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ABSTRACT Most commercial laying hens suffer from
sternum (keel) bone damage including deviations and
fractures. X-raying hens, followed by segmenting and
assessing the keel bone, is a key to automating the moni-
toring of keel bone condition. The aim of the current
work is to train a deep learning model to segment the
keel bone out of whole-body x-ray images. We obtained
full-body x-ray images of laying hens (n = 1,051) and
manually drew the outline of the keel bone on each
image. Using the annotated images, a U-net model was
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then trained to segment the keel bone. The proposed
model was evaluated using 5-fold cross validation. We
obtained high segmentation accuracy (Dice coefficients
of 0.88−0.90) repeatably over several validation folds. In
conclusion, automatic segmentation of the keel bone
from full-body x-ray images is possible with good accu-
racy. Segmentation is a requirement for automated
measurements of keel geometry and density, which can
subsequently be connected to susceptibility to keel devi-
ations and fractures.
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INTRODUCTION

Poultry is a global, high-volume, high-throughput,
low-margin industry. One consequence of this is that
commercial poultry (layers and broilers) are heavily
genetically optimized. Bone fractures, often featuring
keel bone, are present in the majority (up to 80%) of
commercial laying hens (Thøfner et al., 2021), causing a
significant welfare issue (Nasr et al., 2012) and drop in
egg production (Wei et al., 2020). Bone traits tend to be
heritable (Bishop et al., 2000), the industry therefore
desires genetic improvements which would lead to
reduced bone fractures. This leads to the prerequisite
question for genetic improvements − how can the indus-
try monitor thousands of birds for bone conditions?

The large-scale x-raying of live birds on-farm has been
considered as a potential solution by the poultry breed-
ing community (e.g., Rufener et al., 2018; Jung et al.,
2022). However, the existing postimaging methods
require a human operator to indicate key points on
chicken bone x-ray images, and from these compute a
fracture propensity (Wilson et al., 2022), or keel bone
geometry (unpublished work). The need for a skilled
operator to manually provide these annotations makes
the method time consuming, prone to noise, and imprac-
tical given the number of birds involved in poultry facili-
ties. Automating the postimaging methods is essential
for successful implementation of x-ray imaging as a
novel phenotype in selective breeding.
Image segmentation and classification are 2 computer

vision processes that can be automated using machine
learning approaches. Segmentation refers to partitioning
an image into 2 or more regions − in this case keel bone
vs. the background including other bones. To be technical,
each pixel is labeled as keel bone vs. background. Classifi-
cation means labeling the entire image as belonging to 1 of
2 or more classes. In keel bone case, 2 classes can be zero
fractures vs. 1 or more fractures. If we desire 4 classes,
these could be, for example, 0, 1, 2, 3 and more than 3 frac-
tures. Regression can also be an alternative to the multi-
class classification, with the difference that the output will
be on a continuous rather than a discrete scale.
Keel bone damage has been considered one of the major

welfare concerns in laying hens while the tibia bone has
often been used to measure bone strength in a consistent
manner. For this reason, these bones are of particular
interest. We propose that the first step to assess bone
quality from x-ray images will be to segment these bones.
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The focus of the current work is therefore the segmenta-
tion step, specifically keel bone segmentation.

To automate keel bone segmentation from the whole-
body image, a model is trained to distinguish the keel pix-
els from the nonkeel pixels. Technically this requires
whole-body images and annotation where keel pixels are
given a white color (numerically 1) while nonkeel pixels
are black (numerically 0). A deep learning model is then
trained to extract the features of the images as numerical
values and estimate the weights of these features that can
predict the annotation, i.e., predicting which pixels are
keel pixels. The obtained predictive model is then evalu-
ated on images that were never used in the training, and if
it accurately segments the keel, the model can be used for
automatic segmentation of further images.

In this study, we use U-net, a widely used convolution
neural network to enable the machine to learn image
segmentation (Ronneberger et al., 2015). The first half
of U-net is a contracting path, where the resolution of
images is progressively reduced in successive layers (blue
bars, Figure 1), to increase the abstraction, thus extract-
ing the key features. The “U” in the name refers to the
way in which the layers then use deconvolution or
upsampling to recover spatial features in an expansive
path. The U-net model also has skip connections, which
concatenate the contracting and expanding parts. This
means the extracted key features are combined with
their spatial features, enabling the machine to learn not
only the object of interest but also its location. In this
paper, we aimed to use U-net to automate keel segmen-
tation from whole-body x-ray images which will facili-
tate large-scale phenotyping of the keel bone.
MATERIALS AND METHODS

Birds

Images of Bovans Brown hybrids were generated with
a portable x-ray machine (Medivet Scandinavian AB,
Figure 1. U-net architecture in our implementation. Blue columns repr
on top. Max pooling (red arrows) down samples layers by 2£ in each dimens
is used to create additional layers with the same dimension but sometime
expands the layers in blocks 40 to 10. Spatial information is recovered through
compresses 8 channels into 1.
€Angelholm, Sweden). The x-ray exposure setting was
65 kV and 1.0 mAs with 1-meter distance between the x-
ray tube and the flat panel detector. The methods of
data collection are described in Sallam et al. (in review).
The study was conducted in accordance with the local
legislation and institutional requirements with approval
from the Gothenburg Local Ethics Committee of the
Swedish National Board for Laboratory Animals (Refer-
ence 5.8.18-16645/2020).
Gold Standard Mask

To create the Gold Standard mask (GSM), Sallam (a
veterinarian) hand-traced the outline of the keel bone
over each whole-body x-ray image using a Wacom Cin-
tiq pen display with GNU Image Manipulation Program
GIMP (www.gimp.org). The outline was then filled in
with white and the background filled in with black, in an
automated step coded using the open-source computer
vision python package (www.opencv.org). The whole-
body x-ray images and GSM are available at https://
doi.org/10.5281/zenodo.11172093.
U-Net

The architecture of U-net can be adjusted for a given
implementation. In the current work, the input layer
has a resolution of 256 £ 256 with a channel depth of 1.
Succeeding blocks decrease resolution by factors of 2,
until the bottom layer has resolution of 16 £ 16 with 64
filters. Other differences in resolution, number of layers,
channel depth with respect to (Ronneberger et al.,
2015), are given in Figure 1. The U-net was coded using
the TensorFlow python library (Abadi et al., 2016) and
available from the GitHub repository: https://github.
com/sallamslu/Keel-bone-segmentation.
esent U-net layers, with dimensions on the left and number of channels
ion to extract key features in blocks 1 to 5. Convolution (purple arrows)
s different number of channels. Convolution transpose (green arrows)
the skip connections (black arrows). The final convolution (blue arrow)
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Cross-Validation Design and Evaluation
Metrics

A total of 1051 x-ray images and their respective GSM
were split into 80% for training, 12% for validation, and
8% for testing. The splitting was randomized and
repeated 5 times to ensure the 5-fold cross-validation.
The training is an iterative process, initiated by giving
an arbitrary weight to each pixel value on the images.
The pixels’ weights are then updated, along the iteration
epochs, to minimize the difference between the network
output (predicted mask, real number ranging 0−1) and
the GSM (0 for the nonkeel pixels, or 1 for the keel pix-
els). This difference is referred to as the loss or error
function, in this case computed with the cross-entropy
function. The accuracy was reported using the Dice coef-
ficient, which relates the overlap of predicted mask and
GSM, to the sizes of the 2. Good convergence is indi-
cated by loss approaching zero and accuracy approach-
ing unity over epochs. Both metrics should be similar for
test and validation sets, to indicate that overfitting has
not occurred.
RESULTS AND DISCUSSION

On x-ray images of chickens, the pixel contrast
between keel bone and background is small, thus, keel
bone outlines are not fully clear, and overlap sometimes
with adjacent tissues. This challenges the most recent
pretrained models like the Segment-Anything Model
(Kirillov et al., 2023) to segment keel bone from the
whole-body x-ray images. For that reason, we opted to
train an all-new model based on U-net with the prerequi-
sites to create 1051 GSM of keel bones from whole-body
Figure 2. Loss curves (A) and Dice coefficient (B) for the 5 folds of tra
Model performance example (C): Left: whole-body X-ray image. Center: gold
X-ray images. With the help of simple scripts to auto-
mate opening and exporting images in GIMP software,
as well as a pen display to draw keel outlines, creating
1,051 GSM of keel bones required only 7 person-hours of
manual effort in the current work.
Our U-net model converged well, loss and Dice coeffi-

cient approach 0 and 1, respectively (Figures 2 A and
2B). The Dice coefficient, also known as F1, is a quality
metric that considers false negatives (keel pixels on
GSM but predicted as nonkeel), false positives (nonkeel
pixels on GSM but predicted as keel), and the size of the
GSM and predicted masks. Loss and Dice coefficient
also had similar behavior for training and validation and
across folds, thus overfitting is not suspected (Figure 2
A-B).
Test images, which the model had never seen, were in

total 420 (84 in each of the 5 folds) and had their keel
bones segmented with an accuracy of 0.89 averaged over
the 5 folds (range: 0.88−0.90), with an example on
Figure 2C. Achieving »0.90 segmentation accuracy with
training on»1,000 annotated images, is quite promising.
If we assumed similar setting in poultry breeding compa-
nies and the current work, automating keel bone seg-
mentation for large numbers of images should not
require extensive manual annotation efforts.
The current work does not provide an end-to-end solu-

tion for assessing chickens’ keel bone for breeding pur-
poses. Instead, it provides a dataset of annotated
chicken skeleton images for further methods develop-
ment and structural studies, as well as the keel bone seg-
mentation technology, which will enable further
methods to classify or quantify keel fracture occurrence.
Such a classifier or quantifier could emit predictions
quickly for assessment of keel bones of breeding
ining and validation. For each fold, a different test-train split was used.
standard mask. Right: predicted mask using our converged model.
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chickens. Several dimensions will be automatically mea-
sured on the segmented keel bones and studied for their
heritability as well as correlations with clinical keel bone
phenotypes (e.g., fracture count and deviation size).

With a modest additional image annotation effort, the
current model could also be retrained to segment bones
other than keel (e.g., tibia bone), as well as other objects
that are related to bone health such as eggs. Automatic
segmentation of many objects on the same x-ray image
(keel, tibia, and egg) would maximize the benefit of x-
raying chickens.
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