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ABSTRACT

Freestall comfort is reflected in various indicators, 
including the ability for dairy cattle to display unhin-
dered posture transition movements in the cubicles. To 
ensure farm animal welfare, it is instrumental for the 
farm management to be able to continuously monitor oc-
currences of abnormal motions. Advances in computer 
vision have enabled accurate kinematic measurements 
in several fields, such as human, equine, and bovine 
biomechanics. An important step upstream to measuring 
displacement during posture transitions is determining 
that the behavior is accurately detected. In this study, 
we propose a framework for detecting lying-to-standing 
posture transitions from 3-dimensional (3D) pose estima-
tion data. A multiview computer vision system recorded 
posture transitions between December 2021 and April 
2022 in a Swedish stall housing 183 individual cows. The 
output data consisted of the 3D coordinates of specific 
anatomical landmarks. The sensitivity of posture transi-
tion detection was 88.2%, and precision reached 99.5%. 
In analyzing those transition movements, breakpoints de-
tected the timestamp of onset of the rising motion, which 
was compared with that annotated by observers. Agree-
ment between observers, measured by intraclass correla-
tion, was 0.85 between 3 human observers and 0.81 when 
adding the automated detection. The intra-observer mean 
absolute difference in annotated timestamps ranged from 
0.4 s to 0.7 s. The mean absolute difference between each 
observer and the automated detection ranged from 1.0 s 
to 1.3 s. We found a significant difference in annotated 
timestamps between all observer pairs, but not between 
the observers and the automated detection, leading to the 

conclusion that the automated detection does not intro-
duce a distinct bias. We conclude that the model is able 
to accurately detect the phenomenon of interest and that 
it is equitable to an observer.
Key words: computer vision, animal welfare assessment, 
freestall cubicle, pose estimation

INTRODUCTION

All cubicles in a dairy barn are usually identical, but 
a natural variability exists both in animal size relative to 
the cubicle (Dirksen et al., 2020) and in individual motion 
patterns and locomotor activity (Shepley et al., 2020). A 
factor of stall comfort, which affects lesion prevalence 
and lying time, is the ease with which a cow is able to get 
up and down in the cubicle (Zambelis et al., 2019). Ease 
of movement during posture transition was highlighted 
as an evaluation criteria for stall quality in relation to 
cow comfort by Lidfors (1989), who noted that cows in 
cubicles were more regularly seen performing abnormal 
motions (such as sideways lunging or horse-like rising) 
than those on pasture. Ceballos et al. (2004) analyzed 
the kinematics of posture transitions and found that cows 
used less longitudinal space when rising in a cubicle than 
on an open pack. Given the evidence for the link between 
restrictive movements and signs of reduced welfare 
(Beaver et al., 2021), the quality of posture transitions is 
included as an indicator in welfare assessment schemes 
such as Welfare Quality (Blokhuis et al., 2013).

Assessing ease of posture transition per se, rather 
than through indirect signs of reduced comfort such as 
hock lesions (Dirksen et al., 2020) or reduced lying time 
(Shewbridge Carter et al., 2021), is more challenging, 
and practical objective methods are needed (Brouwers et 
al., 2023). Visual observations noting the occurrence of 
abnormal behaviors are commonplace in farm manage-
ment and welfare assessment schemes. Alternatively, 
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ease of movement can be assessed quantitatively by 
measuring the displacement of anatomical landmarks 
throughout bouts of posture transition (Ceballos et al., 
2004). Drawbacks exist for both approaches. The visual 
method relies on time-consuming, sporadic human obser-
vations. Although Zambelis et al. (2019) found excellent 
agreement between observers (kappa of 0.93 for getting-
up movement ease), a degree of subjectivity always 
exists in visual scoring of animal movements (Chaplin 
and Munksgaard, 2001; Vasseur, 2017). The acquisition 
of 3-dimensional (3D) kinematics data by Ceballos et 
al. (2004) relied on fitting motion-capture reflectors on 
cows, requiring lengthy preparation and exposure of the 
equipment to damage. These limitations might be a rea-
son behind the low sample size (n = 5 cows with at least 
2 bouts per cow) in the latter study.

Considering the variability in cow sizes and kinematic 
profiles and the need for objective methods to assess ease 
of movement, we propose a framework to detect lying-
to-standing (LTS) posture transitions from 3D pose 
estimation data. As a step in validating the potential of 
this method, the aim of this study was to measure the 
performance of a feature extractor in detecting the onset 
of LTS posture transitions compared with the human eye.

MATERIALS AND METHODS

The study presented here was approved by the ethical 
committee Uppsala djurförsöksetiska nämnd under ap-
proval 5.8.18-13069/2021. The 3 Rs in animal research 
were considered when using existing video material, 
previously and noninvasively collected. 

Location and Animals

Recordings were obtained at the Swedish Livestock 
Research Centre’s dairy barn (Uppsala, Sweden). The 
herd comprises Swedish Holstein and Swedish Red 
cattle housed indoors with access to pasture 120 d a 
year, between May and September. Video was recorded 
on 30 separate days (midnight to midnight), sampled for 
convenience, between December 8, 2021, and April 28, 
2022. Because the barn is lit at all times, recordings were 
obtained at all times of day. An average of 51 cows were 
present simultaneously in the pen, with individuals being 
added and removed throughout, for a total of 183 differ-
ent individuals having visited the pen during the study 
period. A total of 7 RGB cameras (G3 Bullet, Ubiquiti) 
were placed around an area approximately one-quarter of 
the pen, located closest to the sorting gate to the milking 
robot, and oriented toward the rows of cubicles so that all 
cubicles in the study ward, including forward lunge room 
defined as the 60 cm beyond the head rail, were visible 

by at least 2 cameras. The study ward comprised the 12 
cubicles (CC1800 cubicle divider with rigid head bar, 
Delaval) for which video coverage was optimal, out of 
66 total in the pen. The cameras were installed on fixed 
metal rails, part of the barn’s infrastructure, between 2.8 
and 3.6 m high. The locations of each camera, as well as 
the stall layout, are shown in Figure 1.

Cows had access to feeding troughs with ad-libitum 
mixed feed as well as 2 rotary brushes, and concentrate 
dispensed both at the milking robot and at concentrate 
dispensers. Passage through the milking robot’s sorting 
gate was compulsory for access to the feed. Milking was 
done by one milking robot (VMS V300, Delaval), which 
cows had access to on a voluntary basis. Cows were 
brought to the robot by farm staff if they had not been 
milked in over 12 h.

Key Point Acquisition in 3 Dimensions

This study used 3D pose estimation software (Sony 
multi-camera system, Sony Nordic). The software es-
timates the 3D pose by finding cross-view correspon-
dences across inferred 2-dimensional (2D) poses of the 
same object on synchronized views. It then creates a 
track for each object based on spatial continuity in the 
3D location. The initial synchronization is achieved by 
reading the timestamp of each frame and relating the first 
full-second transition for a common timestamp across all 
video recordings as the initial synchronized frame. The 
initial frame synchronization is provided as an input to 
the multicamera system. Synchronization is maintained 
using the estimated time of arrival of each frame in the 
processing buffer.

Kroese et al.: 3D POSE ESTIMATION OF COW POSTURE TRANSITIONS

Figure 1. Schematic of the portion of the stall where recordings were 
obtained. The gray shaded areas are passageways unavailable to cows. 
Thick borders mark the stall boundaries, and dashed lines indicate a 
continuing area that is accessible to the cows beyond that shown here. 
Cameras are represented by red circles, placed between 2.8 and 3.6 m 
high. The parallel rectangles are cubicles; data were collected in cubicles 
marked with asterisks. The arrows indicate movement directions the 
cows are able to follow in the passageways.
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The 2D object detector and pose estimator use con-
volutional neural networks to detect cows and specific 
anatomical landmarks on RGB images, in the form of 
a bounding box and key points, respectively. The land-
marks used in this study were limited to the center-top of 
the poll, the highest point at the withers, the spine at the 
13th thoracic vertebra, and the top of the sacrum taken 
immediately behind the uppermost part of the ilium (re-
ferred to respectively as head, withers, t13, and sacrum).

The output data consists of one key point for each ana-
tomical landmark with X, Y, and Z coordinates for each 
object and given frame. Figure 2 shows the estimated 
3D position of the key points, linked to create a visual 
structure, for 2 objects during an LTS transition, as well 
as the video frames used to generate them.

Detection of Posture Transitions

The recordings were sampled visually by one observer 
with the aim of finding 1,000 sequences containing LTS 
transitions. When a cow was observed fully getting up 
from a lying positions, the timestamp was annotated, and 
a video sequence corresponding to a window of ± 15 s 
around the annotated timestamp was extracted. In the fi-
nal data set, an arbitrary 979 sequences were eventually 
identified. These sequences were then processed with the 
3D pose estimation software.

When the cow rises, the line formed by linking the 
sacrum and t13 key points increases its angle compared 
with the horizontal plane, as the cow’s back is at an 
angle with the ground. By calculating the difference 
between the sacrum height and withers height, and fol-
lowing this difference through time, we identified peaks 
corresponding to LTS motions. When a peak above 0.4 
(in the coordinates’ arbitrary spatial reference system) 
was detected, the frame was considered to be within a 
potential rising motion. The mean withers Z position in 
the 120 frames located 330 frames after the peak was 
then compared with the mean withers Z position in the 
last 120 frames of the sequence. If the ratio of the height 
difference after and before the peak was higher than 
140%, the track was classified as an LTS motion. Figure 
3 illustrates this by showing the vertical position of the 
key points. At 16 s, there is an important difference in 
the heights of the withers (orange) and sacrum (green). 
This difference points toward a potential rising bout. 
Calculating the difference in withers position between 
the 5-s and 27-s marks, we determine that the animal has 
transitioned from a low, lying posture to a high, standing 
posture.

In these 979 sequences, this method initially detected 
493 LTS motions for which the cow was tracked at each 
consecutive frame. For the remainder (486 sequences), 
the tracks were interrupted for several frames and the mo-
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Figure 2. The 2D pose estimation and 3D fusion of 2 cows. The 2D results are displayed at the top, showing the synchronized frames from 
cameras 0 to 6, onto which predicted bounding boxes and key points are overlaid. The rest of the scene shows the projection of 2 cows from key 
points in 3D. Cameras 4 and 6 are represented as magenta and gray cuboids, respectively, in the 3D representation, in their spatial position relative 
to each other and to the cows. A projection of the frames from cameras 4 and 6 (identical to those in the 2D images above) is shown in front of the 
camera’s 3D representation. The 5 other camera representations are not displayed from this angle, and camera 4 occludes the view from camera 0 
because of the choice of angle. Only 4 of the key points shown in this figure were used in the study.
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tion was captured in several separate tracks. Detections 
were stitched together if they fit the following criteria:

 ● The tracks are found in the same 30-s sequence.
 ● The second track starts after the first track vanishes, 

and within an interval of 30 frames.
 ● The Euclidian distance in the 3D pose estimator’s 

coordinate system between the last point in the van-
ishing track and the first point of the starting one is 
lower than 0.2.

No limit was imposed on the number of tracks appended 
together to form one single track, as long as the above 
conditions were fulfilled. The resulting stitched track 
was kept if it contained more than 700 frames, and dis-
carded otherwise.

Using this method, an additional 370 rising sequences 
were detected by applying the height difference rule to the 
stitched tracks, giving a total of 863 predicted positives. 
For the remaining 116 sequences, either the animal was 
not detected by the pose estimation software, the posture 
transition detector failed to identify the occurrence, or 
the motion was split between different tracks that were 
not relatable due to noise or an interruption across more 
than 30 frames. Visual inspection of the predicted LTS 

motions revealed 4 false positives. In addition, 22 true 
positives were discarded from the data set because the 
posture transition was initiated before the start of the 
video snippet and thus not captured in its entirety.

Signal Processing

Each series of raw coordinates was processed to at-
tenuate noise. A low pass filter with a cutoff frequency 
of 10 Hz was applied to remove high-frequency noise 
resulting from key point jittering. This cutoff was cho-
sen based on the recommendations by Hamäläinen et al. 
(2011) and Riaboff et al. (2020) for noise removal on 
animal activity data. The filter was applied separately to 
each key point and the respective time series of its X, Y, 
and Z coordinates. The filter was implemented in Python 
3.9 (Python Software Foundation) using the function 
“butter” from the SciPy package (Virtanen et al., 2020). 
Figure 3 illustrates the filtered Z coordinates time series 
during a rising sequence.

From the processed signal, consisting of the coordi-
nates of each key point in 3 dimensions, we detected the 
timestamp at which the cow starts rising. Considering 
solely the kinematic features available through the 4 key 
points, this is most clearly reflected by the change in the 
position of the withers, as rising on the elbows will cause 
the withers to rise upward slightly, which is visible by 
an increase in the withers’ Z (vertical) coordinate. When 
doing so, the cow aligns its back along the length of the 
cubicle, which is reflected in a change of the withers’ Y 
coordinate (axis perpendicular to the cubicle’s length). 
Although, from a behavior perspective, there is more to 
the LTS transition than solely the withers’ movement, the 
system was blind to all but the position of 4 anatomical 
landmarks. The withers were chosen for the stability of 
the key-point (low jittering) and for their consistent mo-
tion pattern in the LTS transition across sequences. To 
detect the exact onset of rising motions, we used linearly 
penalized segmentation (Pelt), implemented the Python 
library “Ruptures” (Truong et al., 2020). Pelt was applied 
to the bivariate series of the Y (lateral, perpendicular to 
the cubicles) and Z (height) positions of the withers to 
identify breakpoints in the time series. No restrictions 
were set on the number of breakpoints to be detected. A 
baseline height (Z coordinate) was calculated for each 
sequence as the median withers height in the first 30 
frames of the sequence. The break points detected by Pelt 
were iterated through. If the median withers height in the 
30 frames following the breakpoint was higher than the 
baseline, the breakpoint was then considered to be the 
start of the rising motion. If not, we iterated to the next 
breakpoint and applied the same logic.
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Figure 3. The coordinates of the anatomical landmarks of dairy 
cows were tracked with 3D pose estimation. This figure shows the Z 
coordinate (height) of a cow’s head, withers, and sacrum throughout a 
lying-to-standing motion. Initially, the low variability on the vertical 
axis indicates that the cow is lying still. At about 11 s, the withers (or-
ange) rise gently as the cow sits on its carps, followed by lunging with 
vertical bobbing of the head (blue) from 12 to 17 s. The sacrum (green) 
rises rapidly soon after, describing a sigmoid. There is a pause on the 
carps, with the sacrum already up, from 16 to 20 s. The cow has risen 
by the 22-s mark. The vertical dotted line shows the onset of the posture 
transition detected using linearly penalized segmentation. This example 
was selected for clarity.
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Data processing, feature extraction, and analyses were 
carried out in Python 3.9.3 using the packages NumPy 
1.21.5 (Harris et al., 2020) and SciPy 1.9.1 (Virtanen et 
al., 2020).

Validation Experiment

To evaluate the performance of the tool in detecting the 
occurrence of LTS bouts, we compared the timestamps 
automatically detected to those annotated by 3 human 
observers, considered as the gold standard for behavioral 
observations. Observers were provided with the follow-
ing definition: “The cow is lying down and rises on its 
breastbone and elbows, which causes the withers to rise 
visibly above the rest of the back.” This definition is based 
on that of Lidfors (1989), but it adds the position of the 
withers as an indicator. The animals were seen to initiate 
the movement by centering their elbows under the body, 
this in turn causes the withers to rise slightly. This mo-
tion of the withers was used to determine the exact onset 
of the rising motion. The description was accompanied 
by illustrations taken from Schnitzer (1971) and Cermak 
(1988), as well as an ethogram describing the sequence 
of movements in the LTS transition, in which the move-
ment to label was explicitly identified. This ethogram 
described the stages of the posture transition based on 
Lidfors (1989) and on Schnitzer (1971). Observers all 
received the same training, in which the ethogram was 
explained and examples were showcased; they reviewed 
5 videos of different cows rising and agreed on the exact 
frame to label as the onset of the rising motion. These 
5 videos were taken from the original data set and used 
solely for training the observers.

The validation data set was sampled randomly from the 
471 complete LTS sequences captured in a single track. 
In total, 60 unique LTS sequences were annotated by at 
least 1 observer. This number was determined a priori, 
as no prior data were available on observer variability 
in posture transition detection. These sequences were 
the original 30 s synchronized video snips from which 
the key points were detected. The video was available 
to the observers from all 7 cameras used for key point 
detection, plus one additional ceiling mounted camera. 
Observers were free to choose the camera offering the 
best view of the animal performing the bout. Every ob-
server was provided with a total of 55 randomly selected 
video clips. Of these 55 sequences, 30 were common to 
all observers and 10 were unique to each observer (40 
different sequences per observer). The remaining 15 
sequences were randomly resampled from the prior 40 
and re-annotated by the same observer, to measure intra-
observer reliability. All sequences were blinded, with a 
different label each time the sequence appeared.

Statistical Analysis

The mean absolute difference (MAD) in annotate time-
stamp was calculated between each observer to quantify 

intra-observer reliability as MAD i
s

s
i

i
( ) =

=
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1
15 1

15
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i = 1, 2, or 3 (observers) and ∆s s si i i
t t= −, , ,1 2  with tsi ,1 and 

tsi ,2 being the time stamp of the sth sequence provided at 
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were calculated, and the normality of ∆si  and ∆s i j, ,( ) was 
assessed visually on a q-q plot. Subscripts i and j refer to 
2 distinct observers: i = 1, 2, or 3; j = 2 or 3. The MD and 
MAD indicate interobserver systematic bias and disper-
sion, respectively.

The following mixed effects models were fitted using 
statsmodels.formula.api.mixedlm (Seabold and Perktold, 
2010) in Python 3.9 to evaluate the observer effect and 
intraclass correlation (ICC) with or without the auto-
mated detection:

 t I i I i us i r s i rs, ,  , ,  ,= + =( )+ =( )+ +β β β ε0 1 22 3  [1]

t I i I i M us i r s i rs, , , ,  ,= + =( )+ =( )+ + +β β β β ε0 1 2 32 3
 [2]

where β0 is the (fixed) intercept, u Ns u~ , 0 2σ( ) is a ran-
dom sequence effect, s = 1 to 40 is the sequence indica-
tor, β1 and β2 are fixed observer effects, β3 is a fixed ef-
fect corresponding to the automated detection taken as an 
additional observer (referred to as the “model” or M), 
and ε σs i r eN, , ~ ,0 2( ) is a (random) error term. The se-
quence number is indicated by the subscript s, Ii are the 
observers, and r = 1, 2 is the index for repeated sequenc-
es annotated 1 to 2 times by the same observer. The ob-
server effects were tested using ANOVA. The ICC as a 
measure of interobserver agreement were calculated as 

ICC u

u e

=
+

σ

σ σ

2

2 2
. A post hoc pairwise t-test with Bonfer-

roni correction for 6 tests was then computed to test the 
pairwise differences between observers. The annotated 
timestamps were not normalized because a 1 s difference 
between observers, for example, has the same practical 
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meaning in this context regardless of whether the annota-
tion is done at the 4-s mark or the 12-s mark.

The performance of the algorithm was assessed in the 
same way, by treating the algorithm as an additional ob-
server and seeing if it differed from the human observers. 
The differences were calculated between the algorithms’ 
detection (denoted TM) and the observer annotation, TH. 
Bland-Altman plots were prepared for each observer pair 
T T t ti j s i s j, , ,, ,( ) = { } { }( )  and also comparing TH with TM, 
with a view to checking for the absence of a pattern and 
points beyond 1.96 standard deviations. Lastly, MAD(H, 
M), and MD(H, M) were calculated.

RESULTS

A total of 836 rising bouts were detected out of 979 
visually selected sequences equating to a sensitivity of 
88.5% or a false negative rate of 11.5%. Four sequences 
were wrongly classified as rising motions giving a preci-
sion of 99.5% or false positive rate of 0.5%.

Model 1, comparing only human observers, gave ICC 
= 0.85. We found a significant observer effect in predict-
ing the annotated timestamps of LTS onset (P < 0.001) 
according to the ANOVA. When the model 2 was fitted to 
assess performance of the prediction, the ICC decreased 
to 0.81, remaining at a similarly satisfactory level of 
agreement. However, we found no significant difference 
between the predicted timestamp (“model”) and each ob-
server’s annotations according to the post hoc pairwise 
t-test with Bonferroni correction of the type-1 error at α 
= 0.0083. We identified a significant difference between 
all observer pairs: P (T1,T2) = 0.0016; P (T1,T3) < 0.001; 
P (T1,T3) = 0.0018. 

Mean absolute differences Ts
M H,  are summarized in 

Table 1. These values indicate good interobserver agree-
ment and good agreement between humans and machine. 
The magnitude of Ts

M H,  is identical to that of Ts
M M, , 

meaning that TM could be used in further research, as the 
model does not deviate from the observers more than 
they do from one another. Figure 5 shows the timestamp 
annotated by each observer (including the model and re-
peat sequences) for each sequence.

Intra-observer reliability was assessed using the mean 
absolute difference in seconds, and consistency using the 

standard deviation (σ). Observer 1 had an MAD of 0.55 ± 
0.88 s (µ ± σ). Observer 2 had an MAD of 0.68 ± 1.47 s, 
and observer 3 had an MAD of 0.36 ± 0.48 s. The pooled 
standard error was 0.27 s. The standard deviation is 
preferred here to the standard error to quantify the vari-
ability in the differences between and within observers 
in annotated timestamps, independently of the number of 
samples. These results indicate very good intra-observer 
reliability (under 1 s on average).

Finally, we compared the annotations to the automated 
detections visually using the Bland-Altman plot in Figure 
4. The upper left plot shows most points to be centered 
around 0, without signs of consistent bias from the model. 
More importantly, the spread was similar when compar-
ing observers to the algorithm and observers together.

DISCUSSION

The ICC values show a good agreement between auto-
mated model detection and human observers in detecting 
the onset of cows’ rising motions, according to previous 
research on the use of ICC as a reliability metric in animal 
motion scoring (Kaler et al., 2009). The ANOVA dem-
onstrated a significant observer effect, strengthening the 
claim that observations of cows’ movements are prone to 
individual variations. The post hoc test showed a signifi-
cant difference in annotated timestamps between all pairs 
of observers, but the difference between the model and 
the observers was not significant. We conclude from this 
that the model’s detection lies somewhere in between the 
observers’ annotations. The MD of −0.06 s between ob-
servers and the model (Figure 4) and the proximity of the 
points to 0 show that no systematic bias was introduced 
by the automated detection. This latter finding is also 
supported by Figure 5, showing the timestamp annotated 
by each observer at each sequence, in which there is no 
evidence of the detection being consistently divergent 
from human annotations, as the triangular points (model) 
are not systematically above or below the circular ones 
(observers). We also see that the predictions do not tend 
to be further from the annotations than the annotations 
are from each other.

This agreement is a crucial step in validating the capa-
bility of 3D computer vision to accurately identify this 
specific kinematic feature in bovine behavior. Notably, 
the findings suggest that the model’s performance does 
not considerably differ from human observers when 
compared with the variability among human observers. 
This suggests that the model does not introduce a dis-
tinct source of error in the detection process. Although 
discrepancies exist between the model and human ob-
servations, the magnitude of these divergences is not 
meaningful in comparison to the overall duration of the 
LTS transition.

Kroese et al.: 3D POSE ESTIMATION OF COW POSTURE TRANSITIONS

Table 1. Interobserver agreement (MAD ± σ) between the annotations 
of all pairs of observers, including the model; pairs between observers 
calculate the MAD on 30 sequences, whereas pairs with the model 
include an additional 10 annotations, unique to each observer

Item Observer 1 Observer 2 Observer 3

Model 1.02 ± 1.41 1.00 ± 1.70 1.30 ± 1.45
Observer 1  1.10 ± 1.26 1.67 ± 1.72
Observer 2   0.89 ± 1.01



Journal of Dairy Science Vol. 107 No. No. 9, 2024

6884

However, some limitations are important to mention. 
One such limitation is the likely over-representation of 
specific individuals. The animals were filmed in a lim-
ited area of the barn, and we can expect a degree of site 
fidelity from the animal (Vázquez Diosdado et al., 2018), 
leading to some individuals being over-represented. Be-
cause there was no individual detection, correcting for 
individuals was not possible. It is also unlikely that all 
recorded bouts were spontaneous; some may have been 
triggered by human intervention or by the presence of 
agonistic individuals. Bout motivation could introduce 
changes in kinematic patterns and velocity and poten-
tially affect the accuracy of the automated detection.

Limitations also exist regarding external validity, as 
the study was conducted in a single cubicle design, under 
a limited period of time, and using manually selected 
video sequences. This manual selection work upstream 
of the automated processing is an important limitation 

that drove the high sensitivity and specificity. The same 
system should be tested on continuous recordings. To 
counterbalance this limitation, however, the posture tran-
sition is an evident behavior, with a large difference in 
key point height before and after, which would easily be 
captured even with noisy key points by simply following 
the height of the cow’s back.

The scope of this study was determined retrospec-
tively; the decision to compare the automated detection 
to manual annotations was made after collecting the 
data and visually identifying LTS motions. The inclu-
sion criteria were based on data quality and not experi-
mental considerations. The exclusion of 22 longer bouts 
discarded important information with implications for 
the most vulnerable individuals when it comes to stall 
comfort, as a long pause during the posture transition is 
associated with adverse welfare outcomes (Zambelis et 
al., 2019)

Kroese et al.: 3D POSE ESTIMATION OF COW POSTURE TRANSITIONS

Figure 4. Bland-Altman plots comparing the timestamp of onset of cows’ rising motions annotated by human observers to that predicted by the 
model. The 3D pose estimation provided the coordinates of cows’ anatomical landmarks. Detecting breakpoints in the key point motion enabled 
detection of the onset of rising. Diff = difference. All units in seconds.
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The study’s gold standard was human observation, 
which is known to be variable across observers due to 
individual subjectivity. Although a bias is incorporated 
in the model, this bias is consistent across observations. 
The accuracy of the model could be improved by both 
altering the ethograms to make them more “machine-
learnable” (Brouwers et al., 2023) and by diversifying 
the data. Importantly, although human observations are 
biased, humans are rarely completely incorrect, espe-
cially when the phenomenon at hand, such as posture 
transition, is evident. Algorithms on the other hand 
sometimes produce unexpected results, and monitor-
ing and understanding their occurrence is essential for 
practical application. For instance, a difference of 6 s 
is found between the model and observer 2 in sequence 
31 (Figure 5). Upon visual inspection of this sequence, 
the algorithm picked up on the onset of the adjustment 
movements, which were particularly lengthy in this se-
quence, making up the initial part of the posture transi-
tion. The second observer, on the other hand, noted the 
moment the fast rising motion occurred. This is not an 
error of either method, but a misalignment in the inter-
pretation of the behavior. Referring to the description 
of the behavior provided to the observers, and quoted 
in the Materials and Methods section, the timestamp 

automatically detected is closer to the phenomenon of 
interest.

Most significant for this research is that automated 
detection via computer vision offers an objective meth-
od for detecting specific motions, which is desirable 
for studies of behavior and motion patterns. Judging by 
the advances in equine kinematic research, markerless 
computer vision constitutes both a robust and practi-
cal data acquisition tool to measure the displacement 
of anatomical landmarks, offering similar accuracy to 
motion capture, albeit for specific motions (Lawin et 
al., 2023). Reliably identifying the motion of interest is 
only a step in the study of posture transition kinemat-
ics, which contain welfare indicators (Zambelis et al., 
2019), the measure of which can be automated (Brou-
wers et al., 2023). Future studies using this technol-
ogy aim at implementing individual recognition, which 
could contribute to a pool of sensor data at individual 
level. However, in the absence of individual identifica-
tion, this technology is still able to deliver meaningful 
information either at herd or at cubicle level. The au-
tomated detection through 3D computer vision could, 
after further validation, serve as a new gold standard 
for the task of detecting LTS transitions (and other 
movements), similar to how interpreting accelerometer 

Kroese et al.: 3D POSE ESTIMATION OF COW POSTURE TRANSITIONS

Figure 5. Annotated timestamp by each observer and by the model. The discrete x-axis shows each lying-to-standing sequences. On the y-axis 
is the timestamp of the onset of the posture transition annotated by each observer or predicted. From each annotation is subtracted the earliest 
timestamp in that sequence.
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data has become standard in behavior classification of 
ruminants (Riaboff et al., 2022).

CONCLUSIONS

In summary, our results demonstrate good agreement 
between human observations and automated detection 
of cows’ rising motions. Notably, they indicate that the 
model introduces no more bias than human observers. 
This finding validates the use of multiview 3D pose 
estimation for detecting the onset of rising motions in 
bovine behavior, albeit in the conditions of a single farm. 
Automating the task with computer vision presents an 
opportunity to scale up bovine kinematic measurements 
and behavior monitoring and apply objective methods to 
further study.
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