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Abstract: Antibiotic resistance genes (ARGs) are widespread in the environment, and soils, specifically,
are hotspots for microorganisms with inherent antibiotic resistance. Manure and sludge used as
fertilizers in agricultural production have been shown to contain vast amounts of ARGs, and due
to continued applications, ARGs accumulate in agricultural soils. Some soils, however, harbor a
resilience capacity that could depend on specific soil properties, as well as the presence of predatory
bacteria that are able to hydrolyse living bacteria, including bacteria of clinical importance. The
objectives of this study were to (i) investigate if the antibiotic resistance profile of the soil microbiota
could be differently affected by the addition of cow manure, chicken manure, and sludge, and
(ii) investigate if the amendments had an effect on the presence of predatory bacteria. The three
organic amendments were mixed separately with a field soil, divided into pots, and incubated in
a greenhouse for 28 days. Droplet digital PCR (ddPCR) was used to quantify three ARGs, two
predatory bacteria, and total number of bacteria. In this study, we demonstrated that the choice of
organic amendment significantly affected the antibiotic resistance profile of soil, and promoted the
growth of predatory bacteria, while the total number of bacteria was unaffected.

Keywords: soil; manure; sewage sludge; antibiotic resistance; BALO; tetracycline; vancomycin

1. Introduction

Soil harbors a vast amount of microorganisms and is a large reservoir of antibiotic
resistance genes (ARGs). Globally, hotspots for ARGs in soils are commonly located in
densely populated areas, such as the eastern United States, Western Europe, South Asia,
and East China. There is a higher abundance in agricultural habitats [1], although in
general, the accumulation is largely affected by exposure to manure amendment, sewage,
treated wastewater, and industrial contamination. While the presence of ARGs in soils has
increased since the application of antibiotics used against human and animal diseases [2],
antibiotic resistance has always occurred as a response, providing a competitive advantage
to naturally occurring antibiotics [3]. However, extensive use of antibiotics, both within
healthcare and agriculture, combined with low uptake in humans and animals, can poten-
tially result in increased concentrations in the soil in regions that apply manure and sewage
sludge in agricultural production [2]. Organic cow manure has earlier been described to
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contain significant levels of ARGs against kanamycin, chloramphenicol, beta-lactams, and
tetracyclines [4]. In general, there is a strong correlation between the high usage of antibi-
otics in cattle and the abundance of ARGs in their manure. Importantly, the abundance of
ARGs can be over 28,000 times higher in manured soil compared to un-manured soil [5].
Manure has, therefore, been described as a potential hotspot for the spread of antibiotic
resistance [6]. Long-term experiments with annual applications of cow manure showed
a linear increase in ARGs, with a clear connection between ARG abundance and manure
application rate [7]. Manure coming from different farm animals has been shown to contain
significantly different diversities and abundances of ARGs. This is partly due to differences
in the types of antibiotics provided as well as animal-specific microbiome composition,
resulting in different scopes of ARGs, with chicken and pig manure harboring higher levels
of ARGs compared to cow manure [8]. The abundance of ARGs in manure is, however,
dependent on where the animals are bred, with large variations both between and within
countries [5]. The use of sewage sludge originating from wastewater treatment plants
(WWTP) in agricultural production is another means of meeting crop nutrient demands
that has also been associated with increased abundances of ARGs in soils [9–12]. In 2010, it
was estimated that 39% of the sewage sludge produced in the European Union member
states was recycled in agriculture as a source of nutrients and organic matter [13]. While
the use of sludge is encouraged [14], it comes with many restrictions, primarily targeting
human and environmental health in terms of the potential accumulation of heavy metals
and organic contaminants. However, antimicrobial resistance is a growing concern, and in
the latest suggestions for improvements to the EU directive concerning urban wastewater,
all member states shall sample and monitor WWTP with <100,000 population equivalents
for antimicrobial resistance [15].

Antibiotic resistant bacteria are numerous, and the most critical for human health
are considered to be part of the ESKAPE bacteria (Enterococcus faecium, Staphylococcus au-
reus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
species) [16], with carbapenem and extended spectrum beta-lactamase (ESBL) resistance
being some of the more significant antibiotic resistances currently spreading. These resis-
tance genes, however, currently exist at low relative abundances in environmental samples,
although some WWTPs have been described as sources of ESBL-spread [17]. Intestinal
bacteria are known carriers of mobile genetic elements that are vectors for genetic exchange.
Thus, increased fertilization with manure and sewage sludge containing both intestinal
bacteria and antibiotics, combined with the already large soil reservoir of ARGs, poses
increasing risks of ARGs spreading to pathogens of clinical importance through lateral and
horizontal gene transfer [18]. Trials investigating the presence of ARGs in crops produced
in fields amended with manure have shown an overlap of genes between the edible parts
of the crops and the manure, indicating an interconnectedness between the resistomes of
plants and the production environment [12,19]. This suggests a potential route of ARG
transfer from the environment into the human microbiome, with potential implications on
human health.

While there is plenty of research supporting the accumulation of ARGs in soil as
a consequence of manure and sewage sludge use, the results can be contradictory. Soil
properties, such as texture and pH, are recognized factors impacting the accumulation of
ARGs [20]. Some antibiotics have a high adsorption capacity to soil particles, reducing their
rates of degradation, and they therefore tend to accumulate in soils to a higher degree [21].
Adsorption capacity depends on soil quality characteristics, such as organic matter content,
cation exchange capacity, clay surface charge, and pH. Tetracycline, for example, has been
shown to adsorb more on acidic soils with a high clay content [21]. The already present
soil microbial communities have also been suggested to affect the fate of the added ARGs,
or antimicrobial resistance (AMR), by outcompeting added bacteria harboring resistance
genes [7,22]. Soil properties, antibiotic properties, and bacterial community characteristics
are thus factors that could affect the persistence of ARG in soil. Predatory bacteria, including
Bdellovibrio and like organisms (BALOs), comprise a group of Gram-negative bacteria that
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prey on other bacteria, either through attachment to the prey bacteria, local lysis of the cell
wall, and extraction of the internal macromolecules, or through prey invasion and lysis
from the inside. Their function in soil has been described as that of trophic controllers [23],
both through the hydrolysis of live bacteria and through their significant secretion of a
plethora of hydrolases [24], including proteases [25,26] and nucleases [27]. Two of the
more studied predatory bacterial families are Bdellovibrionaceae (genus: Bdellovibrio) and
Bacteriovoracaceae (genus: Bacteriovorax and Peridibacter). Both are significantly smaller
than most bacteria, facilitating an intracellular lifestyle as well as being mobile through
the presence of a flagellum. Both Bdellovibrio and Bacteriovorax have been demonstrated
to lyse several important Gram-negative pathogens, even antibiotic-resistant bacteria,
including Pseudomonas aeruginosa, Serratia marcescens, Acinetobacter baumannii, E. coli, and
Salmonella [28–32]. Specifically, several BALOs have been isolated from soil and have been
demonstrated to hydrolyze soil microbes [33]. While their ability to kill specific pathogens
have been demonstrated, their ability to shape the microbiota in soil, or, more specifically
the soil resistome, has, to our knowledge, not been investigated.

The objective of this study was to investigate if the antibiotic resistance profile of the
soil microbiota (16S rRNA) could be differently affected by the addition of cow manure,
chicken manure, and sludge. Due to the low abundance of ESBL resistance genes in
environmental samples, they are poor candidates as biomarkers for the generalized spread
of antibiotic resistance. Therefore, to investigate the flux of resistance genes constituting
soil resistance (i.e., the genes are not able to ‘colonize’ the soil) and soil resilience (i.e., the
genes are able to establish but are rapidly removed from the system), we monitored a set of
chosen antibiotic resistance genes previously shown to be common in soil and water [34–37].
These can be found even in soils with limited impact from humans, which means that they
are indigenous to the soil [38]. The purpose of these genes would be to use them as general
biomarkers for resistance gene fluctuations in the soil rather than focusing on their clinical
impact. Due to the prevalence and biological function of predatory bacteria, we hypothesize
that they constitute part of the ability of soil to buffer the spread of ARGs originating from
exogenously applied sources, such as manure, both through the resistance and resilience
of the soil. Furthermore, we hypothesize that different types of organic amendments may
differently affect the microbiota, predatory bacteria and antibiotic resistance profiles of the
soil. Herein, we have shown that the choice of organic amendments significantly impacts
the antibiotic resistance profile of soil and promotes the growth of predatory bacteria.
Importantly, the prevalence of predatory bacteria correlates with ARGs, demonstrating an
interaction between the two.

2. Results
2.1. Choice of Manure Drives Prevalence of Unique Antibiotic Resistance Patterns in the
Soil Microbiota

To investigate if the abundance of the targeted ARGs in the soil microbiota could
be affected by the addition of organic amendments, cow manure, chicken manure, and
sludge were added to the soil from an organic farm and incubated for up to 28 days
(Figure 1). The addition of cow manure significantly increased the prevalence of tetA
following amendment, and this increase persisted till the end of the experiment on day
28 (Figure 2A). In contrast, the presence of tetM was significantly reduced in soil treated
with cow manure as compared to the soil control (Figure 2B). In the sludge-amended soil,
a significant increase in the abundance of vanA was only observed at the endpoint of the
experiment (Figure 2C). The addition of chicken manure did not significantly affect the
prevalence of any of the resistance genes investigated. Measurements at day 0 represent the
organic amendment itself (except in the soil control). All organic amendments contained
lower quantities of resistance genes per gram than the soil itself, with the exception of
chicken manure, which contained high levels of tetA and tetM.
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Figure 1. Schematic overview of the study design. Soil from organic production was added to the 
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and sludge. All pots were watered, covered with black plastic, and incubated in a greenhouse for 

28 days. Samples were taken at four time points with four biological replicates. This image was 

created with BioRender.com. 

 

Figure 2. Prevalence of antibiotic resistance genes in soil exposed to different organic manure. DNA 

was extracted from soil exposed to different manure (cow, chicken, or sludge) for a time span of 0, 

1, 7, or 28 days. Gene copies of (A) tetA, (B) tetM, and (C) vanA were determined through ddPCR 

Figure 1. Schematic overview of the study design. Soil from organic production was added to the
pots and complemented with different types of organic amendments: chicken manure, cow manure,
and sludge. All pots were watered, covered with black plastic, and incubated in a greenhouse for
28 days. Samples were taken at four time points with four biological replicates. This image was
created with BioRender.com accessed on 4 July 2024.
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7, or 28 days. Gene copies of (A) tetA, (B) tetM, and (C) vanA were determined through ddPCR and
reported as copies per gram soil. Samples from day 0 represent the additive only (e.g., manure). Each
mark (i.e., black dot, red square, and green or blue triangle) represents a true biological sample for
which three technical replicates were conducted. For each sample, four biological replicates were
taken (i.e., four marks per time point), and is displayed as the four different time points for each
amendment on the x-axis, and number of gene copies on the y-axis. * p < 0.05, ** p < 0.01, *** p < 0.001.

To further investigate the impact of organic amendments on the prevalence of resis-
tance genes in soil, we analyzed the prevalence of the resistance gene in correlation to the
abundance of bacteria (e.g., 16S rRNA). Minor differences could be identified for both tetA
and tetM, with tetA significantly higher in the cow manure amended soil at day 7, compared
to sludge amended soil (Figure 3A). For tetM, there was a reduction in prevalence between
days 7–28 (chicken manure) and days 1–7 (sludge) (Figure 3B). vanA was the only resistance
gene demonstrating significantly higher levels as compared to the soil itself at the end of
the study (sludge; Figure 3C). Within the sludge-amended soil, there was also a significant
increase in vanA prevalence between day 1 and day 28 (Figure 3C).
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28 days. Gene copies of (A) 16S rRNA of the total bacterial population, (B) 16S rRNA gene copies of
Bdellovibrio, and (C) 16S rRNA gene copies of Bacteriovorax were determined through ddPCR and
reported as copies per gram soil. Samples from day 0 represent the additive only (e.g., manure). Each
mark (i.e., black dot, red square, green or blue triangle) represents a true biological sample for which
three technical replicates were conducted. For each sample, four biological replicates were taken (i.e.,
four marks per time point), and are displayed as the four different time points for each amendment
on the x-axis, and number of gene copies on the y-axis. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.2. Predatory Bacteria Benefit from the Addition of Organic Amendments

Learning that organic amendments differently impact the abundance of the three
targeted ARGs, we turned to investigate the impact on the quantity of the microbiota.
None of the additives significantly impacted the size of the general microbial population
(Figure 4A), indicating that changes in resistance profiles are not due to an overall change
in the population size of the microbiota. However, both Bdellovibrio and Bacteriovorax
significantly increased their population sizes over time in all treatments (Figure 4B,C). It
should be noted that Bdellovibrio are commonly 1–2 orders of magnitude more abundant
than Bacteriovorax. Measurements on day 0 represent the organic amendment itself (except
in the soil control). All organic amendments contained lower quantities of bacteria per
gram than the soil itself.
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28 days, and relative values are shown for (A) tetA, (B) tetA, and (C) vanA. Each mark (i.e., black dot,
red square, and green or blue triangle) represent a true biological sample for which three technical
replicates were conducted. For each sample, four biological replicates were taken (i.e., four marks per
time point), and are displayed as the four different time points for each amendment on the x-axis,
and number of gene copies on the y-axis. * p < 0.05, ** p < 0.01.

2.3. Presence of Predatory Bacteria Significantly Correlate with Prevalence of ARGs

Hypothesizing that predatory bacteria may be able to contribute to buffer soil against
invasive bacterial species, including those carrying ARGs, we investigated if absolute
quantities of predatory bacteria correlated with the prevalence of ARGs. Bdellovibrio was
positively correlated with absolute quantities of tetA and vanA, while being negatively
correlated with tetM (Figure 5A,C,E). For Bacteriovorax, correlations were not significant
(Figure 5B,D,F). Total bacterial abundance (16S rRNA) correlated positively (r = 0.42) with
the presence of vanA (p = 0.003) (Table S1).
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Figure 5. Correlations between the prevalence of antibiotic resistance genes and the 16S rDNA gene of
predatory bacteria. Absolute quantities (gene copy number per gram soil) of predatory bacteria and
antibiotic resistance genes from all soil samples were analyzed for correlative values between (A) tetA
and Bdellovibrio, (B) tetA and Bacteriovorax, (C) tetM and Bdellovibrio, (D) tetM and Bacteriovorax,
(E) vanA and Bdellovibrio, and (F) vanA and Bacteriovorax.
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2.4. Spurway Analysis

The Spurway analysis showed differences in pH as well as several larger differences in
nutrient levels between treatments (Table 1). The pH ranged from 5.45 in soil amended with
sludge to 6.35 in soil amended with cow manure. Large variations were observed in, but not
restricted to, nitrogen, potassium, and phosphorus levels. Soil amended with cow manure
had high levels of both potassium and phosphorus (420 mg/L and 110 mg/L, respectively),
while soil amended with sludge had the highest nitrogen level (NO3

−: 210 mg/L).

Table 1. Spurway analysis of plant available nutrients in the control treatment (only soil) at day 0 and
28, as well as the soil mixed with organic amendments at day 28.

Analysis Unit Soil (d0) Soil (d28) Chicken Cow Sludge

pH 5.8 6.0 5.85 6.35 5.45
Electrical

conductivity mS/cm 3.4 2.75 3.8 2.45 2.9

Nitrogen (N) mg/L 160 145 180 140 210
Nitrate (N) mg/L 160 145 180 140 210

Ammonium (N) mg/L 3 1 1 1 1
Phosphorous (P) mg/L 13 15 23 110 28.5

Potassium (K) mg/L 52 54 130 420 88
Magnesium

(Mg) mg/L 78 77 91.5 135 50

Sulfur (S) mg/L 250 145 230 73.5 135
Calcium (Ca) mg/L 790 675 715 510 705

Manganese (Mn) mg/L 1.9 0.66 1.5 0.95 1.65
Boron (B) mg/L 0.54 0.6 0.6 1.2 1.05
Iron (Fe) mg/L 1.3 1.8 1.35 1.55 1.58

Sodium (Na) mg/L 180 170 205 105 72.5
Aluminum (Al) mg/L 3.2 4.25 3.15 3.1 4.5

3. Discussion

This study investigated the fluctuations of three clinically important ARGs in soils
fertilized with three types of organic amendments and their correlations with the abun-
dance of soil bacteria and with the predatory bacterial genera Bdellovibrio and Bacteriovorax.
The resistance genes tetM and tetA were present in both cow and chicken manure, as well
as in sludge, while vanA was not. However, the different organic amendments showed
differential effects on the persistence of all three resistance genes in the incubated soil
samples, which was not correlated to their initial levels in the organic amendments. Despite
the rather high levels of ARGs in the initial organic amendments’ samples, the soil did not
maintain these levels. While a natural dilution of the ARGs was made when the organic
amendments were mixed with the soil, in most cases there was an additional decline from
day 1 of incubation until day 28, indicating the resilience capacity of the soil. It should
be noted that two amendments led to higher quantities of ARGs in the soil: cow manure
(tetA) and sludge (vanA). The mere presence of resistance genes does, however, not easily
translate into beneficial or detrimental effects, since it is highly dependent on what species
are carrying the resistance genes. Several soil microbiota species carry ARGs as a means
to survive microbially produced antibiotics, and their presence is thus key to retaining
a functional microbiota. Previous research shows contradictory results concerning the
capacity of amended ARGs to persist in the soil. In a study carried out in Spain, agricultural
soils amended with sewage sludge showed an increased risk of antibiotic resistance dis-
semination [11], while a Swedish study investigating ARGs in soils amended with sewage
sludge for nearly 40 years did not indicate any changes in the scope and intensity of the
soil bacterial resistome connected to sludge applications [39]. Similarly, Radu et al. [40]
showed initial increasing levels of clinically relevant ARGs after the addition of pig ma-
nure to the soil. However, at the end of the cropping season, the ARG levels returned
to their initial background levels, indicating the resilience capacity of the soil. The soil
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quality [21], the initial abundance of ARGs in the organic amendments [5], and the inherent
soil microbiome [7,22] could possibly explain such variability in accumulation potential.

In this study, rather low levels of ARGs were detected (100–102 gene copies per gram of
soil) of the selected resistance genes. This is in contrast to some other studies demonstrating
almost 2 log higher levels of tetracycline resistance genes within conventional dairy farms
in the Czech Republic [41]. However, a similar study in the USA failed to even identify any
tetA or tetM from soil in Nebraska [42], indicating that the site, and how the soil has been
treated (e.g., crops, animals, manure, and antibiotics usage culture in the country) all affect
the prevalence of resistance genes. Similarly, on a global level, Sweden is using very low
quantities of antibiotics, both within health care [43] and agriculture [44], which could be
an explanation for the low detection rate in our study.

Soil nutrient levels have been associated with the presence of ARGs, with positive
correlations to the levels of nitrogen, phosphorus, and potassium, and organic matter
content [45]. This could not be confirmed in our data, where chicken manure harbored the
highest abundances of tetM and tetA genes, while the highest levels of nitrogen, phosphorus,
and potassium were measured in sludge and cow manure. In regard to the elevated levels
of tetA and tetM in chicken manure, it should be noted that the soil levels of these resistance
genes remained low even after chicken manure amendment, demonstrating the resilience
capacity of the soil to remove ARGs and return to baseline levels due to the microbial
ecosystem functioning of the soil.

The addition of nutrients has previously been described to disproportionately favor
the growth of predatory bacteria over non-predatory bacteria, where Bdellovibrionales were
growing 63% faster than non-predators [23]. The authors conclude that predatory bacteria
play a significant role in controlling lower trophic levels, and as such, significantly increase
with added nutritional value in their niche. In support of this, we could demonstrate that
the addition of organic amendments to soil is mainly affecting the predatory population
compared to the non-predatory population.

Our data show that the levels of Bdellovibrio and ARGs correlate. However, the
correlation is both positive and negative depending on the ARG (i.e., tetA, tetM, or vanA),
indicating a complex interaction. It should be noted that even though the correlations are
significant, the r values are rather low (0.11–0.53), possibly due to the complex nature of
such correlations. This interaction is further complicated by the fact that the resistance
genes can be removed either through predation of the prey bacteria, or through direct
hydrolysis of extracellularly present ARGs through secreted nucleases. Furthermore, the
microbial soil community will also be affected by the reduction of prey cells due to the
expansion of predatory cells, increasing available nutrients for other non-prey bacterial
species to use, and expanding their population as well. tetA, commonly found in E. coli and
other Gram-negative bacteria, should constitute prey for Bdellovibrio and, as such, a negative
correlation would be expected, i.e., the higher the quantities of Bdellovibrio the lower the
quantities of E. coli tetA. We do, however, detect a positive correlation, indicating an
overall increase in the prey resistance gene with increasing numbers of predatory bacteria.
The complexity of prey–predator interactions in simpler systems has been evaluated,
suggesting re-growth of the prey after initial reduction [46]. However, community-level
analyses have revealed that the interactions are complex, with predatory bacteria affecting
the general population in a density-dependent manner [47]. The molecular mechanisms
underlying these predator–prey dynamics have not been fully understood, but a plastic
resistance mechanism nor have suboptimal conditions for the predator’s ability to infect
been suggested [48]. Further, the presence of other microorganisms (i.e., mixed microbial
populations) has been demonstrated to affect the interaction of Bdellovibrio and its prey [49],
while others have seen a less significant impact of such polymicrobial cultures [50]. In
addition, others have suggested that bacterial predators (protists) may even lead to an
increased prevalence of ARG and ARM due to a selective pressure for the production
of antibiotics by bacteria to fight protists, and thus selection for antibiotic resistance as
well [51]. Further investigation into these correlations is thus of value.
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For tetM, we demonstrate a negative correlation to Bdellovibrio. However, tetM is
mainly carried by Gram-positive bacteria that are not necessarily prey for Bdellovibrio. Thus,
it is unlikely that the negative correlation is due to the predation of the resistant bacteria
and/or the resistance genes. Rather, it may be an inverse correlation due to high levels of
tetM-carrying Gram-positive bacteria negatively impacting the abundance of Bdellovibrio
prey through nutritional competition. vanA is also mainly associated with Gram-positive
bacteria (Enterococcus and Staphylococcus) and is positively correlated with the prevalence
of Bdellovibrio. Similarly to tetM, this correlation is likely mediated by nutritional compe-
tition, with high levels of Bdellovibrio reducing several Gram-negative species, creating
an opportunity for vanA-carrying Gram-positive bacteria to expand their population. It
should, however, be noted that factors other than predatory bacteria may impact ARG
abundance in the soil, among others including phages, protozoa, and competing bacteria
producing toxins.

It should be noted that a limitation of our study is the singular location that soil
was collected from. A different microbial composition, or resistome profile, may have
impacted the specific outcomes of this study. Likewise, different concentrations of the
organic amendments, lengths of incubation in soil, as well as the frequency of sampling
occasions, may impact the study outcome differently. Therefore, we are only suggesting
that BALOs may impact the resistome and use the specified resistance genes as biomarkers
for this phenomenon. Furthermore, since we cannot in this study determine what bacteria
(species) are carrying the resistance genes, we cannot ascertain the mechanisms behind
the prey–predator dynamics. Mapping of the microbial community population (e.g.,
16S rRNA) could shed some light on community modifications but would unfortunately
not demonstrate resistance profile changes. Further studies detailing this would be of
importance to better understand the flow of ARGs within soil.

In conclusion, we have demonstrated that the type of organic amendment can sig-
nificantly impact the ARG profile of soil, both as an immediate effect and as a long-term
effect. Further, we propose that Bdellovibrio, as a part of the predatory bacterial commu-
nity, is part of shaping the antibiotic resistome in soil, through complex interactions. The
latter, however, does need to be investigated specifically to demonstrate if the correlation
identified here can be translated into causation. The mechanistic insights into how such
interactions are mediated and how they would impact the spread of antibiotic resistance to
human pathogens merits further investigation.

4. Materials and Methods
4.1. Soil Incubation with Organic Amendments

A sandy loam soil from an organically managed research field (Alnarp, Sweden) was
collected, carefully homogenized, and dispensed in pots. For the different treatments,
field soil was mixed separately with three types of organic amendments: commercially
available cow and hen manures (Granngården, Malmö, Sweden), and sludge from a
wastewater treatment plant (Ragnsells, Malmö, Sweden) (Figure 1). The number of organic
amendments added to the different treatments was adjusted in order to reach the same
level of nitrogen (33 kg N/ha, corresponding to a low fertilization dose for baby leaf
production), with the exception of the control treatment that contained only soil. The
amounts of each type of amendment added were calculated based on the information given
on their respective packaging regarding nitrogen content (%), and adjustments were made
for differences in mineralization rates (chicken manure: 4.1%, 9 g/pot; cow manure: 0.05%,
228 g/pot; sludge: 5.3%, 7 g/pot). The amendments were weighed separately for each
replicate pot, and thoroughly mixed with the soil, up to pot capacity. Water was added to
increase moisture levels in the soil, and all pots were covered with black plastic in order
to avoid germination of weed seeds. The soil mixtures were incubated in a greenhouse
chamber for 28 days at 22 ◦C, with a relative humidity of 60%. Samples were collected
at the start of the experiment (i.e., time point 0, representing the amendment itself before
mixing with soil) from the different types of organic amendments and the soil separately.
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The incubated mixtures were sampled on day 1, 7, and 28. For each sampling event, four
biological replicates were used. For each replicate, the contents of an entire pot were poured
into a plastic container where it could be thoroughly mixed. From this mixture three 50 mL
Falcon tubes were filled and placed in a −20 ◦C freezer before DNA extraction.

4.2. DNA Extraction and Droplet Digital PCR Analysis of Microbiota (16S rRNA) and ARG

DNA was extracted from the soil samples (250 mg) as well as the organic amendments
separately at four different time points using the ZymoBIOMICS DNA Miniprep Kit (Zymo
Research, Irvine, CA, USA) according to the manufacturer’s instructions. Absolute quantifi-
cation of gene copies was conducted on a Bio-Rad QX200 Digital Droplet system according
to the manufacturer’s instructions, using general primers targeting the prokaryotic 16S
rRNA gene and primers specific to Bdellvibrio, Bacteriovorax, and the ARGs tetM, tetA, and
vanA (Table 2). The PCR was conducted in a Bio-Rad C1000 thermal cycler, following stan-
dard ddPCR cycling settings as recommended by the manufacturer. Amplified products
were analyzed in a QX200 Droplet Reader (Bio-Rad, Hercules, CA, USA), and the data were
analyzed with the QuantaSoft analysis software (v1.7). The results were converted into
gene copies per gram of soil. All samples were analyzed in biological (n = 4) and technical
(n = 3 per biological replicate) replicates. For all primer/probe pairs, negative controls were
conducted (milliQ water, triplicate) that always displayed zero gene copies in the analysis.
None of the primer/probe pairs generated positive signals from single-strain microbial
DNA, indicating specificity to their targets. Gene copy numbers were only considered
relevant when all replicates (triplicates) had a signal, in order to minimize false reporting
of background noise despite taking into account the lack of signal in the negative controls.
No positive samples contained less than 1 gene copy per 10 µL of extracted DNA, which
was then calculated back to correspond to gram soil.

Table 2. ddPCR primers used within the study.

Target Forward Primer Reverse Primer Probe Ref

16S AGAGTTT
GATCCTGGCTCAGGA

CGTGTTACTCACCCGTCC
G

CGCTGGCGGCGTGCCTAATA
CATGC [34,35]

Bdellovibrio GGAGGCAGCAG
TAGGGAATA

GCTAG
GATCCCTCGTCTTACC

CGCGTGAG
TGATGAAGGCCTTCGGGTCG This study

Bacteriovorax CAGCCGCGGTAATAC
GAA

CGGAT
TTTACCCCTACATGC

GGGTGCAAGCGTTGTTCG
GATTTATTGGGC This study

tetA TTGAAC
GGCCTCAATTTCCT

GATGAAGAAGAC
CGCCATCA

GCATGAC
CGTCGTCGCCGCCC [34–36]

tetM TGCAA
GAAAAGTATCATGTGGAG

AAACCGAGCTCTCAT
ACTGC

TGCCGCCAAATCCTTTCTGG
GCTTCCA [34–36]

vanA GTTGTGCGGTATTGG
GAAAC

GTTTCCTG
TATCCGTCCTCG

GCCGCGTTAGCTGTT
GGCGAGGT This study

4.3. Nutrient Analysis of Soil

Soil samples (0.5 kg) were taken at days 0 and 28 from the control treatment and at
day 28 from the treatments containing soil and organic amendments. From all treatments,
pooled samples of all four replicates were sent for Spurway analysis to a certified com-
mercial laboratory (LMI AB, Helsingborg, Sweden) in order to determine plant-available
nutrients (nitrate, ammonium, phosphorus, potassium, magnesium, sulfur, calcium, man-
ganese, boron, iron, sodium, and aluminum), pH, and electrical conductivity (EC).

4.4. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 9.4.0. Unpaired t-test was
used for group comparisons between various manures, whereas paired t-test was used
for group comparisons within the same manure but between different time-points. For
correlation analyses, Spearman’s correlation was used. Mean values from three technical
replicates were used as input for statistical analyses. p-values were considered significant
at p < 0.05, with * p < 0.05, ** p < 0.01, and *** p < 0.001.
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