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Cross-biome microbial networks reveal
functional redundancy and suggest
genome reduction through functional
complementarity
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The structure of microbial communities arises from amultitude of factors, including the interactions of
microorganisms with each other and with the environment. In this work, we sought to disentangle
those drivers by performing a cross-study, cross-biomemeta-analysis ofmicrobial occurrence data in
more than 5000 samples, applying a novel network clustering algorithm aimed to capture conditional
taxa co-occurrences. We then examined the phylogenetic and functional composition of the resulting
clusters, and searched for global patterns of assembly both at the community level and in the
presence/absence of individual metabolic pathways.
Our analysis highlighted the prevalence of functional redundancy in microbial communities,
particularly between taxa that co-occur in more than one environment, pointing to a relationship
between functional redundancy and environmental adaptation. In spite of this, certain pathways were
observed in fewer taxa than expected by chance, suggesting the presence of auxotrophy, and
presumably cooperation among community members. This hypothetical cooperation may play a role
ingenome reduction, sinceweobservedanegative relationshipbetween the sizeof bacterial genomes
and the size of the community they belong to.
Overall, our results suggest the microbial community assembly is driven by universal principles that
operate consistently across different biomes and taxonomic groups.

Microorganisms are the second most abundant component of the global
biomass on Earth1, and the first one in terms of biodiversity2. In addition,
they are the only ones capable of performing key ecological functions,
including nitrogen fixation, methanogenesis, and all kinds of anaerobic
respirations. As such, they play a critical role in driving the essential
biogeochemical cycles that sustain life on our planet3. Microorganisms
interact among themselves and with the environment, giving rise to
emergent community-level properties4,5. These interactions are primary
driving forces in microbial ecology, and determine the fate of microbial
communities and, by extension, of their constituent microorganisms4.
Therefore, the study of individual microorganisms is often not enough to
predict how those very same microorganisms will behave in nature;

instead, they have to be considered in the context of the community
they live in.

Microbial communities are complex and dynamic entities, and their
structure arises from the interplay of four key ecological processes: selection,
diversification, dispersal and drift6,7. Among them, selection (i.e., the exis-
tence of fitness differences between individuals) is a primary force shaping
microbial community assembly4,7,8. Natural selection counteracts random
fluctuations and acts over short timescales, which makes it experimentally
tractable9–11. This has led to an increasing interest in synthetic microbial
ecology as a tool to generate and test hypotheses regarding community
assembly processes (reviewed in ref. 12).However, the simplicity inherent to
synthetic microbial communities, while facilitating their precise
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characterization, might also limit their usefulness as proxies of natural
microbial communities13,14.

A complementary approach is to study naturalmicrobial communities
and look for common assembly patterns, trying to unravel the bases of
microbial association15–19. It has been argued that each extant community
has a unique evolutionary history, which makes the search for ‘laws’ in
Ecology futile20. Still, there is evidence that microbial dynamics can be
generalized to a certain extent21,22, allowing to extract useful broad principles
from the study of multiple microbial communities. Such principles can be
experimentally tested, improving the understanding of natural commu-
nities, and ultimately allowing to design robust synthetic communities4,23.

In this work, we sought to identify general assembly principles by
performing a cross-study, cross-biome meta-analysis of microbial occur-
rence data inmore than 5,000 samples from ten different environments.We
used a novel algorithm to create ecological assemblages from pairwise
aggregations of microbial genera, which includes a statistical procedure to
evaluate the significance of multi-genus assemblages. The significance is
evaluated on the basis of a null model that is specific to each environmental
class, attempting to separate the influence of the environment from the
influence of biological interactions. This algorithm allowed the same taxa to
aggregate with different partners in different habitats, thus capturing the
complexity of interactions inherent to natural microbial communities.
Finally, we analyzed the metabolic potential of the genera present in our
ecological network in order to investigate the roles of redundancy and
functional complementarity in specific metabolic pathways for microbial
community assembly.

Results
Generation of a modular ecological network
Our taxa-assembly algorithm generates ecological networks by following
the steps summarized in Fig. 1. Briefly, we collected environmental 16S
rRNA gene sequences from the NCBI env nt database, assigned them a
sample identifier and, when possible, classified them into a defined envir-
onmental hierarchy24 (see methods). We then clustered 16S rRNA gene
sequences into OTUs at the 97% level, which we subsequently classified
phylogenetically24. For this study,we chose to classify ourOTUs at the genus
level. This provided a high taxonomic resolution while still allowing us to
reliably combine results fromdifferent studies,which inmany cases targeted
different regions of the 16S rRNA gene. Thus, we obtained a database that
records the presence/absence patterns ofmicrobial genera across thousands
of samples fromdifferent environments (Fig. 1a).Again, theuseof presence/
absence datawas a necessary compromise in order to reliably aggregate data
from studies that used very different methodologies. We demonstrated
before the usefulness of this approach for generating cross-biomemicrobial
association networks25.

For this study, we focused on ten different environments: freshwater,
marine water, marine sediments, hypersaline, oil, thermal, hypothermal/
polar, soils, host-associated andwater-treatment plants, which amounted to
a total of 13,362 samples and 1424 genera in our database.Afterfiltering (see
methods), we obtained a total of 5369 samples and 966 genera for creating
an agglomerative ecological network as follows. At the beginning of the
process, each node represents one genus, and from the presence/absence
profiles we compute all-against-all pairwise aggregation scores, which
represent significant co-occurrences between pairs of genera25 (Fig. 1b;
Supplementary Note 1). The computation of the scores considers as a null
model that co-occurrences occur by chance. To reduce the influence of the
environment, we develop a different null model for each specific environ-
mental subtype (see methods). We note that this does not fully eliminate
biases when calculating aggregation scores, as it does not account for study-
level biases (which would require the development of study-level null
models that would only be possible for studies involving at least dozens of
samples) or biases related to environmental differences that are too fine-
grained to be captured in the microDB environmental hierarchy. We have
chosen to use the term “inferred associations” throughout themanuscript to
reflect the fact that, while our aim is to capture true ecological associations

between taxa, our results are nonetheless contingent to this particular
combination of input data, null models, and inference algorithms.

We then iteratively cluster genera into larger environmental assem-
blages. At each step, we join the two nodes A and B with the highest
aggregation score (Fig. 1c). A novelty of our method is that the new node
A+ Bonly conserves the samples inwhich both nodes are present.We then
assign the remaining samples fromA and fromB to two new nodes A* and
B*. This strategy allows investigating the aggregation of each genus with
different partners in different environments, thus capturing putative con-
ditional ecological interactions. (Fig. 1c). Finally, we recalculate the aggre-
gation score of the nodes A+ B, A* and B* with respect to all the other
nodes considering the samples in which each of them is observed (Fig. 1d).
We iterate this process until all pairwise scores fall below a significance
threshold, obtaining a directed network that captures significant inferred
associations between increasingly large groups of genera (Fig. 1e). Impor-
tantly, our procedure ensures that the whole assemblage is statistically
significant.

Once the network is constructed, we use the PathoLogic algorithm26 to
predict the metabolic pathways present in the included genera and assem-
blages (Fig. 1f). In this way, we obtain a taxonomically and functionally
annotated agglomerative ecological network that aims to represent micro-
bial associations at different levels of complexity (Fig. 1g, Supplementary
Data 1). It is important to note that the functional annotations in our
network are inferred fromthoseof the genomesof the samegenera thatwere
present in the MetaCyc database27 and as such may not fully reflect the
genomic content of the environmental strains thatwere originally present in
our samples. To alleviate this, we have restricted our analyses to the core
genome of each genera (i.e. those metabolic pathways that all present in all
the available genomes of each genera), which we assume to be shared
between the reference strains included in MetaCyc and the environmental
strains. In Supplementary Note 2 we present a verification of these
assumptions, in which we calculate the core genome of the ecologically and
functionally versatile Pseudomonas genus using different numbers of input
genomes from different habitats. Our results indicate that genus-level core
genomes are reasonably similar regardless of whether they are calculated
using reference genomes or metagenome assembled genomes (MAGs)
coming from environmental strains, even when those genomes come from
different habitats.

The final network included a total of 514 genera and 5253 samples,
resulting in 1215 nodes and 1428 edges. 701 nodes corresponded to
assemblages of two or more genera, with the largest assemblage having 13
members (Fig. 2a). Due to our strict cutoffs for considering an association
significant, the number of genera in our assemblages is lower than the
number of genera present in the input samples. Nonetheless, these assem-
blages represent groups of genera that are significantly associated over large
numbers of samples after controlling for size and environmental biases, so
they are naturally good candidates for studying putative microbial
interactions.

The assemblages were distributed across the different environments,
roughly following the number of input samples per environment (Fig. 2b;
Supplementary Data 2). Notably, some assemblages were reconstructed in
more than one environment. For example, one third of the assemblages
found in marine sediments were also found in marine water, highlighting
the connectivity between both environments. Conversely, the host-
associated environment, while having the highest number of assemblages,
shared a small fraction of them with other environments (Fig. 2b).

Significant functional and phylogenetic redundancies in envir-
onmental microbial assemblages
Functional redundancy (i.e., the notion that multiple species can share
similar roles in ecosystem functioning) has been previously reported in
microbial communities, both for individual functions5,28–31 and full meta-
bolic reconstructions32. On the other hand, its generality has also been
challenged by several authors33–39. There are several issues that complicate
the quantification of functional redundancy in microbial communities. In
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Fig. 1 | Construction of an agglomerative ecological network. a Database
recording occurrences of genera across samples. b Calculation of aggregation scores
showing the propensity of pairs of genera to co-occur in the samples. c–e Novel
clustering algorithm that allows the detection of secondary interactions. f Functional

annotation of the resulting co-occurrence network. g Example of the co-occurrence
network generated in this work, showing a multi-environment ecological module
that contributes to three different final assemblages.
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microorganisms, function is often associated with phylogeny38–40. The
presence of phylogenetically close taxa in a given community might thus
increase the observed functional redundancy. Additionally, taxa have
themselves different environmental preferences (e.g., host-associated vs free
living, saline vs non-saline, etc41,42.), which will aggravate this issue. Fur-
thermore, some environments and lifestyles will favor organisms of certain
genome sizes43–46. Since the prevalence of certain functional categories is also
linked with genome size47, selection based on genome size may indirectly
enrich those functional categories, which would thus appear to be func-
tionally redundant. Finally, gaps in the reference databases used for func-
tional annotation can create an artefactual impression of functional
redundancy as they will favor the annotation of conserved housekeeping
genes (which are more likely to have close homologs in the reference
database, but also to be shared between different organisms and commu-
nities) over specific genes, making the predicted functional profiles of dif-
ferent communities appear closer than they really are48. In this work, we
tried to decouple function from phylogeny, the environment, and genome
size, in order to provide a less biased characterization of phylogenetic and
functional redundancy in environmental microbial assemblages.

We first compared the average pairwise phylogenetic and functional
similarities of the microbial assemblages obtained by our approach (envir-
onmental assemblages) to those of random assemblages of genera (Fig. 3a, b
Random). These random assemblages were functionally annotated using a
similar approach as the environmental assemblages, so comparing both can
offer a view of functional redundancy that is robust against annotation
biases. The functional and phylogenetic distances in the environmental
assemblages (blue and green boxplots in Fig. 3a, b) were significantly lower
than expected by chance (Fig. 3a, b, Random vs Real, single environment),
pointing to the existence of phylogenetic and functional redundancy. Fur-
thermore, the size 2 assemblages that were detected in more than one
environment (green boxplots) had a higher functional and phylogenetic
redundancy than single-environment ones (blue boxplots), suggesting a
relationship between functional redundancy and the ability to cope with
environmental change. This result was however not significant for size 3
assemblages, perhaps due to the fact that only five size 3 assemblages were
found in more than one environment.

We then aimed to control for possible confounding factors by creating
random assemblages in which the genera came from the same environ-
mental subtype, which is the most detailed environmental classification in
the microDB database (differentiating for example between coastal, open
and deepmarine samples, see ref. 24 for details). After doing this, we further
controlled the random assemblages so that their average phylogenetic
similarities were the same as for the environmental assemblages (Fig. 3a, b,

Random, same environment, same phylogenetic distance). These
phylogenetically-equivalent random assemblages had a higher functional
redundancy (i.e., lower average distance) than completely random assem-
blages, whichwas expected since phylogenetically related organisms tend to
be functionally similar40. Notably, while size 2 environmental assemblages
had a significantly higher functional redundancy than these phylogeneti-
cally equivalent random assemblages, the effect was non-significant for
higher assemblages sizes, highlighting once again the inextricable relation-
ship between taxonomy and function.

The average number of pathways per genus (used here as a proxy for
genome size) was significantly smaller in the environmental assemblages
than in the random ones, even after controlling for the environment and
phylogenetic relatedness (Fig. 3c). This effect wasmore noticeable for larger
assemblages, which would be compatible with a “Black Queen”-like model
of genome streamlining through public good sharing in complex
communities49 (see next section).

In order to control for the effect of average genome size, we also created
random assemblages in which the average number of pathways per genus
was similar to that of the environmental assemblages (Fig. 3a, b, Random,
same environment, same number of pathways). Functional and phyloge-
netic redundancywas significantly higher in the environmental assemblages
than in these genome-size-equivalent random assemblages, showcasing
once again their apparent prevalence in environmental communities.

Relationship between pathway redundancy, pathway specificity
and assemblage size in environmental microbial assemblages
The results presented in the previous section obeyed to genome-wide
selection patterns, but we were also interested in the selective pressures
affecting individual metabolic pathways. Selection may result in pathway
specificity (i.e., a pathway appearing only in onemember of an assemblage),
due to competitive exclusion effects (only the best competitor for a contested
resource involving that pathway is present in the assemblage) or cooperative
interactions (a complex route beingdivided amongdifferent organisms, or a
common good being supplied by one member of the assemblage49). Con-
versely, a metabolic pathway will have low specificity (i.e., it will be
redundant) if it is required by most or all members of a microbial assem-
blage, aswouldhappen for housekeeping pathways, or for pathways selected
by a common abiotic constraint in a given environment (e.g., anoxia).

In order to investigate whether individual metabolic pathways are
more redundant or specific in environmental assemblages than expected by
chance, we first created a consensus network by selecting the terminal
assemblages (i.e. those with no outgoing edges to larger assemblages, thus
representing the final product of our clustering algorithm) with high

Fig. 2 | Summary of the agglomerative ecological network. a Number of assem-
blages of different sizes, and their environmental distribution. Pie chart colors
indicate environments as shown in (b), multi-environment assemblages are indi-
cated in gray. b Contribution of each environment to the network, and assemblages
shared by different environments. Nodes are environments, the number of

assemblages (size 2 or more) per environment is indicated inside the node. Link
width and color show the assemblages that are shared between pairs of environments
(as a percentage of the assemblages in the smallest environment of the pair, min
1.41%, max 29.41%). See Supplementary Data 2 for details.
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support (meaning that the same assemblage was consistently found after
100 independent runs of our algorithm).We then computed the number of
times that each metabolic pathway appeared on each of them, and com-
pared these results to those obtained on 1000 control assemblages with the
same number of taxa, randomly assembled from taxa that belonged to the
same environmental subtype as the real assemblage andhad similar pairwise
phylogenetic distances (see Materials and Methods). Pathways whose pre-
valence in a real assemblage wasmore extreme (either higher or lower) than
on 95% of the random control assemblages were subjected to further
scrutiny.

We classified eachmetabolic pathway according to their presence in the
membersof themicrobial assemblage inoneof the three followingclasses. (1)
Missing, if thepathway is absent fromallmembers of the real assemblage, but
present in the random ones, suggesting that it is not needed (or actually
selected against) in the habitat in which the assemblage lives. (2) Specific, if it
is present in at least one member of the real assemblage, but is less prevalent
in the real assemblage than in the randomones. The biochemical products of
specific pathways are candidate for being shared in the assemblage through
cross-feeding interactions. (3) Redundant, if the pathway is present in at least
two members of the real assemblage, and is more prevalent in the real
assemblage than in the randomones, as expected of a capability that is useful
in the given habitat and is seldom shared through cross-feeding.

The heatmap in Fig. 4a shows the distribution of redundant, specific
and missing pathways in the microbial assemblages detected by our
approach. A hierarchical clustering of the assemblages based on the content
of redundant, specific and missing pathways showed no clear relationship
with their source environment (Fig. 4a, color legend at the y-axis). This
suggests that we successfully controlled for biases coming from the source
environment in our analysis, and that our results obey to other, more uni-
versal causes.

The number of pathways of the three types belonging to different
MetaCyc categories is shown in Fig. 4b. For most categories redundant
pathways prevail, in particular for those related to energy metabolism,
such as respiration and the degradation of carbohydrates, carboxylates,

nucleotides or secondary metabolites. Pathways of inorganic nutrient
metabolism, and the biosynthesis of carbohydrates, lipids, amines/
amides and secondary metabolites also tend to be redundant. We
hypothesize that these pathways are redundant because they favor the use
of the resources available in the given habitat, also consistent with the fact
that the second most frequent type of these categories is “Missing”. In
contrast, the biosynthetic pathways for amino acids, cofactors and
nucleotides/nucleosides tend to be missing or specific. These results are
consistent with our interpretation of specific and redundant pathways
presented above.

An interesting result, presented in Fig. 3c, is that environmental
assemblages have on average smaller genomes than expected by chance,
particularly if they contain many members. To further explore this obser-
vation, we show in Fig. 4c the average pathways per genome (proxy of
genome size) for both small (< 5 members) and large (5+ members)
assemblages, taking into consideration whether those pathways were clas-
sified as redundant, specific or missing in those assemblages (results using
cutoffs of 4 and 6 members were qualitatively similar and are shown in
Supplementary Fig. 1).

Small and large assemblages had a comparable number of redundant
pathways after controlling for assemblage size (Fig. 4c, red). This is con-
sistent with our previous interpretation of redundancy being caused by
habitat filtering: the pathways involved in utilizing the resources (or over-
coming the challenges) present in a given habitat will be enriched in its
resident microorganisms, and this effect depends little on how many dif-
ferent microorganisms are present in those samples (i.e. whether the
assemblage is small or large).

In contrast, large assemblages presented more specific pathways
than small assemblages (Wilcoxon test, p < 0.001). A possible inter-
pretation is that large communities offer a larger variety of “public goods”
that are shared by the members of the community, and that these con-
ditions allow reduced metabolic cost and genomic streamlining, which
act as a selective force favoring the formation and maintenance of these
large communities. This interpretation is consistent with recent

Fig. 3 | Phylogenetic and functional redundancy in environmental versus ran-
dom assemblages ofmicrobial taxa. Boxplots represent the distributions of average
(a) pairwise phylogenetic distances, (b) pairwise functional distances and (c)
number of pathways in the members of increasingly large assemblages (x-axis).
Boxplot colour shows assemblage type: 1) fully random assemblages (dark grey), 2)
environmentally-equivalent random assemblages (medium gray), in which taxa
come from the same environment, 3) environmentally/phylogenetically equivalent
assemblages, with taxa from the same environment and average phylogenetic dis-
tances similar to those found in environmental assemblages (grey), 4) envir-
onmentally/genome size equivalent random assemblages, with taxa from the same
environment and with the same average number of pathways as the environmental

assemblages (light grey), 5) environmental assemblages appearing in only one
environment (blue), or 6) environmental assemblages appearing in more than one
environment (green). Significant differences between different types or assemblages
were evaluated with the Mann-Whitney U test and multiple testing correction was
performedwith the Benjamini-Hochbergmethod.Horizontal red lines represent the
average pairwise phylogenetic or functional distance of all the genera included in our
network. Boxplots contain the median (horizontal black line), with the lower and
upper parts of the boxes indicating the 25th and 75th percentiles of the underlying
distributions and whiskers extending 1.5 times the interquartile range from the top
and bottom of the boxes.
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simulation studies50,51 and with our observations that amino acid bio-
synthesis is the biochemical class whose pathways are most frequently
specific (see Fig. 4b) and that the fraction of assemblages in which the
biosynthesis of a given amino acid is specific is significantly correlated
with its biochemical cost (Fig. 5; next section).

Finally, missing pathways were also more numerous in large com-
munities, albeit the increase was much weaker (Wilcoxon test, p = 0.017).
According to our initial hypothesis, missing pathways would also obey to
abiotic filtering (in this case being pathways that are not needed or
are detrimental in a given habitat). Under this interpretation, we would
expect them to be equally represented in small and large assemblages. A
possible explanation for the weak enrichment in the large assemblages may
be that missing pathways are pathways that are absent from the real
assemblage but occur by chance in the randomly assembled communities,
and their number tend to be higher in random assemblages with more
members, for purely statistical reasons. Although a similar effect may also

hold for specific pathways, it is expected to be weaker than for missing
pathways, supporting our biological interpretation of the difference between
large and small assemblages for specific pathways.

Patterns of amino acid auxotrophy in environmental microbial
assemblages
As discussed above, environmental microbial assemblages are more func-
tionally redundant thanexpectedbychance (Fig. 2b). In spite of this, it is also
true that certain pathways tend to appear in fewermembers, particularly for
larger (> = 5members) assemblages,whichwehypothesize is due togenome
streamlining facilitated by the sharing of public goods. Microorganisms are
well known to engage in complex interactions22, among which auxotrophy
and cross-feeding are perhaps the most studied52. We therefore focused on
the redundancy/specificity profiles of pathways related to amino acid bio-
synthesis, as they are the one of the metabolites most usually involved in
such processes53.

Fig. 4 | Signs of selection in individual metabolic pathways. aMetaCyc pathways
redundant, specific and missing in the consensus network. Only pathways that were
redundant, specific or missing in 10 or more assemblages are shown. The color
legend in the y-axis dendrogram shows the source environment for each assemblage,
following the color code shown in Fig. 2. Multi-environment communities are
colored in light green.bNumber of times eachMetaCyc class was redundant, specific
andmissing in the consensus network. Only the 15MetaCyc classes with the highest
deviation from the random communities are shown. c Average pathways per

genome in small (< 5 members) and large (5+ members) assemblages. First panel
(grey) shows the total differences between the small and the large assemblages, the
other three (red, green, blue) show the differences considering only redundant,
specific, and missing pathways respectively. Boxplots contain the median (hor-
izontal black line), with the lower and upper parts of the boxes indicating the 25th
and 75th percentiles of the underlying distributions and whiskers extending 1.5
times the interquartile range from the top and bottom of the boxes.
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In order for auxotrophy to be a viable strategy, the potential benefits
must be higher than the drawbacks derived from the resulting loss of
autonomy54. Accordingly, the large (> = 5 members) environmental
assemblages captured in our study contained more auxotrophs for expen-
sive amino acids than for cheap ones, with the exception of tryptophan
(Fig. 5, p = 0.044 for all amino acids, p < 0.001 after removing tryptophan).
The comparatively lower prevalence of tryptophan auxotrophs can be
explained due to its tight regulation: not only is the use of this expensive
amino acid minimized across the proteome55, but it is also seldom leaked
into the environment56,57. The difficulty of finding free tryptophan in nature
might thus partly negate the potential benefits of auxotrophy. On the other
hand, since tryptophan is only required in small amounts, these benefits will
be lower than otherwise suggested by its per-molecule biosynthetic cost.

These observations are consistent with those of 58, which similarly
reported a larger prevalence of auxotrophy and cross-feeding for expensive
amino acids. We note that this does not preclude the exchange of cheap
amino acids as described in ref. 59. However, this exchangemight not result
in the emergence of auxotrophy, as the low cost of the exchangedmetabolite
might not be enough to offset the penalties associated with autonomy loss.

Discussion
We presented a cross-study, cross-biome meta-analysis of microbial
occurrence data in more than 5,000 samples from ten different environ-
ments, using a novel network generation algorithm aimed at capturing the
conditional co-occurrence relationships that commonly appear in envir-
onmental microbial communities. Due to the limitations inherent to our
dataset, we have purposefully restricted our analyses to relatively coarse
taxonomic and functional annotations. The use of genome-resolved
metagenomics on libraries generated using standardized protocols, while
not exempt of biases, is a promising avenue to increase the resolution of
these studies, and reveal yet unknown ecological patterns. Nonetheless, in
this study we have found strong qualitative trends in microbial community
assembly that appear to be conserved across different communities and
biomes.

Our top-down approach complements the work already developed in
synthetic communities57–59, since it builds upon data from real environ-
mental communities, and summarizes complex dynamics that may be
difficult to replicate in experimental settings. For example, the establishment
of cross-feeding interactions is expected to be subject to cost-to-benefit
balance. However, the cost of the same metabolite is often context-
dependent and can vary widely across microbial species and
environments60. Microbial communities can also have different degrees of
spatial structuring, which affects the range of beneficial interactions that can
be established61. Microbial diversity is another key factor that influences

community assembly, due to its effect on stability. A diverse communitywill
have different species that perform the same function, and this functional
redundancy will make such communities more resistant to perturbations62.
Additionally, the increased number of potential partners facilitates the
establishment of weak interactions63, which in turn allow for the develop-
ment of mutualism without compromising community stability64,65.

In spite of the wide range of ecosystems analyzed in this study, wewere
able to detect consistent patterns of functional redundancy and auxotrophy,
hinting at the existence of conserved, biome-agnostic principles governing
the assembly of microbial communities. We found that functional redun-
dancy is ubiquitous in environmental microbial assemblages, and hypo-
thesize that it is driven by environmental selection for some biochemical
processes.We also discovered that the number of biochemical pathways per
genome (which is correlatedwith genome size) is negatively correlated with
the size of the microbial assemblages. This observation hints at interactions
between members of the same assemblage, and in particular at “labor spe-
cialization”, i.e. the possibility that some leaky biochemical functions pos-
sessed by somemembers of the assemblage are exploited by othermembers,
allowing them to reduce their biochemical investment and their genome
size. This labor specialization would generate a potential selective force
behind the maintenance of large communities, as suggested by recent
theoretical50,51 and observational66–68 studies. In agreement with this inter-
pretation, our results suggest that, in spite of the prevalence of functional
redundancy, auxotrophy commonly occurs in environmental microbial
communities, particularly for costly compounds.

Overall, our results show that redundancy and auxotrophy are not
mutually exclusive, but rather can coexist in microbial communities from
different origins. Combining a background of functional redundancy with
cooperation in the biosynthesis of key nutrients might thus be a useful
design principle for engineering more robust microbial communities in the
future.

Materials And Methods
Description of the data set
We obtained the data from the microDB database (formerly envDB24)
following the procedure in ref. 41. The database comprises more than
20,000 environmental samples and their associated 16S rRNA gene
sequences, with each sample classified at three levels: environmental
supertype (e.g. aquatic), environmental type (e.g. freshwater) and
environmental sybtype (e.g. river), thus informing of the presence or
absence of taxa across a wide range of ecosystems. The genus level was
chosen as the taxonomic working unit because it provided a good balance
between the taxonomic resolution, the ability to accurately classify partial
fragments of the 16S rRNA gene coming from different regions, and the

Fig. 5 | Average fraction of auxotrophs in large (>
= 5 members) assemblages vs biosynthetic cost of
amino acid biosynthesis pathways. Blue line: linear
regression model of specificity vs cost for all amino
acids except for tryptophan (R2 = 0.55, p < 0.001).
Grey area: 95% confidence interval for the linear
models. Red dashed line: linear regression model of
specificity vs cost for all amino acids including
tryptophan (R2 = 0.16, p = 0.044). Amino acid bio-
synthesis costs were obtained from55.
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sparsity of the observations. In this study, we only considered samples
coming from the following environments (as defined in the microDB
classification): freshwater, marine water, marine sediments, hypersaline,
oil, thermal, hypothermal/polar, soils, host-associated and water-
treatment plants. In order to more reliably aggregate results from stu-
dies that used very different methodologies, data were binarized into a
matrix that recorded the presence/absence of genera across samples.
Samples with less than five genera and genera present in less than five
samples were excluded from further analysis. This left a total of 966
genera distributed across 5369 samples from 10 environments.

Detection of significant inferred associations between pairs
of taxa
For a given pair of taxa i and j that co-occurr in N out of M samples, we
define its aggregation score Sij, which represents their propensity to
appear together in the same samples, as the negative logarithm of the
conditional probability of i and j co-occurring in more than N out of M
samples. The original implementation of the aggregation scores can be
found in25, the implementation used in this work is detailed in Supple-
mentary Note 1. Briefly, we used the null model from69 that estimates the
probability that a given taxon is observed in a given sample under the
assumption of no interaction between taxa. We developed a different
null model for each environmental subtype (the finest-grained envir-
onmental classification available in microDB). By doing this, our null
models attempt to control for environment-specific biases. After infer-
ring the parameters of the null models, we used them to generate 1000
random presence/absence matrices for each of the ten studied envir-
onments, with the same row and column totals as the real matrix. These
random matrices allow to assess the influence of cosmopolitanism (i.e.
the number of samples in which taxa were present) into the aggregation
scores. To obtain the aggregation scores, we calculated he probability
that two taxa co-occur in the number of samples observed following the
algorithm in Supplementary Note 1. Aggregation scores were then
transformed to Z-scores related to the mean and standard deviation of
the null aggregation scores of pairs of taxawith similar cosmopolitanism.
Finally, we derived a Z-score cutoff from the distribution of null Z-scores
such that the False Positive Rate (i.e., the rate of significant aggregations
in the nullmodel) was not larger than 0.0001. Pairs of taxa with a Z-score
higher than the cutoff were deemed significantly associated in our
samples.

Network generation
We generated an ecological network representing significant inferred
associations between groups of taxa across multiple environments through
the following steps:
1. For each of the ten environments included in this study:
11. Compute aggregation Z-scores between pairs of taxa i, j in samples

a from the binary presence/absence matrix Xia and the probability
matrix πia as described in Supplementary Note 1.

12. Create 100 independent networks (in order to minimize path
dependency during the clustering process) applying the following
clustering procedure. We will refer generically to “nodes” for both
individual taxa (e.g. elements at the beginning of the algorithm) and
assemblages (taxa clustered together):

121. While there are significantly associated pairs of nodes appearing
together in more than 5 samples:

1211. Select one significantly associated pair i,j at random, weighted by
its aggregation Z-score so that pairs with higher aggregation
scores are more likely to be selected.

1212. Create a new node k that represents the aggregation of the
selected pair of nodes i,j in the samples in which they appear
together, with Xka ¼ Xia � Xja and πka ¼ πia � πja.

1213. Create the links i→ k and j→ k.
1214. Replace the values for i and j in the presence/absencematrix and

in the probability matrix, so that they represent the presence of i

and j in the samples in which they do not appear together, with
Xi0a ¼ Xia � ð1� XjaÞ, πi0a ¼ πia � ð1� πjaÞ, Xj0a ¼ Xja � ð1�
XiaÞ and πj0a ¼ πja � ð1� πiaÞ.

1215. Recalculate the aggregation Z-scores from the new X and π
matrices.

2. Combine the 1000 independent networks (100 networks from each of
the 10 environments) into a single network as follows:.
21. The combined network contains all the nodes present in the

individual networks. Nodes containing the same taxa in the indi-
vidual networks are collapsed into a single node in the combined
network.

22. All incoming andoutgoing edges present in the individual networks
are added to the collapsed nodes in the combined network.

23. For each node and edge, we define its support value as the number
of individual networks in which that node or edge was observed.
Nodes andedgeswith a support value smaller than10 are discarded.

24. Nodes are annotated based on the source environment of the
individual networks in which they were found.

Environmental and bibliographic annotation of assemblages
For each sample, the microDB database contains its isolation source, as
originally found in the NCBI GenBank database, as well as the Pubmed ID
(PMID) of any published work related to it.We annotated each assemblage
representing a significant aggregation of two or more genera with the iso-
lation sources and related PMIDs of the samples in which the genera
appeared together.

Functional annotation of assemblages and intra-assemblage
functional redundancy
We used the MetaCyc database version 1927 to download the predicted
reactomes for all the sequenced genomes from the genera included in our
network (Supplementary Data 3). For each genome, we predicted its
metabolic pathways from its reactome using an in-house implementation
of the PathoLogic algorithm as described in26. As a deviation from the
original algorithm, we did not add a more lenient prediction rule for
energy metabolism pathways, as we found out that doing so would result
in false positive predictions (e.g. sulfate respiration would be predicted
for Escherichia). The fraction of genomes from each genus that contain
each pathway is reported in Supplementary Data 4.We considered that a
pathway is present in a genus if it is predicted in all of the complete
genomes from that genus (i.e. the pathway belongs to the core genome of
the genus). In Supplementary Note 2, we show how genus-level core
genomes are reasonably similar regardless of whether they are calculated
using reference genomes or genomes from environmental strains, and
that as such our functional inference approach provides a good
approximation to the core core genomes of the environmental strains
that were originally present in our samples. We then defined the path-
ways present in an assemblage {R}a as the set union of the pathways
present in its constituent genera. We also defined the average pairwise
functional distance of an assemblage as the average of the of the all-
against-all Jaccard dissimilarities (1 – the Jaccard Index70) between the
pathway vectors of its constituent genera.

Phylogenetic distance between genera and intra-assemblage
phylogenetic distances
We used 16S rRNA gene sequences from the Greengenes database71 to
obtain estimates of the phylogenetic distances between genera. First, we
selected a representative full-length 16S rRNA gene sequence for each
prokaryotic species in the database, usually the type strain. Then, we cal-
culated the distance between the aligned sequences as the number of sub-
stitutions per site using RaxML with a GTRGAMMA model72. We
calculated distances between genera as themedian of the distances between
the species belonging to those genera. We then calculated the average
pairwise phylogenetic distance between the constituent genera of each
assemblage.
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Detection of significant functional and phylogenetic redundan-
cies at different assemblage sizes
For each assemblage size, ranging from 2 to 12 genera (the largest assem-
blage present in our graph for which all genera could be annotated) we
compared the average functional and phylogenetic distance distributions of
the assemblages present in our network to those of random assemblages of
the same genera. Assemblages in which one or more genera could not be
functionally annotated or lacked phylogenetic distance estimations were
ignored for this and subsequent computations, leaving a total of 429 fully
annotated nodes. Multi-environment assemblages (i.e. assemblages of
genera that were considered significant in more than one environment
during our clustering process) were treated separately from single-
environment ones. For each real assemblage, we generated four different
kinds of random assemblages:
a. 1000 random assemblages with the same number of genera as the real

assemblage.
b. 100 environmentally-equivalent random assemblages with the same

number of genera as the real assemblage, such that their genera came
from the same environmental subtype (i.e. the finest environmental
classification available in the microDB database, see ref. 24).

c. 100 environmentally/phylogenetically-equivalent random assem-
blageswith the samenumber of genera as the real assemblage, such that
their genera came from the same environmental subtype and the
average pairwise phylogenetic distances in the random assemblages
differed by 0.05 substitutions per position or less from the average
pairwise phylogenetic distance of the original assemblage. This was
done in order to assess whether functional redundancy could
be explained by phylogenetic similarity and source environment alone.

d. 100 environmentally/genome size-equivalent random assemblages
with the same number of genera as the real assemblage, such that their
genera came from the same environmental subtype and the average
number of pathways per genus differed by 20%of less from the average
number of pathways in the original assemblage.

We assessed significant differences between different types or assem-
blages with the Mann-Whitney U test. For each metric (average intra-
assemblage functional distance, average intra-assemblage phylogenetic
distance and average number of pathways in the assemblagemembers) and
assemblage size, the resulting p-values were corrected for multiple testing
using the Benjamini-Hochberg method73.

Detection of redundant and specific pathways in the assem-
blages of our network
The procedure described above provided uswith a per-assembly estimate
of functional redundancy, but we were also interested in assessing
functional redundancy on a per-pathway basis. For this, wefirst selected a
subset of the network connected by highly supported (support > 70)
edges.We then selected the terminal assemblages with no outgoing edges
to larger assemblages, which represent the sink nodes of our clustering
algorithm. For each of these assemblages, we then generated 1,000
phylogenetically and environmentally equivalent random assemblages
(see previous section). In order to obtain a higher number of valid ran-
dom assemblages, we increased the maximum difference in phylogenetic
distances from 0.01 to 0.1 substitutions per position. Then, for each
metabolic pathway, we compared its prevalence in the real assemblage
with its prevalence in the random assemblages and classified it into one
three categories:
1. Redundant, if it appeared in at least two members of the real assem-

blage, and its prevalence was higher than its prevalence in 95% of the
random assemblages.

2. Specific, if appeared in the real assemblage, but its prevalencewas lower
than its prevalence in 95% of the random assemblages.

3. Missing, if it was missing from the real assemblage, but present in 95%
of the random assemblages.

Finally, for each metabolic pathway, we computed the fraction of
auxotrophs in a given assembly as 1-P/S where P is its prevalence in the
assemblage, and S is the size of the assemblage.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data used in this work are publicly available at https://github.com/
fpusan/cross-biome-microbial-networks with https://doi.org/10.5281/
zenodo.12770646. A SQL dump of the database used in this work can be
found at https://github.com/fpusan/cross-biome-microbial-networks/tree/
main/00-algorithm.

Code availability
The code used in this work is publicly available at https://github.com/
fpusan/cross-biome-microbial-networks with https://doi.org/10.5281/
zenodo.12770646.

Received: 26 June 2023; Accepted: 23 July 2024;

References
1. Bar-On,Y.M., Phillips, R. &Milo, R. Thebiomassdistribution onEarth.

Proc. Natl Acad. Sci. 115, 6506–6511 (2018).
2. Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial

diversity. Proc. Natl Acad. Sci. 113, 5970–5975 (2016).
3. Falkowski, P.G., Fenchel, T. &Delong,E. F. Themicrobial engines that

drive Earth’s biogeochemical cycles.Science 320, 1034–1039 (2008).
4. Konopka, A., Lindemann, S. & Fredrickson, J. Dynamics in microbial

communities: unravelingmechanisms to identify principles. ISMEJ.9,
1488–1495 (2015).

5. Louca, S. et al. Function and functional redundancy in microbial
systems. Nat. Ecol. Evol. 2, 936–943 (2018).

6. Vellend, M. Conceptual Synthesis in Community Ecology. Q. Rev.
Biol. 85, 183–206 (2010).

7. Nemergut, D. R. et al. Patterns and Processes of Microbial
Community Assembly.Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

8. Louca, S. et al. High taxonomic variability despite stable functional
structure across microbial communities. Nat. Ecol. Evol. 1, 1–12
(2016).

9. Chuang, J. S., Rivoire, O. & Leibler, S. Simpson’s Paradox in a
Synthetic Microbial System. Science 323, 272–275 (2009).

10. Ribeck, N. & Lenski, R. E. Modeling and quantifying frequency-
dependent fitness in microbial populations with cross-feeding
interactions. Evolution 69, 1313–1320 (2015).

11. Yu, Z., Beck, D. A. C. & Chistoserdova, L. Natural Selection in
Synthetic Communities Highlights the Roles of Methylococcaceae
and Methylophilaceae and Suggests Differential Roles for Alternative
Methanol Dehydrogenases in Methane Consumption. Front.
Microbiol. 8, 2392 (2017).

12. Dolinšek, J., Goldschmidt, F. & Johnson, D. R. Synthetic microbial
ecology and the dynamic interplay between microbial genotypes.
FEMS Microbiol. Rev. 40, 961–979 (2016).

13. Yu, Z., Krause, S.M.B., Beck,D. A. C. &Chistoserdova, L. ASynthetic
Ecology Perspective: HowWell DoesBehavior ofModel Organisms in
the Laboratory Predict Microbial Activities in Natural Habitats? Front.
Microbiol. 7, 946 (2016).

14. Ehsani, E. et al. Initial evenness determines diversity and cell density
dynamics in synthetic microbial ecosystems. Sci. Rep. 8, 340 (2018).

15. Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X.
Microbial interactions lead to rapidmicro-scale successionsonmodel
marine particles. Nat. Commun. 7, 11965 (2016).

https://doi.org/10.1038/s42003-024-06616-5 Article

Communications Biology |          (2024) 7:1046 9

https://github.com/fpusan/cross-biome-microbial-networks
https://github.com/fpusan/cross-biome-microbial-networks
https://doi.org/10.5281/zenodo.12770646
https://doi.org/10.5281/zenodo.12770646
https://github.com/fpusan/cross-biome-microbial-networks/tree/main/00-algorithm
https://github.com/fpusan/cross-biome-microbial-networks/tree/main/00-algorithm
https://github.com/fpusan/cross-biome-microbial-networksD
https://github.com/fpusan/cross-biome-microbial-networksD
https://doi.org/10.5281/zenodo.12770646
https://doi.org/10.5281/zenodo.12770646
www.nature.com/commsbio


16. Rivett, D. W. & Bell, T. Abundance determines the functional role of
bacterial phylotypes in complex communities. Nat. Microbiol. 3,
767–772 (2018).

17. Enke, T. N. et al. Modular Assembly of Polysaccharide-Degrading
Marine Microbial Communities. Curr. Biol. 29, 1528–1535.e6 (2019).

18. Pascual-García, A. & Bell, T. Community-level signatures of
ecological succession in natural bacterial communities. Nat.
Commun. 11, 2386 (2020).

19. Ma, B. et al. Earth microbial co-occurrence network reveals
interconnection pattern across microbiomes.Microbiome 8,
82 (2020).

20. O’Hara, R. B. The anarchist’s guide to ecological theory.Or., we don’t
need no stinkin’ laws. Oikos 110, 390–393 (2005).

21. Bashan, A. et al. Universality of human microbial dynamics. Nature
534, 259–262 (2016).

22. Goldford, J. E. et al. Emergent simplicity in microbial community
assembly. Science 361, 469–474 (2018).

23. Gibson, T. E., Bashan, A., Cao, H.-T., Weiss, S. T. & Liu, Y.-Y. On the
Origins and Control of Community Types in the Human Microbiome.
PLOS Comput. Biol. 12, e1004688 (2016).

24. Pignatelli, M., Moya, A. & Tamames, J. EnvDB, a database for
describing the environmental distribution of prokaryotic taxa.Environ.
Microbiol. Rep. 1, 191–197 (2009).

25. Pascual-García, A., Tamames, J. & Bastolla, U. Bacteria dialog with
Santa Rosalia: Are aggregations of cosmopolitan bacteria mainly
explained by habitat filtering or by ecological interactions? BMC
Microbiol. 14, 284 (2014).

26. Karpe, P. D., Latendresse,M. &Caspi, R. ThePathway Tools Pathway
Prediction Algorithm. Stand Genom. Sci. 5, 424–429 (2011).

27. Caspi, R. et al. The MetaCyc database of metabolic pathways and
enzymes and the BioCyc collection of pathway/genome databases.
Nucleic Acids Res. 44, D471–D480 (2016).

28. Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and
taxonomy in the global ocean microbiome. Science 353, 1272–1277
(2016).

29. Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K.
The contribution of species richness and composition to bacterial
services. Nature 436, 1157–1160 (2005).

30. Wertz, S. et al. Maintenance of soil functioning following erosion of
microbial diversity. Environ. Microbiol. 8, 2162–2169 (2006).

31. Jones, B. V., Begley, M., Hill, C., Gahan, C. G. M. & Marchesi, J. R.
Functional and comparative metagenomic analysis of bile salt
hydrolase activity in the humangutmicrobiome.Proc. Natl. Acad. Sci.
105, 13580–13585 (2008).

32. Zelezniak, A. et al. Metabolic dependencies drive species co-
occurrence in diverse microbial communities. Proc. Natl. Acad. Sci.
112, 6449–6454 (2015).

33. Strickland, M. S., Lauber, C., Fierer, N. & Bradford, M. A. Testing the
functional significance of microbial community composition. Ecology
90, 441–451 (2009).

34. Peter, H. et al. Function-specific response to depletion of microbial
diversity. ISME J. 5, 351–361 (2011).

35. Fetzer, I. et al. The extent of functional redundancy changes as
species’ roles shift in different environments. Proc. Natl. Acad. Sci.
112, 14888–14893 (2015).

36. Delgado-Baquerizo, M. et al. Lack of functional redundancy in the
relationship between microbial diversity and ecosystem functioning.
J. Ecol. 104, 936–946 (2016).

37. Galand, P. E., Pereira, O., Hochart, C., Auguet, J. C. & Debroas, D. A
strong link between marine microbial community composition and
function challenges the idea of functional redundancy. ISME J. 12,
2470–2478 (2018).

38. Morrissey, E. M. et al. Phylogenetic organization of bacterial activity.
ISME J. 10, 2336–2340 (2016).

39. Martiny, A. C., Treseder, K. & Pusch, G. Phylogenetic conservatism of
functional traits in microorganisms. ISME J. 7, 830–838 (2013).

40. Tamames, J., Sánchez, P. D., Nikel, P. I. & Pedrós-Alió, C. Quantifying
theRelative Importance of Phylogeny andEnvironmental Preferences
As Drivers of Gene Content in Prokaryotic Microorganisms. Front.
Microbiol. 7, 433 (2016).

41. Tamames, J., Abellán, J. J., Pignatelli, M., Camacho, A. & Moya, A.
Environmental distribution of prokaryotic taxa. BMC Microbiol. 10,
85 (2010).

42. Nemergut, D. R. et al. Global patterns in the biogeography of bacterial
taxa. Environ. Microbiol. 13, 135–144 (2011).

43. Lauro, F. M. et al. The genomic basis of trophic strategy in marine
bacteria. Proc. Natl Acad. Sci. 106, 15527–15533 (2009).

44. Nikoh, N., Hosokawa, T., Oshima, K., Hattori, M. & Fukatsu, T.
Reductive Evolution of Bacterial Genome in Insect Gut Environment.
Genome Biol. Evol. 3, 702–714 (2011).

45. Bentkowski, P., Van Oosterhout, C. & Mock, T. A Model of Genome
Size Evolution for Prokaryotes in Stable and Fluctuating
Environments. Genome Biol. Evol. 7, 2344–2351 (2015).

46. Cobo-Simón, M. & Tamames, J. Relating genomic characteristics to
environmental preferences and ubiquity in different microbial taxa.
BMC Genomics 18, 499 (2017).

47. Konstantinidis, K. T. & Tiedje, J. M. Trends between gene content and
genome size in prokaryotic species with larger genomes. Proc. Natl.
Acad. Sci. 101, 3160–3165 (2004).

48. Walker, A. W. & Hoyles, L. Human microbiome myths and
misconceptions. Nat. Microbiol. 8, 1392–1396 (2023).

49. Morris, J. J., Lenski, R. E. & Zinser, E. R. TheBlackQueenHypothesis:
Evolution of Dependencies through Adaptive Gene Loss.mBio. 3,
e00036–12 (2012).

50. Thommes, M., Wang, T., Zhao, Q., Paschalidis, I. C. & Segrè, D.
Designing Metabolic Division of Labor in Microbial Communities.
mSystems 4, https://doi.org/10.1128/msystems.00263-18 (2019).

51. Wang, M., Liu, X., Nie, Y. & Wu, X.-L. Selfishness driving reductive
evolution shapes interdependent patterns in spatially structured
microbial communities. ISME J. 15, 1387–1401 (2021).

52. Zengler, K. & Zaramela, L. S. The social network ofmicroorganisms—
how auxotrophies shape complex communities. Nat. Rev. Microbiol.
16, 383–390 (2018).

53. Embree, M., Liu, J. K., Al-Bassam, M. M. & Zengler, K. Networks of
energetic and metabolic interactions define dynamics in microbial
communities. Proc. Natl. Acad. Sci. 112, 15450–15455 (2015).

54. Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to
cooperation in microbial communities. Proc. Natl. Acad. Sci. 111,
17941–17946 (2014).

55. Akashi, H. & Gojobori, T. Metabolic efficiency and amino acid
composition in the proteomes of Escherichia coli andBacillus subtilis.
Proc. Natl. Acad. Sci. USA 99, 3695–3700 (2002).

56. Mopper, K. & Lindroth, P. Diel and depth variations in dissolved free
amino acids and ammonium in the Baltic Sea determined by
shipboard HPLC analysis1. Limnol. Oceanogr. 27, 336–347 (1982).

57. Zomorrodi, A. R. & Segrè, D. Genome-driven evolutionary game
theory helps understand the rise of metabolic interdependencies in
microbial communities. Nat. Commun. 8, 1563 (2017).

58. Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic
exchange in synthetic microbial communities. Proc. Natl Acad. Sci.
111, E2149–E2156 (2014).

59. Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial
metabolism. Mol. Syst. Biol. 6, 407 (2010).

60. Pacheco, A.R.,Moel,M. &Segrè,D.Costlessmetabolic secretionsas
drivers of interspecies interactions in microbial ecosystems. Nat.
Commun. 10, 103 (2019).

61. Germerodt, S. et al. Pervasive Selection forCooperativeCross-Feeding
in Bacterial Communities. PLOS Comput. Biol. 12, e1004986 (2016).

https://doi.org/10.1038/s42003-024-06616-5 Article

Communications Biology |          (2024) 7:1046 10

https://doi.org/10.1128/msystems.00263-18
https://doi.org/10.1128/msystems.00263-18
www.nature.com/commsbio


62. Shade, A. et al. Fundamentals of Microbial Community Resistance
and Resilience. Front. Microbiol. 3, 417 (2012).

63. Johnson, W. M. et al. Auxotrophic interactions: a stabilizing attribute
of aquatic microbial communities? FEMSMicrobiol. Ecol. 96, fiaa115
(2020).

64. McCann, K., Hastings, A. &Huxel,G. R.Weak trophic interactions and
the balance of nature. Nature 395, 794–798 (1998).

65. Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial
communities. Nat. Commun. 9, 2970 (2018).

66. Anantharaman, K. et al. Thousands of microbial genomes shed light
on interconnected biogeochemical processes in an aquifer system.
Nat. Commun. 7, 13219 (2016).

67. Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and
unusual biology in the CPR and DPANN radiations. Nat. Rev.
Microbiol. 16, 629–645 (2018).

68. Lannes, R., Olsson-Francis, K., Lopez, P. & Bapteste, E. Carbon
Fixation by Marine Ultrasmall Prokaryotes. Genome Biol. Evolution
11, 1166–1177 (2019).

69. Navarro-Alberto, J. A. & Manly, B. F. J. Null model analyses of
presence–absence matrices need a definition of independence.
Popul. Ecol. 51, 505–512 (2009).

70. Jaccard, P. The Distribution of the Flora in the Alpine Zone. N.
Phytologist 11, 37–50 (1912).

71. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene
database and workbench compatible with ARB. Appl Environ.
Microbiol. 72, 5069–5072 (2006).

72. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinformatics 30, 1312–1313
(2014).

73. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc.
Ser. B (Methodol.) 57, 289–300 (1995).

Acknowledgements
AP-G was supported by the Simons Collaboration: Principles of Microbial
Ecosystems (PriME), award number 542381, a Ramón y Cajal Fellowship
from the Spanish Ministry of Science and Innovation (RyC2021-032424-I),
by CSIC intramural project 20232AT031 and by grant PID2022-139900NA-
I00 (AEI/10.13039/501100011033/ FEDER, UE). UBwas supported through
the grant PID2019-109041GB-C22/10.13039/501100011033 of the Span-
ish Agency of Research (AEI). Research at the CBMSO is facilitated by the
FundaciónRamónAreces. FP-Swas fundedby grantCTM2016-80095-C2-
1-R / NOVAMAR from the Spanish Ministerio de Economía y Competitivi-
dad, the Marie Skłodowska-Curie grant agreement No 892961 from the
European Union’s Horizon 2020 research and innovation programme and
grant 2022-04801 from the Swedish Research Council.. This article first
appeared online as a preprint with https://doi.org/10.1101/2022.09.11.
507163.

Author contributions
FP-S: Conceptualization, Methodology, Software, Validation, Formal
Analysis, Investigation, Writing – Original Draft, Visualization; AP-G:
Conceptualization, Methodology, Software, Validation, Writing - Review &
Editing; UB: Conceptualization, Methodology, Writing - Review & Editing;
CP-A: Writing - Review & Editing, Supervision, Funding acquisition; JT:
Conceptualization, Resources, Data Curation, Writing - Review & Editing,
Supervision, Funding acquisition, Project administration.

Funding
Open access funding provided by Swedish University of Agricultural
Sciences.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-06616-5.

Correspondence and requests for materials should be addressed to
Fernando Puente-Sánchez.

Peer review informationCommunicationsBiology thanksChristianDiener,
LukeThompsonand the other, anonymous, reviewer(s) for their contribution
to the peer review of this work. Primary Handling Editors: Anna Heintz-
Buschart and Tobias Goris. [A peer review file is available.]

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-06616-5 Article

Communications Biology |          (2024) 7:1046 11

https://doi.org/10.1101/2022.09.11.507163
https://doi.org/10.1101/2022.09.11.507163
https://doi.org/10.1038/s42003-024-06616-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Cross-biome microbial networks reveal functional redundancy and suggest genome reduction through functional complementarity
	Results
	Generation of a modular ecological network
	Significant functional and phylogenetic redundancies in environmental microbial assemblages
	Relationship between pathway redundancy, pathway specificity and assemblage size in environmental microbial assemblages
	Patterns of amino acid auxotrophy in environmental microbial assemblages

	Discussion
	Materials And Methods
	Description of the data set
	Detection of significant inferred associations between pairs of taxa
	Network generation
	Environmental and bibliographic annotation of assemblages
	Functional annotation of assemblages and intra-assemblage functional redundancy
	Phylogenetic distance between genera and intra-assemblage phylogenetic distances
	Detection of significant functional and phylogenetic redundancies at different assemblage sizes
	Detection of redundant and specific pathways in the assemblages of our network
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




