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A B S T R A C T   

Effective and flexible statistical analyses are key to getting the most out of long-term experiments (LTEs). Here, 
we aim to introduce Bayesian analysis to the wider LTE community and show how the modelling process differs 
from traditional statistical analyses. Bayesian methods have become increasingly popular due to more flexibility 
in model development with better access to statistical software and sampling algorithms. Using Bayes’ Theorem, 
model coefficients are estimated by incorporating any prior knowledge we may have on model terms. Including 
prior knowledge in this way requires a different estimating procedure for a fitted model. Bayesian model co-
efficients are usually sampled from thousands of samples from one or more runs of a Markov Chain. We present 
the use of Bayesian analyses through three examples. Example 1 illustrates a single regression with and without 
factors using the Broadbalk Long-Term Experiment, showing how the estimated model changes with more un-
certainty in our prior knowledge of model coefficients. Example 2 demonstrates the use of multiple regression, 
predicting grain yield from factor variables and seasonal weather variables. Example 3 shows an estimation of 
soil carbon changes under crop rotation and fertilization treatments with a hierarchical time series model using a 
Swedish soil fertility experiment.   

1. Introduction 

Long-term field experiments (LTEs) are important research resources 
in agriculture and ecology, enabling the study of slow processes and the 
robust distinction of treatment effects from background variability (Eckl 
and Piepho, 2015; Grosse et al., 2020; Onofri et al., 2016; Rasmussen 
et al., 1998; Richter and Kroschewski, 2006; Storkey et al., 2016; Payne, 
2018). Given this potential of LTEs to make unique contributions to 
science, it is important that researchers are equipped with effective and 
flexible analysis methods to make the most of LTE datasets. The use of 
Bayesian methods has become increasingly popular due to advance-
ments in statistical software and sampling algorithms. Bayesian methods 
make use of Bayes’ Theorem to include prior information about model 
terms in the estimation of model parameters. Traditional methods of 
analysis which do not include prior information are called Frequentist 
methods. The use of prior information offers a level of model flexibility 
or parameter regulation that is not present in non-Bayesian (Frequentist) 
methods. An example of using Bayesian modelling to achieve robust 
results from a complex analysis of LTE data includes the direct modelling 

of a mean-variance function in forecasting future hay production from 
the Park Grass LTE (Addy et al., 2022). 

However, many researchers working with LTEs may still be unaware 
of Bayesian methods and may not be aware of the flexibility these tools 
offer, nor know how to make use of them. There are various other 
teaching documents which explain the motivation and use of Bayesian 
statistics in other academic disciplines (Gelman et al., 2013, 2020; 
McElreath, 2018; van de Schoot et al., 2021). However, none so far 
explain the use of Bayesian methods for LTEs. To address this gap, this 
paper has two aims: (1) to introduce researchers to key Bayesian con-
cepts involved in modelling LTE datasets, and (2) to provide examples of 
simple Bayesian analyses to enable researchers to see how Bayesian 
methods can be applied to a range of commonly encountered analysis 
scenarios with LTE datasets. 

To understand Bayesian statistics, we first must understand tradi-
tional Frequentist statistical methods. In traditional statistical modelling 
we wish to find a series of model parameters which provide the best fit to 
our data. The classical Frequentist approach maximises the likelihood 
function to obtain the best-fitting model parameters. The likelihood 
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function can be thought of as the probability of our observed data given 
the parameters of the model, and by maximising the likelihood function 
we obtain the most probable model coefficients given the data we have 
measured. A Bayesian approach would combine any prior information 
we have about the model parameters with the model likelihood to 
regulate the model parameters. Prior information can take many forms. 
For example, when we know the mean of some measured data must lie 
within a given range, or if we know the relationship between two 
measured responses has a strong positive association. We can translate 
our prior information into prior distributions and combine this with the 

model likelihood (best fitting model to our data) and obtain a now 
regulated version of the likelihood function called the posterior distri-
bution. The reason we wish to regulate our model parameters is to 
prevent a mis-specified model, dominated by incorrectly parameterised 
model terms. This often occurs when using traditional statistical 
methods to create models with a high number of estimable parameters 
(Tibshirani, 1996). The use of priors in Bayesian statistics is sometimes 
criticised because the choice of the prior distribution can be subjective 
and therefore the final model may not be as objective as a Frequentist 
analysis. However, for more complex models with many parameters, the 
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Fig. 1. The influence of different priors on the posterior of slope parameter for the simple regression given in Example 1. The left column shows different prior 
distributions for the slope parameter in Example 1a. The middle column shows the distribution of the slope parameter from the maximum likelihood. The right 
column shows the effect of different prior distributions on the posterior estimate of the slope parameter in Example 1a. The top row shows the effect of a Uniform 
prior on the model posterior. The second row shows the influence of a slightly informative Normal distribution prior with mean 0 and standard deviation 0.2 on the 
slope parameter in Example 1a. The bottom row shows the influence of a highly informative Normal distribution prior with mean 0 and standard deviation 0.1 on the 
slope parameter in Example 1a. 
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benefits of avoiding misspecification can outweigh the risk of reduced 
objectivity. 

Including prior knowledge requires a different estimating procedure 
from traditional statistical models. Bayesian model coefficients and 
posterior distributions are usually sampled from thousands of runs of a 
plausible model via a Markov Chain, and most available statistical 
software includes very efficient Markov Chains (Neal, 2011). The pro-
cess of Bayesian model fitting in this way is called the Bayesian work-
flow (Gabry et al., 2019), and rather than obtaining the most plausible 
model parameters for each model coefficient (these are called point 
estimates), we instead obtain thousands of model iterations which 
provide the estimated posterior distribution of model parameters 
(Fig. 1). From these iterations we can obtain standard deviations and 
95 % credible intervals (this term is explained later) for each model 
parameter. 

Here we first introduce readers to key concepts in Bayesian models 
via a discussion of the use of model likelihoods, priors, and posteriors, 
using a simple regression analysis predicting wheat yield (t ha− 1) from 
annual mean temperature (◦C) (Perryman and Scott, 2020) using data 
from the Rothamsted Broadbalk wheat experiment (1968–2016) 
(Glendining and Poulton, 2023). We then follow with more complex 
analysis examples, firstly showing how to fit a Bayesian varying inter-
cept model with factors such as wheat variety, and a multiple regression 
model where annual temperature in the Broadbalk example dataset is 
replaced by seasonal summaries of temperature (Addy, 2023). Mean 
annual and seasonal temperatures were used to predict Broadbalk’s 
yields as an example of using Bayesian single and multiple regression, as 
there is a known relationship between yield and temperature (Addy 
et al., 2020), but please note that the analysis has been simplified for 
providing constructive examples (we do not for example explore con-
cepts such as autoregression that may be relevant in a comprehensive 
analysis of these data - such as Macholdt et al. (2020)). We give a brief 
introduction and general overview of the methods involved in Bayesian 
model selection and comparison, such as shrinkage and model aver-
aging. A final example is given on how the Bayesian workflow deals with 
random effects structures using data from the Swedish long-term soil 
fertility experiments. This paper is intended as an introduction to the use 
of Bayesian statistics for long-term experiments. When applying these 
methods, considerations on the design of the experiments used should be 
considered in the application of these methods. All examples have 
accompanying R code in the Supplementary Materials with data held in 
their respective repository. 

2. Likelihood, priors, posteriors and credible interval 

When modelling a straight line for non-Bayesian methods, we have a 
linear model with intercept β0 and slope β1, 

yi = β0 + β1xi + εi  

Where yi and xi are the response and the explanatory variable for each 
observation i, and εi is the residual for each observation. The residual for 
each observation can be calculated as εi = yi − β0 − β1xi. Given the 
residuals are Normally distributed, y is proportional to a Normal dis-
tribution with mean estimates equal to β0 +β1xi and a common variance 
estimate σ2 across all observations. This can be written using mathe-
matical notation as 

Yi ∼ Normal
(
β0 + β1xi, σ2).

Since the residuals are proportional to a Normal distribution, we can 
obtain an estimate of how probable each observation of yi is given the 
estimates of the intercept (β0), slope (β1), and common variance (σ2). 
This can be represented in mathematical notation as p(yi|β0, β1, σ2), 
which could be read as how probable each observation is given the 
model parameters we have estimated. The likelihood over all datapoints 
is the product of all p(yi|β0, β1, σ2) over all observations, given as p(y|β0,

β1,σ2). To estimate the β0, β1, and σ2 parameters in a Frequentist way, 
we wish to maximise the p(y|β0, β1, σ2) function. This is described as 
Maximum Likelihood estimation, where we use convenient mathemat-
ical properties to estimate the standard error of the intercept and slope. 

Bayesian methods consider how prior information on β0, β1, and σ2 

can penalise the model likelihood through the introduction of Bayes’ 
rule. Rather than having the likelihood of all observations given model 
parameters p(y|β0, β1, σ2), we can obtain a distribution of model terms 
given all observations, 

p
(
β0, β1, σ2|y

)
= p

(
y|β0, β1, σ2)× p(β0) × p(β1) × p(σ2).

Where, p(β0), p(β1) and p(σ2) are distributions about our prior knowl-
edge of the intercept, slope, and common variance parameters, and p

(
β0,

β1, σ2|y
)

is given as the model posterior. Although Bayesian methods 
allow for the use of prior knowledge, there is potential for conflicting 
information from our prior and likelihood. The reason for this could be 
that either our data are flawed and therefore the likelihood is not 
representative of what we believe should happen, or our prior knowl-
edge is incorrect. It is generally good practice to define priors before 
looking at the data. 

Changing our prior knowledge penalises the model likelihood for 
each parameter. In Fig. 1 we can see the posterior distribution of the 
slope parameter narrowing the more confident we are with our prior. If 
we are confident in our prior knowledge, the choice of prior distribution 
will have more weight on the posterior. However, it is possible to use a 
uniform prior that assumes no prior knowledge. Here the model poste-
rior becomes similar to the model likelihood (Fig. 1), and this choice of 
prior is called a non-informative prior, and the model will produce a 
similar analysis to a Frequentist analysis using the same data and model 
terms. Other non-informative priors include the Jeffreys’ prior (Jeffreys, 
1961) which is a prior on model terms derived from the Maximum 
Likelihood estimate. In Bayesian inference we still would like to obtain a 
credible region for each model parameter, or more specifically, a con-
fidence region for estimated model terms. In Frequentist statistics this is 
known as a Confidence Interval. A Confidence Interval is defined as a 
critical region which will contain the parameter we are estimating. The 
Bayesian equivalent is the Credible Interval, defined as an interval 
posterior distribution containing our parameters of interest. The main 
difference here is that Confidence Intervals are estimated using a point 
estimate and an assumed distribution, whereas Credible Intervals of a 
posterior distribution are estimated through thousands of samples of a 
Markov Chain Monte Carlo (MCMC) procedure. We discuss MCMC 
sampling towards the end of the manuscript. 

Example 1a 
We want to model the relationship between annual mean tempera-

ture (◦C) and grain yield (t ha− 1) from the Broadbalk long-term exper-
iment at Rothamsted Research (Fig. 2) as a linear model. The model is 
yield = β0 + β1 × Annual Temperature, with β0 the intercept and β1 the 
slope parameter, the residuals of this yield model are assumed to be 
Normally distributed with constant variance. Here we use only a subset 
of yield data from the Broadbalk experiment, using data from a single 
treatment (Continuous Wheat section Section 1 and the 192 kg N ha− 1 

treatment) between 1968 and 2018 (Glendining and Poulton, 2023) to 
explore how annual mean temperature affects grain yields within this 
treatment. Note that Broadbalk is an unreplicated experiment (the 
design dates back to 1843), so there is only one yield value per treat-
ment. Varieties have changed over this period, so each variety contains a 
subset of years. There were six varieties sown over this period, but we 
will include the effect of these varieties in the next example and here 
focus only on the overall effect of temperature on mean grain yield (for 
the sake of a simple example, we do not include other potentially rele-
vant climate covariates). We observe how the choice of prior can in-
fluence the posterior distribution of the slope parameter in Fig. 1 and  
Table 1. In this example we use a Uniform(-1.5, 1.5) prior as a 
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non-Informative prior (similar to a Frequentist approach), a Normal 
distribution prior with a mean of 0 and a standard deviation of 0.2 (N(0, 
0.2)) as an informative prior, and a Normal distribution prior with a 
mean of 0 and a standard deviation of 0.1 (N(0, 0.1)) as a very infor-
mative prior. The more confident we are in our prior knowledge the 
more the likelihood function is regulated, and the resulting posterior 
distribution of the slope parameter is narrower (Fig. 1 & Table 1). In 
Fig. 2 we observe how the 95 % credible interval of the mean estimates 
from the straight-line relationship narrows the more confident we are in 
our prior. We discuss MCMC sampling towards the end of the 
manuscript. 

3. Factors 

The use of categorical variables (factors) does not change when using 
Bayesian regression, although, we do need to specify priors for each 
level of the factor. In Example 1b, an intercept and a prior must be 
specified for each variety’s intercept term. We discussed previously how 
the distribution of the model residuals follows a Normal distribution. For 
a model with multiple factors we still assume all the residuals follow a 
Normal distribution, but it is more efficient to present the model in 
matrix notation, with mean estimates equal Xβ, X is the model design 
matrix and β is a vector of model parameters. The model notation for the 
data y becomes Y ∼ Normal(Xβ, σ2). 

Example 1b 
From the Broadbalk data in Example 1a, there were six wheat vari-

eties used on Broadbalk from 1968 to 2018. In this example we only 
consider varying intercept models. Yield is modelled as a linear model 

with individual intercepts β0 for each variety and a common slope 
parameter β1. The residuals from the linear model are assumed to follow 
a Normal distribution with constant variance. We can see from Fig. 3 
that there are different intercept values being estimated for each variety 
of wheat sown on Broadbalk, with the Apollo variety being fitted as the 
reference factor level within the model as default. Where, in Fig. 3 the 
intercept term refers to the estimated Apollo intercept and the effects of 
other varieties are added to this term. A reference factor level is a 
standard procedure used in non-Bayesian regression. We can see the 
effect of annual mean temperature on grain yield in Fig. 4, with Cappelle 
estimated to have the lowest intercept value. As you can see we now 
have six variety parameters to estimate than the previous model in 
Example 1a. Models with lots of parameters can be difficult to find or 
think of useful priors to regulate the model. The good news is that in 
many statistical software packages they automatically choose priors to 
regulate your model for you. For this analysis we selected weakly- 
informative priors for each level of the factor which is a default prior 
specification from RStanarm (Goodrich et al., 2023). 
Weakly-informative priors provide moderate regulation of model pa-
rameters and prevent the domination of the prior within a model (Gel-
man et al., 2008). Remember, Bayesian modelling is all about regulating 
the model and caution should be given when selecting a prior distri-
bution that is too narrow, because this can lead to a prior becoming 
non-representative of the data, resulting in the final model being 
mis-specified. However, it is advised that weakly informative priors are 
more beneficial than fitting a non-informative or informative prior as 
this can help sample model parameters without priors dominating 
parameter estimation (Simpson et al., 2017). 

4. Multiple regression and comparison 

Performing multiple regression in a Bayesian workflow is similar to 
performing a Frequentist multiple regression, particularly when using a 
software package such as RStanarm that is designed to have similar 
syntax to common Frequentist regression software. However, there are 
some key differences. Firstly, it is often of interest to include predictors 
that are providing useful information when predicting our response y. In 
a non-Bayesian context, this is particularly important, because in Fre-
quentist statistics there is a finite number of degrees of freedom based on 
the total number of observations and each parameter we fit has a cost. 
Some redundant predictors in Frequentist model selection are removed 
using forwards or backwards selection via the AIC (Akaike, 1973) or BIC 
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Fig. 2. The influence of different priors on the fitted model posterior of the simple regression model given in Example 1a. The solid line is the mean estimate with 
95 % credible intervals. 

Table 1 
Estimated model coefficients over various priors on the slope parameter for the 
annual temperature grain yield model given in Example 1a.  

Prior setting Coefficient Mean Standard 
Deviation 

2.50% 
CI 

97.50% 
CI 

Uniform Intercept 7.41  2.33  2.95 11.94  
Slope -0.13  0.24  -0.60 0.33 

Normal(0, 
0.2) 

Intercept 7.43  1.46  4.67 10.32  

Slope -0.13  0.15  -0.43 0.15 
Normal(0, 

0.1) 
Intercept 7.39  0.93  5.56 9.20  

Slope -0.13  0.09  -0.31 0.05  
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(Raftery, 1995). There are other Frequentist methods of model selection 
such as statistical tests, but we only highlight two here. Methods to 
remove redundant variables from a Bayesian Multiple Regression model 

include the Posterior Inclusion Probability (PIP) for each model 
parameter of a full model (George and McCulloch, 1993) and, forward 
and backwards projection using a reference model (Pavone et al., 2023). 
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VarietyHereward

VarietyFlanders
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−2 −1 0 1

Fig. 3. The posterior estimates for the variety terms from Example 1b with 50 % (thick blue line) and 95 % (thin blue line) credible intervals. The (Intercept) term 
refers to the default Apollo variety intercept term. Variety Brimstone term is the added intercept term for the Brimstone variety, this term needs to be added to 
(Intercept). This is true for all Variety terms. 
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Fig. 4. The posterior estimates for the varying intercept model in Example 1b. Each Variety from Broadbalk was a different intercept but the same slope parameter. 
The solid lines are the mean estimates for each variety with 95 % credible intervals. 
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The use of PIPs, and forward and backwards projection are outside the 
scope of this manuscript (for more information see Hoeting et al., 1999). 

When comparing models implemented in a Bayesian workflow, to 
identify whether models containing different sets of variables have a 
better or worse predictive fit to the data, the leave-one-out Information 
Criterion (LOOIC) (Vehtari et al., 2017) is used to assess which model 
has the best posterior predictive fit over all iterations of the model. As 
we demonstrate in our next example, this method acts similarly to the 
AIC and BIC from Frequentist methods and allows for model comparison 
on the same response y. Other methods not explored in this manuscript 
include Bayesian Model Averaging (Hoeting et al., 1999) and Model 
Stacking (Yao et al., 2018). These methods involve averaging across a 
series of models based on their predictive fit rather than selecting one 
model with the best fit. See Gelman et al. (2020) for more examples on 
varying intercept and slope models, along with more on Bayesian mul-
tiple regression. 

One common criticism of Bayesian statistics is the subjectivity 
through the choice of priors, and we have already discussed weakly- 
informative priors. However, in a multiple regression analysis, one 
benefit of Bayesian model selection is the use of priors on multiple model 
parameters. These priors can help regulate or shrink model terms which 
may not help predict the response (model parameters which are around 
zero). The term shrinkage regulates model parameters whose co-
efficients are close to zero and shrinks them closer to zero. To obtain 
shrinkage estimates for model parameters in Bayesian regression we set 
the distribution of the prior for a model parameter to be Normal and 
around zero, the standard deviation or spread of this prior on model 
parameters is estimated, narrowing the plausible parameter space for 
model terms. The choice of prior on the standard deviation of the model 
term can be specified which will determine the overall effect of 
shrinkage (Carvalho et al., 2010). Shrinkage is similar to LASSO 
regression in a Frequentist context (Tibshirani, 1996), and more 
advanced Bayesian shrinkage methods include the use of the regulated 
Horseshoe prior (Piironen and Vehtari, 2017). This is where we see the 
benefits of Bayesian methods. LASSO regression (non-Bayesian) regu-
lates the model likelihood in a non-formal way, and so penalises the 
model likelihood via a mathematical function and has fixed penalisation 
to all model terms. In contrast by formalising model regulation through 
Bayes’ Rule, we can obtain more dynamical shrinkage properties, by 
estimating individual shrinkage for each model term. However, 
shrinkage is not appropriate in our example as we have too few model 
predictors and in this study, we only consider weakly-informative priors 
for our multiple regression model. 

Example 2a 
So far we have only included mean annual temperature as a predictor 

of grain yield, but what if we want to understand within year effects of 
temperature? In this example, we now model grain yield as a varying 
intercept model with variety as a factor, along with seasonal summaries 
of temperature (i.e. multiple slope parameters β1 for mean temperatures 
in winter, spring, summer and autumn) as continuous predictors. The 
Normality assumption for yield still holds in this example. We can see by 
comparing the LOOIC that the model including seasonal temperatures 
provided a better model fit than the model with annual temperature and 
varying intercept for variety model (Table 2). However, the standard 
error of both LOOIC estimates is high, which suggests the difference in 
predictive accuracy between models is small. The parameter estimates 
for each model parameter are given in Fig. 5. From all the seasonal 

variables mean temperature in spring had the strongest negative rela-
tionship with yield and suggested that warmer temperatures in the 
spring lead to a reduction in yield. 

5. Model diagnostics in a Bayesian workflow 

Frequentist and other non-Bayesian methods maximise the likeli-
hood function to obtain optimum estimates of model parameters. After 
the optimum is found, usually algebraic derivation of the standard error 
is used to obtain confidence intervals of model parameters. In contrast, 
Bayesian methods allow prior information to regulate the model likeli-
hood and influence the model parameters posterior distribution. The 
algorithm used to obtain model parameters is often a Markov Chain, or 
more specifically a MCMC. More advanced algorithms are used in 
RStanarm such as the Hamiltonian Markov Chain (HMC) (Neal, 2011). 
MCMC methods sample model parameters 1000 s of times over multiple 
chains after an initial burn-in period to obtain posterior distributions. 
Due to the fast computational sampling of modern computers, we can 
obtain 1000 s of samples or iterations relatively quickly. With more 
complicated models more samples and iterations are needed to obtain 
convergence. Convergence in the Markov Chain occurs when there is no 
trend in the samples, with samples distributed evenly and each chain is 
similar. The RStanarm package estimates 2000 samples over 4 runs as 
default (8000 estimates in total), but only takes the last 1000 samples 
from each run, this is because there is a default burn-in of 1000 samples 
each chain (Goodrich et al., 2023). In the Bayesian workflow we should 
see convergence in our MCMC iterations in order to assume we have 
adequate model estimates (Gabry et al., 2019). From these MCMC it-
erations after the burn-in period we can use the laws of large numbers 
and construct 95 % credible intervals based on the empirical distribu-
tion of our model terms. Once we have obtained 1000 s of posterior 
estimates for each parameter, we have large amounts of synthetic data to 
make inferences on our model. Synthetic data is data we have simulated 
from our model and posterior parameters given the data we have fitted, 
and if our model is adequate the posterior distribution of the synthetic 
data should follow a similar distribution to the observed data, this is 
called the posterior predictive distribution. There are more sophisticated 
posterior predictive checks you can do, but we only include the basic 
ones in this manuscript. 

Example 2b 
Consider the varying intercept model for seasonal summarised var-

iables in Example 2a. We now have 8000 runs of the model, from which 
we can simulate Y ∼ Normal(Xβ, σ2) over a random selection of our 
8000 iterations. We can use a smooth histogram of the posterior pre-
dictive distribution to check if it follows the distribution of the data 
(Fig. 6), or we can check if the model average across our synthetic data 
follows a straight-line relationship with our observed Broadbalk grain 
yield data (Fig. 6). The Markov Chain for the model terms estimated in 
Example 2a shows convergence over 4 chains of 1000 iterations (Fig. 7), 
so model terms are adequately estimated. 

6. Hierarchical models and random effects 

Hierarchical or multilevel models allow for the modelling of data 
measured at different levels taking into account the complex de-
pendency structures in the grouping units (Bürkner, 2017; Gelman and 
Pardoe, 2006). The use of hierarchical structure is very common in field 
experiments, for example, when the same experiment is conducted on 
multiple sites, or an experiment is conducted at the same site with 
samples measured repeatedly over time. Therefore, the effect of treat-
ments is nested within multiple levels of experimental units, either 
across sites or through time. This type of experiment is often analysed 
using linear or non-linear mixed-effect models. Mixed-effect models can 
include additional variance terms within the model while estimating 
model parameters for each level of the experiment. For example, in the 
same linear model as in Example 1a, yi = β0 +β1xi is estimated across 

Table 2 
Leave-One-Out Information Criterion (LOOIC) estimates for the Varying Inter-
cept models of annual weather given in Example 2 and seasonal weather given in 
Example 2a.  

Parameterised Model LOOIC  SE 

Annual Weather  164.3   14.3 
Seasonal Weather  163.4   12.1  
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three sites, where the experiment is replicated at three locations. We are 
now estimating three intercepts (β0) and three slopes (β0) across all sites. 
However, we are less interested in the effect of each β0 and β1 param-
eters at each site than the average effect across all sites and the vari-
ability associated with the average effect across all sites. Including a 
random term allows intercept (β0) and slope (β1) parameters to vary at 
each experimental level. Estimates of the variability of the parameters 
are characterized by a variance-covariance matrix. Variance estimates of 
β0 and β1 across three sites are given as σ2

β0 
and σ2

β1
, these statistics 

inform how uniform the linear model was across all three sites. In a 
Bayesian analysis, prior distributions can be assumed on variance terms 
σ2

β0 
and σ2

β1 
(Gelman, 2006). The covariance and correlation estimates 

between β0 and β1 informs us how similar these estimates are across 
three sites. For more sophisticated models, there can be more compli-
cated multi-level structures such as temporal correlations in repeated 
measurements, which can be estimated using different covariance 
structures. Widely used R packages such as lme4 (Bates et al., 2015) and 
nlme (Pinheiro and Bates, 2023) have been developed to fit Frequentist 

(Intercept)
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Fig. 5. The posterior estimates of seasonal temperature model coefficients from the varying intercept model given in Example 2a with 50 % (thick blue line) and 
95 % (thin blue line) credible intervals. 
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Fig. 6. The posterior predictive checks of the varying intercept seasonal temperature model in Example 2a. Left is the smooth histogram with 30 random samples of 
synthetic data sampled from the Markov Chain from the fitted model. The dark blue line is the smoothed histogram of the data in the example. Right is the scatter- 
average (mean) plot of the observed data on the y-axis and the average posterior estimates from the fitted model for each observation. 
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multilevel mixed-effect models. Despite the flexibilities of multilevel 
mixed-effect models, the conventional Frequentist approach is more 
likely to encounter convergence issues when the variance components of 
random effects are close to zero (on the boundary of their corresponding 
parameter space – we cannot have negative estimates of variance), 
resulting in dropping levels of random effects (Bates et al., 2014). A 
Bayesian approach is an alternative to fit complex multilevel 
mixed-effect models using priors on structural variance terms. 

A Bayesian approach typically defines a prior for the variance- 
covariance matrix of the random effects that incorporate prior knowl-
edge about parameters or derive probability statements for interested 
parameters (Gelman et al., 2013). The R package brms (Bürkner, 2017) 
applies extended formula syntax that is similar to lme4 (Bates et al., 

2014), allowing for complex mixed-effect models using Bayesian 
methods. In brms, a wide range of distributions and link functions are 
available, and users can use the default implementation of priors of 
model coefficients or define them explicitly. The most common prior 
distributions are Normal and Student’s t for fixed effect regression co-
efficients. Multilevel models are supported by setting up multiple 
grouping factors, which specify the parameters of random effects 
(variance components), including random intercepts, slopes and corre-
lations at group-level. The temporal or/and spatial autocorrelations can 
be modelled with available functions in brms, such as compound sym-
metry (COSY), autoregressive (AR), spatial conditional autoregressive 
(CAR), etc. A typical workflow of using brms includes defining the dis-
tribution of response variable (e.g. Normal, Poisson or Binomial), 
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Fig. 7. The four sampled Markov Chains for estimated parameters of the varying intercept seasonal weather model across four chains. Chains are sequentially 
overlaid (1, 2, 3, 4) for each sub-figure to illustrate good mixture of chains. 
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specifying prior distribution and model parameters, adjusting the sam-
pling behaviour of Stan through control argument, and analysing results 
including estimations from posterior samples. 

Example 3 
The Swedish long-term soil fertility trial in central Sweden was 

established in the 1960s to investigate crop rotation and fertilization 
effects on soil fertility and crop yield. The experiment is replicated at 
three sites in central Sweden with a split-split-block design. Two crop 
rotations representing farming systems with and without livestock 
(Rotation I and II) are randomized to two blocks (main plot factor) at 
each site, four levels of phosphorus and potassium fertilization (sub-plot 
factor) were nested under two types of crop rotation and randomized in 
columns of each block, and four levels of nitrogen fertilization (sub- 
subplot factor) were nested under each level of phosphorus and potas-
sium fertilization and randomized in columns of phosphorus and po-
tassium fertilization (Carlgren and Mattsson, 2001; Ivarsson and 
Bjarnason, 1988). Topsoil (0–20 cm) samples from two plots of the same 
treatment at each site were mixed and analysed as composite samples 
after each rotation cycle (every six years). Therefore, we treated Site as 

Block in setting up random effect levels. In this example, we analysed the 
crop rotation effect on total carbon content in the topsoil (%) using a 
multilevel regression model with brms package (Bürkner, 2017). The 
model has a linear term for year and crossed with rotation, and fertil-
ization treatments were not included in fixed effects here but used in 
setting up group-level effects (random effects) and temporal autocor-
relation (covariance structure) (Fig. 8). We set up the multilevel model 
structure in brms similarly to the structure in nlme, i.e. a Normal dis-
tribution for the response variable and compound symmetry for the 
covariance structure. In the compound symmetry cosy(time|group) we 
specified year as time and crossed Block and Sub-Block with the lowest 
level of fertilization treatments as autocorrelated subjects (Supplemen-
tary Material code Example 3). Standard deviation estimates of model 
terms at the Block and Sub-Block were estimated as 0.2231 (SE: 0.3544) 
and 0.0570 (SE: 0.0855) (Table 3), which suggests there was much 
higher variation in Total Carbon (%) across Block than there was within 
Sub-Block. There was also strong temporal autocorrelation across all 
years. Despite large variations across sites (first level of group effect), 
the negative regression slopes at the population level suggested soil 

Fig. 8. Fitted hierarchical model for the crop rotation effect at the population level and the group level (Block) in Example 3. Top row is the fitted model parameters 
of Rotation and Year. Bottom row is the sub-Block random effects for Rotation and Year. Figures at left sides are means ± standard deviation, and at right side are 
regression lines with 95 % prediction credible intervals. 

J.W.G. Addy et al.                                                                                                                                                                                                                              



European Journal of Agronomy 159 (2024) 127227

10

carbon content decreased in both crop rotations over time but at a 
slower rate in the rotation with livestock (Table 3). Fitted conditional 
effect (crop rotation) at the population and group levels were presented 
in Fig. 8. 

7. Summary 

This manuscript has been a short introduction to the Bayesian 
workflow using examples from long-term agricultural field experiments. 
We have presented some key ideas of the Bayesian workflow such as 
likelihoods, priors and posteriors, credible intervals, Markov Chain 
sampling, and posterior predictive checks. However, care should be 
taken when analysing data regardless of the statistical method used. 
Although we can include prior information in our model in a Bayesian 
workflow, the prior information used by the researcher should be 
appropriate under the correct circumstances. We have briefly touched 
on the benefits of Bayesian modelling, such as regulating models with 
many parameters and setting priors of variance terms in hierarchical 
models to aid in model convergence. Although we covered aspects of 
multiple regression, these are by no means the extent of Bayesian 
methods and we encourage readers who found this manuscript useful to 
explore further topics in further reading material (Gelman et al., 2013; 
McElreath, 2018). 
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