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• We modeled yield variation for several
staple crops over a broad range of
interacting hydroclimatic and edaphic
conditions.

• Actual evapotranspiration explained
yield variations better than precipitation
and temperature.

• Sandy soils needed less precipitation to
maximize yields, suggesting effects akin
to the inverse texture hypothesis.

• Higher bulk density reduced yields and
increased precipitation required for
maximum yields

• Yields were generally most sensitive to
changes in hydroclimatic conditions
after flowering or silks emergence.
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A B S T R A C T

Crop yields are affected by hydroclimatic and edaphic conditions, but their interacting roles are often neglected
when assessing crop yields at the regional scale. Moreover, often used hydroclimatic conditions such as pre-
cipitation and temperature are not as physiologically linked to primary production and yields as actual evapo-
transpiration. Using statistical models, we quantified the combined effects of edaphic and hydroclimatic
conditions on county yields of irrigated rice and rainfed corn, soybean, and spring and winter wheat in the USA
(2000–2019). Precipitation and temperature, or actual evapotranspiration, aggregated during the growing sea-
son or before and after flowering/silk emergence, in interaction with soil sand content or bulk density, explained
up to 87 % of the yield variability. However, actual evapotranspiration explained yields better than precipitation
and temperature and their interactions for most combinations of crops and growth periods. At high actual
evapotranspiration, yield plateaued or, for spring wheat, decreased. Yields were generally most sensitive to
changes in hydroclimatic conditions during part of rather than the entire growing season, and most often after
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flowering. Soil texture and bulk density modulated the impacts of hydroclimatic conditions: corn and soybean
yields were higher in finer soils compared with sandy soils under high evapotranspiration, but lower at low
evapotranspiration. Additionally, the yield-maximizing precipitation decreased with sand content and increased
with bulk density for most crops. Increasingly available actual evapotranspiration estimates, combined with soil
properties, offer an alternative, and more physiologically-based, yield predictor over large climatic gradients to
the more widely used precipitation and temperature.

1. Introduction

Global food security requires consistent yields of staple crops such as
corn, wheat and rice (Elert, 2014). Globally, up to a third of yield
fluctuations can be explained by climate variations (Ray et al., 2015).
Crops are negatively affected by adverse hydroclimatic conditions (Hall
et al., 2017), in particular when they co-occur. For instance, combined
heat waves and droughts cause substantial crop losses (Brás et al., 2021).
Moreover, given the importance of soil water and nutrient availability
for plants, soil properties linked to water and nutrient cycling influence
how hydroclimatic conditions affect yields (Ma et al., 2023). Yet, how
hydroclimatic conditions interact with edaphic factors in shaping yield
variations and responses to their changes remains uncharacterized over
large areas and climatic gradients.

Crop growth and ultimately marketable yields depend on the
cumulated carbon dioxide assimilation over the growing season. In turn,
carbon dioxide assimilation rates are proportional to transpiration rates,
as both carbon dioxide and water vapor are exchanged through the leaf
stomata. As such, remotely sensed estimates of actual evapotranspira-
tion (ET) are expected to be intimately related to plant carbon uptake,
growth and, for crops, yields. ET is also an important indicator of crop
water requirements and use (Goyal and Harmsen, 2013). On the one
hand, ET is driven by air temperature providing energy for evaporation,
and by soil water availability, replenished by precipitation or irrigation
(Allen et al., 1998; Katul et al., 2012). On the other hand, ET drives the
rate of soil water uptake by the plants, and hence the soil water balance
(Rodríguez-Iturbe and Porporato, 2005; Wang et al., 2021). ET can thus
summarize the effects of water availability from precipitation and irri-
gation, and of temperature on plant physiology and transpiration. Given
the direct or indirect linkages between ET and virtually all plant pro-
cesses, it is perhaps not surprising that remote sensing ET products
predicts yield very well, as shown in analyses covering four sites in
eastern Washington, USA (Khan et al., 2019), or 33 districts in the Czech
Republic (Jurečka et al., 2021). Nevertheless, most large-scale statistical
analyses of crop yields use precipitation and temperature as explanatory
variables and ET has so far been overlooked as yield predictor over large
areas.

While photosynthesis is impaired by water stress and suboptimal
temperature at all growing stages (Fahad et al., 2017), other effects of
hydroclimatic conditions on crop yields depend on the crop develop-
mental phase at which they occur. Water stress and high temperatures
during vegetative phases can impede root growth, affecting water and
nutrient uptake (Calleja-Cabrera et al., 2020) and, consequently, reduce
yield. Conversely, during and after reproductive phases, such adverse
conditions impair yield maturation, and result in lower grain kernel
number and biomass (Boyer and Westgate, 2004; Li et al., 2022; Soba
et al., 2022). These phase-specific sensitivity to adverse conditions
depend on the crop. Rice is more sensitive to heat stress during the
vegetative than early reproductive phase (Cheabu et al., 2018), whereas
corn, soybean and wheat yields are more sensitive to both water and
heat stress in the reproductive than vegetative phase (Daryanto et al.,
2016; Hamed et al., 2021; Hoffman et al., 2020). Understanding how
hydroclimatic conditions affect yield variation requires examining their
impact on the different, developmentally-relevant, parts of the growing
season, in addition to the entire growing season. Nevertheless, most
large-scale assessment of climatic impacts on yields focus on the entire
growing season (e.g., Matiu et al., 2017; Ray et al., 2015; Vogel et al.,

2021) or short-term extreme conditions, such as dry and warm spells
(Luan et al., 2021), irrespective of their timing in relation to the
developmental phase. It remains unclear how hydroclimatic conditions
determine yields by distinctly affecting plant during their develop-
mental phases over large areas.

In addition to climatic conditions, crop yields are affected by soil
properties. Soil texture impacts plant growth and grain yields (Sene
et al., 1985; Nyéki et al., 2017) and influences all aspects of the soil
water balance (Rodríguez-Iturbe and Porporato, 2005). For instance,
infiltration in the rooting zone is higher and soil water evaporation
lower in sandy soils compared with clayey soils. As a result, in dry cli-
mates, where soil moisture and hence infiltration are often low, pre-
cipitation is more effectively stored in coarse- than fine-textured soils
(Noy-Meir, 1973), leading to higher primary production (Sala et al.,
1988)—the so-called “inverse texture hypothesis.” Conversely, in wetter
climates, this effect is reversed because the higher infiltration below the
rooting zone of coarser soils removes water and nutrients from the root
zone and is not compensated by lower evaporation, leading to lower
production in coarse-textured soils. In parallel, higher bulk density—i.
e., lower porosity—can reduce root penetration and length, soil mois-
ture retention, and infiltration capacity, with the latter increasing run-
off and leading to less plant-available water in the root zone (Horton
et al., 1989; Houlbrooke et al., 1997; Zhang et al., 2006). In addition to
its effects on hydrological properties, soil organic matter provides nu-
trients essential for plant growth, so, all else being equal, we expect that
higher or more stable yields occur in soils rich in organic matter (Ma
et al., 2023), which tend to have lower bulk density and thus higher
water storage capacity (Rawls et al., 2003). As hydroclimatic and
edaphic factors, and possibly their interaction, impact yields, they
should be considered for yield prediction. Indeed, they are key inputs for
crop-model yield simulations at various spatial scales and resolutions
(Constantin et al., 2019; Hoffmann et al., 2016; Kuhnert et al., 2017;
Maharjan et al., 2019). However, statistical analyses of observed yield
have considered the combination of hydroclimatic and edaphic condi-
tions only in small-scale contexts (Juhos et al., 2015; H. Liu et al., 2022).
Over large climatic and geographic gradients, yield variability was
explained by climatic controls (Li and Troy, 2018; Luan et al., 2021;
Rosenzweig et al., 2014) or soil properties (He et al., 2014; Whalley
et al., 2008) alone, neglecting their potential interactions. We thus lack
large scale explorations of the interactive effects of edaphic and
hydroclimatic conditions on crop yields.

To fill this gap, we quantify crop yield variations in response to
interacting edaphic and hydroclimatic conditions, for irrigated rice and
rainfed corn, soybean, spring wheat and winter wheat across the con-
tinental USA. We analyze to what extent yields are explained by pre-
cipitation (P) and temperature (T) and their interactions, or ET, of the
entire growing season or developmentally relevant parts of it, as well as
the role of soil sand content (SC) and bulk density (BD). We hypothe-
sized that (a) ET can explain crop yield variations equally, or better than
P and T, (b) yields are more sensitive to hydroclimatic conditions during
distinct phases of the growing season rather than across the entire
growing season, and (c) edaphic conditions modify hydroclimatic im-
pacts on crop yields in addition to directly impacting yields. To test our
hypotheses, we compare the explanatory power of yield variations of
statistical models accounting for P, T, and their interactions, with
models considering ET, and investigate the combined influence of soil
properties on both models, during the entire growing season and before
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and after flowering/silk emergence.

2. Method

2.1. Data acquisition and processing

County-level yield data for corn, rice, soybean, spring wheat and
winter wheat across the conterminous United States were downloaded
from the United States Department of Agriculture (USDA) (2022). We
focused on counties where (a) the crop-specific planted area was at least
10 % of the total county land area, to ensure the crop was well repre-
sented within the county, and (b) the irrigated agricultural area was less
than 10 % of the planted area, to reduce the effects of irrigation (for
details refer to Supplementary Information (SI), section S1.1.3). Since
rice is only irrigated, and grown in relatively few counties, it was
excluded from both criteria in the aforementioned selection process. The
number of counties included ranged from 46 for rice to 598 for soybean.

Monthly P and T data were obtained from the Climatic Research Unit
Time-Series monthly high-resolution gridded multivariate climate data,
v4 (Harris et al., 2020). Two ET products were compared: the Simplified
Surface Energy Balance Actual Evapotranspiration (ETS) (Senay et al.,
2013; Velpuri et al., 2013), and the actual evapotranspiration from the
ERA5-Land hourly data (ETE) (Muñoz-Sabater, 2019). The two ET data
were estimated via different methods (see SI Section S1.1.1) and are
moderately correlated (Figs. S1, S23-S27).

To determine plant developmental phases (Section 2.2), we used
daily 30-year average (1991–2020) accumulated growing degree days
(AGDD) data available from the USANational Phenology Network (USA-
NPN) (2023). Two versions with 32 ◦F (corresponding to 0 ◦C) base
temperatures was used for winter wheat, and that with 50 ◦F (corre-
sponding to 10 ◦C) for the other crops, matching commonly base tem-
peratures of the different crops.

Bulk density (BD) and sand content (SC; i.e., fraction with 50–2000
μm particle size) relative to 60 cm depth were retrieved at 100 m spatial
resolution (Ramcharan et al., 2018). As sand content and bulk density
change slowly through time, they were considered time-invariant. Soil
organic matter content was not included, as it is strongly negatively
correlated to BD (Federer et al., 1993; Prévost, 2004).

Monthly P, T, ET and time invariant data on soil properties were
spatially aggregated to county-level croplands (SI section S1.2). The
analyses were restricted to 2000–2019 to match the period for which all
the hydroclimatic data were available.

2.2. Crop growing season and development phases

For each spring crop, the growing season (GS) was defined as the
period (months) between the median sowing and harvesting dates for
the US state in which the county is located (USDA, 2010). For winter
wheat, we focused on the main growing season, assumed to extend over
the five months before the median harvest date.

The growing season was further split into two developmental phases
(DP), before and after flowering (or silk emergence for corn). Specif-
ically, DP1 included the months between the beginning of the (main)
growing season and flowering, and DP2 included the months between
flowering and the end of the growing season. In other words, the month
of flowering was included in both DP1 and DP2.

For each county, we determined the average day of the year (DOY) of
the crop flowering/silking as the day in which the accumulated growing
degree days (AGDD) from sowing reached previously observed crop-
specific thresholds (AGDD*; Table 1).

In the USA-NPN (2023) AGDD data, growing degree days are accu-
mulated from January 1st, so adjustments were needed to determine the
AGDD relative to the crop, determining the accumulated growing degree
from sowing rather than January 1st. For spring-sown crops, the sowing
date always occurs after January 1st, i.e., the AGDD relative to January
1st needs to be reduced by the AGDD from January 1st to the sowing

date, i.e.,

AGDDscx,t = AGDDx,t − AGDDx,MSD (1)

Conversely, autumn-sown crops are always sown before January 1st,
i.e., the AGDD relative to January 1st needs to be augmented by the
AGDD between the sowing date and the end of the calendar year, i.e.,

AGDDwcx,t = AGDDx,t +
(
AGDDx,365 − AGDDx,MSD

)
(2)

In Eq. 1 and 2, spring and winter crops are denoted by sc and wc,
respectively, and

• AGDDscx,t and AGDDwcx,t are the AGDD for spring and winter crop,
respectively, aggregated at county cropland x and day t of the year

• AGDDx,t is the AGDD from the USA-NPN (2023) data, relative to the
crop-specific base temperature, aggregated at county cropland x and
day t of the year

• AGDDx,MSD is the AGDD from the USA-NPN (2023) data, relative to
the crop base temperature, aggregated at county cropland x and
state-wide median sowing DOY for the crop

• AGDDx,365 is the AGDD from the USA-NPN (2023) data, relative to
the crop base temperature, aggregated at county cropland x and
relative to the last day of the year (DOY 365)

The DOY of the developmental phase DP for crop c and county x was
taken as the first DOY in which AGDDscx,t or AGDDwcx,t (Eqs. 1 and 2)
equals or exceeds the threshold AGDD for the developmental phase and
crop (AGDDc*; Table 1). We set the month in which the developmental
phase occurs as the month of the DOY when AGDDscx,t and AGDDwcx,t
exceed AGDDc* if this DOY is in the first 14 days of the month, or the
following month if this DOY is after the 14th of the month.

P and ET were cumulated, and T averaged, over the three growing
periods: the entire growing season (GS), and before and after flowering/
silking (DP1 and DP2, respectively).

2.3. Linear mixed-effect models

Linear mixed-effect (LME) models were used to analyze the yield
data. We ran a total of 90 model formulations (Table 2): 5 crops × 3
variants of hydroclimatic predictors (P and T, ETS, or ETE) × 3 growing
periods (GS, DP1, or DP2) × 2 variants of soil properties (BD vs SC). As
fixed hydroclimatic effects, we considered P, T and their interactions
(Eq. 3) or either one of the two ET products (ETE or ETS) alone (Eq. 4).
The quadratic dependence on each variable was included as fixed effect
because hydroclimatic conditions often affect yields non-linearly (Leng
and Huang, 2017; Luan et al., 2022; Proctor et al., 2022; Schlenker and
Roberts, 2006, 2009; Zhang et al., 2022). Regarding edaphic conditions,

Table 1
Developmental phases used to split the growing season of each crop and its
corresponding accumulated growing degree days from sowing (AGDDc*) and
base temperatures used for AGDD calculations.

Crop Developmental
phases

AGDDc*
(◦C)

Base
temperature

(◦C)

Reference

Corn Silks emerging/
pollen shedding

1400 10 (Neild and
Newman,
1990)

Rice Flowering ≈1400a 10 (Yang et al.,
2020)

Soybean Flowering (full
bloom)

625 10 (Irmak and
Sandhu,
2023)

Spring
wheat

Flowering 1075 10 (USDA, 2023)

Winter
wheat

Flowering 1075 0 (USDA, 2023)

a Average of multiple AGDD values in the original sources.
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either SC or BD were considered as a yield predictor, alone and in
interaction with P or ET, because of the relevance of soil properties in
holding precipitation-derived water. In all models, time was included as
a fixed continuous variable to account for trends in agricultural practices
or technological advancements, as well as climatic changes during the
study period. The county number was used as a random effect (Δk), to
capture differences among counties in factors not accounted for by the
fixed effects.

All the fixed effect variables were rescaled (SI, section S1.3) using
min-max normalization (e.g. Dey et al., 2021; Marta et al., 2020; Zhang
et al., 2019), with the quadratic terms being squared after normaliza-
tion. For visualization purposes, we show the non-normalized variables
in figures illustrating the regression results.

In summary, the yield Ywas predicted using base models including P
and T,

Yijk = α0⏟⏞⏞⏟
intercept

+ α1P2ijk + α2Pijk + α3T2ijk + α4Tijk + α5Pijk*Tijk + α6tj
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

hydroclimatic factors

+

α7Sk + α8Pijk*Sk
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

soil factors

+ Δk⏟⏞⏞⏟
random
intercept

+ εijk
⏟⏞⏞⏟
errors

(3)

or models including ET instead of P and T (ET estimated as either ETE
or ETS),

Yijk = β0⏟⏞⏞⏟
intercept

+ β1ET2ijk + β2ETijk + β3tj
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

hydroclimatic factors

+ β4Sk + β5ETijk*Sk
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

soil factors

+ Δk⏟⏞⏞⏟
random
intercept

+ εijk
⏟⏞⏞⏟
errors

(4)

In Eq. 3 and 4,

• Yijk is the yield for crop i, time j and county k
• α0 and β0 are the intercept terms
• α1 – α8 and β1 – β5 are the coefficients for the fixed effects
• Pijk is the growing season or developmental phase precipitation for
crop i, time j, and county k

• Tijk is the growing season or developmental phase temperature for
crop i, time j, and county k

• ETijk is the growing season or developmental phase ET (ETE or ETS)
for crop i, time j, and county k

• t is time in years

• Sk is a time-invariant soil property (bulk density (BD) or sand content
(SC)) for county k

• Δk is the time-invariant random intercept term for each county k
• εijk is the error term for crop i, time j, and county k

As a term of comparison, we also considered the simplified case of
models not including any soil property, i.e., Eq. 3 with α7 = α8 = 0 and
Eq. 4 with β4 = β5 = 0.

The models were fitted using the Restricted Maximum Likelihood
(REML) method with R (version 4.1.3) lme4 (version 1.1.29) package
(Bates et al., 2015). The main assumptions of LME models, namely the
normality and homoscedasticity of errors, were confirmed by visual
inspection of Q-Q plots and three residuals plots: residuals vs. normal
distribution kernel density estimation plots, residuals vs. fitted values
plots, and residual distribution by county.

To test our first hypothesis, we compared P and T models to ETE and
ETSmodels across the growing season and developmental phase for each
crop and soil variable, resulting in 30 model comparisons. Specifically,
we computed the Akaike Information Criterion (AIC) to compare models
(Akaike, 1974). For absolute values of explained variance, marginal and
conditional R2 were calculated (Nakagawa and Schielzeth, 2013). To
test our second hypothesis, we compared the 5–95 % confidence in-
tervals of the predicted yield sensitivity to climatic conditions in DP1,
DP2 and the growing season. We obtained the confidence intervals by
fitting our models to 2000 bootstrapped pseudo-replicates created by
resampling our data, calculating the model-predicted yield changes in
response to unitary changes in the climatic variables for each pseudo-
replicate, and considering the 5th and 95th percentiles, under average
climatic (P and T, or ET) and soil (SC or BD) conditions.

3. Results

3.1. Model performance and selection

ET models had higher performance (i.e., lower AIC) than P and T
models in 67 %, and captured a higher fraction of yield variation (i.e.,
higher marginal R2) in 60% of model combinations (first five columns of
Figs. 1 and S11). Compared with ETE, ETS had lower AIC in 63 % but
higher marginal R2 only in 47 % of the model combinations (last five
columns of Figs. 1 and S11). Altogether, the P and T models and ET
models explained up to 77–87 % of yield variation depending on crop, as
evidenced by the conditional R2 (Figs. 2, 3, S4–7).

P and T during the entire growing season explained yield variations
better than P and T in the two sub-seasonal periods for all crops except
spring wheat when considering BD as soil property, and winter wheat
when considering SC or BD (compare marginal R2 values in Figs. 2, 3, S4,
and S5 (a) to S6 and S7 (a)). P and T during DP1 explained a larger yield
variation than during DP2 for all crops except corn (Figs. 2, 3, S4–5).
Yield variation was explained better by ETE during DP1 for rice, spring
wheat and winter wheat, by ETE during DP2 for corn, and by ETE of the
growing season for soybean (Figs. 2, 3, S4–7). ETS during DP1 explained
the highest fraction of yield variation for rice and winter wheat, but ETS
during DP2 explained corn and soybean yield variation best (Figs. 2, 3,
S4–7). In all cases, including one soil property (sand content, SC, or soil
bulk density, BD) improved the model performance and described
variation, based on both AIC and R2 (not shown). We thus comment only
on the models including a soil property.

3.2. Precipitation and temperature effects on yields

In all growing periods, model-predicted yields peaked at intermedi-
ate precipitation for all crops except rice, as indicated by negative PDP12 ,
PDP22 and PGS2 coefficients (Figs. 2, 3, S4–10). Notably, spring wheat
yields were lowered by reduced precipitation during DP1 (Figs. 4 and S8
(a)) and the entire growing season (Figs. S9–10 (a)), but were enhanced
by reduced precipitation during DP2 (Figs. 4 and S8 (b)). For set

Table 2
Summary of model variants and figures where results for each variant are
shown. All variants were run with data from the entire growing season or the
two sub-seasonal growing periods. P: precipitation, T: temperature, ETE and
ETS: actual evapotranspiration from two methods (SI section 1.1.1), SC: sand
content, BD: bulk density.

Model Hydro-
climatic
factors

Soil
factors

Equation Figures

P and T
models

P, T – 3 (α7 =

α8 = 0)
–

SC 3 (SP = SC) 1, 2a, 4a, 4b, 5, 3a,
S6a, S9a, S12

BD 3 (SP = BD) 5, S4a, S5a, S7a, S8a,
S8b, S10a, S11, S12

ETE
models

ETE – 4 (β4 =

β5 = 0)
–

SC 4 (SP = SC) 1, 2b, 4c, 6 3b, S6b,
S9b

BD 4 (SP = BD) S4b, S5b, S7b, S8c,
S10b, S11, S13

ETS
models

ETS – 4 (β4 =

β5 = 0)
–

SC 4 (SP = SC) 1, 2c, 4c, 6, 3c, S6c,
S9b

BD 4 (SP = BD) S4c, S5c, S7c, S8c,
S10b, S11, S13

M. Suliman et al.
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precipitation and soil property, cooler growing seasons improved the
yields of all crops except soybean and winter wheat (Figs. S9, S10).

Yields were most sensitive to precipitation during DP2 or DP1, rather
than the entire growing season. Based on model predictions at mean
sand content, precipitation and temperature, the yield sensitivity to
precipitation (as absolute value) was highest in DP2 for corn, soybean,
and spring wheat (Table S5). For example, the yield increase in corn per
unit precipitation increase for DP2 was 0.0047 ton ha− 1 mm− 1 (5 % to
95 % confidence interval (CI): 0.0044 to 0.0049), which is higher than
that of DP1 or the growing season (0.0023; CI: 0.0020 to 0.0026 ton
ha− 1 mm− 1 for DP1; and 0.0036; CI: 0.0033 to 0.0038 ton ha− 1 mm− 1

for the growing season). The yield sensitivity to precipitation was
highest in DP1 and lowest in DP2 in winter wheat and rice, although the
sign of the response differed (Table S5). Conversely, the period with
highest yield sensitivity to temperature depended on the crop. The yield
sensitivity was most negative in DP2 for soybean, and wheat varieties,
but more negative in the growing season than DP1 for corn and rice
(Table S6).

For given P and T, model-predicted yields were higher in fine- than
coarse-textured soils, in all growing periods and crops, except rice and
spring wheat (Fig. 5, blue vs. orange lines). Moreover, the precipitation
at which yield peaked based on the model results – hereafter yield-
maximizing precipitation – was lower in coarse-textured soils for most
crops and growing periods (Fig. S12). The largest reduction in yield-
maximizing precipitation occurred in winter wheat when considering
the entire growing season – from 605 to 545 mm for SC increasing from
14 to 37 % (one standard deviation below and above the mean respec-
tively). Higher bulk density corresponded to higher yield-maximizing
precipitation for most growing periods for soybean and spring wheat,
and in DP1 for corn (Fig. S12).

3.3. Actual evapotranspiration effects on yields

Crop yields changed non-linearly with ET (Figs. 2–4, S4–10). Under

mean SC and BD, model-predicted yields increased with growing season
or sub-seasonal ETE for all crops except rice, although spring wheat
yield started to decrease above ETEGS ~ 400 mm, ETEDP1 ~ 350 mm,
and ETEDP2 ~ 200 mm (Figs. 4 (c), S9 (b)). Rice yields decreased with
increasing growing season or sub-seasonal ETE.

Yields were or tended to be most sensitive to ET during DP1 or DP2,
instead of the entire growing season, for all crops and irrespective of ET
products (Tables S7, S8). For example, at average ETE and SC, yields
were most sensitive to ETE changes in DP1 for rice, spring wheat and
winter wheat (− 0.0038 ton ha− 1 mm− 1 for rice, 0.0059 ton ha− 1 mm− 1

for spring wheat and 0.0066 ton ha− 1 mm− 1 for winter wheat), while
corn yield was more sensitive to ETE in DP2 than DP1 (Table S7). When
considering ETS, corn, soybean and spring wheat yields were most
sensitive to changes during DP2 (0.0178 ton ha− 1 mm− 1 for corn, 0.0057
ton ha− 1 mm− 1 for soybean and spring wheat; Table S8), whereas winter
wheat yields were most sensitive to ETS changes during DP1 (0.0053 ton
ha− 1 mm− 1).

Model-predicted winter wheat and corn yields were higher in fine-
compared with coarse-textured soils at ETEGS higher than 300 and 640
mm, respectively, but lower at low ETE (solid lines in Fig. 6). Rice and
spring wheat yields were higher for any ETE in coarser soils, whereas
soybean and winter wheat yields were higher in finer soils (Fig. 6). When
considering ETS as predictor, corn, soybean, and spring wheat yields
were generally higher in fine textured soils at high ETS, and in sandy
soils at low ETS (dashed lines in Fig. 6). At all ETS values, winter wheat
yields were higher and rice yields lower in fine- than coarse-textured
soils (Fig. 6).

Regarding bulk density, using ETE as predictor, rice yields were
higher in soils with high bulk density, whereas spring wheat and winter
wheat yields were higher at low bulk density (Fig. S13). Corn yields
were higher in soils with high bulk density, but only at ETEGS, ETEDP1
and ETEDP2 above 675, 375 and 500mm, respectively. Models using ETS
generally predicted higher yields in low bulk density soils, with the
exception of rice, and soybean predicted with ETEDP2 (Fig. S13).

Fig. 1. Akaike Information Criterion (AIC) and marginal R2 comparisons between models where precipitation (P) and temperature (T) or actual evapotranspiration
(ET) are used as fixed effects. Colors indicate which of the model formulations had the highest performance (lowest AIC or highest marginal R2) when using climatic
conditions during different periods (compare rows in pairs: growing season: GS; first plant development phase: DP1; second plant development phase: DP2) and
overall (two bottom rows). In the first five columns, comparisons refer to P and T vs ET as predictors, with blue indicating that the P and T model is superior to the
best of the ET models (ETS or ETS), and with green indicating that at least one of the ET models performs better than the P and T model. The last five columns
compare models using the two ET products, with light green indicating that ETE is superior to ETS. All models include sand content as the soil variable. Crops are:
corn (C), rice (R), soybean (SB), spring wheat (SW), and winter wheat (WW).
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4. Discussion

Our precipitation and temperature and actual evapotranspiration
models explained up to 85 and 87 % of crop yields' variation, respec-
tively (highest conditional R2 for precipitation and temperature models
and actual evapotranspiration models across Figs. 2, 3, S4–7), with an
important contribution of county as random factor (similarly to Luan
et al., 2021; Xu and Wu, 2018). Up to 46 % of yield variation was
explained by the hydroclimatic and edaphic conditions and their in-
teractions alone, i.e., without considering the random effects (Fig. S7).
Therefore, regional-scale pedoclimatic conditions were important to
explain yield variation regardless of county-specific factors. All crop

yields increased through time (Fig. 2, 3, S4–7), suggesting that im-
provements of agronomic practices (Ritchie and Roser, 2020) more than
compensated any negative effects of climatic trends over the period
explored (2000–2019). In the following, we discuss climate and soil
effects without considering these long-term trends.

4.1. Actual evapotranspiration explains yield variation better than
precipitation and temperature

Models using actual evapotranspiration as predictor performed bet-
ter, based on AIC, than precipitation and temperature models, irre-
spective of the included soil factor (Figs. 1 and S11), thus supporting our

Fig. 2. Heat maps showing coefficients for the fixed effects of the fitted models (Eq. 3 in a, Eq. 4 in b-c) for the first plant development phase (DP1), with sand content
(SC) as soil property. Independent variables are shown in the rows: (a) linear, quadratic, and interaction terms for precipitation and temperature during the first plant
development phase (PDP1, and TDP1), sand content (SC), and time; (b) and (c) same as in (a), but with actual evapotranspiration from the ERA5-Land hourly data or
from the simplified surface energy balance during the first plant development phase (ETEDP1 or ETSDP1), respectively. Crops are shown on the columns: corn (C), rice
(R), soybean (SB), spring wheat (SW), and winter wheat (WW). Cells in red denote negative coefficients and cells in blue denote positive coefficients. Cells in gray
represent coefficients with p-values higher than 0.05. Coefficients refer to effects of a unitary change of the normalized variable (Eq. 3 and 4) and are thus non-
dimensional and comparable. Marginal (M) and conditional (C) R2 for each model, and the difference between each model and the model with the lowest AIC
(ΔAIC) are reported at the bottom of each column, with ΔAIC = 0 denoting the best models for each crop.
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first hypothesis. Furthermore, despite the lower number of parameters,
actual evapotranspiration models captured a larger fraction of the yield
variation for most crops, compared with precipitation and temperature
models (higher conditional and marginal R2; Figs. 1–3, S4–7, and S11).
For comparison, our actual evapotranspiration models explained 75 %
of soybean yield variation, whereas previous models for the same region
including not only temperature and precipitation, but also root zone soil
moisture explained 70 % of its variation (Hamed et al., 2021). The
explained variance was only slightly lower for corn (81 % compared
with 86 %) and equal for soybean (81 %) to that captured by machine
learning models using six indicators of hydroclimatic conditions in the
same region: vapor pressure deficit, daily minimum and maximum
temperature, precipitation, extreme degree days, and surface down-
welling shortwave flux (Hoffman et al., 2020) (Fig. S5).

We attribute the difference in performance between models using
actual evapotranspiration and models using precipitation and temper-
ature to how these variables reflect growing condition constraints on
crops, in particular water availability. Precipitation affects yields mostly

indirectly, through its role as input to the soil water balance. However,
the plant available water depends also on soil water evaporation, plant
water uptake, interception, and percolation below the rooting zone
(Rodríguez-Iturbe and Porporato, 2005). Temperature affects evapo-
transpiration rates, but also leaf temperature and hence all plant pro-
cesses. Together, plant available water and air temperature affect carbon
fixation, growth, and ultimately grain yields. Conversely, there is a
closer link between actual evapotranspiration and crop yields, because
of the coupling between transpiration and carbon fixation via photo-
synthesis, which in turn drives biomass growth and yield (Bhatt and
Hossain, 2019; Fang et al., 2021; Vico and Porporato, 2015). Moreover,
actual evapotranspiration is more closely connected to soil moisture
than precipitation, as wetter soil promotes both evaporation from the
soil surface and transpiration (Rodríguez-Iturbe and Porporato, 2005;
Verhoef and Egea, 2014).

Due to suchmechanistic links, potential evapotranspiration is used in
process-based crop growth models (e.g. Hsiao et al., 2009). Actual
evapotranspiration, in comparison, has rarely been used as explanatory

Fig. 3. Same as Fig. 2 but for developmental phase DP2. Soil property is sand content (SC).
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variable for yield variations, and only for few growing seasons (Khan
et al., 2019), or over comparatively limited hydroclimatic gradients
(Jurečka et al., 2021– the Czech Republic), despite its increasing
availability from remote sensing products. Given the pivotal role of
water availability in plant development and in staving off water and
heat stress, root-zone plant water availability would be the ideal yield
predictor. Indeed, a global analysis showed that model estimates of root-
zone soil moisture are more accurate predictors of yield than precipi-
tation in corn, soybean, sorghum andmillet and temperature in corn and
sorghum (Proctor et al., 2022). However, root-zone soil moisture is hard
to measure over large areas and would require accurate soil texture
information to be transformed into plant available water. Here, we show
that spatially-continuous actual evapotranspiration estimates can be an
accurate alternative yield predictor.

Hydroclimatic conditions affected yields nonlinearly (Figs. 2–3).
Increased growing season actual evapotranspiration were generally
associated to improved yields, although winter wheat yield gains
tapered off at high actual evapotranspiration and spring wheat yields
declined at very high growing season actual evapotranspiration within
the observed range (Figs. 6, S13). High actual evapotranspiration can
occur because of high atmospheric evaporative demands, in turn asso-
ciated with high temperatures, suggesting heat stress as one possible
cause of yield decline at high actual evapotranspiration. However, high
actual evapotranspiration could also stem from high soil moisture,
enhancing soil water evaporation and, if extreme, causing damage from
water logging and hypoxic/anoxic conditions as well as nutrient

leaching.
The difference of performance between the two actual evapotrans-

piration products was not substantial (Figs. 1–3, S4–7 and S11), mir-
roring findings from other analyses comparing actual
evapotranspiration products (Jurečka et al., 2021). Nevertheless, for
corn and soybean, post-flowering ETS models captured a larger fraction
of yield variations than other periods, or in comparison to ETE (Figs. 2,
3, S4–7). Importantly, the same ETE and ETS values consistently pre-
dicted different yields in our models, indicating varying biases between
the two estimates, possibly due to the different estimation approaches
for actual evapotranspiration (SI section S1.1.1).

Similar to actual evapotranspiration, yields depended non-linearly
on precipitation and temperature. Both excessively low and high pre-
cipitation reduced crop yields (Figs. 2 (a), 3 (a), S4–7 (a)), as previously
observed (Leng and Huang, 2017; Luan et al., 2022; Schlenker and
Roberts, 2009). Yields were likely reduced by water stress at low pre-
cipitation (Nguyen et al., 2023) and by cloudiness, wet conditions pro-
moting pests and pathogens, delayed sowing or harvest (Ashraf and
Habib-ur-Rehman., 1999; Li et al., 2019; Rosenzweig et al., 2002),
water logging and associated limited oxygen and nutrient availability
(Nguyen et al., 2018) at high precipitation. Our results for winter wheat
confirm previously reported yield reductions under excess precipitation
(W. Liu et al., 2022; Song et al., 2019) and dry conditions (Kukal and
Irmak, 2018; Matiu et al., 2017) (Figs. 2, 3, S4–7, S9–10). As in previous
estimates (Luan et al., 2022), warmer growing seasons improved soy-
bean yields (Figs. S9–10).

Fig. 4. Corn (C), rice (R), soybean (SB), spring wheat (SW) and winter wheat (WW) yield predictions using linear mixed effect models (LME) with precipitation (P)
and temperature (T) as fixed effects (Eq. 3) during: (a) first plant development phase (DP1) and (b) second plant development phase (DP2), or (c) with actual
evapotranspiration (ET) as fixed effect (Eq. 4) during the first and second plant development phases (blue and orange lines respectively). The predictions are based on
the fixed effects only under average sand content and for year 2005, using non-normalized variables in the LME models. The white dots in (a) and (b) denote the
conditions corresponding to the highest yield. The analysis was run on the entire range of observations, but the represented ranges of hydroclimatic conditions in the
panels correspond to the 10th and 90th percentiles of observations.
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Rice yields were largely unaffected by hydroclimatic conditions
(Figs. 2, 3, S4–7), as expected for an irrigated crop. Indeed globally, rice
yields are less sensitive to hydroclimatic conditions compared with
other crops (Heino et al., 2023), and irrigation in general alleviates heat
and water stress (Luan et al., 2021). The emerging temperature depen-
dence for rice yields (Figs. 4, S8–10) is likely influenced by the
geographic distribution of data in our analyses, as the highest yielding
counties are located in California, with growing season temperatures
lower than 23 ◦C (see Fig. S19).

4.2. Yields were generally more sensitive to conditions during part of the
growing season rather than the entire growing season

Yields were, or tended to be, more sensitive to changes in hydro-
climatic conditions in part of the growing season compared with the
entire season, with the exception of the effect of temperature on rice and
corn yields, in line with our second hypothesis. Moreover, the best
models for each crop based on AIC and marginal R2 were mostly based
on climatic conditions during either DP1 or DP2 rather than based on the
entire growing season (Figs. 1, S11). Compared with before flowering

(DP1) or the entire growing season, conditions after flowering or silk
emergence (DP2) had the largest effects on all crop yields except for rice
in the case of precipitation, and except rice and corn for temperature.
Indeed, previous pot and field experiments, and analyses of survey yield
data found corn and soybean yields to be more affected by temperature
and water stress during the reproductive phase, i.e. after flowering,
compared with the vegetative phase (Hamed et al., 2021; Hoffman et al.,
2020; Jumrani and Bhatia, 2018; Li et al., 2022). Conversely, the most
sensitive period to ET changes depended on crop and ET product, sug-
gesting that ET might capture both aspects of biomass accumulation
during the vegetative phase (i.e., DP1) and the occurrence of detri-
mental conditions after flowering.

Interpretations of our results should consider uncertainties pertain-
ing to the definition of the growing seasons and the development phases.
First, we used state-wide median sowing and harvesting dates in
defining the growing season for each county. This does not account for
variations in growing seasons among counties within a state. Second, we
use monthly temporal scales in defining both the growing season and its
parts, as required for consistency with the scale of most hydroclimatic
data. A finer temporal scale would enable more precise representation of

Fig. 5. Role of soil properties in mediating the yield response to precipitation, for set temperature. Corn (C), rice (R), soybean (SB), spring wheat (SW) and winter
wheat (WW) yield predictions by linear mixed effect (LME) models including as fixed effects precipitation and temperature in the three growing periods (growing
season: GS; first plant development phase: DP1; second plant development phase: DP2), under fixed temperature (mean of the observations for the growing period),
and for low (blue) and high (orange) sand content (SC) (solid lines) and bulk density (BD) (dashed lines). Low and high SC and BD correspond to one standard
deviation below and above the mean observation, respectively. The predictions are based on the fixed effects only, using non-normalized variables in the LME
models; the year selected for these predictions was 2005. The analysis was run on the entire range of observations, but the represented ranges of climatic conditions
in the panels correspond to the 10th and 90th percentiles of observations.
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both the growing season and plant development phases. The month-long
overlap between DP1 and DP2 was introduced to limit variations due to
the coarse monthly separation and aggregation of sub-seasonal periods.
Therefore, we expect our accumulated precipitation and actual evapo-
transpiration in both DP1 and DP2 to be somewhat overestimated.
However, we do not expect this to affect our main findings, as confirmed
by the similar results from studies in the same region with more precise

separation of intra-annual periods (e.g. Hoffman et al., 2020).

4.3. Soil properties interact with hydroclimatic impacts on crop yield

Confirming our third hypothesis, we found that sand content and
bulk density modified crop yield predictions, directly by improving or
suppressing yields, and indirectly by altering the hydroclimatic

Fig. 6. Corn (C), rice (R), soybean (SB), spring wheat (SW) and winter wheat (WW) yield predictions from linear mixed effect (LME) models including as fixed effect
evapotranspiration (Eq. 4), for ETS (dashed lines) and ETE (solid lines). Panels and symbols are as in Fig. 4: columns refer to the three growing periods (growing
season: GS; first plant development phase: DP1; second plant development phase: DP2), line colors to low and high sand contents (SC) (blue and orange lines
respectively). Time is set at the year 2005. The analysis was run on the entire range of observations, but the represented ET ranges correspond to the 10th and 90th
percentiles of observations.
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conditions at which yield is maximized. When using precipitation and
temperature as predictors, higher sand content reduced crop yields, with
the exception of rice and spring wheat (Fig. 5).

High sand fraction reduces soil water and nutrient retention capacity
and is associated with low soil fertility (Reichert et al., 2016; Huang and
Hartemink, 2020), so it is not surprising that, regardless of precipitation,
yields are often lower in coarser soils (Huang et al., 2021). The yield-
maximizing precipitation during the growing season or during the
development phases (DP1 and DP2) shifts to lower values in coarser soils
for all crops except rice and spring wheat during the growing season,
rice and winter wheat during DP1, and corn and spring wheat during
DP2 (Figs. 6, S12). In other words, in coarser soils lower precipitation is
sufficient to reach the maximum attainable yield, even though in most of
the crops we considered the maximum yields in coarser soils are still
lower than those in finer-textured soils. The lower yield-maximizing
precipitation in coarser soils might be the result of their higher infil-
tration capacity, which partly offsets their higher percolation and
nutrient leaching below the rooting zone, compared with fine-textured
soils (Noy-Meir, 1973). While these water and nutrient losses in
coarser soils likely make high precipitation less effective for crop growth
(thus lowering yields), high infiltration rates allow yields to peak at
relative low precipitation values—a result that we interpret as consistent
with the inverse texture hypothesis (Noy-Meir, 1973; Sala et al., 1988).
Coarser soils resulted in higher corn yields than finer soils in dry cli-
mates, whereas finer soils result in higher yields in wet climates based on
a previous statistical analysis (Huang et al., 2021). Here, we find that
corn yields were consistently lower in coarser soils when using precip-
itation as predictor. However, when using actual evapotranspiration
(except ETSDP1), corn yields in dry conditions (i.e., low actual evapo-
transpiration) were higher in coarser soils (Fig. 6), consistent with re-
sults by Sala et al. (1988) indicating higher productivity in coarser soils
under dry conditions.

When using precipitation and temperature as predictors, high bulk
density suppressed the yields of most crops (Fig. 5), likely by reducing
soil penetrability by roots and hence root length, access to deeper water
and nutrient resources, ultimately slowing down plant growth (Ben-
gough et al., 2011; Houlbrooke et al., 1997; Young et al., 1997). High
bulk density is also associated with lower soil organic matter (Rawls
et al., 2003) and infiltration rate, and in general lower fertility. The
model estimates point to higher precipitation needed to maximize the
yields of corn (DP1), soybean (GS and DP2) and spring wheat (GS and
DP1) in soils with high bulk density (Fig. S12). This result could be
explained by high bulk density reducing root access to soil water
(Houlbrooke et al., 1997) or water storage due to increased surface
runoff in less permeable, compacted soil.

4.4. Implications for crop yields under climate change

We have shown that in most cases actual evapotranspiration had a
higher explanatory power than more commonly employed climatic
indices, like precipitation and temperature. Thus, actual evapotranspi-
ration estimates can improve the evaluation of climate change impacts
on crop production. As our analysis included several staple crops and a
broad range of hydroclimatic conditions, we expect the higher perfor-
mance of actual evapotranspiration to hold true in other parts of the
world and potentially globally. Our results regarding actual evapo-
transpiration likely stem from its capacity to represent crop water use, i.
e., the interplay between water availability and demands – a particularly
important aspect in the face of more extreme climatic conditions.

Satellite-based and global actual evapotranspiration estimations are
becoming increasingly available, and have the advantage of providing
high resolution and spatially continuous information. However, limita-
tions of these estimates, including the ones used here, are that they do
not distinguish between the contributions of different crops to actual
evapotranspiration or between transpiration and soil water evaporation,
and are obtained from water and/or energy balance models and remote

sensing products at a scale too coarse to identify individual fields. In the
context of our study not distinguishing evaporation and transpiration
means that actual evapotranspiration during part of the pre-flowering
period (i.e., in DP1) is likely to include a larger fraction of evapora-
tion compared with later periods, when the canopy is closed. As we do
not analyze yields at field scale, we expect that our approach of masking
actual evapotranspiration per county cropland would provide sufficient
level of granularity in spatial integration. Despite these limitations,
actual evapotranspiration had a strong explanatory power of yields of a
variety of crops.

The impact of hydroclimatic conditions on yields were mediated by
soil properties (Figs. 2, 5, 6, S12). Our results suggest that soil properties
can lower or raise the negative effects of climate change on crop yields.
For example, it indicates that the detrimental effects of drier growing
seasons on yields are raised under unfavorable soil conditions (i.e. in
coarser and more compacted soils). As such, not including soil effects in
predictive models of crop yields will under- or over-estimate climate
change impacts. Moreover, while sand content is defined by topographic
position and parent material, bulk density is also affected by soil and
crop management. Reducing tillage or modifying its depth, controlling
machinery traffic, adding organic matter to the soil, and more diverse
crop rotation all could lower bulk density (Jones et al., 1989). Our re-
sults indicate that such practices will not only improve yields by
lowering bulk density, but will also reduce the growing season and intra-
seasonal precipitation required to achieve maximum yields. These
practices are especially important since bulk density affects soil water
holding capacity, which in turn can reduce yield volatility and stabilize
it against dry spells and heatwaves (Williams et al., 2016).

5. Conclusion

For a variety of staple crops across the USA, we show that remotely
sensed actual evapotranspiration explains yield variation better than
precipitation and temperature, that yields are more sensitive to hydro-
climatic impacts in crop-specific, phenologically-relevant parts of the
growing season rather than the entire growing season, and that these
impacts are modulated by edaphic conditions (sand content and bulk
density). Yields improved with increasing growing season evapotrans-
piration, although spring wheat yields started to decline at high
evapotranspiration. In general, yields were most sensitive to hydro-
climatic conditions after flowering or silk emergence. Compared with
coarser soils, higher yields occurred over finer soils under most climatic
conditions, but yields were maximized at higher precipitation in finer
soils and in soils with higher bulk density. These results highlight the
importance of accounting for climate-soil synergetic effects when
exploring the role of climatic conditions on yields. As actual evapo-
transpiration integrates soil moisture dynamics and crop water use that
in turn affect yields, it can be utilized for large-scale, accurate yield
predictions.
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Muñoz-Sabater, J., 2019. ERA5-land hourly data from 1981 to present. In: Copernicus
Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/
cds.e2161bac.

Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R2 from
generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://
doi.org/10.1111/J.2041-210x.2012.00261.X.

Neild, R., Newman, J., 1990. Growing season characteristics and requirements in the
corn belt. In: National Corn Handbook. Cooperative Extension Service, Purdue
University. https://www.extension.purdue.edu/extmedia/NCH/NCH-40.html.

Nguyen, L., Osanai, Y., Anderson, I.C., Bange, M.P., Tissue, D.T., Singh, B.K., 2018.
Flooding and prolonged drought have differential legacy impacts on soil nitrogen
cycling, microbial communities and plant productivity. Plant Soil 431 (1–2),
371–387. https://doi.org/10.1007/s11104-018-3774-7.

Nguyen, H., Thompson, A., Costello, C., 2023. Impacts of historical droughts on maize
and soybean production in the southeastern United States. Agric. Water Manag. 281,
108237 https://doi.org/10.1016/j.agwat.2023.108237.

Noy-Meir, I., 1973. Desert ecosystems: environment and producers. Annu. Rev. Ecol.
Syst. 4, 25–51.

Nyéki, A., Milics, G., Kovács, A.J., Neményi, M., 2017. Effects of soil compaction on
cereal yield: a review. Cereal Res. Commun. 45 (1), 1–22. https://doi.org/10.1556/
0806.44.2016.056.

Prévost, M., 2004. Predicting soil properties from organic matter content following
mechanical site preparation of Forest soils. Soil Sci. Soc. Am. J. 68 (3), 943–949.
https://doi.org/10.2136/sssaj2004.9430.

Proctor, J., Rigden, A., Chan, D., Huybers, P., 2022. More accurate specification of water
supply shows its importance for global crop production. Nature Food 3 (9). https://
doi.org/10.1038/s43016-022-00592-x. Article 9.

Ramcharan, A., Hengl, T., Nauman, T., Brungard, C., Waltman, S., Wills, S.,
Thompson, J., 2018. Soil property and class maps of the conterminous US at 100
meter spatial resolution based on a compilation of national soil point observations
and machine learning. Soil Sci. Soc. Am. J. 82 (1), 186–201. https://doi.org/
10.2136/sssaj2017.04.0122.

Rawls, W.J., Pachepsky, Y.A., Ritchie, J.C., Sobecki, T.M., Bloodworth, H., 2003. Effect
of soil organic carbon on soil water retention. Geoderma 116 (1–2), 61–76. https://
doi.org/10.1016/S0016-7061(03)00094-6.

Ray, D.K., Gerber, J.S., MacDonald, G.K., West, P.C., 2015. Climate variation explains a
third of global crop yield variability. Nat. Commun. 6 (1) https://doi.org/10.1038/
ncomms6989. Article 1.

Reichert, J.M., Amado, T.J.C., Reinert, D.J., Rodrigues, M.F., Suzuki, L.E.A.S., 2016.
Land use effects on subtropical, sandy soil under sandyzation/desertification
processes. Agric. Ecosyst. Environ. 233, 370–380. https://doi.org/10.1016/j.
agee.2016.09.039.

Ritchie, H., Roser, M., 2020. Agricultural Production. Our World in Data. https://ourwor
ldindata.org/agricultural-production.

Rodríguez-Iturbe, I., Porporato, A., 2005. Ecohydrology of Water-Controlled Ecosystems:
Soil Moisture and Plant Dynamics. Cambridge University Press. https://doi.org/
10.1017/CBO9780511535727.

Rosenzweig, C., Tubiello, F.N., Goldberg, R., Mills, E., Bloomfield, J., 2002. Increased
crop damage in the US from excess precipitation under climate change. Glob.
Environ. Chang. 12 (3), 197–202. https://doi.org/10.1016/S0959-3780(02)00008-
0.

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., Boote, K.J.,
Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T.A.M.,
Schmid, E., Stehfest, E., Yang, H., Jones, J.W., 2014. Assessing agricultural risks of
climate change in the 21st century in a global gridded crop model intercomparison.
Proc. Natl. Acad. Sci. 111 (9), 3268–3273. https://doi.org/10.1073/
pnas.1222463110.

Sala, O.E., Parton, W.J., Joyce, L.A., Lauenroth, W.K., 1988. Primary production of the
central grassland region of the United States. Ecology 69 (1), 40–45. https://doi.org/
10.2307/1943158.

Schlenker, W., Roberts, M.J., 2006. Nonlinear effects of weather on corn yields. Rev.
Agric. Econ. 28 (3), 391–398.

Schlenker, W., Roberts, M.J., 2009. Nonlinear temperature effects indicate severe
damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. 106 (37),
15594–15598. https://doi.org/10.1073/pnas.0906865106.

Senay, G.B., Bohms, S., Singh, R.K., Gowda, P.H., Velpuri, N.M., Alemu, H., Verdin, J.P.,
2013. Operational evapotranspiration mapping using remote sensing and weather
datasets: a new parameterization for the SSEB approach. JAWRA Journal of the
American Water Resources Association 49 (3), 577–591. https://doi.org/10.1111/
jawr.12057.

Sene, M., Vepraskas, M.J., Naderman, G.C., Denton, H.P., 1985. Relationships of soil
texture and structure to corn yield response to subsoiling. Soil Sci. Soc. Am. J. 49 (2),
422–427. https://doi.org/10.2136/sssaj1985.03615995004900020030x.

Soba, D., Arrese-Igor, C., Aranjuelo, I., 2022. Additive effects of heatwave and water
stresses on soybean seed yield is caused by impaired carbon assimilation at pod
formation but not at flowering. Plant Sci. 321, 111320 https://doi.org/10.1016/j.
plantsci.2022.111320.

Song, Y., Linderholm, H.W., Wang, C., Tian, J., Huo, Z., Gao, P., Song, Y., Guo, A., 2019.
The influence of excess precipitation on winter wheat under climate change in China
from 1961 to 2017. Sci. Total Environ. 690, 189–196. https://doi.org/10.1016/j.
scitotenv.2019.06.367.

United States Department of Agriculture (USDA), 2010. Economics, Statistics and Market
Information System (ESMIS)—Usual Planting and Harvesting Dates for U.S. Field
Crops. https://usda.library.cornell.edu/concern/publications/vm40xr56k.

United States Department of Agriculture (USDA), 2022. National Agricultural Statistics
Service—QuickStats Ad-hoc Query Tool. https://quickstats.nass.usda.gov/.

United States Department of Agriculture (USDA), 2023. International Production
Assessment Division (IPAD)—Metadata for Winter/Spring Wheat Growth Stage
Models. https://ipad.fas.usda.gov/cropexplorer/description.aspx?legendi
d=313&regionid=na.

USA National Phenology Network, 2023. Extended Accumulated Growing Degree Days
Gridded Data Products. https://doi.org/10.5066/F7SN0723.

Velpuri, N.M., Senay, G.B., Singh, R.K., Bohms, S., Verdin, J.P., 2013. A comprehensive
evaluation of two MODIS evapotranspiration products over the conterminous United
States: using point and gridded FLUXNET and water balance ET. Remote Sens.
Environ. 139, 35–49. https://doi.org/10.1016/j.rse.2013.07.013.

Verhoef, A., Egea, G., 2014. Modeling plant transpiration under limited soil water:
comparison of different plant and soil hydraulic parameterizations and preliminary
implications for their use in land surface models. Agric. For. Meteorol. 191, 22–32.
https://doi.org/10.1016/j.agrformet.2014.02.009.

Vico, G., Porporato, A., 2015. Ecohydrology of agroecosystems: quantitative approaches
towards sustainable irrigation. Bull. Math. Biol. 77 (2), 298–318. https://doi.org/
10.1007/s11538-014-9988-9.

Vogel, J., Rivoire, P., Deidda, C., Rahimi, L., Sauter, C.A., Tschumi, E., van der Wiel, K.,
Zhang, T., Zscheischler, J., 2021. Identifying meteorological drivers of extreme
impacts: an application to simulated crop yields. Earth Syst. Dynam. 12 (1),
151–172. https://doi.org/10.5194/esd-12-151-2021.

Wang, Y., Zhang, Y., Yu, X., Jia, G., Liu, Z., Sun, L., Zheng, P., Zhu, X., 2021. Grassland
soil moisture fluctuation and its relationship with evapotranspiration. Ecol. Indic.
131, 108196 https://doi.org/10.1016/j.ecolind.2021.108196.

Whalley, W.R., Watts, C.W., Gregory, A.S., Mooney, S.J., Clark, L.J., Whitmore, A.P.,
2008. The effect of soil strength on the yield of wheat. Plant Soil 306 (1), 237.
https://doi.org/10.1007/s11104-008-9577-5.

Williams, A., Hunter, M.C., Kammerer, M., Kane, D.A., Jordan, N.R., Mortensen, D.A.,
Smith, R.G., Snapp, S., Davis, A.S., 2016. Soil water holding capacity mitigates
downside risk and volatility in US rainfed maize: time to invest in soil organic
matter? PLoS One 11 (8), e0160974. https://doi.org/10.1371/journal.
pone.0160974.

Xu, H., Wu, M., 2018. A first estimation of county-based green water availability and its
implications for agriculture and bioenergy production in the United States. Water 10
(2), 148. https://doi.org/10.3390/w10020148.

Yang, C.-Y., Yang, M.-D., Tseng, W.-C., Hsu, Y.-C., Li, G.-S., Lai, M.-H., Wu, D.-H., Lu, H.-
Y., 2020. Assessment of rice developmental stage using time series UAV imagery for
variable irrigation management. Sensors (Basel, Switzerland) 20 (18), 5354. https://
doi.org/10.3390/s20185354.

Young, I.M., Montagu, K., Conroy, J., Bengough, A.G., 1997. Mechanical impedance of
root growth directly reduces leaf elongation rates of cereals. New Phytol. 135 (4),
613–619. https://doi.org/10.1046/j.1469-8137.1997.00693.x.

M. Suliman et al.

https://doi.org/10.1088/1748-9326/aac4b1
https://doi.org/10.1088/1748-9326/aac4b1
https://doi.org/10.1111/gcb.14628
https://doi.org/10.1016/j.jia.2022.07.013
https://doi.org/10.1016/j.scitotenv.2021.150763
https://doi.org/10.3390/agronomy12010050
https://doi.org/10.3390/agronomy12010050
https://doi.org/10.1088/1748-9326/abfc76
https://doi.org/10.1002/eco.2500
https://doi.org/10.1038/s41561-023-01302-3
https://doi.org/10.1038/s41561-023-01302-3
https://doi.org/10.1016/j.eja.2018.11.001
https://doi.org/10.1016/j.eja.2018.11.001
https://doi.org/10.1007/s11069-020-03925-w
https://doi.org/10.1007/s11069-020-03925-w
https://doi.org/10.1371/journal.pone.0178339
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.1111/J.2041-210x.2012.00261.X
https://doi.org/10.1111/J.2041-210x.2012.00261.X
https://www.extension.purdue.edu/extmedia/NCH/NCH-40.html
https://doi.org/10.1007/s11104-018-3774-7
https://doi.org/10.1016/j.agwat.2023.108237
http://refhub.elsevier.com/S0048-9697(24)05322-1/rf0285
http://refhub.elsevier.com/S0048-9697(24)05322-1/rf0285
https://doi.org/10.1556/0806.44.2016.056
https://doi.org/10.1556/0806.44.2016.056
https://doi.org/10.2136/sssaj2004.9430
https://doi.org/10.1038/s43016-022-00592-x
https://doi.org/10.1038/s43016-022-00592-x
https://doi.org/10.2136/sssaj2017.04.0122
https://doi.org/10.2136/sssaj2017.04.0122
https://doi.org/10.1016/S0016-7061(03)00094-6
https://doi.org/10.1016/S0016-7061(03)00094-6
https://doi.org/10.1038/ncomms6989
https://doi.org/10.1038/ncomms6989
https://doi.org/10.1016/j.agee.2016.09.039
https://doi.org/10.1016/j.agee.2016.09.039
https://ourworldindata.org/agricultural-production
https://ourworldindata.org/agricultural-production
https://doi.org/10.1017/CBO9780511535727
https://doi.org/10.1017/CBO9780511535727
https://doi.org/10.1016/S0959-3780(02)00008-0
https://doi.org/10.1016/S0959-3780(02)00008-0
https://doi.org/10.1073/pnas.1222463110
https://doi.org/10.1073/pnas.1222463110
https://doi.org/10.2307/1943158
https://doi.org/10.2307/1943158
http://refhub.elsevier.com/S0048-9697(24)05322-1/rf0350
http://refhub.elsevier.com/S0048-9697(24)05322-1/rf0350
https://doi.org/10.1073/pnas.0906865106
https://doi.org/10.1111/jawr.12057
https://doi.org/10.1111/jawr.12057
https://doi.org/10.2136/sssaj1985.03615995004900020030x
https://doi.org/10.1016/j.plantsci.2022.111320
https://doi.org/10.1016/j.plantsci.2022.111320
https://doi.org/10.1016/j.scitotenv.2019.06.367
https://doi.org/10.1016/j.scitotenv.2019.06.367
https://usda.library.cornell.edu/concern/publications/vm40xr56k
https://quickstats.nass.usda.gov/
https://ipad.fas.usda.gov/cropexplorer/description.aspx?legendid=313&amp;regionid=na
https://ipad.fas.usda.gov/cropexplorer/description.aspx?legendid=313&amp;regionid=na
https://doi.org/10.5066/F7SN0723
https://doi.org/10.1016/j.rse.2013.07.013
https://doi.org/10.1016/j.agrformet.2014.02.009
https://doi.org/10.1007/s11538-014-9988-9
https://doi.org/10.1007/s11538-014-9988-9
https://doi.org/10.5194/esd-12-151-2021
https://doi.org/10.1016/j.ecolind.2021.108196
https://doi.org/10.1007/s11104-008-9577-5
https://doi.org/10.1371/journal.pone.0160974
https://doi.org/10.1371/journal.pone.0160974
https://doi.org/10.3390/w10020148
https://doi.org/10.3390/s20185354
https://doi.org/10.3390/s20185354
https://doi.org/10.1046/j.1469-8137.1997.00693.x


Science of the Total Environment 949 (2024) 175172

14
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