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Abstract: Feruloylated arabinoxylan (AX) is a potential health-promoting fiber ingredient that can
enhance nutritional properties of bread but is also known to affect dough rheology. To determine
the role of feruloylation and hydrolysis of wheat bran AX on dough quality and microstructure,
hydrolyzed and unhydrolyzed AX fractions with low and high ferulic acid content were produced,
and their chemical composition and properties were evaluated. These fractions were then incorpo-
rated into wheat dough, and farinograph measurements, large and small deformation measurements
and dough microstructure were assessed. AX was found to greatly affect both fraction properties
and dough quality, and this effect was modulated by hydrolysis of AX. These results demonstrated
how especially unhydrolyzed fiber fractions produced stiff doughs with poor extensibility due to
weak gluten network, while hydrolyzed fractions maintained a dough quality closer to control. This
suggests that hydrolysis can further improve the baking properties of feruloylated wheat bran AX.
However, no clear effects from AX feruloylation on dough properties or microstructure could be de-
tected. Based on this study, feruloylation does not appear to affect dough rheology or microstructure,
and feruloylated wheat bran arabinoxylan can be used as a bakery ingredient to potentially enhance
the nutritional quality of bread.

Keywords: rheology; arabinoxylan; hydrolysis; ferulic acid; dough

1. Introduction

Wheat bran is a low-value by-product form wheat processing that has an estimated
annual global production volume of 150 million tons [1]. It is currently utilized mostly
as animal feed even though it contains many health-promoting components, such as
dietary fiber, that could be used as food ingredients to increase the value of wheat bran
side stream [2]. Arabinoxylan (AX) is an abundant dietary fiber component in wheat
bran composed of a β-(1→4)-linked β-D-xylopyranose backbone substituted with an
arabinofuranosyl group [3]. Arabinose can be further linked to ferulic acid (FA) via an ester
bond [4], and feruloylated AX has been shown to have antioxidant properties even after
baking and fermentation [5,6]. This suggests that feruloylated AX could offer further health
benefits when added to bread, as food antioxidants and their anti-inflammatory properties
have been linked to the prevention of cardiovascular diseases and cancer [7]. Despite the
availability of wheat bran and the well-known health benefits of increased dietary fiber
intake, wheat bran AX is currently not utilized as a bread ingredient partly due to its
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negative effect on bread quality [8]. Like many fibers, also AX can have a detrimental effect
on bread quality, often leading to decreased volume and denser bread crumb especially
with fiber addition levels of 5% or above [8]. New approaches are therefore required to
enable the use of feruloylated wheat bran AX as a bread ingredient.

We have recently demonstrated how hydrolysis and feruloylation of wheat bran AX
can improve its properties as bread ingredient, as feruloylated and hydrolyzed arabinoxy-
lan produced the bread closest to control in volume and crumb structure [9]. This indicates
that modifying AX structure and properties in terms of feruloylation and hydrolysis can
help improve the quality of bread with incorporated fiber. However, the effect feruloylation
and hydrolysis of AX on bread quality remains unclear as contrary results exist. The
mechanical properties of the dough govern the quality of bread [10] and understanding
of dough quality can therefore provide valuable insights into the bread-baking quality of
feruloylated AX. Some studies suggest that FA can strengthen gluten network via covalent
cross-linking [11–14] when others have observed addition of FA to reduce the amount of
disulfide bonds and glutenin macropolymer content [15] and increase dough firmness with
lower concentrations [16]. Wang et al. [17] observed an improvement in dough extensibility
with external ferulic acid, suggesting that wheat bran AX with low ferulic acid content di-
rectly decreases the extensibility of dough due to less cross-linking between gluten and AX.
However, many of the previously mentioned studies used free FA rather than feruloylated
AX. Previous research has demonstrated that reducing molar mass through hydrolysis
is crucial for AX functionality in dough [18,19], but to our knowledge its connection to
feruloylation and their combined effect on AX dough rheology and microstructure has
not been studied previously. More knowledge on the connection between AX feruloyla-
tion, hydrolysis, and dough properties are therefore needed to understand the effect of AX
structure on dough quality and hence facilitate use of feruloylated AX as a bread ingredient.

The aim of this study was to determine the effect of partial hydrolysis and feruloy-
lation of wheat bran AX on wheat dough rheology and microstructure. Unhydrolyzed
and hydrolyzed AX with high and low levels of FA were incorporated in dough. Dough
water absorption, development time and stability were determined using a farinograph
and dough extensibility and rheological characteristics were measured in large and small
deformations. Microstructure of doughs was observed using light microscopy. This work
provides new insights into how feruloylation and hydrolysis of AX affect dough properties
and microstructure and therefore enable the use of wheat bran AX as a functional bread
ingredient to enhance the technological and nutritional quality of bread with incorpo-
rated fiber.

2. Materials and Methods
2.1. Materials

Feruloylated wheat bran arabinoxylan (FAX) was supplied by Lantmännen (Stock-
holm, Sweden). The process to produce this fraction in pilot scale has been previously
detailed by Zhang et al. [5]. Wheat flour (Special Vetemjöl, Lantmännen, Sweden) was
bought from local supermarket. All chemicals and reagents were purchased from Sigma-
Aldrich (St. Luis, MO, USA) and were analytical grade, unless otherwise stated.

2.2. Preparation of Arabinoxylan Fractions
2.2.1. Removal of Ferulic Acid

To produce a fraction without ferulic acid (AX), original FAX fraction was subjected
to mild saponification using a process from Zhang et al. [5] with modification. FAX was
mixed with 0.5 M NaOH and sample was stirred 4 h 20 ◦C. After saponification, pH was
adjusted to pH 7 with 0.5 M acetic acid. AX was precipitated with ethanol (99.6%, 1:4 v/v)
by stirring for 2 h followed by cooling overnight (4 ◦C). Arabinoxylan was filtered through
a porous metal plate (40 µm) washed 3 times with 75% (v/v) ethanol and freeze dried.
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2.2.2. Hydrolysis of Arabinoxylan

To produce hydrolyzed fractions (H-FAX and H-AX), FAX and AX were enzymatically
hydrolyzed using a process previously described and optimized by Ruthes et al. [20]. First
the fraction were first solubilized in water by using a solid:liquid ratio of 1:10, adjusting
pH to pH 5 using 0.5 M acetic acid and then heating to 60 ◦C under constant mixing. Then
Pentopan Mono BG, a 1,4-β-xylanase (2500 FXU-W/g, Novozymes, Lyngby, Denmark) was
added at 20 U/g AX. After incubation for 24 h in 37 ◦C, the enzyme was inactivated by
heating to 100 ◦C for 5 min and fractions were then freeze dried.

2.3. Characterization of Fraction Composition
2.3.1. Monosaccharide Composition and Klason Lignin Content

The monosaccharide composition was determined from AX fractions as previously
described by Lu et al. [21] with modifications. 1 mL 72% H2SO4 was added to 70 mg of
sample and kept under vacuum for 1.5 h in 20 ◦C. After incubation, 29 mL of water was
added, and the samples were autoclaved at 125 ◦C for 1 h. The samples were then vacuum
filtered with 10 mL of hot water and diluted. For reference, a standard solution containing
glucose, arabinose, xylose, rhamnose and mannose was prepared the same way as samples.
Monosaccharide composition was analyzed using HPAEC with a pulsed amperometry
detector (ICS 3000 Dionex, Thermo Scientific, Sunnyvale, CA, USA) equipped with an
AEC column (CarboPac PA1 guard 4 × 50 mm and CarboPac PA 1 analytical 4 × 250 mm,
Thermo Scientific, Sunnyvale, CA, USA). Klason lignin content was determined as the
acid-insoluble residue after hydrolysis.

2.3.2. Basic Nutrient Composition

The protein content of fractions was measured by their total N content using the
Dumas combustion method in triplicate with a factor of 6.25 applied to calculate the protein
content. Ash content was assessed in triplicate following the AACC total ash method [22]
The total starch content of the AX fractions was determined using a resistant starch assay
kit (Resistant Starch Assay Kit (Rapid), Megazyme Ltd., Wicklow, Ireland), with the total
starch content calculated as the sum of resistant and digestible starch. The β-glucan content
was measured in triplicate with a β-glucan assay kit (Mixed Linkage Assay Kit, Megazyme
Ltd., Wicklow, Ireland).

2.3.3. Ferulic Acid Content

The ethanol-soluble free and conjugated ferulic acid, as well as the ethanol-insoluble
esterified bound ferulic acid content of fractions, were extracted and quantified as previ-
ously described by Li et al. [23] with modifications. All samples were prepared in triplicates.
100 mg of sample was extracted with 80% ethanol, sonicated for 10 min, and the super-
natant was collected after centrifugation. This process was repeated three times, and the
combined supernatants were evaporated under nitrogen (extract A). For conjugated ferulic
acid, dried extract A was hydrolyzed with 800 µL 2 M NaOH (Merk KGaA, Darmstadt,
Germany) and incubated for 16 h after oxygen removal. The pH was then adjusted to pH 2
using 12 M HCl, and the conjugated ferulic acids were extracted with ethyl acetate three
times (extract B). For the bound ferulic acid, the residual pellet obtained after extraction
with 80% ethanol, was hydrolyzed with 2 M NaOH (Merk KGaA, Darmstadt, Germany)
followed by 16 h incubation at 20 ◦C. After centrifugation, the collected supernatant was
adjusted to pH 2 with 12 M HCl followed by the addition of approximately 30 mg of NaCl
(≥99.5%, Merk KGaA, Darmstadt, Germany), and then extracted with ethyl acetate three
times (extract C). All ferulic acid extracts were evaporated with nitrogen, re-dissolved in
10% methanol and centrifuged (14,000 × g, 15 min, 20 ◦C) using Amicon filter (0.5 mL, 10 K,
Merck Millipore Ltd., Co., Cork, Ireland) before analysis. Extract A was used as is for free
ferulic acid, extract B for conjugated ferulic acid and extract C for bound ferulic acid.

The ferulic acid standard was purchased from Sigma-Aldrich (Merck KGaA, Darm-
stadt, Germany) and the stock solution was prepared in methanol (1 mg/mL). The stock
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solution was diluted with Milli-Q water and utilized for preparation of the calibration solu-
tion. Ferulic acid content was quantified using an ACQUITY ultra high-performance liquid
chromatography system with a photodiode array detector (UPLC-PDA, Waters, Milford,
MA, USA) at a wavelength of 320 nm. Separation was conducted using an ACQUITY UPLC
HSS T3 column (1.8 µm, 2.1 × 150 mm, Waters) connected with a VanGuaurd precolumn
(2.1 × 5 mm, Waters), at 40 ◦C. Mobile phases A and B were 0.5% formic acid in Milli-Q
water and Acetonitrile, respectively. The flow rate was 0.5 mL/min, and the linear gradient
was as follows: 0 min, 90% A; 10 min, 80% A; 14 min, 10% A, 15 min, 10% A; 16 min, 90% A
with a re-equilibrum time of 4 min. The data was processed by Empower 3 (Waters) and
Excel (Microsoft).

2.4. Characterization of Fraction Properties
2.4.1. Molar Mass Distribution

Molar mass distribution was analyzed using size exclusion chromatography (SEC)
(SECurity 1260, Polymer Standard Services, Mainz, Germany), following the method from
Ruthes et al. [20].

2.4.2. Water Holding Capacity of Fractions

Water holding capacity (WHC) of fractions was determined in triplicate according to
method described previously by Hemdane et al. [24] with modifications. 0.5 g of sample
was weighted into a tube with 5 mL of water, and left to room temperature for 60 min after
mixing. Samples were then centrifuged (10,000× g 10 min at 20 ◦C). The supernatants were
separated and pellets were turned upside down for 15 min to remove excess water. WHC
was expressed as g of water retained by 1 g of dry matter.

2.4.3. Rheological Properties of Fractions

Rheological properties of fractions were determined from AX solutions that were
prepared by mixing fractions with water (4% w/v) and stirring continuously at 60 ◦C for 2 h.
Rheological properties were measured using a Discovery HR-3 rheometer (TA Instruments,
New Castel, DE, USA) with a 40 mm cone plate. Flow curves were obtained at a shear rate
range from 0.01 to 1000 1/s.

2.5. Dough Quality
2.5.1. Water Absorption, Dough Development Time (DDT) and Dough Stability

Water absorption, dough development time (DDT) and dough stability were measured
for wheat flour and mixtures of flour and 5% of arabinoxylan fractions with a farinograph
(Brabender GmhH, Duisburg, Germany) following AACC method 54-21.01 [25]. 5% ad-
dition level was chosen based on our previous study on the effect of feruloylated and
hydrolyzed AX fractions on bread quality [9], as lower addition levels did not result in clear
differences in bread quality. Fractions were added by replacing flour with arabinoxylan
based on fractions’ AX content. The fractions were premixed with water and heated to
80 ◦C under constant stirring, and then cooling to room temperature before dough prepara-
tion. Water absorption was defined as the amount of water required to reach 500 BU and
expressed as percentage of flour weight. DDT was defined as the time from water addition
to the dough reaching peak consistency.

2.5.2. Large Deformation Rheological Measurements

Uniaxial extension measurements at large deformations were performed using a
texture analyzer (TA-XT Plus, Stable Micro System, Surrey, UK) equipped with a Kieffer
dough/gluten extensibility rig (Stable Micro System, Surrey, UK). Control dough was
prepared using only flour and water. Doughs containing AX fractions were prepared by
adding 5% of fraction by replacing flour based on fractions’ AX content. The fractions
were dispersed in water prior to dough preparation by stirring while heating to 80 ◦C
and cooling to room temperature. Doughs were then mixed in farinograph using optimal
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water absorption and DDT obtained from farinograph results. After mixing in farinograph,
doughs were gently rolled into balls and placed relaxing in incubator 30 ◦C for 20 min.
After relaxing, a piece of dough was cut from the center of the dough ball and rolled gently
into a sausage shape and placed into an oiled molder and compressed into dough strips.
The molder containing the dough strips was placed back into incubator for 40 min 30 ◦C.
After relaxing, a dough strip was removed from the molder and clamped between the
plates of the Kieffer rig prior to each test. The samples were tested using 2.0 mm/s test
speed and 75.0 mm distance. 6 dough strips were tested from each dough.

2.5.3. Small Deformation Rheological Measurements

Small deformation rheological measurements were performed by oscillation test using
a Haake MARS 40 rheometer (ThermoScientific, Sunnyvale, CA, USA) with parallel-plate
geometry (35 mm). The doughs were prepared the same way as for dough extensibility test
(Section 2.5.2). Dough piece was placed between the plates and pressed to 1 mm gap. Then
excess dough was removed and 200/50 cS fluid (Dow Corning Corporate, Midland, MI,
USA) was applied to sample edges to prevent sample drying. After 2 min resting time, an
oscillation test was done using 0.01% strain based on the linear viscoelastic region of the
samples at 25 ◦C in the frequency range of 0.05–50 Hz. The rheological characteristics were
expressed as the storage (G′) and loss modulus (G′′).

2.5.4. Dough Microstructure

Dough samples (5 × 5 × 5 mm) were cut from doughs prepared for small deformation
rheological tests (Section 2.5.3) and fixated in glutaldrehyde (2.5%) for 24 h. Samples were
then dehydrated with a series of ethanol in increasing concentrations and infiltrated and
hardened using Technovit 7100 (KULZER, Hanau, Germany). Hardened samples were
sectioned into 5 µm sections with a ultramicrotome (Leica Microsystems GmbH, Leica EM
UC6, Wetzlar, Germany), stained with light green and examined with a microscope (Nikon,
Ecplise Ni-U, Tokio, Japan) equipped with a 40× (0.75 NA) apochromatic objective. Images
were captured with Nikon Digital Sight DS-Fi2 camera (Nikon, Japan).

2.6. Experimental Design and Statistical Analysis of Data

All measurements were conducted at least in duplicate, with results reported as mean
values ± standard deviation. For dough and fraction properties, type-III ANOVA was
used to identify differences at a 95% confidence level, determined by Tukey’s pairwise
comparisons. The relationship between fraction and dough properties was examined using
2-tailed Pearson correlation with linear relationships evaluated through regression analysis.
All data analyses were performed using R (version R 4.3.0, The R Foundation for Statistical
Computing, Vienna, Austria), unless otherwise stated.

3. Results & Discussion
3.1. Fraction Composition

Chemical composition of fractions is presented in Table 1. The fraction modification
with hydrolysis or saponification did not affect relative AX content (p > 0.05), and AX
content was 70.7–73.0% of total carbohydrates for all fractions. However, the amount of
total carbohydrates did vary between fractions, with FAX having the highest AX content
of 75.9%, followed by AX, H-AX and H-FAX with AX contents of 69.4, 67.5 and 56.2%,
respectively. H-FAX had a relatively low amount of carbohydrates compared to other
fractions. The results of monosaccharide composition are known to be closely related
to the hydrolysis process [26], indicating that sample material might have affected the
acid hydrolysis of H-FAX. This difference in AX content should be taken into account
when considering results for dough quality. The fractions were added to doughs based
on their AX content, so doughs with H-FAX also contained higher levels of other fraction
components compared to other fractions. The A/X ratio decreased from 0.36 for FAX to
0.26–0.27 for H-FAX, AX and H-AX, indicating that processing of fractions decreased the
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amount of arabinose substitution. The ash content was 4.7 and 4.4 for FAX and H-FAX, and
7.1 and 7.3 for AX and H-AX, respectively, indicating that ash content was increased by
alkali treatment, as reported previously by Rasool et al. [27]. Glucose, starch, protein and
Klason lignin contents were similar between fractions.

Table 1. Carbohydrate, arabinoxylan (AX), starch, mixed linkage β-glucan, Klason lignin, protein,
and ash content of the fractions (dwb). Mean value ± SD. F = feruloylated; H = hydrolyzed.

FAX H-FAX AX H-AX

Total carbohydrates (g/100 g) 1 75.9 ± 6.6 a 56.2 ± 13.3 b 69.4 ± 2.6 b 67.5 ± 0.8 b

AX % 2 70.7 ± 2.1 a 71.1 ± 0.0 a 73.0 ± 0.2 a 72.0 ± 0.1 a

Glc % 3 23.1 ± 2.8 a 26.4 ± 0.1 a 24.5 ± 0.2 a 25.6 ± 0.1 a

Gal % 3 3.0 ± 0.4 a 2.5 ± 0.2 a 2.5 ± 0.0 a 2.5 ± 0.0 a

A/X 4 0.4 ± 0.1 a 0.3 ± 0.0 a 0.3 ± 0.0 a 0.3 ± 0.0 a

Mixed linkage β-glucan (g/100 g) 5.6 ± 0.6 a 5.3 ± 0.2 a 6.0 ± 1.3 a 5.9 ± 0.1 a

Starch (g/100 g) 0.8 ± 0.0 a 1.0 ± 0.0 a 0.7 ± 0.0 a 1.1 ± 0.1 a

Klason lignin (g/100 g) 3.3 ± 1.0 a 2.6 ± 1.7 a 2.0 ± 1.0 a 3.4 ± 1.1 a

Protein (g/100 g) 2.7 ± 0.0 a 2.6 ± 0.0 a 1.7 ± 0.0 b 1.7 ± 0.0 b

Ash (g/100 g) 4.7 ± 0.0 a 4.4 ± 0.0 a 7.1 ± 0.0 b 7.2 ± 0.0 b

1 Total carbohydrate content was calculated based on total content of arabinose, rhamnose, galactose, glucose,
xylose, and mannose. 2 AX content was calculated based on the % of arabinose and xylose of total carbohydrate
content. 3 % of total carbohydrate content. Glc = glucose, Gal = galactose. 4 Ratio between arabinose and xylose.
Different letters indicate significant differences (p < 0.05).

FA content of fractions is presented in Figure 1. FAX had the highest amount of FA,
11.2 mg/g, of which almost all were bound FA. Hydrolysis reduced the amount of FA
slightly to 8.8 mg/g for H-FAX. For H-FAX, 44% of FA was conjugated, indicating that
hydrolysis has converted a portion of the insoluble FA bound to AX into ethanol-soluble
conjugated FA. This is likely due to enzyme activity, which hydrolyzes xylose backbone
into smaller AX fragments with attached FA. This process can increase ethanol solubility of
FA, and therefore increases the proportion of conjugated FA. Fractions with low FA content
still contained traces of FA, which indicates that pilot scale saponification was not able to
remove FA as efficiently as previously [9]. However, the FA extraction was more detailed
and contained 3 extraction steps instead of one, which might also affect the amount of
FA detected in samples. Saponification reduced the total FA content to 2.0 and 1.5 mg/g
for AX and H-AX, respectively. Like H-FAX, also H-AX contained less bound and more
conjugated FA compared to unhydrolyzed AX. In this study, the focus was only on the
differences in total amount of FA and the differences in the type of FA were not considered.
However, bound and free FA have been shown to differ in their antioxidant capacity [15],
indicating that there could even be differences in the functionality between conjugated and
bound FA in breadmaking.

3.2. Fraction Properties

Fraction properties in terms of molar mass, WHC and solution viscosity are presented
in Table 2. Molar mass was expectedly reduced by hydrolysis, and weight average molar
mass reduced from 485 to 67 for FAX and 464 to 95 kg mol−1 for AX. Molar mass correlated
strongly with both viscosity and WHC of fractions (Appendix A), indicating that hydrolysis
decreases both solution viscosity and WHC. The correlation between molar mass and both
WHC and viscosity has been widely reported [12,28,29], and the strong tendency of high
molar mass AX to absorb water has been shown to play a key role in its functionality in
dough. Buksa et al. [29] reported that relative viscosities were positively correlated with
the molar mass of arabinoxylan fractions.
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Table 2. Fraction properties in terms of molar mass (number-average molecular weight (Mn), weight-
average molecular weight (Mw), and dispersity index (Ð), solution viscosity (mPa.s) and water
holding capacity (WHC). Different letters indicate significant difference (p < 0.05). F = feruloylated;
H = hydrolyzed.

FAX H-FAX AX H-AX

Mw (kg mol−1) 485 67 464 95
Mn (kg mol−1) 126 37 218 17
Ð 3.8 2.6 2.1 3.9
Viscosity (mPa.s) 1 100 ± 18 a 39 ± 1.0 b 149 ± 44 a 30 ± 8.9 b

WHC 2 3.1 ± 0.1 a 0.7 ± 0.2 b 3.3 ± 0.2 a 0.9 ± 0.1 b

1 At 1/s. 2 g H2O/g dry sample.

3.3. Dough Properties
3.3.1. Water Absorption, Dough Development Time (DDT) and Dough Stability

Farinograph results for control dough and doughs prepared with 5% fiber fractions are
presented in Table 3. Fiber addition increased water absorption and DDT, and decreased
dough stability with all fractions (p < 0.05). Hydrolysis decreased water absorption of FAX
and AX from 78.5 and 83.3 to 64.5 and 63.3%, respectively (p < 0.05). Similar to WHC, also
farinograph water absorption correlated strongly (p < 0.001) with molar mass and viscosity
of fractions (Appendix A). This effect has been shown previosuly by Biliaderis et al. [19].

Table 3. Water absorption (% of flour weight), dough development time (DDT, min) and dough
stability (min) of sample doughs. Mean value ± SD. F = feruloylated; H = hydrolyzed.

Control FAX H-FAX AX H-AX

Water absorption (%) 61.0 ± 0.7 78.5 ± 0.6 *** 64.5 ± 0.8 * 83.3 ± 1.3 *** 63.3 ± 0.9
Development time (min) 2.8 ± 0.8 7.0 ± 1.4 * 4.9 ± 0.2 7.8 ± 1.0 * 6.2 ± 0.2
Dough stability (min) 5.2 ± 0.2 2.6 ± 0.1 ** 2.1 ± 0.2 ** 2.4 ± 0.6 ** 4.1 ± 0.4

p-values below 0.05 (*), 0.01 (**) and 0.001 (***) indicate statistically significant differences at the 95%, 99% and
99.9% conficende level compared to control, respectively.
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DDT of FAX and AX was also decreased from 7.0 and 7.8 to 4.9 and 6.2, respectively,
and DDT was also found to correlate with molar mass, viscosity and WHC of fraction
(Appendix A). Notably, H-FAX had the DDT closest to control despite the high content
of other fraction components in H-FAX doughs due to lower AX content in fraction, as
discussed in Section 3.1. DDT represent the time required to develop a dough with optimal
consistency, and the increased DDT has been linked to the higher water absorption, leading
to competition for water between arabinoxylan, starch and gluten, and therefore delaying
gluten network formation [30]. H-AX was the only fraction that did not reduce dough
stability time (DST) (p > 0.05).

3.3.2. Large Deformation Rheological Measurements

Large deformation extensional measurements, while limited in providing fundamen-
tal rheological information, are crucial for assessing the strength of wheat flour due to
the large deformations encountered during dough processing, such as mixing, sheeting,
and baking [31]. Extension curves for control dough and doughs prepared with 5% fiber
fractions are presented in Figure 2, where maximum force (N) represents dough resistance
to extension and distance to break (mm) represents doughs extensibility. Fiber addition
decreased dough extensibility and increased resistance to extension compared to control,
indicating that fiber addition increases dough firmness and produces weaker doughs.
Hydrolyzed fractions H-FAX and H-AX showed higher extensibility compared to their
unhydrolyzed counterparts FAX and AX. As dough extensibility is usually related with
dough strength [17], these results show that fiber addition weakened the doughs, and this
effect was more severe for unhydrolyzed fractions. Fiber incorporation has been previously
shown to decrease extensibility of dough due to breakage of the starch-gluten matrix,
restricting the retention of gas in the gluten network and preventing gluten agglomer-
ation [20,32]. As extensibility was also found to correlate negatively with molar mass,
viscosity and WHC of fractions (Appendix A), these results further support the existing
evidence that the higher WHC, water absorption and viscosity of unhydrolyzed fractions
disrupt the gluten network to a larger extent compared to their hydrolyzed counterparts.

Foods 2024, 13, x FOR PEER REVIEW  9  of  14 
 

 

 

Figure 2. Extension curves with measured force (N) as a function of distance (mm) for control dough 

and doughs prepared with 5% fiber fractions. F = feruloylated; H = hydrolyzed. 

H‐AX showed the highest resistance to extension but was still able to maintain a sim‐

ilar extensibility compared to control while increasing resistance to extension, doughs pre‐

pared with H‐AX being firm but relatively strong compared to other fractions. These re‐

sults were in line with the farinograph results (Section 3.3.1.), where H‐AX improved the 

dough stability compared to other fractions. The other hydrolyzed fraction H‐FAX was 

closest to control in terms of resistance to extension and extensibility. This was in line with 

results from previously published baking trails using similar fractions [9], where H‐FAX 

produced a bread comparable to control at the 5% addition level. This indicates that hy‐

drolyzed fractions disrupt the starch‐gluten matrix less compared to their unhydrolyzed 

counterparts. Hydrolyzed AX fractions might also promote the connectivity of the gluten 

network by AX‐starch‐gluten interactions as suggested previously by Li et al. [33]. Even 

though Wang et al. [17] observed wheat bran AX with low ferulic acid content directly, 

no difference  between  feruloylated  and unferuloylated  fractions was  observed  in  this 

study. 

3.3.3. Small Deformation Rheological Measurements 

An oscillation test was performed to provide more fundamental information about 

the effect of arabinoxylan  incorporation on  the viscoelastic properties of wheat dough. 

Figure 3 shows  the  frequency sweep  (G′ and G″) curves of control dough and doughs 

enriched with AX fractions. Dough is a complex system showing both elastic and adhesive 

behavior [17]. We found the storage modulus (G′) for all doughs tested to be higher than 

the  loss modulus  (G″), showing a predominant elastic behavior. Addition of unhydro‐

lyzed fractions increased G′ compared to control, while hydrolyzed fractions H‐FAX and 

H‐AX decreased G′ compared to control. G′ was also correlated with molar mass, viscosity 

and WHC of  fractions  (Appendix A). G′ describes  the materials ability  to  store defor‐

mation energy in an elastic manner, with higher G’ indicating higher mechanical rigidity. 

These results indicate that unhydrolyzed AX increases the dough stiffness, while hydro‐

lyzed AX increases dough softness. The addition of AX and bran particles in general has 

been previously observed to increase the storage modulus of dough [33], which has been 

linked the high WHC of AX leading to water immobilization during dough resting and 

Figure 2. Extension curves with measured force (N) as a function of distance (mm) for control dough
and doughs prepared with 5% fiber fractions. F = feruloylated; H = hydrolyzed.



Foods 2024, 13, 2309 9 of 13

H-AX showed the highest resistance to extension but was still able to maintain a
similar extensibility compared to control while increasing resistance to extension, doughs
prepared with H-AX being firm but relatively strong compared to other fractions. These
results were in line with the farinograph results (Section 3.3.1), where H-AX improved
the dough stability compared to other fractions. The other hydrolyzed fraction H-FAX
was closest to control in terms of resistance to extension and extensibility. This was in
line with results from previously published baking trails using similar fractions [9], where
H-FAX produced a bread comparable to control at the 5% addition level. This indicates that
hydrolyzed fractions disrupt the starch-gluten matrix less compared to their unhydrolyzed
counterparts. Hydrolyzed AX fractions might also promote the connectivity of the gluten
network by AX-starch-gluten interactions as suggested previously by Li et al. [33]. Even
though Wang et al. [17] observed wheat bran AX with low ferulic acid content directly, no
difference between feruloylated and unferuloylated fractions was observed in this study.

3.3.3. Small Deformation Rheological Measurements

An oscillation test was performed to provide more fundamental information about
the effect of arabinoxylan incorporation on the viscoelastic properties of wheat dough.
Figure 3 shows the frequency sweep (G′ and G′′) curves of control dough and doughs
enriched with AX fractions. Dough is a complex system showing both elastic and adhesive
behavior [17]. We found the storage modulus (G′) for all doughs tested to be higher than
the loss modulus (G′′), showing a predominant elastic behavior. Addition of unhydrolyzed
fractions increased G′ compared to control, while hydrolyzed fractions H-FAX and H-AX
decreased G′ compared to control. G′ was also correlated with molar mass, viscosity and
WHC of fractions (Appendix A). G′ describes the materials ability to store deformation
energy in an elastic manner, with higher G′ indicating higher mechanical rigidity. These
results indicate that unhydrolyzed AX increases the dough stiffness, while hydrolyzed
AX increases dough softness. The addition of AX and bran particles in general has been
previously observed to increase the storage modulus of dough [33], which has been linked
the high WHC of AX leading to water immobilization during dough resting and hence a
stiffer dough [24]. The loss modulus (G′′) is associated with dough flow properties, such as
extensibility and adhesiveness [17], and higher extensibility is linked to increased dough
strength. For G′′, sample doughs followed a similar pattern compared to G′, unhydrolyzed
fractions having the highest values and hydrolyzed fractions the lowest, but the loss
modulus was not correlated to fraction properties.
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Small deformation measurements did not directly correlate with the large deformation
measurements. This was somewhat expected as in small deformation measurements within
the frequency range used in this study (0.05–50 Hz), it has been suggested that protein-
protein interactions crucial for dough properties are partly masked by starch-starch and
starch-protein interaction [31]. It is therefore likely that the large deformation measurements
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represent more the protein-protein interactions and the small deformation measurements
starch-starch and starch-protein interaction. No clear effect from AX feruloylation on
small-scale deformation could be detected between fractions. Even though some authors
have seen FA to increase dough softness and therefore decrease the negative effect of fiber
addition on dough, Snelders et al. [16] observed that a FA content of 0.1–1.7% was not
high enough to see any positive effects from addition of AX oligosaccharides. Therefore,
minimal effect could be expected with the low FA amounts in the AX fractions used in
this study.

3.3.4. Dough Microstructure

To visualize changes in dough as an effect of fiber incorporation, doughs were vi-
sualized using light microscopy, and gluten was stained green to confirm the expected
disturbance of gluten network. Captured images from dough samples are presented in
Figure 4. For the control dough with no added fiber, the gluten network occupied almost
all areas between starch granules and left almost no unstained background area. For unhy-
drolyzed fractions FAX and AX, the gluten network seemed more disrupted compared to
control, and large portion of areas between starch granules were left unstained. Also, longer
non-protein and non-starch particles, that were expected to be residual bran particles from
AX fractions, were visible in FAX and AX doughs. The presence of these particles might
indicate that residual bran particles in unhydrolyzed AX fractions might also cause physical
hindrance to dough formation, as previously reported by Molina et al. [34]. In doughs with
hydrolyzed fractions H-FAX and H-AX, the amount of unstained background was less
than for hydrolyzed fractions, supporting the explanation that hydrolyzed fractions have
less effect on the gluten network formation than unhydrolyzed fractions. Previously Zhu
et al. [30] have reported AX incorporation in dough to increase the amount of unstained
background in light microscopy. This is supported by Frederix et al. [32], who have shown
that supernatant viscosity of AX enriched batters affects gluten agglomeration and the
impact was more severe for high molar mass AX than low molar mass AX. Döring et al. [35]
observed the incorporation of 5% AX in dough to inhibit protein network formation and
cause protein agglomeration. They suggested that increased water content leads to dilution
of dough and therefore proteins with less stretching ability, also previosuly described by
Jekle and Becker [36].
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4. Conclusions

Inclusion of wheat bran AX was observed to greatly affect the rheology of wheat dough.
This effect appeared to be modulated by hydrolysis of AX, which, in turn, correlated
with changes in fraction properties. Hydrolysis of AX fractions decreased the molar
mass, solution viscosity and water holding capacity of the AX fractions. Additionally, it
resulted in reduced water absorption and dough development time, while showing higher
extensibility compared to their unhydrolyzed counterparts FAX and AX. Based on large
deformation measurements, fiber addition decreased dough extensibility and increased
resistance to extension compared to control, with a more profound effect observed for
unhydrolyzed fractions. Addition of unhydrolyzed fractions increased and hydrolyzed
fractions decreased G′ compared to control, suggesting that unhydrolyzed AX increases
the dough stiffness on small deformations. Results from both large and small deformation
measurements demonstrate how especially unhydrolyzed fiber fractions produced firm
and stiff doughs with poor extensibility, attributed to fiber disturbing formation of gluten
network. Notably, fraction properties such as molar mass, viscosity and water holding
capacity strongly correlated with dough extensibility and storage modulus, indicating their
role in increasing viscosity and water holding by high molar mass AX. Light microscopy
indicated that hydrolyzed fractions might disturb the gluten network less compared to
unhydrolyzed fractions FAX and AX. While H-FAX produced doughs closest to control
in terms of water absorption, dough development time and extensibility, no clear effects
from AX feruloylation on dough properties or microstructure could be detected. Based
on this study, feruloylation does not affect dough quality and feruloylated wheat bran
arabinoxylan can be utilized as a bakery ingredient to potentially improve the quality of
bread with incorporated fiber. However, differences in fraction composition make drawing
firm conclusions difficult and further work is needed to evaluate the importance of other
fraction compounds to the observed results.
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Appendix A

Table A1. Pearson’s correlation coefficient matrix between fraction and dough properties. Total= fraction
total monosaccharide content, A/X = fraction A/X ratio, AX = fraction AX content, FA = fraction
ferulic acid content, Mw = weight average molar mass of fractions, Viscosity = Fraction viscosity,
WHC = fraction water holding capacity, RE = dough resistance to extension, E = dough extensibility,
WA = farinograph water absorption, DDT = dough development time, DST = dough stability time.

Total AX A/X FA B-
Glucan Lignin Mw Viscosity WHC RE E G′ G′′ WA DDT

AX 1.00 ***
A/X −0.69 −0.71
FA −0.40 −0.42 0.74 *
B-glucan −0.11 −0.12 0.05 −0.33
Lignin 0.39 0.36 0.06 0.20 0.22
Mw 0.23 0.24 0.18 0.14 0.19 −0.14
Viscosity 0.28 0.30 −0.01 −0.10 0.41 −0.23 0.88 **
WHC 0.22 0.23 0.13 0.10 0.15 −0.22 0.99 *** 0.90 ***
RE 0.46 0.45 −0.12 −0.43 0.18 0.15 0.18 0.01 0.12
E −0.18 −0.17 −0.41 −0.43 0.02 −0.17 −0.85 ** −0.61 * −0.81 ** −0.21
G′ 0.41 0.41 0.15 0.25 0.36 0.18 0.87 ** 0.70 * 0.81 ** 0.32 −0.79
G′′ 0.23 0.22 0.28 0.34 0.44 0.43 0.52 0.47 0.41 0.16 −0.48 0.81 **
WA 0.25 0.26 0.03 −0.03 −0.37 −0.29 0.97 *** 0.95 *** 0.97 *** 0.23 −0.72 * 0.74 * 0.18
DDT 0.08 0.09 0.10 −0.36 0.02 −0.33 0.80 * 0.81 * 0.82 * 0.58 −0.63 0.59 0.09 0.79 *
DST 0.29 0.28 −0.29 −0.54 0.51 0.45 −0.32 −0.35 −0.31 0.67 0.13 −0.06 0.05 −0.43 0.03

p-values below 0.05 (*), 0.01 (**) and 0.001 (***) indicate statistically significant differences at the 95%, 99% and
99.9% conficende level, respectively.
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