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A B S T R A C T

There are limited molecular data and few biomarkers available for studies of field-grown plants, especially for
plants grown during extremely long days. In this study we present quantitative proteomics data from 3 years of
field trials on potato, conducted in northern and southern Sweden and analyze over 3000 proteins per year of the
study and complement the proteomic analysis with metabolomic and transcriptomic analyses. Small but
consistent differences linked to the longer days (an average of four more hours of light per day) in northern
Sweden (20 h light/day) compared to southern Sweden can be observed, with a high correlation between the
mRNA determined by RNA-seq and protein abundances. The majority of the proteins with differential abun-
dances between northern and southern Sweden could be divided into three groups: metabolic enzymes (espe-
cially GABA metabolism), proteins involved in redox metabolism, and hydrolytic enzymes. The observed
differences in metabolic enzyme abundances corresponded well with untargeted metabolite data determined by
GC and LC mass-spectrometry. We also analyzed differences in protein abundance between potato varieties that
performed relatively well in northern Sweden in terms of yield with those that performed relatively less well.
This comparison indicates that the proteins with higher abundance in the high-yield quotient group are more
anabolic in their character, whereas the proteins with lower abundance are more catabolic. Our results create a
base of information about potato “field-omics” for improved understanding of physiological and molecular
processes in field-grown plants, and our data indicate that the potato plant is not generally stressed by extremely
long days.

1. Introduction

Proteomics and other omics data sets of field-grown crops are rare,
but they represent an important base of information needed to under-
stand molecular and systems field biology (“field-omics”)
(Alexandersson et al., 2014). Plants grown during extremely long days
may require special properties to fully benefit from the high amount of
available light, but there are very few molecular data or biomarkers
available regarding the growth of field-grown plants under such con-
ditions. For example, the growing season in agricultural areas in
northern Sweden has days that are approximately 20 h long. The
average temperature in Scandinavia is predicted to increase consider-
ably. According to a recent estimate, the mean temperature during

2070–2100 will be 2–4 ◦C higher than during 1970–2000 under the
RCP4.5 greenhouse gas concentration trajectory (Jacob et al., 2014). A
consequence of this is that the borders for economically viable cultiva-
tion of a number of crops, including potato, might be shifted northward.
With climate change, the relative importance of Nordic agriculture is
expected to increase, which calls for more latitudinal studies measuring
both the performance and molecular mechanisms at play (Roitsch et al.,
2022).

Potatoes are the third most important crop globally (Food and
Agriculture Organization of the United Nations), and in many food
cultures potatoes are difficult to replace. The potato plant originated in
the Andean highlands close to the equator, where the days are always
close to 12 h in length, the temperature is relatively low (15–18 ◦C), and
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the growing season is year round (Haverkort, 1990). The ancestors of
modern potato cultivars were thus, adapted to these conditions. Potato
cultivars that are better adapted to higher temperatures, longer days,
and shorter growing seasons have been developed. In particular, the
adaption to long days (approximately 14–16 h) made it possible to grow
potatoes in temperate climates like those in Europe. While the average
temperature in most of Sweden is close to the temperatures to which the
ancestral potato plants were adapted, the days can be considerably
longer, and the growing season is shorter, both compared to the Andean
site of origin and to many other areas where potatoes are grown. The
influence of latitude on potato cultivation has mainly been studied at
lower latitudes (i.e., 0–50 ◦N). In Sweden, potatoes are mainly cultivated
in the south, between 55◦ N and 59◦ N, since the climate is currently
more favorable for potato cultivation at these latitudes (Eriksson et al.,
2016). However, potato cultivation is possible further north, for
example in Umeå at 64◦ N with 20 h light during a large part of the
growing season, and cultivation of seed potato is done there owing to the
lower pathogen pressure (Eriksson et al., 2016). A future breeding goal
could be to extend the areas where crop cultivation is economically
viable with genotypes that can take full advantage of the long days.

To achieve this, it would be advantageous to improve our under-
standing of two fundamental biological questions: Firstly, what are the
molecular effects of potato cultivation during the extreme long days of
summer in northern Sweden? Secondly, what are the molecular char-
acteristics of potato cultivars that take advantage of the longer days?
Increased knowledge about molecular mechanisms that are linked to
higher potato yields in the northern hemisphere could be useful in future
selection of cultivars, breeding, gene editing, cultivation practice, and
systems biology. For these purposes, molecular analyses of field-grown
materials are informative (Alexandersson et al., 2014). Studies of field
apoplastic proteomes from field grown potato has focused on seasonal
variation (Lankinen et al., 2018; Abreha et al., 2021) Transcriptome and
metabolite markers were previously identified from 31 potato cultivars
grown under optimal and reduced water supply in six independent field
trials with the help of machine learning (Sprenger et al., 2018). A
number of SSR markers were later constructed based on the transcript
biomarker discovery and successfully employed (Schumacher et al.,
2021).

By combining high-throughput techniques and integrative analyses,
potato -omics approaches are providing more holistic views of the po-
tato pangenome, gene expression patterns, protein composition, and
metabolic pathways. For example, Boutsika et al. recently did a

combinatory exploration of the transcriptome, proteome, methylome
and microbial composition of potatoes of the same cultivar grown on the
mainland Greece and Naxos, which has the status of Protected
Geographical Indication. They found differences in both primary
metabolism (e.g. sucrose synthases) and plant defence expression profile
(Kunitz trypsin inhibitors). They also concluded that potatoes grown on
Naxos recruits more microbes thought to be beneficial (Boutsika et al.,
2023).

We present proteomics data from field trials on potatoes in northern
and southern Sweden, respectively, from three separate years. These
findings are complemented by metabolomic and transcriptomic analyses
of selected field samples. We also examine the characteristics of varieties
that yield well in northern Sweden compared to varieties that yield
relatively less well.

2. Methods

2.1. Potato cultivation and sampling

Potatoes were grown in Borgeby in southern Sweden, at 55.75◦ N,
13.05◦ E, and in Umeå in northern Sweden, at 63.81◦ N, 20.23◦ E, in the
years 2016, 2018, and 2019. Seed potatoes were purchased from certi-
fied seed potato providers, with the exception of the genotypes 913057
and 908510, which were obtained from the Swedish potato breeding
program at SLU Alnarp. The cultivation of potato was done in essentially
the same manner as that described in (Liljeroth et al., 2010). The
development of the plants was monitored, and leaflets were sampled at
matched developmental stages between the two sites. For details about
sampling dates, see Supplemental Table 1. Eight leaflets were sampled
from the third leaf from the top, wrapped in aluminum foil, and snap
frozen in liquid nitrogen immediately after sampling. From 2016, 63
samples from 12 varieties collected in July and August were analyzed
(Fig. 1). In addition, samples were obtained from field trials in 2018 for
both July and August (12 samples from each month) and July 2019 (10
samples). Owing to extreme weather conditions during July 2018, this
set of samples was omitted from the analysis.

2.2. Protein extraction and digestion with trypsin

Proteins were extracted from potato leaves using the phenol
extraction methanol/ammonium acetate precipitation method
described in (Carpentier et al., 2005) with a modified resuspension

Fig. 1. Overview of the test sites and sampling strategy.
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buffer. Briefly, leaves were frozen in liquid nitrogen and ground to a
powder in a mortar. Fifty milligram of leaf powder was transferred to a
2 mL tube, and 500 μL of extraction buffer (50 mM Tris-HCl pH 8.5, 5
mM EDTA, 100 mM KCl, 1% DTT, 30% sucrose, 1 mM PMSF, protease
inhibitor cocktail (Sigma P9599)) was added. The proteins were
precipitated according to (Carpentier et al., 2005), but the final resus-
pension buffer consisted of 50 mM Tris-HCl pH 7,5, 2 mM EDTA, 4%
SDS, 1 mMDTT, 1 mM PMSF, Protease inhibitor cocktail (Sigma P9599).
The samples were then stored at − 80 ◦C. For tryptic digestion, DTT was
added to the sample to a final concentration of 10 mM, followed by a 10
min incubation at 95 ◦C. Subsequently, iodoacetamide was added to a
final concentration of 55 mM, and the samples were incubated for 30
min in the dark. The samples were then analyzed by SDS-PAGE until the
front had migrated approximately 5 mm into the gel. The pieces were
excised, washed, and the protein was digested with trypsin added to the
gel. The tryptic peptides were cleaned with C18 columns (UltraMicro
spin columns, Nest Group Inc., Southborough, MA, USA) and resus-
pended in a solution of 5% formic acid in water.

2.3. Proteome mass spectrometry (MS) analysis

Peptide digests from the 2018 and 2019 samples were analyzed by
liquid chromatography-tandem mass spectrometry (LC-MS/MS) using
an EASY-nano LC system (Thermo Fisher Scientific, Germany) coupled
with a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific,
Germany) operating in positive ion mode for data-dependent acquisi-
tion. The analytical column was a 15 cm long fused silica capillary (75
μm× 16 cm Pico Tip Emitter, New Objective), packed in house with C18
material ReproSil-Pur 1.9 μm (Dr. Maisch GmbH, Germany). Peptides
were separated by an 80 min gradient from 5% to 90% solvent B (80%
ACN, 0.1% FA) at a constant flow rate of 250 nL/min. The Orbitrap
acquired the full MS scan with an automatic gain control target value of
3 × 106 ions and a maximum fill time of 50 ms. The 20 most abundant
peptide ions were selected from the MS for higher energy collision-
induced dissociation fragmentation (collision energy: 40 V). Fragmen-
tation was performed at 15,000 FWHM resolution for a target of 1× 105
and a maximum injection time of 20 ms using an isolation window of
1.2 m/z. Xcalibur software v 3.0 (Thermo Fisher Scientific, Germany)
was used to control the nLC system and the MS and to acquire and
visualize the raw data.

For the 2016 samples, prior to MS analyses, 80 μL of defrosted
peptide extracts were acidified with 5 μL of 10% formic acid and then
trapped and enriched on StageTip columns (Rappsilber et al., 2007).
Next, peptides were extracted with 70% ACN and 0.1% TFA and dried
down before reconstitution in 20 μL of 2% ACN and 0.1% TFA. MS an-
alyses were carried out on an Orbitrap Fusion Tribrid MS system
(Thermo Scientific) equipped with a Proxeon Easy-nLC 1000 (Thermo
Fisher). Injected peptides were trapped on an Acclaim PepMap C18
column (3 μm particle size, 75 μm inner diameter × 20 mm length).
After trapping, gradient elution of peptides was performed on an
Acclaim PepMap C18 column (100 Å 3 μm, 150 mm, 75 μm). The outlet
of the analytical column was coupled directly to the mass spectrometer
using a Proxeon nanospray source. The mobile phases for LC separation
were 0.1% (v/v) formic acid in LC-MS grade water (solvent A) and 0.1%
(v/v) formic acid in acetonitrile (solvent B). Peptides were first loaded
onto the trapping column using solvent A and a constant pressure mode.
Subsequently, peptides were eluted via the analytical column at a con-
stant flow rate of 300 nL/min. During the elution steps, the percentage
of solvent B increased from 5% to 10% in the first 2 min, then increased
to 25% in 50 min, then to 60% in 15 min, and to 90% in a further 5 min,
where it was maintained for 5 min. The peptides were introduced into
the mass spectrometer via a stainless steel emitter 40 mm (Thermo
Fisher), and a spray voltage of 1.9 kV was applied. The capillary tem-
perature was set to 275 ◦C. Data acquisition was carried out using a top
N based data-dependent method with a cycle time of 3 s. The master
scan was performed in the Orbitrap in the range of 350–1350 m/z at a

resolution of 120,000 FWHM. The filling time was set at a maximum of
50 ms with a limitation of 4 × 105 ions. Ion trap CID-MS2 was acquired
using parallel mode, with a maximum filling time of 300 ms with a
limitation of 2 × 103 ions, a precursor ion isolation width of 1.6 m/z,
and a resolution of 15,000 FWHM. The normalized collision energy was
set to 35%. Only multiply charged (2+ to 5+) precursor ions were
selected for MS2. The dynamic exclusion list was set to 30 s and a
relative mass window of 5 ppm. After inspection of the principal
component analysis, a batch effect related to the switch of the liquid
chromatography column in the HPLC system was identified, leading to
the rerun of 33 samples; this was done to avoid statistical comparisons
for conditions that, prior to reruns, were unbalanced between the
batches.

2.4. Processing of proteomics data

Raw MS data in Thermo raw format were converted to mzML and
MGF using Proteowizard (Chambers et al., 2012) version 3.0.11841 (Q
Exactive data) or 3.0.9220 (Fusion data) with MS-Numpress compres-
sion (Teleman et al., 2014), and MS1 peptide features were detected
using Dinosaur (Teleman et al., 2016) version 1.1.3. Processing of mass
spectra to peptide abundances was performed in the Proteios software
environment (Hakkinen et al., 2009) 2.20.0-dev, using builds 4646 and
4626 for the two datasets, respectively. MS/MS peptide fragment
fingerprinting was performed using MS-GF+ (Kim and Pevzner, 2014)
and X!Tandem Alanine (2017.2.1.4, http://www.thegpm.or
g/TANDEM/)) against a database consisting of the potato proteome
available in UniProt as of January 17, 2017, including the canonical
sequences and isoforms, that was expanded with an equal number of
decoy (reverse sequence) protein entries; the parameters for MS/MS
peptide fragment fingerprinting were 10 ppm precursor tolerance, fixed
carbamidomethylation of C, variable oxidation of M, and protein
N-terminal acetylation. The “instrument” search parameter was set to Q
Exactive for Q Exactive data and LowRes in MS-GF + for Fusion data,
whereas the corresponding fragment settings in X!Tandem were 0.02 Da
and 0.4 Da, respectively. The search results were combined in Proteios,
and peptides passing a peptide-spectrum-match (PSM) q-value threshold
of 0.001 were matched against the MS1 features with an m/z tolerance
of 0.004, also including PSMs with q-values<0.1 if the same peptide was
identified elsewhere in the dataset at q < 0.001. Features were aligned,
and peptide feature identities were propagated between files in Proteios
using default settings before export of the peptide feature table for
further analysis. The MS proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository
(Perez-Riverol et al., 2022) with the dataset identifiers PXD026661 and
PXD026690.

2.5. Outlier removal

The data were inspected for outliers and trends using the interactive
software OmicLoupe (v0.9.7) (Willforss et al., 2021). In the 2016
dataset, two strong outliers were identified using density plots. These
samples were omitted from subsequent analyses. In the July 2018
dataset, one sample was identified as an outlier using a dendrogram, and
for 2019 data, one sample was identified as a strong outlier based on
having a strongly different intensity profile as seen in a density plot.

2.6. Proteome abundance matrix processing and statistics

Raw peptide intensities were normalized using cyclic Loess
normalization (Ballman et al., 2004) in NormalyzerDE 1.5.4, (Willforss
et al., 2019). Peptides eluted during the post-gradient columnwash were
removed prior to further data analysis (i.e., those with retention times
>63 min in the 2016 dataset and >69.5 min in the combined 2018 and
2019 dataset). Protein intensities were subsequently calculated from
peptide intensities using an R implementation (v0.9.3, https://github.co
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m/ComputationalProteomics/ProteinRollup) of the RRollup algorithm
in DanteR (Polpitiya et al., 2008) version v1.1.6970. Differential
expression between groups was calculated using Limma v3.42.2 (Ritchie
et al., 2015), a statistical approach in which variance from the whole
dataset is used to improve variance estimates for individual proteins, to
calculate the contrasts between the Umeå and Borgeby field sites for the
potato varieties Desiree, Rocket, and Bintje in 2016, using whether the
samples had been processed before or after the column swap in the mass
spectrometer as a covariate. Here, the final mass spectrometry rerun for
each sample was used, which best balanced samples across the column
swap. Furthermore, comparisons were made between Umeå and Bor-
geby for Desiree in 2018 and 2019. Proteins with false discovery rate
(FDR) < 0.1 across all three years were selected as stable candidates. In
order to study the relationship between yield and expression, varieties
with high (above 1) and low (below 0.75) yield quotients for Umeå/-
Borgeby were identified and selected, resulting in the varieties Amour,
908510, 913057, Sarpomira, Mandel, and Folva being classified as
‘HIGH’ and Carolus, Solist, and Artemis being classified as ‘LOW’. These
groups are outlined in Supplemental Table 2. A statistical comparison
between the HIGH and LOW groups was performed using Limma, again
using the column swap as a covariate. In this case, the original MS run
for each sample was used, as, in this case, this best balanced the samples
across the column swap. Proteins with FDR <0.05 were considered
significant. The proteins were further annotated by performing homol-
ogy pBLAST searches (2.6.0+, 10.1016/S0022-2836(05)80360-2)
against the Solanum tuberosum reference genome protein sequences
(version 4.03). In each case, the annotation was transferred from the
best homology match.

2.7. RNA extraction

Leaflets were flash frozen in liquid nitrogen and then homogenized
to a fine powder using a mortar and pestle. RNA extractions were per-
formed using an RNeasy Plant Mini kit (Qiagen GmbH, Hilden, Ger-
many) and approximately 100 mg of leaf tissue. Samples were treated
with DNase. RNA concentration and purity (260/280 nm > 1.8) were
checked using an ND-1000 NanoDrop (Wilmington, USA), and the
integrity of the samples was analyzed with an Experion Automated
Electrophoresis System (Bio-Rad Laboratories, Hercules, USA).

2.8. RNA-seq data

RNA sequencing (RNA-seq) was performed using the SNP & SEQ
Technology Platform in Uppsala, Sweden with NovaSeq S4 flow cells,
paired-end 150 bp read lengths, and v1 sequencing chemistry.
Sequencing libraries were prepared from 750 ng total RNA using the
TruSeq stranded total RNA library preparation kit with RiboZero Gold
treatment (cat# 20020598/9, Illumina Inc.). Library preparation was
performed according to the manufacturer’s protocol (#
1000000040499). Trimmomatic (Bolger et al., 2014) was used for the
quality trimming of reads (version 0.36), trimming TruSeq3 adapters
with settings “TruSeq3-PE-2.fa:2:30:10” and with quality sliding win-
dow settings “SLIDINGWINDOW:5:20”, while filtering reads shorter
than 50 nucleotides. SortmeRNA (Kopylova et al., 2012) (version 2.1b,
was used against bacterial and eukaroytic ribosomal RNA databases
with default settings to filter ribosomal RNAs. Bowtie2 (version 2.4.1)
(Langmead and Salzberg, 2012) was used to filter non-coding RNA using
the plant noncoding RNA database (http://structuralbiology.cau.edu.
cn/PNRD/download.php) under default settings except for running
with the local alignment setting. The reads were quality controlled using
FastQC (v0.11.9, https://qubeshub.org/resources/fastqc) and MultiQC
v1.8 (Ewels et al., 2016) for combined quality reports. They were sub-
sequently mapped using STAR v2.7.3 (Dobin et al., 2013) to the PGSC
potato reference genome v4.03 (Hardigan et al., 2016). For the potato
reference genome, the annotation was downloaded as a GFF file and
subsequently parsed into GTF format using gffread in Cufflinks version

2.2.1 (Trapnell et al., 2012). STAR was run using quantMode Gene-
Counts based on the GTF file. The resulting count data were combined
into a count matrix and used for subsequent analysis. DESeq2 version
1.26.0 (Love et al., 2014) was run using default settings and was used to
calculate contrasts between Umeå and Borgeby for the varieties Desiree,
Bintje and Rocket. The final output was further inspected for outliers
and trends using the interactive visualizations provided by OmicLoupe,
with no outliers removed. The RNAseq data has been deposited to the
SRA database at the NCBI biobank with the accession number
PRJNA1002643 and can be accessed at https://www.ncbi.nlm.nih.
gov/sra/PRJNA1002643.

2.9. Metabolomics analysis

Metabolic profiling by gas chromatography-mass spectrometry (GC-
MS) and liquid chromatography-mass spectrometry (LC-MS) was per-
formed at the Swedish Metabolomics Center in Umeå, Sweden. Infor-
mation about reagents, solvents, standards, reference and tuning
standards, and stable isotope internal standards can be found in Sup-
plementary Materials 6.

Sample Preparation: Sample preparation was performed according to
(Gullberg et al., 2004). Leaves were frozen in liquid nitrogen and ground
to a powder in a mortar, and 20 mg (±10%) of frozen leaf powder was
used. The samples were analyzed in batches (different sample types)
according to a randomized run order on both GC-MS and LC-MS.

GCMS Analysis: Derivatization and GCMS analyses were performed
as described previously (Gullberg et al., 2004). An aliquot of 0.5 μL of
each derivatized sample was injected in splitless mode by an L-PAL3
autosampler (CTC Analytics AG, Switzerland) into an Agilent 7890B gas
chromatograph equipped with a 10 m × 0.18 mm fused silica capillary
column with a chemically bonded 0.18 μmRxi-5 Sil MS stationary phase
(Restek Corporation, U.S.) The injector temperature was 270 ◦C. The
purge flow rate was 20 mL min− 1, and the purge was turned on after 60
s. The gas flow rate through the column was 1 mL min− 1; the column
temperature was held at 70 ◦C for 2 min, then increased by 40 ◦C min− 1

to 320 ◦C, and held there for 2 min. The column effluent was introduced
into the ion source of a Pegasus BT time-of-flight mass spectrometer
(GC/TOFMS, Leco Corp., St Joseph, MI, USA). The transfer line and ion
source temperatures were 250 ◦C and 200 ◦C, respectively. Ions were
generated by a 70 eV electron beam at an ionization current of 2.0 mA,
and 30 spectra s− 1 were recorded in the mass range m/z 50–800. The
acceleration voltage was turned on after a solvent delay of 150 s. The
detector voltage was 1800–2300 V.

LC-MS analysis: Before LCMS analysis, the sample was re-suspended
in 10 μL + 10 μL methanol and water. All samples were first analyzed in
positive mode. Thereafter, the instrument was switched to the negative
mode, and a second injection of each sample was performed. Chro-
matographic separation was performed on an Agilent 1290 Infinity
UHPLC-system (Agilent Technologies, Waldbronn, Germany). Two mi-
croliters of each sample were injected onto an Acquity UPLC HSS T3, 2.1
× 50 mm, 1.8 μm C18 column in combination with a 2.1 mm × 5 mm,
1.8 μm VanGuard precolumn (Waters Corporation, Milford, MA, USA)
held at 40 ◦C. The gradient elution buffers were A (H2O, 0.1 % formic
acid) and B (75/25 acetonitrile:2-propanol, 0.1 % formic acid), and the
flow rate was 0.5 mL min− 1. The compounds were eluted with a linear
gradient consisting of 0.1–10 % B over 2 min, B was increased to 99 %
over 5 min and held at 99 % for 2 min; B was decreased to 0.1 % for 0.3
min, and the flow rate was increased to 0.8 mL min− 1 for 0.5 min; these
conditions were held for 0.9 min, after which the flow rate was reduced
to 0.5 mL min− 1 for 0.1 min before the next injection.

The compounds were detected with an Agilent 6550 Q-TOF mass
spectrometer equipped with a jet stream electrospray ion source oper-
ating in positive or negative ion mode. The settings were identically
maintained across both modes, with the exception of the capillary
voltage. A reference interface was connected for accurate mass mea-
surements. The reference ions purine (4 μM) and HP-0921 (Hexakis(1H,

S. Resjö et al.

https://github.com/ComputationalProteomics/ProteinRollup
http://structuralbiology.cau.edu.cn/PNRD/download.php
http://structuralbiology.cau.edu.cn/PNRD/download.php
https://qubeshub.org/resources/fastqc
https://www.ncbi.nlm.nih.gov/sra/PRJNA1002643
https://www.ncbi.nlm.nih.gov/sra/PRJNA1002643


Plant Physiology and Biochemistry 215 (2024) 109032

5

1H, 3H-tetrafluoropropoxy)phosphazine) (1 μM) were infused directly
into the MS at a flow rate of 0.05 mL min− 1 for internal calibration, and
the monitored ions were purine m/z 121.05 and m/z 119.03632; HP-
0921 m/z 922.0098 and m/z 966.000725 for the positive and negative
modes, respectively. The gas temperature was set to 150 ◦C, the drying
gas flow was set to 16 L min− 1, and the nebulizer pressure was 35 psig.
The sheath gas temperature was set to 350 ◦C and the sheath gas flow
was 11 L min− 1. The capillary voltage was set to 4000 V in positive ion
mode and to 4000 V in negative ionmode. The nozzle voltage was 300 V.
The fragmentor voltage was 380 V, the skimmer was 45 V, and the OCT
1 RF Vpp was 750 V. The collision energy was set to 0 V. The m/z range
was 70–1700, and data were collected in centroid mode with an
acquisition rate of 4 scans s− 1 (1977 transients/spectrum).

2.10. Handling of metabolomics data

For the GC-MS data, all non-processed MS files from the metabolic
analysis were exported from the ChromaTOF software in NetCDF format
to MATLAB R2016a (Mathworks, Natick, MA, USA), where all data
pretreatment procedures, such as baseline correction, chromatogram
alignment, data compression, and multivariate curve resolution, were
performed using custom scripts. The extracted mass spectra were iden-
tified by comparing their retention index values and mass spectra with
libraries of retention time indices and mass spectra (Schauer et al.,
2005). Mass spectra and retention index comparisons were performed
using NIST MS 2.0 software. The annotation of mass spectra was based
on reverse and forward searches in the library. Masses and the ratio
between masses indicative of a derivatized metabolite were especially
noted. If the mass spectrum, according to the SMC experience, had the
highest probability indicative of a metabolite, and the retention index
between the sample and library for the suggested metabolite was ±5
(usually less than 3), the deconvoluted “peak” was annotated as an
identification of a metabolite.

For the LC-MS data, all data processing was performed using the
Agilent Masshunter Profinder version B.08.00 (Agilent Technologies
Inc., Santa Clara, CA, USA). Processing was performed in both targeted
and untargeted fashions. For target processing, a predefined list of me-
tabolites (including amino acids, bile acids, acyl-carnithines, fatty acids,
lyso-phosphatidylcholines, nucleotides, short-length peptides, and ste-
roids, among others) commonly found in plasma and serum were
searched for using the batch targeted feature extraction in Masshunter
Profinder. An in-house LC-MS library (Gullberg et al., 2004), assembled
using authentic standards run on the same system with the same chro-
matographic and mass-spectrometry settings, was used for the targeted
processing. The identification of the metabolites was based on MS,
MSMS, and retention time information. For the untargeted data, each
tissue group was processed individually using the batch recursive
feature extraction algorithm within Masshunter Profinder.

The metabolomics data were further processed using NormalyzerDE
(Willforss et al., 2019). Based on the normalization quality report pro-
vided by NormalyzerDE, cyclic Loess normalization (Ballman et al.,
2004) was used as the normalizationmethod. Upon inspection of density
plots in OmicLoupe (Willforss et al., 2021), one sample was identified as
a strong outlier and omitted from the analysis. Subsequently, differential
expression was calculated using Limma in NormalyzerDE, comparing
Desiree samples between Umeå and Borgeby, comparing all varieties
between Umeå and Borgeby, and comparing the HIGH versus LOW yield
groups within Umeå and Borgeby (grouped as in the proteomics anal-
ysis, outlined in Supplementary Material 2).

All R analyses used to perform the proteomic and RNA-seq analyses,
and the code used to generate figures for this manuscript are presented
as an R Markdown document in Supplementary Material 3.

3. Results and discussion

3.1. Potato leaf data from northern and southern Sweden

We have generated molecular data from 3 years (2016, 2018, and
2019) of field trials in the north and south of Sweden (Fig. 1). This
manuscript is focused on the analysis of proteins that consistently differ
in abundance between leaves from potatoes of the cultivar Desiree
grown at the southern and northern sites over the entire period (Fig. 2).
The analysis of the 2016 dataset resulted in the identification of 30,077
peptides and 3402 proteins, while the combined analysis of the 2018
and 2019 datasets resulted in the identification of 24,336 peptides and
3598 proteins. The differentially abundant proteins that passed FDR
<0.1 in all 3 years are listed in Table 1 and Supplementary Material 4.

Twenty-two proteins were found to be both significantly and
consistently differentially abundant between the northern (64◦ N) and
southern (56◦ N) field sites. The abundance of the corresponding tran-
scripts and proteins was also analyzed for the varieties Desiree, Bintje
and Rocket from 2016 to further validate the multi-seasonal proteomics
data (Fig. 3). The protein abundance of the corresponding proteins in
Bintje and Rocket correlated very well with abundance in Desiree, and in
all cases in which the transcript abundance was significantly different, it
varied in the same direction as the protein abundance (Fig. 3). This
correlation between transcript and protein abundance across cultivars
and growing seasons strengthens our conclusion that these differences
reflect robust effects of the growth location. It is also in line with the
high level of correspondence between the transcriptome and proteome
datasets identified by Boutsika et al. (2023) in field grown potatoes
where all pairwise comparisons of both transcriptome and proteome
were positive in one cultivar between the two sites they studied. With
the exception of this study, there are no other -omics studies of field
grown potatoes that we are aware of.

The majority of differentially abundant proteins can be divided into
three groups: enzymes involved in the metabolism of amino acids and
citrate, proteins involved in redox metabolism, and hydrolytic enzymes.
A number of metabolites involved in primary and amino acid meta-
bolism have higher abundance in the northern site. In addition, me-
tabolites associated with oxidative and biotic stress have lower
abundance in the north.

3.2. Citrate and amino acid/glutamate metabolism

Seven metabolic enzymes were identified as having significantly
different abundances (Fig. 4). Of these, two gamma-aminobutyrate
(GABA) transaminase isoform 2 (M1C906, M1CD67), alanine amino-
transferase (M1A1E3), 2-oxoglutarate-dependent dioxygenase
(M1AUM2), and methylthioribose kinase (M1CFQ4) are directly
involved in amino acid metabolism. Of the remaining two, dihydrolipoyl
dehydrogenase (M0ZSL5) is part of the pyruvate dehydrogenase com-
plex, whereas pyruvate decarboxylase (M1D0M1) catalyzes the decar-
boxylation of pyruvate to acetaldehyde. Some of these enzymes are thus
important for controlling the metabolic fate of pyruvate, which is a key
amino acid precursor, while others catalyze transamination reactions
that are a part of amino acid metabolism.

In the northern site there was a higher abundance of glutamate,
succinate, alpha ketoglutarate and citrate (Fig. 4). Glutamate plays an
important part in amino acid metabolism, both as a donor of amino
groups and of carbon atoms for the carbon skeletons of some amino
acids. A number of other amino acids also had significantly different
abundances between the sites.

Glutamate is a substrate of GABA transaminase, but this enzyme
accepts multiple substrates, and several of the metabolites involved can
be used as substrates by more than one of the four metabolic enzymes,
which makes it challenging to elucidate exactly how their regulation is
interrelated. GABA transaminase catalyzes the conversion of GABA to
succinate semialdehyde as a part of the GABA shunt (Michaeli and

S. Resjö et al.



Plant Physiology and Biochemistry 215 (2024) 109032

6

Fromm, 2015; Ramos-Ruiz et al., 2019). This enzyme can use either
pyruvate or alpha ketoglutarate as amine acceptors, producing alanine
or glutamate, respectively.

The higher glutamate abundance in the metabolomes of samples
from northern Sweden indicates that the reaction producing glutamate
is the predominant one catalyzed by the increased GABA transaminase
observed at that location. We also observed increases in succinate and
alpha ketoglutarate in the northern site. The increased abundance of
alpha ketoglutarate might be partially explained by the reduced
amounts of alanine transaminase. Alanine transaminase catalyzes the

reversible conversion of alanine and alpha ketoglutarate into glutamate
and pyruvate. A decrease in alanine transaminase activity could
contribute to the accumulation of alanine and alpha ketoglutarate. The
increased alpha ketoglutarate could then be utilized by 2-oxoglutarate-
dependent dioxygenase, an enzyme that uses alpha ketoglutarate and
oxygen to oxidize a wide variety of substrates, producing succinate and
oxidized substrates. Succinate is also produced from succinate semi-
aldehyde by two successive enzymatic reactions. Thus, the differences
observed in the abundances of metabolic enzymes corresponded well
with the observed differences in the metabolites (Fig. 5). Succinate and

Fig. 2. Volcano plots showing Desiree proteins with FDR <0.1 across three years. Proteins found with FDR <0.1 across all years are labelled in all three plots.

Table 1
The 22 proteins found to consistently be significantly different between 64 ◦N
and 56 ◦N over three seasons.

UniProt ID Protein name Location with
highest abundance

M1APC4,M1APC7,
M1APC8,
M1APC9

Acidic class II 1,3-beta-glucanase South

M1A703 NtPRp27 South
Q941G6 Cytoplasmic small heat shock protein

class I
South

M0ZMG2 Class II chitinase South
M1AY17 Cationic peroxidase South
M1ANN8 Glutathione transferase South
M1CX91 Glucan endo-1,3-beta-D-glucosidase South
M0ZMA9 PR10 South
M1D0M1 Pyruvate decarboxylase South
M1C4F2,M1C4F3 41 kD chloroplast nucleoid DNA

binding protein (CND41)
South

M0ZNL5 Glutathione s-transferase South
M1CWI5 Glutathione reductase South
M1A1E3 Alanine aminotransferase South
M0ZSA3 Monodehydroascorbate reductase South
M1CFQ4 Methylthioribose kinase South
M1DFQ4 Aspartic proteinase nepenthesin-1 North
I2FJZ8 Carbonic anhydrase North
M0ZSL5 Dihydrolipoyl dehydrogenase North
M1AQ00 Superoxide dismutase [Cu–Zn] 2 North
M1CD67 Gamma aminobutyrate transaminase

isoform2
North

M1AUM2 2-oxoglutarate-dependent
dioxygenase

North

M1C906 Gamma aminobutyrate transaminase
isoform2

North

Fig. 3. Fold change of Desiree proteins with FDR <0.1 across three years,
together with the corresponding proteins in the cultivars Bintje and Rocket
2016, as well as the corresponding mRNA levels in Desiree, Bintje, and Rocket
in 2016. An FDR smaller than 0.1 is indicated by a filled circle while an FDR
larger than 0.1 is indicated with an open circle.
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alpha ketoglutarate are intermediates in the citric acid cycle. In addi-
tion, citrate was elevated in the samples from northern Sweden, indi-
cating higher citric acid cycle activity in these plants. The increased
abundance of dihydrolipoyl dehydrogenase indicates that the pyruvate
dehydrogenase complex was more active in plants from northern Swe-
den, which would also have contributed to the increased abundance of
citric acid cycle intermediates through the conversion of pyruvate to
acetyl CoA by the pyruvate dehydrogenase complex. The citric acid
cycle is a central component of the catabolic machinery of the cell. In-
creases in proteins involved in catabolism has been observed in prote-
omics analyses of short-term cold response in a number of plant species
(Kosova et al., 2011, 2013) such as wheat and Arabidopsis thaliana.
However, in potato short-term cold treatment has mixed results on
metabolic enzymes, with some (such as ATP synthase) decreasing and

others (such as glutamine synthetase) increasing (Li et al., 2021). The
plants grown in northern Sweden in this study have been exposed to
lower temperature on average, and it is possible that this contributes to
the increased citrate and amino acid/glutamate metabolism that our
data indicates. However, it should be noted that the temperature dif-
ference is much larger in the cold response studies (typically 16–18◦)
and the time of the study is shorter (typically one or a few weeks) than in
our study. Thus, it is also possible that other differences, such as the
extremely long days in northern Sweden are causing the observed
effects.

3.3. Redox regulation

The next major group of proteins that consistently differed in
abundance between northern and southern Sweden are six proteins
involved in redox processes. Only one (superoxide dismutase [Cu–Zn] 2,
M1AQ00) was more abundant in the samples from northern Sweden.
Superoxide dismutase is important for protecting plants against reactive
oxygen species (ROS). The other five redox related proteins, glutathione
reductase, (M1CWI5), glutathione S-transferase (M0ZNL5), glutathione
transferase (M1ANN8), monodehydroascorbate reductase (M0ZSA3),
and cationic peroxidase (M1AY17), were more abundant in the south
(Fig. 4). This type of ROS-scavenging enzymes have been found to be
upregulated in response to cold in plants other than potato (Kosova
et al., 2011), but not in potato (Li et al., 2021). These enzymes could also
be upregulated in response to many different stresses.

The first three proteins are mainly involved in the detoxification of
xenobiotics by conjugation with glutathione (Gullner et al., 2018).
Recently, site-specific hypermethylation of glutathione S-transferase in
field grown potato has been shown to affect the abundance of both
protein and transcript levels in tubers grown at Naxos (Boutsika et al.,
2023).

Monodehydroascorbate reductase is part of the glutathione-
ascorbate cycle, which is a hydrogen peroxide detoxification pathway,
and cationic peroxidase is also involved in hydrogen peroxide removal.
The metabolomics data also indicate different levels of oxidative stress
at the two sites (Fig. 4). Linoleate was more abundant in northern
Sweden, whereas hydroxyoctadecadienoic acid was more abundant in
southern Sweden. Linoleate is a polyunsaturated fatty acid that is
oxidized to different hydroperoxyoctadecadienoic acids (HODE) by the
free radicals produced during oxidative stress. Hydro-
peroxyoctadecadienoic acids are then further oxidized to hydrox-
yoctadecadienoic acid by glutathione peroxidases and phospholipases
(Yoshida et al., 2013). This difference indicates a higher degree of lipid
peroxidation at the site in southern Sweden. Another difference between
the sites was the higher abundance of flavonoids and their glycosides in

Fig. 4. Selected significant proteins and related metabolites that are discussed
in the text.

Fig. 5. The four metabolic enzymes consistently displaying differential abundance between the northern and southern site and their associated metabolites. An
arrow pointing upward means that the relative abundance is higher in northern Sweden, whereas an arrow pointing downward means that the relative abundance is
lower in northern Sweden.
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plants from northern Sweden. Seven different flavonoid glycosides were
more abundant in these samples. It is likely that this is caused by the
increased length of the photoperiod at the higher latitude, since growth
at high latitudes has been shown to cause increased flavonoid content in
a number of plant tissues (Jaakola and Hohtola, 2010; Molmann et al.,
2021).

3.4. Stress response and hydrolysis

A number of proteins involved in that can be induced by different
stressors or are involved in hydrolysis were among the differentially
abundant proteins (Fig. 4). Some of these are defense-related proteins
that can be induced by different stressors: cytoplasmic small heat shock
protein class I (Q941G6), PR10 (M0ZMA9), and NtPRp27 (M1A703).
Small heat shock protein class I has been shown to increase heat stress
tolerance (McLoughlin et al., 2016), while NtPRp27 has been shown to
contribute to resistance against Phytophthora infestans (Shi et al., 2012).
These proteins consistently had higher abundance in the samples from
southern Sweden,

Among the proteolytic enzymes, only one, aspartic proteinase
nepenthesin-1 (M1DFQ4), was more abundant in the samples from
northern Sweden than those from southern Sweden. All the other en-
zymes exhibited the opposite pattern, i.e., higher abundance in southern
Sweden (Fig. 4). One of the proteins in this group, M1C4F2, a 41 kD
chloroplast nucleoid DNA binding protein (CND41), is also an aspartic
protease that is involved in senescence (Kato et al., 2004). The other
three are chitinases or glucanases that are likely responsible for cell wall
degradation (acidic class II 1,3-beta-glucanase (M1APC4), class II chi-
tinase (M0ZMG2), and glucan endo-1,3-beta-D-glucosidase (M1CX91).
This data may reflect differences in various biotic or abiotic stresses.
Increased carbohydrates have been indicated as positive regulators of
defense-related genes (Rojas et al., 2014), and glucose levels were found
to be higher in southern Sweden than in northern Sweden
(Supplementary Material 5).

3.5. Potato leaf data comparing yield groups

In order to compare potato cultivars that perform relatively well in
northern Sweden with cultivars that perform less well, we grouped the
cultivars according to their yield quotients for North/South. The high-
yielding cultivars had quotients above 1 (and thus perform relatively
well in northern Sweden) while the low-yielding groups had quotients
below 0.75 (and perform relatively less well in northern Sweden). The
genotypes are described in Supplementary Material 2.

A total of 56 proteins had significantly different abundances between
the groups (Table 2), with generally relatively small differences. Of
these, 40 were found to have higher abundance among the varieties in
the high-yield quotient group, while 16 were found to have lower
abundance in the high-yield group (Fig. 6). The protein profiles of the
two groups were strikingly different. Among the 40 proteins that were
more abundant in the high-yield quotient group, seven were either
chaperones or otherwise involved in protein folding (e.g., protein
disulfide-isomerase (M1AZ99) and peptidyl-prolyl cis-trans isomerase
(Q9XF12)). Another four were ribosomal proteins. Another, more
diverse group can be said to be involved in the biosynthesis of complex
molecules. UDP-glucose 6-dehydrogenase (M0ZM42) is part of
nucleotide-sugar biosynthesis, whereas isopentenyl-diphosphate delta-
isomerase (M1AB35) participates in chlorophyll biosynthesis, and
diphosphomevalonate decarboxylase (M1C7S0) is involved in the pro-
duction of polyisoprenoids and sterols from acetyl-CoA. This means that
more than a third of the differentially abundant proteins with high
abundances in the high-yield quotient group are biosynthetic enzymes.
We have previously correlated yield with transcriptomes of a progeny
potato population, and found a negative correlation with an Acyl-CoA
synthetase over two years field studies (Alexandersson et al., 2020).

Among the 16 proteins with lower abundance in the high-yielding

Table 2
The 56 proteins found to differ between the high and low yield groups (log2,
positive values indicate higher abundance in the high yield group).

UniProt ID Protein name Abundance in
the high yield
group

M1B668,M1B670,M1BWS6,
M1D2J4

Glutathione S-transferase/
peroxidase

3.14

M0ZVA9,M0ZVB0,M1D5H9 Oxidoreductase, 2OG-Fe(II)
oxygenase family protein

3.07

M1BWB5 Hsr203J 1.95
M1CU69,M1CU70 Mta/sah nucleosidase 1.84
M1B668,M1D2J3,M1D2J4 Glutathione S-transferase/

peroxidase
1.81

M0ZTN0,M0ZTN1 Osmotin 1.75
M0ZMA8,M0ZMA9 TSI-1 protein 1.75
M1B2S2 Cytochrome b6-f complex iron-

sulfur subunit, chloroplastic
1.60

M0ZRT6,M1A7X7 Ribosomal protein L28 1.55
M0ZRQ9 Nonclathrin coat protein zeta1-

COP
1.45

M0ZKX2 Allene oxide synthase 2 1.42
M1BIX8 Reticuline oxidase 1.40
M1DWM0 Conserved gene of unknown

function
1.27

M0ZX98,M0ZXE4,M1AXK1,
M1AXK2,M1AXK3,
M1AXP1,M1AXP2,
M1AXR0,M1BBG7,
M1DCI3,M1DUG5,
M1DWT5

P69F protein 1.21

M1AEG5 Glucosyltransferase 1.12
M1AZ99 Protein disulfide isomerase L-2 1.08
M0ZLG7,M0ZYR0,M1A1P3,
M1AGX9,M1ATR5

Alpha-tubulin 1.06

B5M4B1,P46263,P46264 Beta-tubulin 1.04
M1AUM0 Cytochrome P-450 1.04
M1B582,M1B583,M1C075,
M1CX21

Heat shock cognate protein 80 0.98

M0ZLG7,M0ZYR0,M1A1P4,
M1AGX9,M1ATR5,
M1D0L3,M1D0L4

Alpha-tubulin 0.91

M0ZLG7,M0ZYR0,M1A1P3,
M1AGX9,M1ATR5,
M1D0L3,M1D0L4,
M1D8T0

Alpha-tubulin 0.91

M0ZM42,M1CCS3 UDP-glucose dehydrogenase 2 0.89
M0ZLG7,M1A1P4,M1AGX9,
M1ATR5

Alpha-tubulin 0.86

M1BSN9,M1BSP0 Translocon-associated protein
beta family protein

0.85

M1AP63,M1AVI1,
M1BQM8,M1BY26,
M1BY27

Transitional endoplasmic
reticulum ATPase

0.84

M1C7S0 Mevalonate disphosphate
decarboxylase

0.83

M1D610 Proteasome subunit beta type-
3-A

0.80

M1CX21 Molecular chaperone Hsp90-1 0.79
M0ZM42 UDP-glucose dehydrogenase 2 0.76
M1AWJ2,M1BLB0,M1BQB7 Luminal-binding protein 0.72
M1BB68 40S ribosomal protein S19 0.71
M1BC65 Anthranilate N-

benzoyltransferase protein
0.67

M1CQQ1 Peroxiredoxin 0.66
M1AB35,M1C547 Plastid isopentenyl

diphosphate isomerase
0.63

Q2V999 40S ribosomal protein S15 0.55
M1BRF8 Thaliana 60S ribosomal protein

L7
0.53

Q9XF12 Peptidyl-prolyl cis-trans
isomerase

0.49

M1B4H0 Ebna2 binding protein P100 0.45
M1BQI2 Heat shock protein 90 0.34
M1CL86 Dihydrolipoyl dehydrogenase − 0.40
M1BPR5 Ribose-5-phosphate isomerase − 0.43
M0ZQW3,M0ZT87 Chaperonin 21 − 0.59

(continued on next page)
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group, eight were enzymes involved in carbohydrate and primary
metabolism. Two different alpha-1,4 glucan phosphorylase isoforms
(M1ACZ6 and P04045) are involved in the degradation of starch to
glucose. Sucrose synthase (M1B216) catalyzes the formation of sucrose,
whereas fructose-bisphosphate aldolase (M0ZU27) is an important
glycolytic enzyme, and dihydrolipoyl dehydrogenase (M1CL86) is part
of the pyruvate dehydrogenase complex. The two enzymes, glucose-6-
phosphate 1-dehydrogenase (M1BGQ5) and ribose-5-phosphate isom-
erase (M1BPR5), are both part of the pentose phosphate pathway.
Finally, there was an ammonium transporter (M1BM79).

A comparison of these two groups of proteins indicates that the
differentially abundant proteins that were more abundant in the high-
yield quotient group are more anabolic in their character, whereas the
differentially abundant proteins with lower abundances in the high-
yield quotient group are more catabolic. This might indicate a greater
ability to utilize the longer light hours at high latitudes among the va-
rieties in the high-yielding group. Another possibility is that the geno-
types that yield better in the north are better to grow at lower
temperature since low temperature has been shown to induce catabolic
proteins (Kosova et al., 2011, 2013).

Except for the proteins involved in primarymetabolism, there was no
other distinct group among the proteins with low abundances in the

high-yield quotient group. Among the differentially abundant proteins
with high abundance in the high-yield group, there were several tubu-
lins and seven proteins involved in different types of stress response. TSI-
1 protein (M0ZMA8) is a stress-induced protein that can induce PR-
proteins, whereas osmotin (M0ZTN0) and P69F protein (M0ZX98) are
both PR proteins themselves. The ribonuclease (M1B4H0) is induced in
response to abiotic stress. Glutathione S-transferase/peroxidase
(M1B668) catalyzes the conjugation of GSH to xenobiotics. Allene oxide
synthase 2 (M0ZKX2) is involved in the biosynthesis of defensive com-
pounds and jasmonates (Pajerowska-Mukhtar et al., 2008), whereas
anthranilate N-benzoyltransferase protein (M1BC65) catalyzes a step in
phytoalexin synthesis (Reinhard and Matern, 1989).

The increase in the sugars and sugar alcohols glucose, fructose,
fucose, xylose and inositol in the high yielding plants can be interpreted
as a sign of higher metabolic activity in these plants. This is consistent
with the increased anabolic character of the more abundant proteins in
the high-yielding group. Specifically, UDP-glucose 6-dehydrogenase is
the enzyme that catalyzes the conversion of UDP-glucose to UPD-
glucuronic acid, which is then used in cell wall synthesis (Tenhaken
and Thulke), and the increased glucose is the starting material in this
process. Xylose is the main component of xylene, which is an important
cell wall polysaccharide (Curry et al., 2023). This indicates increased
levels of cell wall synthesis in the high-yielding group.

One of the chaperones that are more abundant in the high-yielding
genotypes is HSP90, which is down-regulated by cold stress (Kosova
et al., 2011). Cold treatment also results in increased abundance of
UDP-glucose pyrophosphorylase, which in turn leads to increased pro-
duction of UDP-glucose (Kosova et al., 2011). We observe higher
abundance of UDP-glucose 6-dehydrogenase in the high-yielding group,
which can be expected to lead to decreased UDP-glucose. The enzymes
regulating UDP-glucose levels have not been observed to change in
response to cold stress in potato (Li et al., 2021).

In the metabolomic analysis of the yield groups the high yield group is
characterized by lower abundance of flavonoid-glycosides, higher abun-
dance of lyso-phospholipids and higher abundance of sugars. The lower
abundance of flavonoid-glycosides is interesting since these compounds
also had a higher abundance as a result of cultivation at a higher latitude.
A possible interpretation of this is that production of flavonoid-glycosides
is a response to extreme long days at the higher latitude, and that the
high-yielding plants are better adapted to high latitude, resulting in a
relatively lower production of flavonoid-glycosides.

In summary, the biosynthetic nature of a subset of the proteins more
abundant in the high-yield group together with the indications of
increased membrane remodeling and cell wall synthesis might indicate
that the high-yielding genotypes are better able to utilize the increased
day length at the northern site. However, the yield differences were
relatively small in this experiment and this part of the study would
benefit from being repeated more years in order to generate more robust
data.

Table 2 (continued )

UniProt ID Protein name Abundance in
the high yield
group

M0ZU27,M0ZU28,M1AVJ2 Fructose-bisphosphate aldolase − 0.74
M1ACZ6,P04045 Alpha-1,4 glucan

phosphorylase L-1 isozyme,
chloroplastic/amyloplastic

− 0.74

M1C3R6 Uncharacterized aarF domain-
containing protein kinase,
chloroplastic

− 0.77

P04045 Alpha-1,4 glucan
phosphorylase L-2 isozyme,
chloroplastic/amyloplastic

− 0.79

M1BM79 Ammonium transporter 1
member 3

− 0.82

M1A521,M1A522,M1A524 Conserved gene of unknown
function

− 0.83

M1BT07 Sua5 − 0.86
M1BGQ5,Q43839 Glucose-6-phosphate 1-dehy-

drogenase, chloroplastic
− 0.92

M1B1I3 GDSL-lipase protein − 1.06
M1CQY0,M1CQY1 Alpha/beta hydrolase − 1.09
M1D5S4 Signal recognition particle

subunit srp72
− 1.10

M1CMY9,M1CMZ2,
M1CMZ3,M1CMZ4,
M1CMZ5

Superoxide dismutase − 1.25

M1B216,M1B217,M1B218,
P49039

Sucrose synthase 2 − 1.60

Fig. 6. Illustration of the difference between the yield groups within southern Sweden in 2016 when comparing groups of varieties with comparably higher and
lower yields in northern and southern Sweden in 2016. Proteins marked in orange are found in significantly different abundance between these groups (FDR <0.05).

S. Resjö et al.
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4. Conclusion

This article describes the first extensive field potato proteomics
dataset from potatoes grown at high latitudes. Thus, it will provide an
important basis for future work and is one of the few crop proteomics
datasets from field-grown materials.

We observed small but consistent differences between potato leaves
from northern and southern Sweden. This is influenced by that the po-
tato plants in northern Sweden receive, on average, four more hours of
light per day during the growing season (20 h). The correlation between
protein and mRNA abundance was quite strong in this dataset, which
opens up the potential for identifying and using RNA-based biomarkers.
However, it is important to remember that patterns of expression should
be confirmed in the specific genotypes of interest for breeders before
proceeding with future work. This observation was recently also
confirmed in another field-based “-omics” study of potato (Boutsika
et al., 2023). Proteins with different abundances between our northern
and southern field sites were mainly those involved in amino acid
metabolism, especially the metabolism of GABA, redox metabolism,
hydrolytic activity, and GST activity. When varieties that yield relatively
well in northern Sweden were compared to varieties with lower yields,
the major difference was that the higher-yielding plants appeared to
have more biosynthetic enzymes and stress-related proteins, whereas
the lower-yield varieties had more enzymes involved in carbohydrate
metabolism.

Our results show that the combination of different types of -omics
data can improve our abilities to interpret the differences in the meta-
bolic state of the plants from two locations and to determine which of
the many metabolic pathways might be differentially regulated. Our
data create a base of information for potato “field-omics,” which can
improve our understanding of physiological and molecular processes in
field-grown plants. Finally, our data indicate that potato is not generally
stressed by extremely long days, supported by the limited overlap of
proteins identified in our study and those identified in an earlier study of
cold included potato proteomics (Li et al., 2021).
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