrawal, A., Calabrese, S., Herrmann, A. M., and Man-
zoni, S.: Interacting Bioenergetic and Stoichiometric Con-
trols on Microbial Growth, Front. Microbiol., 13, 859063,
https://doi.org/10.3389/fmicb.2022.859063, 2022.

Cotrufo, M. F. and Lavallee, J. M.: Soil organic matter formation,
persistence, and functioning: A synthesis of current understand-
ing to inform its conservation and regeneration, in: Advances in
Agronomy, 172, 1–66, Academic Press, ISBN 978-0-323-98953-
4, https://doi.org/10.1016/bs.agron.2021.11.002, 2022.

Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J., and Torn,
M. S.: Microbial community-level regulation explains soil car-
bon responses to long-term litter manipulations, Nat. Commun.,
8, 1223, https://doi.org/10.1038/s41467-017-01116-z, 2017.

Haraldsson, H. V.: Introduction to System Thinking and Causal
Loop Diagrams, Lund University, Department of Chemical En-
gineering, ISSN 1104-2877, 2004.

Hararuk, O., Smith, M. J., and Luo, Y.: Microbial models
with data-driven parameters predict stronger soil carbon re-
sponses to climate change, Glob. Change Biol., 21, 2439–2453,
https://doi.org/10.1111/gcb.12827, 2015.

He, X., Abramoff, R. Z., Abs, E., Georgiou, K., Zhang, H., and Goll,
D. S.: Model uncertainty obscures major driver of soil carbon,
Nature, 627, E1–E3, https://doi.org/10.1038/s41586-023-06999-
1, 2024.

Horn, R. A. and Johnson, C. R.: Topics in Matrix Analysis, Cam-
brigde University Press, ISBN: 0-521-46713-6, 1994.

Kuzyakov, Y.: Priming effects: Interactions between living and
dead organic matter, Soil Biol. Biochem., 42, 1363–1371,
https://doi.org/10.1016/j.soilbio.2010.04.003, 2010.

Kuzyakov, Y., Friedel, J., and Stahr, K.: Review of mechanisms and
quantification of priming effects, Soil Biol. Biochem., 32, 1485–
1498, https://doi.org/10.1016/S0038-0717(00)00084-5, 2000.

Lennon, J. T., Abramoff, R. Z., Allison, S. D., Burckhardt, R. M.,
DeAngelis, K. M., Dunne, J. P., Frey, S. D., Friedlingstein, P.,
Hawkes, C. V., Hungate, B. A., Khurana, S., Kivlin, S. N.,
Levine, N. M., Manzoni, S., Martiny, A. C., Martiny, J. B. H.,

Nguyen, N. K., Rawat, M., Talmy, D., Todd-Brown, K., Vogt,
M., Wieder, W. R., and Zakem, E. J.: Priorities, opportunities,
and challenges for integrating microorganisms into Earth sys-
tem models for climate change prediction, mBio, 15, e00455-24,
https://doi.org/10.1128/mbio.00455-24, 2024.

Malik, A. A., Puissant, J., Goodall, T., Allison, S. D., and Griffiths,
R. I.: Soil microbial communities with greater investment in re-
source acquisition have lower growth yield, Soil Biol. Biochem.,
132, 36–39, https://doi.org/10.1016/j.soilbio.2019.01.025, 2019.

Malik, A. A., Martiny, J. B. H., Brodie, E. L., Martiny,
A. C., Treseder, K. K., and Allison, S. D.: Defining trait-
based microbial strategies with consequences for soil car-
bon cycling under climate change, ISME J., 14, 1–9,
https://doi.org/10.1038/s41396-019-0510-0, 2020.

Manzoni, S. and Porporato, A.: A theoretical analysis
of nonlinearities and feedbacks in soil carbon and ni-
trogen cycles, Soil Biol. Biochem., 39, 1542–1556,
https://doi.org/10.1016/j.soilbio.2007.01.006, 2007.

Manzoni, S. and Porporato, A.: Soil carbon and nitrogen mineral-
ization: Theory and models across scales, Soil Biol. Biochem.,
41, 1355–1379, https://doi.org/10.1016/j.soilbio.2009.02.031,
2009.

Manzoni, S., Schaeffer, S., Katul, G., Porporato, A., and
Schimel, J.: A theoretical analysis of microbial eco-
physiological and diffusion limitations to carbon cy-
cling in drying soils, Soil Biol. Biochem., 73, 69–83,
https://doi.org/10.1016/j.soilbio.2014.02.008, 2014.

Manzoni, S., Chakrawal, A., and Ledder, G.: Decomposition
rate as an emergent property of optimal microbial for-
aging, Frontiers in Ecology and Evolution, 11, 1094269,
https://doi.org/10.3389/fevo.2023.1094269, 2023.

Raupach, M. R.: Dynamics of resource production and util-
isation in two-component biosphere-human and terrestrial
carbon systems, Hydrol. Earth Syst. Sci., 11, 875–889,
https://doi.org/10.5194/hess-11-875-2007, 2007.

Richardson, G. P.: Problems with causal-loop diagrams, Syst. Dy-
nam. Rev., 2, 158–170, https://doi.org/10.1002/sdr.4260020207,
1986.

Schimel, J. P. and Weintraub, M. N.: The implications of exoen-
zyme activity on microbial carbon and nitrogen limitation in
soil: a theoretical model, Soil Biol. Biochem., 35, 549–563,
https://doi.org/10.1016/S0038-0717(03)00015-4, 2003.

Schwarz, E.: Numerical stability analysis of an archetypal
microbial-explicit soil organic carbon model, Zenodo [code],
https://doi.org/10.5281/zenodo.12749207, 2024.

Sierra, C. A. and Müller, M.: A general mathematical framework
for representing soil organic matter dynamics, Ecol. Monogr., 85,
505–524, https://doi.org/10.1890/15-0361.1, 2015.

Tang, J. and Riley, W. J.: Competitor and substrate sizes and dif-
fusion together define enzymatic depolymerization and micro-
bial substrate uptake rates, Soil Biol. Biochem., 139, 107624,
https://doi.org/10.1016/j.soilbio.2019.107624, 2019.

Tang, J. Y. and Riley, W. J.: A total quasi-steady-state formulation
of substrate uptake kinetics in complex networks and an example
application to microbial litter decomposition, Biogeosciences,
10, 8329–8351, https://doi.org/10.5194/bg-10-8329-2013, 2013.

Tao, F., Huang, Y., Hungate, B. A., Manzoni, S., Frey, S. D.,
Schmidt, M. W. I., Reichstein, M., Carvalhais, N., Ciais, P., Jiang,
L., Lehmann, J., Wang, Y.-P., Houlton, B. Z., Ahrens, B., Mishra,

Biogeosciences, 21, 3441–3461, 2024 https://doi.org/10.5194/bg-21-3441-2024

https://doi.org/10.1007/978-3-662-46042-9
https://doi.org/10.1007/978-3-662-46042-9
https://doi.org/10.1016/j.advwatres.2023.104405
https://doi.org/10.1038/nclimate3071
https://doi.org/10.1007/s10533-022-00899-8
https://doi.org/10.5194/gmd-11-2541-2018
https://doi.org/10.5281/zenodo.1243862
https://doi.org/10.5194/gmd-13-1399-2020
https://doi.org/10.3389/fmicb.2022.859063
https://doi.org/10.1016/bs.agron.2021.11.002
https://doi.org/10.1038/s41467-017-01116-z
https://doi.org/10.1111/gcb.12827
https://doi.org/10.1038/s41586-023-06999-1
https://doi.org/10.1038/s41586-023-06999-1
https://doi.org/10.1016/j.soilbio.2010.04.003
https://doi.org/10.1016/S0038-0717(00)00084-5
https://doi.org/10.1128/mbio.00455-24
https://doi.org/10.1016/j.soilbio.2019.01.025
https://doi.org/10.1038/s41396-019-0510-0
https://doi.org/10.1016/j.soilbio.2007.01.006
https://doi.org/10.1016/j.soilbio.2009.02.031
https://doi.org/10.1016/j.soilbio.2014.02.008
https://doi.org/10.3389/fevo.2023.1094269
https://doi.org/10.5194/hess-11-875-2007
https://doi.org/10.1002/sdr.4260020207
https://doi.org/10.1016/S0038-0717(03)00015-4
https://doi.org/10.5281/zenodo.12749207
https://doi.org/10.1890/15-0361.1
https://doi.org/10.1016/j.soilbio.2019.107624
https://doi.org/10.5194/bg-10-8329-2013


E. Schwarz et al.: Instability in microbial-explicit SOC models 3461

U., Hugelius, G., Hocking, T. D., Lu, X., Shi, Z., Viatkin, K., Var-
gas, R., Yigini, Y., Omuto, C., Malik, A. A., Peralta, G., Cuevas-
Corona, R., Di Paolo, L. E., Luotto, I., Liao, C., Liang, Y.-S.,
Saynes, V. S., Huang, X., and Luo, Y.: Microbial carbon use ef-
ficiency promotes global soil carbon storage, Nature, 618, 981–
985, https://doi.org/10.1038/s41586-023-06042-3, 2023.

Tao, F., Houlton, B. Z., Frey, S. D., Lehmann, J., Manzoni, S.,
Huang, Y., Jiang, L., Mishra, U., Hungate, B. A., Schmidt, M.
W. I., Reichstein, M., Carvalhais, N., Ciais, P., Wang, Y.-P.,
Ahrens, B., Hugelius, G., Hocking, T. D., Lu, X., Shi, Z., Viatkin,
K., Vargas, R., Yigini, Y., Omuto, C., Malik, A. A., Peralta, G.,
Cuevas-Corona, R., Di Paolo, L. E., Luotto, I., Liao, C., Liang,
Y.-S., Saynes, V. S., Huang, X., and Luo, Y.: Reply to: Model
uncertainty obscures major driver of soil carbon, Nature, 627,
E4–E6, https://doi.org/10.1038/s41586-023-07000-9, 2024a.

Tao, F., Houlton, B. Z., Huang, Y., Wang, Y.-P., Manzoni, S.,
Ahrens, B., Mishra, U., Jiang, L., Huang, X., and Luo, Y.: Con-
vergence in simulating global soil organic carbon by structurally
different models after data assimilation, Global Change Biol., 30,
e17297, https://doi.org/10.1111/gcb.17297, 2024b.

The MathWorks Inc.: MATLAB version: 9.13.0.2105380 (R2022b)
Update 2, Natick, Massachusetts, United States, https://www.
mathworks.com (last access: 12 July 2024), 2022.

Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F.
M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes
of variation in soil carbon simulations from CMIP5 Earth system
models and comparison with observations, Biogeosciences, 10,
1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.

Varney, R. M., Chadburn, S. E., Burke, E. J., and Cox, P. M.: Eval-
uation of soil carbon simulation in CMIP6 Earth system models,
Biogeosciences, 19, 4671–4704, https://doi.org/10.5194/bg-19-
4671-2022, 2022.

Wang, G., Post, W. M., and Mayes, M. A.: Development of
microbial-enzyme-mediated decomposition model parameters
through steady-state and dynamic analyses, Ecol. Appl., 23, 255–
272, https://doi.org/10.1890/12-0681.1, 2013.

Wang, G., Jagadamma, S., Mayes, M. A., Schadt, C. W.,
Megan Steinweg, J., Gu, L., and Post, W. M.: Micro-
bial dormancy improves development and experimen-
tal validation of ecosystem model, ISME J., 9, 226–237,
https://doi.org/10.1038/ismej.2014.120, 2015.

Wang, Y. P., Chen, B. C., Wieder, W. R., Leite, M., Medlyn, B.
E., Rasmussen, M., Smith, M. J., Agusto, F. B., Hoffman, F.,
and Luo, Y. Q.: Oscillatory behavior of two nonlinear microbial
models of soil carbon decomposition, Biogeosciences, 11, 1817–
1831, https://doi.org/10.5194/bg-11-1817-2014, 2014.

Wang, Y. P., Jiang, J., Chen-Charpentier, B., Agusto, F. B., Hastings,
A., Hoffman, F., Rasmussen, M., Smith, M. J., Todd-Brown, K.,
Wang, Y., Xu, X., and Luo, Y. Q.: Responses of two nonlinear mi-
crobial models to warming and increased carbon input, Biogeo-
sciences, 13, 887–902, https://doi.org/10.5194/bg-13-887-2016,
2016.

Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global
soil carbon projections are improved by modelling mi-
crobial processes, Nat. Clim. Change, 3, 909–912,
https://doi.org/10.1038/nclimate1951, 2013.

Wieder, W. R., Grandy, A. S., Kallenbach, C. M., and Bonan,
G. B.: Integrating microbial physiology and physio-chemical
principles in soils with the MIcrobial-MIneral Carbon Sta-
bilization (MIMICS) model, Biogeosciences, 11, 3899–3917,
https://doi.org/10.5194/bg-11-3899-2014, 2014.

Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K.,
Hararuk, O., He, Y., Hopkins, F., Luo, Y., Smith, M. J.,
Sulman, B., Todd-Brown, K., Wang, Y., Xia, J., and Xu,
X.: Explicitly representing soil microbial processes in Earth
system models, Global Biogeochem. Cy., 29, 1782–1800,
https://doi.org/10.1002/2015GB005188, 2015.

Wieder, W. R., Hartman, M. D., Sulman, B. N., Wang, Y.,
Koven, C. D., and Bonan, G. B.: Carbon cycle confi-
dence and uncertainty: Exploring variation among soil bio-
geochemical models, Glob. Change Biol., 24, 1563–1579,
https://doi.org/10.1111/gcb.13979, 2018.

Wilson, C. H. and Gerber, S.: Theoretical insights from upscaling
Michaelis–Menten microbial dynamics in biogeochemical mod-
els: a dimensionless approach, Biogeosciences, 18, 5669–5679,
https://doi.org/10.5194/bg-18-5669-2021, 2021.

Wutzler, T. and Reichstein, M.: Priming and substrate quality inter-
actions in soil organic matter models, Biogeosciences, 10, 2089–
2103, https://doi.org/10.5194/bg-10-2089-2013, 2013.

https://doi.org/10.5194/bg-21-3441-2024 Biogeosciences, 21, 3441–3461, 2024

https://doi.org/10.1038/s41586-023-06042-3
https://doi.org/10.1038/s41586-023-07000-9
https://doi.org/10.1111/gcb.17297
https://www.mathworks.com
https://www.mathworks.com
https://doi.org/10.5194/bg-10-1717-2013
https://doi.org/10.5194/bg-19-4671-2022
https://doi.org/10.5194/bg-19-4671-2022
https://doi.org/10.1890/12-0681.1
https://doi.org/10.1038/ismej.2014.120
https://doi.org/10.5194/bg-11-1817-2014
https://doi.org/10.5194/bg-13-887-2016
https://doi.org/10.1038/nclimate1951
https://doi.org/10.5194/bg-11-3899-2014
https://doi.org/10.1002/2015GB005188
https://doi.org/10.1111/gcb.13979
https://doi.org/10.5194/bg-18-5669-2021
https://doi.org/10.5194/bg-10-2089-2013

	Abstract
	Introduction
	Methods
	Archetypal microbial-explicit SOC model
	Reduced models for mathematical analysis
	SBE model
	SDB model

	Stability analysis
	Analytical approach
	Numerical simulations
	Classification of equilibrium points
	Causal loop analysis


	Results
	SBE model: neglecting DOC dynamics
	Steady-state solutions
	Stability analysis
	Exclusive stability of either abiotic or biotic equilibrium

	SDB model: neglecting ENZ dynamics
	Steady-state solutions
	Stability analysis

	SDBE model: full archetypal model
	Analytical stability analysis
	Numerical stability analysis


	Discussion
	Model structure matters: standard microbial-explicit SOC models can have unstable equilibria
	Avoiding instability
	Correlations between parameter values
	Eco-evolutionary constraints on microbial traits
	Comparing approaches to avoid instability

	Implications
	Mathematical insights into microbially mediated SOC cycling
	Applicability of the proposed stability criterion
	Conditions leading to instability


	Conclusions
	Appendix A: Details on stability analyses
	Appendix A1: SBE model
	Appendix A1.1: Stability analysis of the abiotic equilibrium
	Appendix A1.2: Stability analysis of the biotic equilibrium

	Appendix A2: SDB model
	Appendix A3: SDBE model

	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

