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Abstract 

Background Biodiversity loss is particularly pronounced in agroecosystems. Agricultural fields cover about one‑third 
of the European Union and are crucial habitats for many species. At the same time, agricultural fields receive the high‑
est pesticide input in European landscapes. Non‑target species, including plants and arthropods, closely related to tar‑
geted pests, are directly affected by pesticides. Direct effects on these lower trophic levels cascade through the food 
web, resulting in indirect effects via the loss of food and habitat for subsequent trophic levels. The overarching goals 
of the European pesticide legislation require governments to sufficiently consider direct and indirect effects on plants 
and arthropods when authorising pesticides. This publication provides an overview of a workshop’s findings in 2023 
on whether the current pesticide risk assessment adequately addresses these requirements.

Results Effects due to in‑field exposure to pesticides are currently not assessed for plants and inadequately assessed 
for arthropods, resulting in an impairment of the food web support and biodiversity. Deficiencies lie within the risk 
assessment, as defined in the terrestrial guidance document from 2002. To overcome this problem, we introduce 
a two‑step assessment method feasible for risk assessors, that is to determine (i) whether a pesticide product might 
have severe impacts on plants or arthropods and (ii) whether these effects extend to a broad taxonomic spectrum. 
When each step is fulfilled, it can be concluded that the in‑field exposure of the pesticide use under assessment could 
lead to unacceptable direct effects on non‑target species in‑field and thus subsequent indirect effects on the food 
web. While our primary focus is to improve risk assessment methodologies, it is crucial to note that risk mitigation 
measures, such as conservation headlands, exist in cases where risks from in‑field exposure have been identified.

Conclusions We advocate that direct and indirect effects caused by in‑field exposure to pesticides need to be 
adequately included in the risk assessment and risk management as soon as possible. To achieve this, we provide 
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Introduction
Agricultural landscapes are experiencing declines in bio-
diversity attributed to multifactorial causes [1–3]. Among 
these causes, pesticide uses (defined here as agricultural 
pesticides, i.e., plant protection products) have persistent 
negative effects on biodiversity in agroecosystems [4–6] 
and adjacent areas [7–9]. In typical agricultural land-
scapes, a substantial proportion of the total area might be 
the agricultural fields themselves, referred to as “in-field 
areas”. These areas not only serve as cultivation areas but 
are also crucial habitats for a variety of species typical of 
agricultural and open lands, which include also untreated 
“off-field” areas. Only a few of these species represent 
targets of pest control measures. For all other species, 
such as non-target terrestrial plants (NTTP) and arthro-
pods (NTA), unacceptable effects of pesticide use should 
be avoided or at least minimized. The legal framework 
(Regulation (EC) No. 1107/2009 [10]) stipulates that pes-
ticides "shall have no unacceptable effects on the envi-
ronment", with specific considerations for the "impact on 
non-target species" and the "impact on biodiversity and 
the ecosystem". According to Regulation (EU) 283/2013 
[11], this includes "potential indirect effects via alteration 
of the food web". Although the indirect effects of pesti-
cides are diverse and not limited to food web alteration, 
in this publication we refer specifically to the indirect 
effects defined in Regulation (EU) 283/2013, i.e., food 
web alteration due to ecotoxicological effects. In addi-
tion, we focus on the terrestrial agroecosystems, as in-
field applications of pesticides in waterbodies are limited 
in the EU to rice cultures; these are therefore considered 
to be of minor relevance in relation to the whole Euro-
pean agricultural area.

Plants and arthropods are an essential part of terrestrial 
biodiversity and ecological communities. Any decline of 
their in-field diversity and abundance can have repercus-
sions on the whole ecosystem by also affecting the off-
field area through source-sink dynamics as demonstrated 
in studies with NTA [12, 13]. Additionally, NTTP and 
NTA are important components of terrestrial food webs. 
Thus, declines in their populations, both in-field and off-
field, can have cascading indirect effects on consumer 
species, including farmland birds and mammals [14–16].

To address this concern, alternative and more sus-
tainable solutions are being explored, such as for 
instance expanding organic farming and implementing 
agroecological methods [17, 18]. Among other objec-
tives, these approaches not only aim to reduce the use 

of pesticides but also prevent or mitigate their adverse 
effects on biodiversity. Despite ongoing efforts, a fun-
damental change in the current agricultural practice, 
along with its associated pesticide use, appears unlikely 
in the short term. Focussing on the European Union 
(EU), it is therefore crucial to further develop the best 
possible protection of biodiversity already within the 
current European legal framework for pesticides. How-
ever, in the current EU environmental risk assessment 
of pesticides, the direct effects of exposure of NTTP to 
pesticides in-field (i.e., in-field effects) are not assessed 
and the direct effects of exposure on NTA in-field are 
considered to be severely underestimated [19, 20]. 
Moreover, the potential indirect effects via alteration of 
food webs are largely ignored [21].

According to the Regulation (EC) No. 1107/2009 
[10] risk assessment methodologies should be harmo-
nised between European Member States. This means, 
for example, that Member States can include a specific 
evaluation in the risk assessment scheme of pesticides 
only if a corresponding scientific assessment method 
is available and accepted by ‘‘the Authority’’, i.e., the 
European Food Safety Authority (EFSA). It should be 
noted that mandatory acceptance by EFSA is subject to 
current legal interpretation. However, there is no such 
scientific assessment method accepted by EFSA that 
would allow risk assessors to address the gap between 
the assessment of in-field effects on NTTP and NTA 
and their repercussions on biodiversity in a harmonised 
manner.

A workshop was held on the 3rd and 4th of July 2023 
at the German Environment Agency (Umweltbunde-
samt—UBA, in Dessau-Roßlau, Germany) to bridge 
the gap between science and regulation. The workshop 
focused on describing the risks of in-field pesticide expo-
sure within the current legislative framework. Potential 
risk mitigation measures, as well as measures outside the 
legislative framework, were raised but not explored in-
depth. It was organised by a consortium of three parties: 
the UBA, the UK Game and Wildlife Conservation Trust 
(GWCT) as well as experts from the German Academy 
of Sciences Leopoldina. Participants were representatives 
from various European research institutions and regula-
tory bodies with expertise in ecological risk assessment 
of pesticides, farmland biodiversity, and agronomy (see 
list of participants in supporting information).

The objectives of the workshop were to (1) dis-
cuss the importance of the "in-field" habitat within 

recommendations for the authorities including an evaluation method. Implementing this method would address 
a major deficiency in the current in‑field pesticide risk assessment and ensure better protection of biodiversity.



Page 3 of 15Solé et al. Environmental Sciences Europe          (2024) 36:153  

agroecosystems in the context of pesticide uses on 
biodiversity, (2) review the current ecological risk 
assessment of pesticides in the light of the accept-
ability criteria set out by the European Regulation (EC) 
No. 1107/2009 [10], especially considering in-field 
exposure, (3) discuss the need for a methodological 
approach developed by UBA and (4) formulate recom-
mendations to improve the in-field pesticide assess-
ment for better protection of biodiversity.

The discussions at the workshop led to the identifica-
tion of gaps in the risk assessment of pesticides to address 
direct impacts on in-field habitats and associated flora 
and fauna and their indirect effects on the food web. The 
participants highlighted the need to increase awareness 
of these existing gaps. The main outcomes and recom-
mendations, to better protect biodiversity from pesticide 
impacts and satisfy the legal requirements of Regulation 
(EC) No. 1107/2009 [10], are presented here.

Scientific reflections
Value of the in‑field habitat and farmland species 
in agroecosystems
Farmland covers nearly half (46.4%) of the European land 
area, of which 38.4% (157.4 million hectares) is com-
posed of utilised agricultural area [22]. Given that the EU 
covers over 400 million hectares it results that approxi-
mately one-third of the total European surface is covered 
by cropped areas where pesticides are regularly applied 
and which are referred to as in-field habitat in this paper.

Agroecosystems are the habitat of plants and animal 
species that are particularly adapted to traditionally man-
aged agricultural areas, i.e., areas characterized by small-
scale, diverse and labour-intensive practices excluding 
chemical pesticides [23]. Arable plants, (i.e., segetal 
plants, which thrive exclusively amongst crops, and facul-
tative arable plants, which thrive predominantly in culti-
vated fields but can also form larger populations in other 
habitats) are generally less competitive and less prone to 
spreading. Hence, these NTTP find optimal conditions 
in regularly disturbed in-field habitats. At higher trophic 
levels, farmland birds like the grey partridge (Perdix per-
dix), the Eurasian skylark (Alauda arvensis), or the corn 
bunting (Emberiza calandra), along with small mammals 
like the European hamster (Cricetus cricetus) and the 
brown hare (Lepus europaeus) are typical vertebrate spe-
cies occurring in such ecosystems. These farmland spe-
cies are adapted to the nesting and foraging conditions 
provided by traditional agroecosystems, making these 
habitats essential for their survival. In addition, numer-
ous invertebrate species contribute significantly to the 
biodiversity of agroecosystems and play essential func-
tional roles in maintaining these ecosystems. Soil micro-, 
meso-, and macrofauna are drivers of soil fertility and 

soil formation [24], while bees, syrphid flies, moths, and 
butterflies ensure the essential pollination of crops and 
wild plants [25]. They also provide benefits to farmers 
by improvements in soil health, insect pollination, and 
pest control through natural enemies [26]. Notably, spe-
cies such as ladybirds and parasitoid wasps are effective 
biological controls against pests [27, 28]. The ecological 
functions of NTA are discussed in the EFSA scientific 
opinion addressing the state of the science on risk assess-
ment of pesticide products [20]. EFSA (2015) [20] par-
ticularly stresses the need to protect NTA at an adequate 
temporal and spatial scale to ensure the provision of 
NTA as a food source for higher trophic levels, including 
amphibians, reptiles, birds, and small mammals.

All species living in and around agricultural fields 
define the biodiversity of agroecosystems [29]. They have 
a functional and intrinsic value and are often the subject 
of nature conservation demands and efforts (e.g., birds 
Directive 79/409/EEC [30] amended in 2009 in the Direc-
tive 2009/147/EC [31]). However, their occurrence and 
abundance are directly linked to agricultural practices.

Biodiversity decline across agricultural landscapes 
and effects of pesticides
Over the last 70 years, there has been a massive loss of 
biodiversity across taxa and ecological guilds [1, 2, 32]. In 
Europe, this decrease is particularly pronounced in agri-
cultural landscapes—for arable plants [33–37], as well as 
for vertebrates (especially farmland birds [38–40]) and 
invertebrate species [41–45]. For terrestrial insects, the 
decline in diversity was also associated with a decrease 
in biomass observed across Europe [46] with a recorded 
reduction of more than 75% within nature reserves in 
Germany [8].

Pesticides are consistently detected beyond the agricul-
tural fields where they are intended to be applied, extend-
ing into the landscape on a broader scale, including 
protected areas [47–49]. Most pesticides display a low 
selectivity, and they therefore have the capacity to affect 
their intended target species (pests) but also various non-
target species. More specifically, the effects of pesticides 
can be either direct or indirect. Direct effects are those 
that occur when non-target species are directly exposed 
to overspray, residues, or off-field drift, influencing their 
population abundance. Indirect effects may arise through 
altered food web interactions or changes in competition 
and facilitation processes. Within food webs, NTTP and 
NTA play a crucial role in the functioning of ecosystems 
due to their key positions at the base of the trophic net-
work. Declines in their populations, whether in-field 
(cropped area) and off-field (outside the cropped area), 
trigger cascading effects on consumer species [16, 50]. 
For example, the in-field application of herbicides often 
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leads to a significant reduction in both plant diversity and 
abundance as well as a reduction in flowers available for 
insects [34, 37, 51]. Thus, pollinator insects are deprived 
of pollen and nectar, while herbivorous invertebrates 
and vertebrates are deprived of essential food sources 
and NTA lose their habitats. This, in turn, leads to an 
expected decrease in the abundance of NTA, affecting 
insectivorous species.

While the direct toxicity of pesticides to terrestrial 
vertebrates has constantly decreased over the last dec-
ades in Germany and the US, it has increased for ter-
restrial plants and remained approximately consistent 
for terrestrial arthropods—with the exception of pol-
linators in the US also experiencing an increase in 
direct toxicity [52, 53]. Such sustained, and in some 
cases increasing, direct toxic pressure on lower trophic 
levels may imply trophic cascade effects, potentially 
undermining efforts to reduce direct toxicity, as has 
been well-documented for amphibians [54] and birds 
[50, 55]. For instance, in southern England, the Game 
& Wildlife Conservation Trust has monitored, through 
the Sussex Study, farmland biodiversity and pesticide 
applications for over 50 years. The study started in 1968 
to investigate the causes of the drastic decline of the 
grey partridge in this area [56]. The main reason for the 
decline in grey partridge numbers was the poor levels 
of chick survival driven by agricultural intensification, 
especially the use of herbicides firstly and latterly insec-
ticides [57, 58]. Pesticide use reduced the number of 
insects available as food sources for the young chicks 
firstly by reducing the host plants that support these 
chick-food insects. Insecticides reduced the number 
of chick-food insects directly. This reduction in chick-
food led to the starvation of partridge chicks as they 
are heavily dependent on insect availability in a nar-
row time window, as are many chicks of other farmland 
birds [14, 15, 59–62]. Various mitigation measures to 
overcome these direct and indirect effects were devel-
oped and evaluated. This has been aided by the fact that 
long-term monitoring of the farmed environment has 
identified what NTTP will provide NTA food resources 
for the chicks of farmland birds [63]. Considering in-
field habitats, tested mitigation measures include bee-
tle banks, wildflower plots, and floristically enhanced 
grass strips [64–67]. One option, demanding less long-
term commitment to land cover change, is conserva-
tion headlands, which have been shown to restore 
invertebrate numbers [68]. In conservation headlands, 
the edges of cereal crops receive only selective or sea-
sonably restricted inputs of pesticides. Conservation 
headlands do allow farmers to use graminicides to 
remove the very worst of grass weeds but limit pesti-
cides to those that do not remove the valuable NTTP 

[63]. Installing conservation headlands, in tandem with 
beetle banks and wild bird cover, as undertaken on 
a portion of the Sussex Study since 2003, shows that 
around 15% of the total managed area was sufficient to 
restore the grey partridge populations [56, 69]. Other 
demonstration projects have used between 5 and 20% 
of habitat provision to restore grey partridge numbers 
[70, 71]. Such measures have now been made available 
(i.e., funded) in the UK’s agri-environment scheme and 
will be funded post-Brexit by the UK Government [72]. 
Other management options based on so-called sus-
tainable regenerative farming or newer agroecological 
techniques and including efficient Integrated Pest Man-
agement (IPM) are successfully minimising pesticide 
use, and might efficiently support the recovery of insect 
populations [73–75] as well.

Effects of pesticides and implications for biodiversity 
assessment
In light of the scientific evidence, including but not lim-
ited to the studies described above, the risk assessment 
of pesticides should extend beyond their direct effects 
to cover also their indirect and subsequent cascading 
effects. However, realistic quantification, particularly of 
the indirect effects, poses a major challenge due to vari-
ous uncertainties related to the multifactorial causes of 
biodiversity losses, e.g., numerous anthropogenic and 
natural stressors that are additional to the pesticide appli-
cations. Nevertheless, this challenge should not be a rea-
son to exclude risks caused by indirect effects from the 
risk assessment, especially as they are known and highly 
relevant for the achievement of the legal environmen-
tal protection goals. A sound description of the risks 
to biodiversity and the agroecosystem from pesticides 
should cover the potential impact on the diversity and 
abundance of non-target species in the whole agricul-
tural landscape. This should include the consequences of 
in- and off-field exposure and the ecological role (func-
tion) of non-target species in the agroecosystems, such 
as their supporting roles in food webs. This is all the 
more important because NTTP and NTA are generally 
exposed to several pesticides simultaneously or subse-
quently through the application of tank mixtures or via 
spray series. This multiple exposure is not explicitly taken 
into account in the prospective risk assessment, which 
is performed for each single pesticide and intended use 
[76]. Currently, one major obstacle to a more protective 
risk assessment is the inadequate description of in-field 
risks. The need for an appropriate in-field risk assess-
ment is even more important when considering that the 
in-field area accounts for one third of the entire European 
landscape and is of inestimable value to biodiversity.
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Regulatory reflections
Limitations of the risk assessment framework
In the European Union, the process for placing pesti-
cides on the market is dual: first, the approval of active 
substances at the EU level; second, the authorisation of 
pesticide products containing approved active substances 
at the national level. The rules for this process are defined 
by Regulation (EC) No. 1107/2009 [10] which states that 
pesticide products placed on the market must not exert 
harmful effects on human or animal health, nor have 
unacceptable impacts on the environment. Environmen-
tal considerations mainly focus on the impact on non-
target species, biodiversity and ecosystems. Commission 
Regulation (EU) No 283/2013 explicitly lists that ‘‘The 
potential impact of the active substance on biodiversity 
and the ecosystem, including potential indirect effects via 
alteration of the food web, shall be considered.”

The protection goals set in Regulation (EC) No. 
1107/2009 [10] imply that any risk assessments should 
consider biotic and abiotic interactions including trophic 
chain interactions. However, such a holistic view on the 
interrelationships occurring in agroecosystems is miss-
ing. The current risk assessment framework is based on 
environmental scenarios that tend to create so-called 
assessment silos. Single environmental compartments 
(air, soil, aquatic) and organism groups (e.g., birds, mam-
mals, NTA, NTTP, aquatic organisms) are assessed in 
isolation. The assessment focuses primarily on the direct 
toxic effects of single pesticide uses on these groups 
of organisms and the consideration of systematic links 
between single environmental scenarios (neither spatial 
nor temporal) is often missing. Another critical short-
coming of the current risk assessment framework is the 
insufficient consideration of the in-field risk to NTTP 
and NTA.

A need to improve risk assessment to ensure sufficient 
protection level in‑field
Guidance documents translate the legal requirements 
into practical applications within risk assessment 
schemes. However, the terrestrial guidance document 
in force [77] does not fully reflect the current scientific 
state and does not sufficiently consider the provision 
of Regulation (EC) No. 1107/2009 [10], as it dates from 
2002. EFSA has acknowledged these shortcomings in its 
review of the current state of scientific knowledge for 
the terrestrial risk assessment of non-target organisms 
exposed to pesticides [20, 78]. Both scientific opinions 
clearly highlight the importance of NTA and NTTP as 
part of the overall biodiversity of agroecosystems. They 
recognise the value of in-field areas for agricultural pro-
duction, proposing different specific protection goals 

for both in-field and off-field areas regarding NTA and 
NTTP. Additionally, the opinions emphasize the crucial 
role of NTA and NTTP as drivers of various ecosystem 
services, including ´food web support´ in in-field areas 
for species at higher trophic levels. This aligns well with 
the general protection goals of the (EC) 1107/2009 and 
related legislative documents; it represents a significant 
regulatory advancement, as the current EU risk assess-
ment framework does not adequately address the direct 
in-field effects of pesticides nor their impairment of the 
´food web support´ [77]. However, none of the opinions 
presents a methodology for carrying out such an in-
field risk assessment. In this paper, we propose a feasible 
method to close this gap within the current pesticide risk 
assessment framework.

The current terrestrial guidance document [77] defines 
NTTP as "non-crop plants located outside the treat-
ment area" for which the "continuance of populations" 
should be ensured. Accordingly, the risk assessment is 
based on studies with the pesticide products and consid-
ers only off-field exposure via spray drift – omitting the 
in-field habitat (Fig. 1). In comparison, both off-field and 
in-field risk assessments are foreseen for NTA, but in 

Off-field

directPesticide effect:

In-field

Pesticide
application

indirect

addressed not (sufficiently) 
addressed

Protection goal:

NTTP

NTA

Birds & 
mammals

NTA

Birds & 
mammals

NTTP

Fig. 1 Direct (solid arrows) and indirect (dashed arrows) effects 
of pesticides on non‑target terrestrial plants (NTTP), non‑target 
arthropods (NTA), birds and mammals in‑field (orange rectangle) 
and off‑field (green rectangle). Arrowheads indicate implementation 
(filled) or absence/insufficient implementation (unfilled) of protection 
goals in guidance documents currently in force
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our view they result in a low level of protection, mostly 
due to several shortcomings linked to the in-field assess-
ment (Fig. 1). For example, for NTA exposed in-field the 
acceptability criterium is fulfilled with up to 50% initial 
effects on reproduction or mortality in laboratory studies. 
Even greater effects are accepted if a "potential for recolo-
nisation or recovery at least within one year" is indicated 
by higher-tier field studies. However, as illustrated in the 
scientific publications cited above, chicks of farmland 
birds depend on sufficient insect availability as a food 
source within a critical few-week time window in spring 
and early summer [50, 57, 61]. This emphasises that a 
one-year NTA recovery period is too long when consid-
ering indirect effects acting via alteration of the food web. 
Moreover, as outlined by Landis [79], intensive agricul-
tural practices can lead to homogenised landscapes that 
do not contain refugia such as hedge rows and field mar-
gins. Consequently, pesticide-driven losses of NTA in-
field might not be compensated by off-field populations, 
for which the proximity of refuges is a crucial factor [80]. 
Finally, Knillmann et al. [81] discussed that the frequent 
use of broad-spectrum pesticides increases effects on 
non-target species, either directly or indirectly, due to 
the cumulative impact of multiple pesticide products, 
whereby the single contributions of co-formulants and 
adjuvants to these effects is generally difficult to deter-
mine. These landscape-scale conditions, which are not 
considered in the NTA in-field risk assessment, impede 
a realistic risk description. They question whether the 
assumption of the current in-field risk assessment, allow-
ing for potential recolonisation of the in-field habitat by 
the off-field NTA populations, is justified.

For comparison, the guidance document for aquatic 
organisms in edge-of-field surface water [82] acknowl-
edges that “none of the direct effects should lead to unac-
ceptable indirect effects” in case that direct effects are 
accepted for the recovery options (Table 14, [82]). In con-
trast, the recent EFSA guidance document for risk assess-
ment for birds and mammals [83] also acknowledges that 
“indirect effects of pesticides on birds and mammals are 
likely to be important”. However, the risk assessment pro-
posed does not cover the issue of indirect effects due to 
treatment-related shifts in food availability (i.e. altera-
tion of the food web); this issue is postponed to the future 
revision of the terrestrial guidance document.

Beyond the improvement of the current risk assessment 
framework
Improving the current pesticides risk assessment frame-
work can enhance biodiversity protection and is the focus 
of this publication. However, such improvement will not 
be enough to drive a transformation towards a more 
sustainable agriculture, as this requires more profound 

changes, including measures to reduce pesticide use and 
risk at national and farm level [84–86]. Mitigating the 
impacts of pesticides by increasing the use in contained 
environments, such as greenhouses, or relying exclusively 
on technological innovations like precision farming, is 
not sufficient to reach a more sustainable agriculture. For 
example, greenhouses and other contained environments 
reduce pesticide drift and exposure, but they may not 
decrease broader ecological impacts on wildlife due to 
habitat loss or ecosystem disruption (e.g., [87]). Similarly, 
limited advantages for the environment may be expected 
from precision farming if it is only aimed at optimizing 
existing systems for more efficiency rather than accom-
panying a real transformation towards sustainable agro-
ecosystems [88, 89].

While sustainable farming practices, including modi-
fied tillage strategies, crop diversification, and the princi-
ples of agroecology, are in development, their adoption is 
still limited. Establishing and refining guidelines or direc-
tives and providing incentives to promote sustainable 
farming techniques is necessary to facilitate their adop-
tion. Examples include the Common Agricultural Policy 
of the EU, the Sustainable Use Directive [90] and the EC 
Habitats Directive [91]. Adopting a more holistic and 
systems-based approach for ecological risk assessment, 
including better collaboration among various stakehold-
ers, is vital to develop a more sustainable agricultural 
paradigm [92–94].

There are a number of EU investments and supporting 
projects aiming at strengthening European research and 
innovation for a better protection of human and environ-
ment health from chemicals, such as projects developing 
a new paradigm of systems-based approach in environ-
mental risk assessment to move towards a future new 
generation risk assessment (e.g. in the EU Partnership for 
the Assessment of Risks from Chemicals (PARC)). These 
include the consideration of a broad range of possible 
improvements of the risk assessment to better protect 
biodiversity within and beyond the current legal frame-
work. The proposed approach in this paper adopts a sys-
tems view by integrating the impact assessment across 
taxa, providing the opportunity to link the outcome of 
the assessment to risk mitigation measures at ecosystem-
level. As the proposed method also makes use of already 
existing data, it provides an example on how systems 
thinking can be implemented within the current regula-
tory framework as well as support a transition to future 
systems-based environmental risk assessment.

Urgency for action
There is thus a great urgency for action from a scientific 
as well as regulatory point of view. Direct and indirect 
effects caused by in-field exposure need to be adequately 
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included in the risk assessment and subsequently in 
the risk management as soon as possible. Besides other 
shortcomings of the current risk assessment, as outlined 
in various documents [20, 78, 92, 93], the revision of the 
terrestrial guidance document [77] must tackle this issue. 
However, considering the efforts required for completely 
revising and implementing the new terrestrial guid-
ance document, it is imperative to establish an effective 
interim solution.

Ideally, the prospective assessment, and the effective-
ness of the subsequent implemented, risk mitigation 
measures should be verified [95] and, if needed, adjusted 
based on biological and chemical post-authorisation 
monitoring [96]. However, in the current case, effective 
measures exist to mitigate in-field risk on NTTP [97] 
and NTA as reported in the examples of scientific pub-
lications above. Therefore, the establishment of such a 
feedback system should not delay the introduction of risk 
assessment and risk management for in-field effects.

Method for assessing the risks from in‑field 
exposure
General considerations
Addressing knowledge gaps is a key challenge in pesticide 
and chemical regulations, especially in regard to environ-
mental impacts. These gaps might emerge from complex, 
often difficult to predict, effects of chemical exposure on 
the environment, leading to uncertainties and deficien-
cies in environmental risk assessment. For pesticides, the 
insufficient regulation of direct effects on in-field NTTP 
and NTA leads to the propagation of indirect effects, 
mostly due to alterations in the food web. We foresee two 
different approaches for improvement.

The first approach could be to reproduce indirect 
effects in multi-species test systems to better characterise 
their impact. Such complex test systems exist for some 
compartments and are sometimes used to refine risks 
identified with standard laboratory tests, e.g., aquatic 
mesocosms or terrestrial model ecosystems. However, 
although more realistic, these studies are not part of the 
first-tier data requirements and they do not reproduce 
the whole food chain of field communities. Their assess-
ment stays restricted to the environmental compartment 
of concern. The potential cascading effects on groups 
of organisms from other environmental compartments 
and from higher trophic levels are ignored (e.g. no fish 
in mesocosm, no mammals in terrestrial model ecosys-
tems). Addressing this gap with an assessment method 
that attempts to fully model the complex interactions 
between trophic levels and aims to accurately predict 
all possible indirect effects would be hardly feasible and 
impractical for validation.

The second approach—which is in our opinion the sim-
plest way to address indirect effects in food webs—could 
be to better regulate direct effects, for which information 
from standard laboratory tests is available. Ideally, the 
assessment of direct effects should be calibrated, by the 
implementation of appropriate assessment factors cover-
ing for field situations, in such a way that possible indi-
rect effects are also prevented. The assessment schemes 
established in environmental risk assessment for the 
authorisation of pesticides all aim to follow this second 
approach.

Proposed method
With the present proposed method (Fig.  2) we expand 
the focus of the current risk assessment to also cover the 
overall impact on the ecosystem and biodiversity. The 
approach is to consider the in-field effects of pesticides 
in such a way that the impairment of NTTP and NTA 
as drivers of ´food web support´—a relevant ecosystem 
function—can be appropriately addressed in product 
authorisations. In our method, this aim is operationalized 
by considering a simplified but also scientifically reliable 
relationship:

In the first step, we consider that if the available tox-
icity data of the pesticide product indicates toxic effects 
of more than 50% on in-field NTTP or/and NTA species 

Check toxicity

Potential direct and 
indirect effects due to

in-field exposure

yes

yes

Acceptable effects
due to in-field

exposure

no

no

NTTP/NTA
effect > 50% at field

application rate?

More than one order
(NTTP) or family (NTA) 

affected?

Check selectivity

Fig. 2 Proposed assessment scheme of direct and indirect effects 
of in‑field exposure. The scheme involves two steps: Checking 
for toxic effects on non‑target terrestrial plants (NTTP) or non‑target 
arthropods (NTA) and evaluating if these effects extend to a broader 
range of species. If both conditions are fulfilled, potential direct 
and indirect effects due to in‑field exposure are indicated
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for the intended field rate, a potential for unintentional 
adverse effect on species at higher trophic level and 
overall biodiversity has to be expected. Decision-rele-
vant effects are based on endpoints reported in the cur-
rent data requirements, i.e., reproduction and mortality 
for NTA and biomass, phytotoxicity and emergence for 
NTTP. The effect threshold of 50% has the aim of being 
on the one hand not overly conservative, but on the other 
hand not resulting in clear ‘‘false negative’’ results failing 
to identify effects in the field. The effect threshold of 50% 
reflects the current harmonised approach in the present 
risk assessment. In the second step, a high likelihood for 
a significant impairment of the ´food web support´ is 
concluded, if the product under evaluation has a broad-
spectrum activity, i.e., if the effects on NTTP or NTA 
communities are non-selective. This may occur if avail-
able toxicity or efficacy data show more than one NTTP 
family or NTA order is affected, potentially impacting a 
range of food items for species at higher trophic levels.

For low-risk uses (according to Annex II, point 5 of 
Regulation (EC) No. 1107/2009 [10]) or for the applica-
tion of pesticides at a smaller scale or with lower inten-
sity, such as grassland, home gardening and specific 
single-plant treatments (irrespective of the crop), poten-
tial direct and indirect effects cannot be excluded (e.g., 
[98]). However, since a lower risk is expected in this 
case due to a lower probability of sink-source effects at 
the landscape scale, we currently do not recommend 
applying the proposed method to low-risk and smaller-
scale uses. Further considerations may be required in the 
future.

We believe that the proposed method is suitable for 
evaluating both direct and indirect effects resulting 
from in-field exposure within the current risk assess-
ment framework. Additionally, the proposed method 
is designed to meet the current data requirement and 
other legislative requirements set in Regulation (EC) 
No. 1107/2009 [10] without requiring additional testing. 
It also provides a feasible assessment for risk assessors 
since no additional expert knowledge is needed. How-
ever, there are several other crucial issues directly linked 
to the established risk assessment framework that remain 
unresolved by the proposed method. The main limita-
tions are detailed in the coming section.

Limitations of the proposed method
The proposed method aims to address the alteration of 
the food-web support of NTA and NTTP in-field within 
the existing regulatory framework to fill a significant 
gap in the current risk assessment. However, it does not 
address several inherent shortcomings of the regulatory 
framework currently in force. These include:

(i) The limited scope of the effects and exposure 
routes assessed. Current risk assessments consider 
only certain effects and exposure routes relevant to 
the maintenance of NTA and NTTP populations 
[77]. For instance, they do not include oral exposure 
by ingestion of contaminated food, direct overspray 
and growth effects for NTA, nor run-off exposure 
and reproductive endpoints for NTTP [20, 78].
(ii) The restricted information on species sensitivities. 
The two standard NTA species tested at Tier  1—a 
mite and a parasitic wasp—are used as surrogate spe-
cies for the invertebrate kingdom, raising concern 
about their ecological representativeness. Additional 
species are only assessed if a risk is indicated in the 
first-tier. For plants, assessments typically include 
at least six species, mostly crops, thereby neglecting 
wild species and groups like ferns, mosses, lichens, 
and woody species [78].
(iii) The impact of additional environmental stress-
ors. Endpoints used for risk assessments are typi-
cally from single-species tests performed under ideal 
laboratory or greenhouse conditions. These tests do 
not account for intra and inter-species interactions, 
predators, and other stressors. Consequently, these 
ecotoxicological studies do not adequately reflect the 
potential increased sensitivities of species in natu-
ral habitats compared to laboratory conditions, as 
demonstrated in aquatic environments [99] and sup-
ported by studies performed with terrestrial plants 
[100, 101].
(iv) The consideration of the application of a single 
pesticide product in isolation and in standardized 
environmental scenarios, excluding the effects of 
spray series, tank mixtures, and specific landscape 
contexts.

Addressing these shortcomings would require signifi-
cant fundamental changes beyond introducing a new 
methodological approach [93]. As these limitations are 
currently not addressed, uncertainties associated with 
the proposed method exist. For instance, the proposed 
50% effect threshold might result in much higher effects 
under field situations. In our view, setting the effect 
thresholds to 50% ensures a high likelihood of identifying 
pesticides causing indirect effects, while minimizing the 
risk of false negatives. We acknowledge that this thresh-
old is higher than the recommendations of the uniform 
principles laid down in Regulation (EU) No 546/2011 [95] 
that state that effects on beneficial arthropods should not 
exceed 30%. Broad-spectrum insecticides and herbicides, 
however, are assumed to result in more than 50% effect at 
field application rate, as shown by efficacy studies. More-
over, given the steep slope of dose–response relationships 
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around the effective concentration that produces a 50% 
response, the difference between 50 and 30% effect is not 
expected to be of relevance. Therefore, the 50% threshold 
has also been chosen as the most pragmatic approach, 
since 50% effect levels are currently derived and reported 
within the risk assessment framework [78]. It should be 
noted that this threshold falls within the range of the tol-
erable magnitude of effects proposed in EFSA 2014 [20] 
for the assessment of non-target arthropods as food web 
support (i.e., 35% to 65% of effects for up to four weeks 
outside the breeding season).

Impact analysis
For an impact analysis, UBA assessed products submit-
ted for authorisation in Germany in the period from 
05.11.2018 to 04.09.2019. This time period was pragmati-
cally chosen, as the product assessments according to the 
proposed assessment scheme were already available. The 
impact analysis shows that from a total of 106 products, 
4 out of 30 fungicides, all 64 herbicides and 10 out of 12 
insecticides were identified as having potential direct 
and indirect effects due to in-field exposure and, thus the 
authorisation of these products would warrant risk miti-
gation (Table S1). These results are predictable, given that 
the modes of action for most herbicides and insecticides 
are inherently broad-spectrum. Pesticide products con-
taining microorganisms are an exception, as they do not 
usually have broad-spectrum adverse effects on NTTP 
and NTA. Accordingly, the two insecticides not identified 
in the impact analysis as having the potential for exert-
ing indirect effects are (i) the product that contains the 
bacterium Bacillus thuringiensis, and (ii) flonicamid, that 
is specifically acting against aphids. Some fungicides also 
have severe, broad-spectrum direct effects on NTTP and 
NTA due to in-field exposure. Due to data confidential-
ity, no details on the toxicity data on non-target plants 
and arthropods related to pesticide product authorisa-
tions can be presented here. The supporting information 
includes details on the active substances in the products 
(Table  S1) and specific examples based on representa-
tive formulations from publicly available active substance 
evaluations (Table S2).

Conclusions
To fulfil the protection requirements of the EU pesticide 
legislation, we recommend that the authorities (i.e., the 
European Commission, EFSA, competent authorities of 
Member States, and others) should evaluate and accept 
these outlined science-based reflections to better protect 
biodiversity from the in-field exposure to pesticides and 
to satisfy the protection requirements of the EU pesticide 

legislation. As a concrete regulatory measure, we advo-
cate for the adoption of the proposed method to assess 
the risks of in-field exposure to NTTP and NTA. We also 
suggest conducting a second workshop in the near future 
involving a broader range of participants, including risk 
managers and farmers, to discuss the feasibility of imple-
menting the risk mitigation measures presented in this 
report.

Main outcomes of the workshop

• Need for a risk assessment covering for direct and 
indirect effects

Considering the general biodiversity losses across 
agricultural ecosystems and beyond, the regulatory 
framework should, as soon as possible, improve the 
risk assessment for in-field exposure to better cover 
direct effects and to include indirect effects on all 
trophic levels.

• Suitability of the proposed assessment to address the 
impact on biodiversity and ecosystem

Within the existing regulatory framework and with 
currently available data, the evaluation of direct 
effects on plants and arthropods of a single pesticide 
use occurring at field rate, combined with the selec-
tivity of a pesticide, is an expedient option to address 
possible indirect effects and their impact on biodiver-
sity and ecosystem due to infield exposure.

Available ecotoxicological data for NTTP and NTA, 
in addition to the information provided in the effi-
cacy studies, should be used to characterise, in a 
standardised transparent assessment method, the 
impact on biodiversity and ecosystem due to in-field 
exposure to uses of the individual pesticide (as in 
1107/2009).

• Implementation of the proposed assessment scheme

Despite the challenges (e.g., selected threshold value 
might not be sufficiently protective, not covering all 
indirect effects; representativeness of tested species 
in general) raised during the workshop, the proposed 
approach would be a workable assessment scheme 
within the current risk assessment. The successful 
implementation of the method is one first step in 
reducing the in-field impact of pesticide products on 
biodiversity and ecosystems.
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Further recommendations

• Value of agroecosystem and farmland species

Cropped fields are a relevant part of the agroecosys-
tem. They are not only production areas for food and 
feed but also habitats for farmland and other species. 
Those farmland species—including segetal flora, soil 
fauna, insects, and farmland birds—are a significant 
fraction of the biodiversity of arable landscapes that 
cover a substantial part of Europe. Farmland species 
also have functional roles in agroecosystems. Some 
are considered pest species (of the crops); most are 
essential to support the agroecosystems (e.g., polli-
nation, natural biocontrol). Some of these farmland 
species are the focus of nature conservation demands 
and efforts.

• Pesticides impact food webs in terms of direct and 
indirect effects

Owing to their low selectivity, many pesticides 
impact not only target species but also many non-
target species. Effects can be direct or indirect, for 
instance via food web interactions or changed com-
petition. This makes pesticides one of the main rel-
evant stressors within a multitude of anthropogenic 
and natural stressors contributing to a continuous 
decline of farmland species recorded over the last 
half-century.

• Keys of scientifically sound assessment of pesticides’ 
risks

A scientifically sound assessment of pesticides’ risks 
to biodiversity and the agroecosystem should cover 
(i) the potential impact on the diversity and abun-
dance of non-target species due to in-field exposure, 
(ii) the functional role of non-target species in the 
agroecosystems (e.g., food web support), and (iii) the 
delivery of ecosystem services by non-target species.

• Need for a better description of the risk

For risk managers to make sound decisions, the risk 
assessment should provide all information on the 
impact of single pesticide uses due to their applica-
tion in-field. This information should be complete 
to allow the identification of the necessary risk miti-
gation measures for specific uses. However, this is 
not yet the case. For NTTP and NTA, the descrip-

tion of the in-field risks associated with direct effects 
is either missing or insufficient, respectively. The 
potential indirect effects via food web interactions 
are not addressed at all. Hence, the guidelines for a 
risk assessment in the process of the authorisation of 
pesticides should be supplemented accordingly.

• Possible compensation measures

There exist effective risk mitigation measures—
including compensation measures—to be applied 
in-field or off-field for risks arising from in-field 
pesticide exposure. For instance, conservation head-
lands and other habitat provisions investigated in the 
Sussex Study and in other areas show that between 
5 to 20% of the total managed area, depending on 
the quality of the management, are sufficient for risk 
mitigation. The applicability of these results to other 
areas of Europe is a matter of debate. Their imple-
mentation could avoid a non-authorisation due to 
unacceptable effects.

• Other deficits of the current pesticides risk assess-
ment framework

The current risk assessment framework is character-
ised by several issues, which partly hamper its abil-
ity to identify risks to biodiversity and the ecosystem. 
These include: potential shortcomings to assess the 
persistence of pesticides and their transformation 
products; changed degradation rates of pesticides in 
mixtures compared to those of individual substances; 
inadequate evaluation of mixture toxicity (sequential 
application of pesticide products in spray series and 
tank mixtures) and potential effects of co-formu-
lants and adjuvants; non-systematic consideration 
of stressors other than pesticides, e.g., both natural 
stressors such as interactions between species and 
anthropogenic stressors such as habitat fragmenta-
tion and climate change; possible non-representa-
tiveness of standard test species for assessing the risk 
to the protection goal; non-disclosure of all relevant 
information on pesticide safety data to authorities.

• More actions needed for a sustainable use of pesti-
cides

Improvement of the current regulatory framework 
of pesticides based on the authorisation of single 
pesticide uses is an important component, but is 
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not enough to drive a transformation towards more 
sustainable agriculture. Additionally, more profound 
changes including measures outside the current 
scope of the pesticide regulation are necessary. Some 
examples are given below:

 (i) Reducing the use and thus also the impact of pes-
ticides is an important measure. But doing this by 
increasing their use in enclosed structures (e.g., 
greenhouses and crops under cover) is not a solu-
tion, nor is the sole reliance on technological 
advances such as precision farming;

 (ii) More sustainable farming practices are under 
development but not yet widely used (e.g. culture-
dependent changes in tillage, crop diversification, 
agroecology);

 (iii) The development of guidance/directives for 
more sustainable farming practices as well as the 
improvement of their use are needed.

• Advantages of using the current dataset

The approach we proposed uses the available eco-
toxicological data and therefore does not increase 
the regulatory burden, nor does it entail additional 
animal testing.

• Complexity

From a regulatory and scientific perspective, the 
risk assessment should be as simple as possible and 
as complex as necessary, which is largely fulfilled by 
the proposed method.

• Risk communication

The risk assessment should provide information on 
the options and level of mitigation needed in-field 
for the pesticides under evaluation.

• Feedback loop/monitoring

To establish a feedback system of the prospective 
assessment and the effectiveness of the risk mitiga-
tion measures implemented in the courses of the 
authorisation, biological and chemical monitor-
ing of the agroecosystems is needed and can be 
established in parallel to the risk assessment. The 
establishment of such a feedback system should not 
delay the introduction of risk assessment and risk 
management for in-field effects.

Any monitoring action should also require that 
available information on pesticide use and applied 
mitigation measures be made publicly available, 
ideally following FAIR (findability, accessibility, 
interoperability, and reusability) data principles.

• Suggestions for managers

In the context of the revision of the terrestrial guid-
ance document (SANCO/10329/2002), it is recom-
mended that risk managers consider that the pro-
tection goals for NTTP and NTA should cover the 
indirect effects/food web support.

Methods
A literature review was conducted to identify pertinent 
information on the impact of pesticides on the agroeco-
system, farmland species, and the impact of pesticides. 
The discussion on these issues and possible improve-
ments to the regulatory system took place at a workshop 
in Dessau-Roßlau in July 2023. This event was organised 
by the German Environment Agency (UBA), in collabo-
ration with the Game and Wildlife Conservation Trust 
(GWCT) and the German Academy of Sciences (Leopol-
dina). Participants included European scientists and reg-
ulatory experts from EU member states and Switzerland 
and the European Environment Agency (EEA). In the 
role of observers participated the European Food Safety 
Authority (EFSA) and the German Federal Office of Con-
sumer Protection and Food Safety.
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