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Abstract
Background The quest for candidate probiotics and prebiotics to develop novel synbiotics for sustainable and 
profitable fish farming remains a major focus for various stakeholders. In this study, we examined the effects of 
combining two fungal probiotics, Saccharomyces cerevisiae and Aspergillus niger with extracts of Jerusalem artichoke 
and white button mushroom to develop a synbiotic formulation to improve the growth and health status of zebrafish 
(Danio rerio). An initial in vitro study determined the most effective synbiotic combination, which was then tested in a 
60-day in vivo nutritional trial using zebrafish (80 ± 1.0 mg) as a model animal. Four experimental diets were prepared: 
a control diet (basal diet), a prebiotic diet with 100% selected mushroom extract, a probiotic diet with 107 CFU of 
S. cerevisiae/g of diet, and a synbiotic diet with 107 CFU of S. cerevisiae/g of diet and 100% mushroom extract. As 
readouts, growth performance, survival, digestive enzyme activity and innate immune responses were evaluated.

Results In vitro results showed that the S. cerevisiae cultured in a medium containing 100% mushroom extract 
exhibited the maximum specific growth rate and shortest doubling time. In the in vivo test with zebrafish, feeding 
them with a synbiotic diet, developed with S. cerevisiae and mushroom extract, led to a significant improvement in 
the growth performance of zebrafish (P < 0.05). The group of zebrafish fed with the synbiotic diet showed significantly 
higher levels of digestive enzyme activity and immune responses compared to the control group (P < 0.05).

Conclusion Taken together, these results indicated that the combination of S. cerevisiae and mushroom extract forms 
an effective synbiotic, capable of enhancing growth performance and immune response in zebrafish.
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Background
Research into the gut microbiota of farmed fish dates 
back to the early half of the 20th century but more 
recently, interest in this area has grown at a significant 
rate coinciding with the expansion of the aquaculture 
industry. Several lines of evidence suggest that a well-
functioning gut with a balanced microbiota helps fish 
obtain essential nutrients necessary for growth and devel-
opment [1–3]. The gut-associated microbiota consists of 
a diverse community of microorganisms, including bac-
teria, fungi, and protozoa, and they play important roles 
in various gut functions, such as digestion, metabolism, 
and immune regulation and protection against pathogens 
[4]. Imbalances in the gut microbiome, known as dysbio-
sis, caused by factors like antibiotics, poor diet, stress, or 
other factors, can result in the onset of poor growth and 
health, and the occurrence of diseases [5–7]. Thus, main-
taining a well-functioning gut and a balanced gut micro-
biome are becoming a major focus of study [8, 9]. To 
promote gut health in fish, several strategies have been 
implemented over the past few years. One such promis-
ing approach is the use of synbiotic formulations combi-
nation prebiotics and probiotics that work synergistically 
to promote a healthy gut microbiome and enhance the 
overall performance of the organisms [10–13]. In farmed 
aquatic organisms, there is evidence suggesting the posi-
tive effects of synbiotics on the microbial communi-
ties in the fish gut, thereby causing beneficial effects on 
the health and growth performances of the fish, e.g., by 
averting the adverse effects caused by the infection stress, 
and by elevating the activities of the digestive enzymes, 
which eventually contribute to improved feed utilization 
and growth performances [14–19]. As a source of probi-
otics in the synbiotic formulation, a wide range of Gram-
negative and Gram-positive bacteria have been examined 
and some were successfully used in the development of 
the formulation [20–22].

Recently, there has been a burgeoning interest in incor-
porating fungal-based probiotics in synbiotic formula-
tions for farmed aquatic animals, which is driven by their 
multifaceted benefits [23]. From promoting a balanced 
gut microbial environment that aids in the digestion 
and absorption of nutrients and boosting immunity to 
offering a sustainable and natural alternative to unsus-
tainable chemotherapeutics, fungal probiotics present a 
promising avenue for improving the growth and health 
performances in aquaculture species [24]. Fungal-based 
probiotics were shown to improve growth performance, 
feed efficiency, immune responses, and disease resis-
tance in both farmed fish and shrimps, indicating their 
potential effectiveness as prophylactic agents against 
future diseases [25–27]. For instance, in whiteleg shrimp 
(Penaeus vannamei) feeding probiotic Aspergillus niger 
at a dose of 1.0–1.5  g/kg of diet for 56 days resulted in 

a significant improvement in growth indices, immunity, 
and gut microbiota [28]. This ultimately led to increased 
resistance of the shrimp against the pathogenic bacte-
rium Vibrio parahemolyticus [28]. In another study car-
ried out on common carp (Cyprinus carpio) feeding a 
diet supplemented with A. niger for 60 days markedly 
improved the growth, immunity, digestive enzyme activ-
ity, and hematological indices of the fish [29]. Overall, the 
research on fungi-based probiotics highlights the poten-
tial benefits of using them as an important supplement 
for improving gut health and performance in farmed fish 
[30–32].

Prebiotics are non-digestible oligosaccharides that 
selectively stimulate the growth and activity of ben-
eficial microorganisms in the gut [33]. The metabolic 
byproducts produced by these microorganisms can 
have positive effects on the host’s health [34, 35]. The 
most studied prebiotics in fish include inulin, mannan 
oligosaccharides, fructooligosaccharides, galactooligo-
saccharides, and nano-oligosaccharides [36–41]. These 
types of prebiotic components are naturally present in 
various plant and microbial species, such as Jerusalem 
artichoke, mushrooms, cereals, leeks, asparagus, garlic, 
onion, and banana [42–45]. It is noteworthy to men-
tion that the utilization of food-grade prebiotic com-
pounds obtained from natural sources as functional feed 
additives in the aquafeed industry is constrained by the 
expenses associated with the extraction and isolation 
procedures. To tackle the issue of high production costs 
and minimize the waste generated from the isolation and 
extraction process, there has been a growing emphasis 
on investigating the direct utilization of raw extracts as 
potential sources of natural prebiotics [45]. Such natural 
prebiotics have been shown to serve as good substrates 
for fermented microorganisms, such as bacteria (e.g. 
Lactobacillus sp) and yeast [46–51]. In a previous study, 
we examined the effects of combining extracts from the 
Jerusalem artichokes (Helianthus tuberosus) and button 
mushrooms (Agaricus bisporus) with two different strains 
of bacterial probiotics (Lactobacillus acidophilus and L. 
delbrueckii subsp. Bulgaricus) on farmed fishes. The main 
aim of the study was to develop a synbiotic formulation 
that could improve the growth, survival, and reproduc-
tive performances of the fish [45]. We used zebrafish (D. 
rerio) as a model organism to conduct the study. The 
results showed that the combination of L. acidophilus 
or L. bulgaricus with mushroom extract caused positive 
effects on the growth and reproductive performances of 
the zebrafish [45]. In the current study, we used two fun-
gal probiotic strains: Saccharomyces cerevisiae (ATCC-
2601) and Aspergillus niger (ATCC-1004), to examine 
their interaction with the natural prebiotics, specifically 
Jerusalem artichoke and white button mushroom. We 
conducted an in vitro study to evaluate the ability of the 



Page 3 of 21Hosseini et al. BMC Microbiology          (2024) 24:331 

extract to promote the growth of these two probiotic 
strains. Subsequently, we identified the most promising 
prebiotic candidate and combined it with each probi-
otic strain to explore potential synbiotic combinations. 
To verify the efficacy of the synbiotic preparations, we 
performed an in vivo experiment using zebrafish as the 
model organism. Our main focus was to evaluate growth 
traits, survival rates, and immune status as measurable 
indicators of the synbiotic effects. Through the analysis 
of these outcomess, we aimed to determine the impact of 
the synbiotic combination on the overall health and per-
formance of the zebrafish.

Materials and methods
Fungal strains and Inoculum preparation
Two fungal strains, Saccharomyces cerevisiae (ATCC-
2601) and Aspergillus niger (ATCC-1004) were obtained 
from Persian Type Culture Collection, Tehran, Iran. 
Stock cultures were prepared by mixing a pure culture 
of the lyophilized strain, grown in Sabouraud Dextrose 
(SD) Broth medium (Merck, Darmstadt, Germany) for a 
maximum duration of 72 h as previously described [52]. 
Briefly, stock cultures were separately inoculated in flasks 
containing the mentioned medium and incubated on a 
shaker incubator (800 x g) at 30ºC for 72  h. Inoculums 
were prepared by inoculating the 1  ml of fungus strain 
in 100  ml of SD broth (1% v/v) followed by incubation 
at 30  °C for a maximum duration of 72 h. First, the pH 
of the culture medium for A. niger and S. cerevisiae was 
adjusted to 4 and 5, respectively using 1  N H2S04 [52]. 
The media were then sterilized by autoclaving at 1210C 
for 15  min. For inoculation, we used a fresh volume of 
each microorganism.

Fungal growth analysis
The growth of S. cerevisiae and A. niger was monitored 
by measuring the optical cell density using a UV/Visible 
spectrophotometer at 600  nm (Shimidzo, Japan) [53]. 
The measured values were plotted on standard growth 
curves. The maximum specific growth rate during the 
exponential growth phase was calculated following the 
equation of Kask et al. [54]:

µ (t-t0) = Ln N-LnN0.
where t = time, N = optical density at the end of the 

exponential growth phase (t), N0 = optical density at the 
beginning of the exponential growth phase (t0), µ = spe-
cific growth rate constant (h− 1).

The doubling time was determined by the equation: 
Td= Ln2/µmax, where, µmax - maximum specific growth 
rate, td- doubling time.

Preparation of natural extracts as prebiotic
The natural ingredients, Jerusalem artichokes (H. 
tuberosus; hereafter referred to as JA) and white button 

mushrooms (A. bisporus; hereafter referred to as WBM) 
were procured from a private company in Iran (WBM: 
Dorrin company Tehran, Iran. and JA: Sanmive company, 
Tehran, Iran). Extracts prepared from these ingredi-
ents were used as sources of prebiotics. The preparation 
of the extracts was carried out following the procedure 
previously optimized by Zakariaee et al. [45]. Firstly, the 
ingredients were washed, dried, and sliced into small 
pieces. Subsequently, they were suspended in 0.5% (w/v) 
citric acid solution for 15 min to prevent browning. The 
ingredients were then further dried in an oven at 50˚C 
for 48  h. The dried samples were ground in a grinder. 
The extraction process was performed using the soak-
ing method described by Harborne [55]. Briefly, 100 g of 
each dry powder was mixed with 1  L of distilled water 
and the mixture was kept in the dark for 48 h. After that, 
the resulting mixture was subjected to centrifugation 
(10 000 x g at 4˚C, 15 min) and the resulting precipitate 
was discarded [56]. Finally, the supernatant was filtered 
using a 0.22 μm syringe filter and used for preparing the 
desired concentration of prebiotics.

In vitro analysis of prebiotic properties of extracts
JA and WBM extracts were added to the glucose-free SD 
broth/agar medium at different concentrations (2, 6.25, 
12.5, 25, 50, 75, and 100%). The SD broth/agar medium 
supplemented with glucose (SDG) as a carbon source 
served as a positive control. The glucose-free SD media 
(Mirmedia, Iran) containing JA (SDJ) or WBM (SDM) 
was used to cultivate the probiotic strains. The S. cerevi-
siae and A. niger were inoculated in 50 ml of the SDJ or 
SDM broth at a concentration of 107 CFUs/ml [47]. The 
pH of the media was adjusted to 4.5-5.0. The solutions 
were incubated on shaker (Incu-Shaker™ 10 L, Korea) at 
30 ˚C for 120 h for SC and 160 h for AN under aerobic 
conditions. After incubation, the cell count was deter-
mined using a spectrophotometer (Shimidzo, Japan) by 
measuring the optical density at 600 nm [45, 52]. A sche-
matic representation of in vitro experimental design is 
shown in Fig. 1A.

Determination of viable S. cerevisiae cells
To determine the number of viable cells in CFU/ml, the 
samples were subjected to serial dilutions from 101 to 
106 CFU/ml and plated onto SD agar supplemented with 
the most effective concentration of prebiotic extracts 
obtained from the in vitro tests. Volumes of 100, 50, 25 
and 10 µL were evenly spread on SD agar plates. The 
Petri dishes were then incubated at 30  °C for 72 h, with 
daily monitoring for signs of growth. Once visible growth 
was detected, the colonies were counted as previously 
described [57].
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Determination of A. niger cell dry weight
Due to the complete coverage of the culture plate surface 
by colonies of A. niger, it was difficult to accurately count 
the individual surface colonies. Therefore, an alternative 
and complementary method, measuring the dry weight 
of cells, was employed to determine the growth as an 

alternative to CFU/ml [52]. For A. niger, cells were col-
lected by centrifugation at 4000 g for 30 min, followed by 
filtration using Whatman filter No. 1. The filtered solu-
tion was then washed with distilled water to remove 
any residual substrates and subsequently dried in the 
hot air oven at 70 °C. The weight of the filter paper was 

Fig. 1 Growth of Saccharomyces cerevisiae and Aspergillus niger in presence of mushroom or artichoke extract.  Growth curve of A. niger and S. cerevi-
siae in medium containing mushroom or artichoke extract (2, 6.25, 12.5, 25, 50, 75 and 100%) as the only carbon source. A and B: growth of the two fungal 
strains in presence of artichoke extract. C and D: growth of the two fungal strains in presence of mushroom extract. Data are the mean of three replicates 
(n = 3). Positive control: Sabouraud dextrose broth medium with the standard amount of glucose; negative control 1: Free glucose Sabouraud dextrose 
broth medium containing a concentration of 100% of plant extract without inoculation fungi; negative control 2: Free glucose and plant extract (as a 
prebiotic) Sabouraud dextrose broth with fungi
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measured before filtering the solution, and after drying, 
the combined weight of the filter paper and cells was 
measured. The cell dry weight was calculated as follows: 
Cell dry weight = weight of filter paper and cell after dry-
ing – weight of filter paper only, as previously described 
[52].

Final pH of the culture medium
The final pH of the resulting fermented broth was mea-
sured using pH meter (Mettler- Toledo AG, 8603 Schw-
erzenbach, Switzerland) [58, 59].

Diet preparation
A commercial diet sourced from the Blue Line Company 
(Italy, Almenno San Bartolomeo) was used as the basal 
diet, and it served as the basis for the experimental diets. 
The proximate composition of the basal diet is mentioned 
in Table 1. Based on the outcome from the in vitro studies 
(see Fig. 1A), we selected only S. cerevisiae and designed 
four experimental diets: Diet 1 served as the control diet, 
Diet 2 consisted of the basal diet supplemented with 
1% WBM extract, Diet 3 included the basal diet supple-
mented with S. cerevisiae at a concentration of 107 CFU/g 
of diet, and Diet 4 combined the basal diet with S. cere-
visiae at 107 CFU/g of diet along with 1% WBM extract. 
The supplements were carefully sprayed onto the feed, 
manually mixed, and each experimental diet was coated 
with 5% gelatin. To avoid any potential effects of gelatin, 
the control diet was also coated with 5% gelatin. Subse-
quently, all diets were dried at room temperature (25 °C) 
in a clean environment and stored at 4 °C until use. The 
diets were prepared every week throughout the feeding 
trial, and random samples of diets containing probiot-
ics were analyzed for microbial viability by culturing in 
SD broth/agar, following the methodology described by 
Zakariaee et al. [45]. Briefly, 1  g of experimental diets 
was cultured in 100  ml of standard broth media (SD) 
and incubated at 30  °C for 72 h. Subsequently, a known 

volume of the culture was transferred to SD-agar-based 
media and cultured under the same conditions. Once 
visible growth was observed, the colonies were verified 
based on visual observation under microscope and were 
counted following standard procedure [45, 60].

Experimental animals and design
Zebrafish (Danio rerio) larvae were obtained from a pri-
vate farm in Gorgan, Golestan province, Iran. The larvae 
were acclimatized to the experimental conditional for a 
period of two weeks. Throughout this acclimatization 
phase, the larvae were fed ad libitum with a basal diet. 
Regular monitoring was conducted to assess the health 
and performance of the larvae. No mortality was recorded 
during the acclimatization period. After the two-week 
acclimatization, a total of 240 larvae, regardless of gender, 
with an average initial weight and length of 80 ± 1.0  mg 
and 16.0 ± 0.3  mm, respectively, were randomly divided 
into four experimental groups (diets 1 to 4 as mentioned 
above). Each group was maintained in three replicates, 
with 20 fish stocked in an aquarium (12 aquaria with a 
capacity of 60 L, containing 30 L of water). For details of 
the experimental design, please refer to Fig. 1B. Continu-
ous aeration was provided to all the aquaria throughout 
the culture period. The larvae were fed three times per 
day (08:00, 12:30 and 18:00 h) at a rate of 5% of the body 
weight for 60 days [37, 60–62]. Approximately 25% of the 
water in each tank was replaced after removing uneaten 
feed and fecal matter, which was siphoned daily. The 
experimental conditions were conducted following the 
specifications outlined in Table  2 [45, 63]. No mortality 
was observed during the feeding period. The handling 
and maintenance of the zebrafish larvae adhered to the 
ethical guidelines for in vivo experiments set forth by the 
Golestan University of Medical Sciences. This accredita-
tion complies with accepted national and international 
ethical norms and principles for biomedical research, as 
well as the guidelines and protocols of the Ministry of 
Health and Medical Education of the Islamic Republic of 
Iran (Approval ID: IR.GOUMS.REC.1397.262). The sche-
matic representation of in vivo experimental design is 
presented in Fig. 1B.

Sample collection and growth analysis
At the end of the feeding trial, the growth and survival 
of the fish were measured with precision levels of 0.001 g 

Table 1 Chemical components of the using diet for the 
experiment (blue line/Italy)
Chemical composition (%)
Dry matter 0.5
Crude protein 60
Crude lipid 17
Ash 10.5
Mineral premix %
Na total 0.5
Ca total 1.5
P total 1.8
Vitamin premix in per kg of feed
A 1000 Ul
D3 1000 Ul
E 300 mg/kg

Table 2 Water quality parameters during the experiments
Parameters Temper-

ature 
(°C)

pH Total 
hardness
(mg L− 1)

Dissolved 
oxygen
(mg L− 1)

light-
dark 
cycles 
(h)

Range 25 ± 2 7 ± 0.2 300 ± 10 7.1 ± 0.9 14 − 10
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and 1 mm, respectively [45], and later calculated the fol-
lowing standard formulae [64, 65]:

Weight gain percentage (%) = (W2 (mg) -W1 (mg)) / W1 
(mg) × 100.

Specific growth rate (% day− 1) = (LnW2-LnW1) × 100/t 
(day).

Food conversion ratio = feed intake (mg)/weight gain 
(mg).

Condition or K factor (mg/mm3) = final weight (mg) / 
final length (mm)3 × 100.

Protein efficiency ratio = (body weight gain (mg) /pro-
tein intake (mg).

Survival rate (%) = number of fish survived after 60 days 
/initial number of fish stocked × 100.

Where W2, W1 and t represent final weight (mg), initial 
weight (mg) and the trial period (day), respectively.

Following a period of 60 days, fish in each tank that 
were not fed for 24  h, were randomly sampled (10 fish 
per aquarium /30 fish per treatment) and immediately 
anesthetized using a solution of 200 mg of clove powder 
dissolved in 1 L of water [45]. Either whole fish or entire 
intestine was sampled as described in the sections below 
for further analysis.

Intestinal digestive enzyme activity
The colorimetric measurement for the activities of intes-
tinal digestive enzymes, namely protease, lipase and amy-
lase, was conducted following the protocol described by 
Ashouri et al. [66]. To perform this analysis, the entire 
intestine was collected from nine fish (three fish per rep-
licate per treatment) that were starved for 24 h. The fish 
were transferred to the microbiology laboratory, where 
they were euthanized with 500 mg L− 1 clove powder and 
dissected [45]. The intestine was removed, rinsed using 
distilled water, dried with paper towels, and homoge-
nized with 30 g of tissue in 70 mL of distilled water using 
a homogenizer (Digital Disperser, IKA’s ULTRA-TUR-
RAX, Germany). Subsequently, the samples were centri-
fuged at 10,000 g for 25  min at 4  °C [63]. The resulting 
supernatant was then immersed in liquid nitrogen and 
stored at -80 °C until further analysis [66].

The activities of amylase, lipase, and protease were 
measured using starch, α-naphthyl caprylate, and azo-
casein as substrates, respectively. Measurements were 
made using a UV spectrophotometer (Shimidzo, Japan) 
at specific OD: 550  nm for amylase, 540  nm for lipase, 
and 366  nm for protease [63, 66]. The specific enzyme 
activity was expressed as enzyme unit (U) per gram of 
protein (g protein− 1).

Whole-body sample preparation
To prepare whole-body samples, we followed the previ-
ously described method [67]. Briefly, a total of 9 fish (3 
fish per replicate per treatment) were randomly collected 

and anesthetized as described above. The entire body of 
each fish was homogenized in a sterile falcon tube con-
taining 25mM Tris − HCl buffer (pH 7.2). The protocol 
described by Pedroso et al. [68] was employed for the 
subsequent measurements. The homogenized fish sam-
ples were centrifuged at 4000 g at 4  °C for 15  min. The 
resulting supernatant was carefully collected, divided 
into smaller aliquots, transferred into clean sterile 
microtubes, and stored at -80  °C for further analysis of 
metabolic enzyme activity, stress indicators and immu-
noglobulin levels (Ig) [69, 70].

Whole-body metabolic enzyme activity
The activities of metabolic enzymes, alanine aminotrans-
ferase (ALT), aspartate aminotransferase (AST) and alka-
line phosphatase (ALP) in the whole body were evaluated 
using commercial kits (Paadco, Tehran, Iran) accord-
ing to the manufacturer´s instructions. The absorption 
readings were obtained using a spectrophotometer (Shi-
midzo, Japan) at an OD of 340 nm for AST and ALT, and 
405 nm for ALP.

Stress-related indices
Whole-body cortisol level was measured using a com-
mercial ELISA kit (Pars Azmoon, Tehran, Iran) following 
the protocol provided by the manufacturer. Glucose lev-
els were measured using commercial kits (Pars Azmoon, 
Tehran, Iran) through a single-point method using 
the glucose-hexokinase enzyme assay according to the 
manufacturer´s instructions [71].

Immune indices
Four immune-related molecules, namely total protein, 
albumin, immunoglobulin, and lysozyme were analyzed 
to assess the immune response. The total protein con-
centration was determined using the Bradford method, 
with bovine albumin as the standard [72]. The albumin 
levels in the whole-body samples were measured at acidic 
pH using the Bromocresol Green reagent [73]. Total 
immunoglobulin levels (Ig) were measured following the 
method described by Siwicki et al. [74]. Briefly, the total 
protein level was measured using the aforementioned 
method, and then the immunoglobulin molecules were 
estimated by adding 12% polyethylene glycol solution to 
the samples. After centrifugation, the protein level was 
measured again using the Bradford method. The differ-
ence in protein content was considered as the Ig content.

The lysozyme activity was determined by adding 50 
µL of whole-body sample to a 2 mL suspension of lyso-
zyme-sensitive bacterium, Micrococcus lysodeikticus, sus-
pension, for lysis. The reaction was carried out at room 
temperature (25 °C), and absorbance was measured using 
US spectrophotometer at 450  nm after 0.25  min and 
5 min [75].
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Statistical analysis
The data were checked for normality and homoscedas-
ticity requirements as necessary by employing Levene´s 
tests, using the statistical software Statistical Package for 
the Social Sciences (SPSS) version 16.0. The data that sat-
isfied those requirements were then further analyzed by 
employing a one-way analysis of variance (ANOVA). The 
differences between the means of treatments were deter-
mined using Duncan’s multiple range tests at P < 0.05 sig-
nificance level.

Results
Impact of the natural extracts on the growth dynamics of 
the fungal probiotic
The growth rate of probiotics, S. cerevisiae and A. niger, 
varied over time when cultured in the different experi-
mental media containing either artichoke or mushroom 
extract (0, 2, 6.25, 12.5, 25, 50, 75, or 100%) (Fig. 2A and 
D). Negative control groups, lacking substrate as a car-
bon source, showed no growth. However, when the glu-
cose-free medium was supplemented with JA or WBM 
extract as substrate, a marked increase in the growth of 
both probiotics was observed. The maximum improve-
ment in the growth of S. cerevisiae and A. niger was 
recorded in the medium containing 100% artichoke or 
mushroom extract. In the subsequent test, we therefore 
used this dose.

Impact of the natural extracts on the specific growthrate, 
doubling time of the fungal probiotics, and the pHof the 
culture media
This analysis was conducted to compare the two extracts 
and determine which one had the most significant impact 
on promoting the specific growth rate and doubling time, 
of the fungal probiotics, S. cerevisiae and A. niger. We 
have used 100% JA and WBM extract separately as the 
sole carbon source. These doses were chosen based on 
their optimal performances in the growth dynamic stud-
ies. As shown in Fig. 3A, S. cerevisiae had a significantly 
higher specific growth rate compared to A. niger in a 
medium containing 100% mushroom or artichoke extract 
(P < 0.05). Moreover, in the 100% mushroom extract, 
the specific growth rate of S. cerevisiae was significantly 
higher than that in the 100% artichoke extract.

The doubling time of S. cerevisiae in a medium con-
taining either 100% mushroom or artichoke extract was 
significantly shorter than that of A. niger cultured in the 
same extract concentration (P < 0.05; Fig.  3B). S. cerevi-
siae cultured in the medium containing 100% mushroom 
extract showed the lowest doubling time among the dif-
ferent experimental groups.

The pH of the SD medium supplemented with mush-
room extract and cultured with S. cerevisiae was sig-
nificantly low. In contrast, the SD medium containing 

artichoke extract and cultured with A. niger had the 
highest pH, which was not significantly different from 
the medium containing mushroom extract and A. niger 
(Fig. 3C).

Considering that production time determines the value 
of a product, S. cerevisiae and mushroom extract (100%) 
were chosen to develop a synbiotic formulation and con-
duct validation studies with zebrafish.

Viability of S. cerevisiae cells
The viability of the S. cerevisiae cells in the synbiotic 
formulation containing 100% Jerusalem artichoke and 
mushroom extracts as the only carbon source was deter-
mined by measuring the colonies grown for approxi-
mately 200 h. The maximum number of S. cerevisiae live 
cells was recorded 72 h after inoculation. At 192 h after 
inoculation, no living cells were observed on the culture 
medium containing 100% Jerusalem artichoke or 100% 
mushroom extracts (Fig. 4A).

Cell dry weight
The highest amount of cell dry weight of A. niger was 
noted at 240  h after inoculation, which was more than 
1 mg/ml (Fig. 4B).

Impact of the prebiotic formulation on the growth 
performance and survival of zebrafish
The effects of the experimental diets on the growth, feed-
ing efficiency and survival of the fish were evaluated 
after a 60-day feeding trial, and the results are shown 
in Fig.  5. At the start of the feeding trial, the fish in all 
experimental groups had a weight range of 80 and 81 mg, 
and the length ranged between 16.2 and 16.8 mm, with 
no significant differences observed among them (Fig. 5A 
and C). At the end of the trial, there was no significant 
difference in terms of length among the fish in differ-
ent experimental groups (Fig. 5B). However, the experi-
mental diets showed significant improvements (P < 0.05) 
in final weight, weight gain, specific growth rate (SGR), 
food conversion ratio (FCR), and protein efficiency rate 
(PER) compared to the control group (Fig.  5; D to H). 
Feeding the larvae with mushroom extract or S. cere-
visiae resulted in a weight gain increase of 35.2% and 
39.7%, receptively, compared to those fed with the con-
trol diet (Fig. 5E). The synbiotic diet further significantly 
increased the weight gain (P < 0.05) by 70.8% compared 
to the control, and by 31.1% and 35.5% compared to lar-
vae fed with mushroom extract or S. cerevisiae-supple-
mented diet, respectively (Fig.  5E). While there was no 
significant (P > 0.05) difference in feed intake among the 
various experimental groups (Fig. 5I), larvae fed with the 
test diets exhibited a significant (P < 0.05) increase in SGR 
and a reduction in FCR. The most prominent effect was 
observed with the synbiotic diet, which increased the 
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Fig. 2 Comparison of (A) µ max (h− 1) and (B) doubling time (h) and (C) final pH of the synbionts in presence of plant extract. A. niger and S. cerevisiae 
were culture in 100% of mushroom and artichoke extracts. Data are the mean of three replicates ± SE. Different letters display significant difference in 
each column (P < 0.05)
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SGR by 0.45% and reduced the FCR by 0.81% compared 
to the control group (Figs.  5F and 5G). A similar trend 
was observed for the PER of the larvae: groups fed with 
diets supplemented with mushroom extract, S. cerevi-
siae, and the synbiotic formulation significantly increased 
PER by 0.20, 0.22, and 0.40%, respectively, compared to 
the control group (Fig.  5H). No mortality was recorded 
during the feeding period, and the condition factor of the 

fish remained the same among the different experimental 
groups (Fig. 5J and K).

Impact of the prebiotic formulation on the activity of 
digestive enzymes
The activity of digestive enzymes was notably influenced 
by the experimental diets, as shown in Fig. 6. The zebraf-
ish group that was fed with the synbiotic diet displayed a 

Fig. 3 Growth curve of synbionts in presence of artichoke or mushroom extract. (A) Growth of S. cerevisiae in medium containing 100% Jerusalem arti-
choke or mushroom extracts as an only carbon source. For these symbionts, visible colonies could be counted (B) Growth of A. niger in medium contain-
ing 100% Jerusalem artichoke or mushroom extracts as an only carbon source. For this experiment, colonies were not visible, therefore, dilutions series 
were made and dry weight was measured as an indicator for the growth of this fungus
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significantly higher level of amylase activity. The amylase 
activity in the synbiotic-fed group was 1.5-fold higher 
than that of the control group. However, there was no 
significant difference in amylase activity between the 
control group and the groups that received a diet supple-
mented with either mushroom extract or S. cerevisiae 
(P > 0.05; Fig. 6A).

The protease enzymes exhibited significantly higher 
activity in all the groups that were fed the test diets 
(P < 0.05; Fig. 6B). The group that received the synbiotic 
diet showed the highest protease activity. Compared to 
the control group, the experimental groups that received 
a diet supplemented with mushroom extract, S. cerevi-
siae, or the synbiotic had 1.7, 1.4 and 1.9-times higher 
protease activity, respectively, compared to the control 
group (P < 0.05). A comparable pattern was recorded in 

the lipase activity (Fig.  6C). The group fed with synbi-
otic showed the highest level of lipase activity, surpass-
ing the control group. The group that was fed a diet 
supplemented with S. cerevisiae had the second highest 
lipase activity. In comparison to the control group, the 
lipase activity was 1.7 times higher in the S. cerevisiae fed 
group and 1.7 times higher in the synbiotic-fed group. 
The mushroom-fed group displayed a 1.3-fold increase in 
lipase activity compared to the control group.

Impact of the prebiotic formulation on the whole-body 
metabolic enzyme activity and stress indicators
Feeding of diets supplemented with mushroom extract 
and S. cerevisiae, alone or in combination (i.e. synbi-
otic formulation) did not cause any significant effect on 
the activity of alkaline phosphatase (Fig.  7A), aspartate 

Fig. 4 Growth performance and survival of zebrafish (Danio rario) fed with different supplementation diets for 60 days. (A) Initial length (mm), (B) final 
length (mm), (C) Initial body weight (mg), (D) final body weight (mg), (E) Weight gain percentage (%), (F) Specific growth rate (% day− 1), (G) Feed conver-
sion ratio, (H) Protein efficiency ratio, (I) Feed intake (g), (J) K Factor (mg mm3), K) Survival (%). Bars with different letters represent significant differences 
among groups (Duncan’s test, P < 0.05)
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Fig. 5 Digestive enzyme activity of zebrafish fed with different diets for 60 days. The group fed no feed supplement was maintained as control; (A) 
Amylase (U g protein− 1), (B) Protease (U g protein− 1). B) Lipase (U g protein− 1). Bars with different letters represent significant differences among groups 
(Duncan’s test, P < 0.05)
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aminotransferase (Fig.  7B), and alanine aminotransfer-
ase enzymes (Fig. 7C). Likewise, the levels of glucose and 
cortisol, measured at the whole-body level, remained 
unchanged in response to the feeding of the experimental 
diets (Fig. 8).

Impact of the prebiotic formulation on the immune responses 
in zebrafish
Feeding zebrafish larvae with a diet supplemented with 
mushroom extract and S. cerevisiae alone significantly 

increased the levels of total protein (Fig.  9A) and lyso-
zyme (Fig.  9B) compared to the control. However, the 
increase in the levels of these readouts was less promi-
nent compared to the group fed with the synbiotic diet. 
The group fed a diet supplemented with the synbiotic 
formulation exhibited a significantly higher level of 
total protein compared to the control group (2.2-fold 
increase), while the groups fed with a diet with either 
mushroom extract or S. cerevisiae as a supplement 
showed a 1.3-fold higher protein level than the control 

Fig. 6 Metabolic enzymes in zebrafish fed with different diets for 60 days. The group fed with no feed supplement was maintained as control; (A) ALP (U 
L− 1), (B) ALT (U L− 1), (C) AST (U L− 1). Bars with different letters represent significant differences among groups (Duncan’s test, P < 0.05)
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group. There was no significant difference in total pro-
tein levels between the group fed a diet with mushroom 
extract and those fed a diet with S. cerevisiae (P > 0.05). 
Additionally, the synbiotic-fed group showed the highest 
level of lysozyme among all the experimental groups.

The levels of immunoglobulin and albumin in the 
groups fed with dietary mushroom extract did not sig-
nificantly differ from the control group (Fig. 9C and D). 
However, the group fed with dietary S. cerevisiae had a 
significantly higher level of albumin than the control 
group. There was no significant effect of dietary S. cerevi-
siae on the total immunoglobulin level. However, feeding 

the larvae with a dietary synbiotic resulted in a signifi-
cant increase in both immunoglobulin and albumin lev-
els, with the highest increment observed among all the 
experimental groups.

Discussion
In a previous study, we examined the two natural extracts 
Jerusalem artichokes and button mushrooms with two 
different bacterial probiotics Lactobacillus acidophilus 
and L. bulgaricus to develop a synbiotic formulation [45]. 
We examined the effect of the synbiotic on its potential 
to improve the growth and reproductive performances 

Fig. 7 Stressed indicators of zebrafish fed with different diets for 60 days. A group without site supplement was maintained as control; (A) Glucose (mg 
mL− 1), (B) Cortisol (µg mL− 1). Bars with different letters represent significant differences among groups (Duncan’s test, P < 0.05)
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of farmed aquatic animals using zebrafish as a model 
organism [45]. The results showed that a synbiotic for-
mulation, developed with the selected combination of L. 
acidophilus, L. bulgaricus, and 50% mushroom extract, 
showed a positive influence on the growth and reproduc-
tive performances of the zebrafish, suggesting that the 
combination of the mushroom extract with the probiotic 
bacteria L. acidophilus or L. bulgaricus could be a poten-
tial synbiotic for the successful production of aquacul-
ture species. While prebiotics are commonly associated 
with supporting the growth of bacterial probiotics, a lim-
ited number of studies have highlighted the potential of 
natural extracts as prebiotics for enhancing the growth 
of fungal probiotics [76–78]. Building upon the find-
ings of our earlier study [45], we carried out the present 
study to investigate the effectiveness of the Jerusalem or 
mushroom extract as a prebiotic for fungal probiotics, S. 
cerevisiae and A. niger to develop a synbiotic formulation. 
In the present study, we used fungal-based probiotics 

owing to their multi-functional biological activities and 
assessed multiple biological endpoints, such as growth 
traits, immune and stress biomarkers, and digestive and 
metabolic enzymes. These fungal species were chosen 
based on their availability, commercial significance, and 
documented evidence of positive effects on growth per-
formance and health status in farmed animals [79–83]. 
At first, we used an in vitro approach to monitor the 
growth dynamics of the test probiotics in the presence 
of the different doses of the natural extracts to select 
interesting combination(s) for further verification under 
in vivo conditions. The results showed that the growth 
dynamics of S. cerevisiae was most prominent when cul-
tured in a medium containing 100% mushroom extract as 
manifested by a higher growth rate and lower doubling 
time of this species in the presence of 100% mushroom 
extract compared to 100% artichoke extract. This sug-
gests that mushroom extract exhibited stronger prebiot-
ics effects, promoting robust growth of S. cerevisiae. The 

Fig. 8 Non-specific immunity responses in zebrafish fed with different diets for 60 days. A group without site supplement was maintained as control; (A) 
Total protein (g dL− 1), (B) Total immunoglobulin (g dL− 1), (C) Albumin (g dL− 1), (D) Lysozyme activity (U mg protein− 1). Bars with different letters represent 
significant differences among groups (Duncan’s test, P < 0.05)
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presence of varying types of fermentable fibers or other 
beneficial prebiotic components in mushroom extracts, 
such as chitin, hemicellulose, β- and α-glucans, mannans, 
which are preferred by S. cerevisiae for fermentation [51, 
84–87] may be responsible for these effects. Our sugges-
tion that S. cerevisiae ferments mushroom extract more 
efficiently is supported by the significant decrease in pH 
of the medium containing 100% mushroom extract, com-
pared to the medium containing 100% artichoke extract 
and A. niger. The marked decrease in pH indicates a high 
level of microorganism activity and a substantial produc-
tion of short-chain fatty acids, which is often considered 
an important indicator of carbohydrate fermentation 
[87–91]. Additional tests using cell count, colony-form-
ing units, and cell dry weight confirmed that S. cerevisiae 
growth, viability and biomass production in the medium 
supplemented with mushroom extract were higher than 
those in Jerusalem extract. This confirmed that fermenta-
tion occurred, and despite a slower growth rate and fer-
mentation process, the cell dry weights and viability were 
higher in the presence of mushroom extract, supporting 
our previous explanation that the degree of polymeriza-
tion of prebiotics justifies the rate of fermentation.

Next, we proceeded to formulate a synbiotic by com-
bining the optimized dose of the mushroom extract with 
S. cerevisiae and validated the potential positive impacts 
of this combination on the growth performance and 
overall health status of zebrafish, which served as the in 
vivo model organism in our study. The results suggested 

that the synbiotic formulated using S. cerevisiae and 
mushroom extract had a positive effect on the growth 
performance and feed efficiency in zebrafish. The weight 
gain percentage, after 60 days of feeding, of the synbiotic-
fed group increased to 201%, compared to 130.2% for 
the control group, and 165.5% and 170% for the groups 
fed with either mushroom extract or S. cerevisiae alone, 
respectively. Accordingly, the synbiotic-fed group exhib-
ited an increase in the SGR by a fold of 1.3 compared to 
the control. This resulted in an FCR that was significantly 
lower for the synbiotic-fed group. It is important to note 
that the synbiotic-fed group had the highest protein effi-
ciency ratio among all the experimental groups, despite 
the fact that these groups received the same amount of 
dietary protein and had the same level of feed intake. 
Our findings also indicated that the condition factor 
(K), which serves as an indicator of the overall health of 
the fish, remained within the optimal range throughout 
the entire duration of the experiment [92, 93]. This was 
further reflected in the survival rates, as no significant 
mortality was observed in response to feeding the experi-
mental diets. These results suggest that the 100% mush-
room extract and selected S. cerevisiae, whether used 
alone or in combination, did not have any detrimental 
effects on the fish under our specific experimental con-
ditions. Therefore, they can be considered safe for the 
farmed species for inclusion in fish feed. There are several 
possibilities to explain the observed growth improvement 
in zebrafish when fed with synbiotic-supplemented diet. 

Fig. 9 Immunity responses in zebrafish fed with different diets for 60 days. A group without site supplement was maintained as control; (A) Total protein 
(g dL− 1), (B) Total immunoglobulin (g dL− 1), (C) Albumin (g dL− 1), (D) Lysozyme activity (U mg protein− 1). Bars with different letters represent significant 
differences among groups (Duncan’s test, P < 0.05)
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The first is the fermentation of the prebiotic components 
in the mushroom extract (e.g. chitin, mannans, galactans, 
xylans, glucans, krestin, lentinan, and hemicellulose) 
by the fungal probiotic, stimulating the proliferation of 
fungal and other beneficial microbes and inhibition of 
potentially pathogenic organisms in the gut. The second 
is the improvement of digestion and nutrient utilization 
by increasing enzymes produced by the microbes and 
host. The third is the production of vitamins and short 
chain fatty acids and other beneficial metabolites for the 
host, and the fourth is the improvement in the immune 
status of the fish [94–99]. The beneficial effects of mush-
room extract or S. cerevisiae on the growth performances 
of farmed fishes are well documented but no information 
is available on the growth performances of fish fed on 
synbiotic formulation based on mushroom extract and S. 
cerevisiae. However, enhanced growth performance has 
been previously reported in rainbow trout fed on syn-
biotics of fungal and fructooligosaccharides [100], and 
in the zebrafish fed a diet supplemented with synbiot-
ics, developed from probiotic bacteria and conventional 
prebiotics, such as FOS, MOS and β-glucan [41, 45, 101, 
102], findings in agreement with that of our study.

We did not analyze the impacts of the synbiotic devel-
oped on the gut microbiome as well as on the production 
of metabolites in the gut to corroborate these factors with 
the observed growth performances. However, we focused 
on the activities of the major digestive enzymes (i.e., amy-
lase, protease, and lipase) to substantiate our argument 
that the growth-promotion effects observed in zebraf-
ish were related to the improvement in the activities of 
digestive enzymes. The results showed that zebrafish fed 
on a synbiotic-supplemented diet exhibited the highest 
activities of amylase, protease, and lipase enzymes. The 
increased activities of the enzymes might have contrib-
uted to the better digestion of dietary nutrients, such as 
protein and lipids [102, 103]. This in turn might have led to 
more efficient feed utilization and improved growth per-
formance as observed in our study [104, 105]. The higher 
PER value in the synbiotic-fed group that coincides with 
higher protease activities in this group is a clear indication 
that synbiotic supplementation facilitated the process of 
digestion, absorption and utilization of dietary nutrients. 
The causes for the improvement of digestive enzyme activ-
ity could be due to: (i) creation of a healthy gastrointestinal 
microbial ecology by the synbiotic and/or (ii) modification 
in the secretion of bacterial and/or host enzymes [106]. 
Similar results have also been reported in earlier studies on 
synbiotic based on sodium alginate and Pediococcus acidi-
lactici in Asian sea bass Lates calcarifer [66].

Alkaline phosphatase (ALP) is a phosphomonoesterase 
enzyme found in different tissues of fish, including the liver, 
intestine, kidney, gills, and bone. In fish, it plays essen-
tial functions in the processes of detoxification, nutrient 

digestion, absorption, and phagocytosis [107, 108]. ALP is 
typically used as an indicator of liver health due to its pres-
ence in liver tissues and its sensitivity to changes in liver 
function [109–112]. Elevated levels of ALP activity in the 
blood can suggest liver damage or dysfunction. There-
fore, measuring ALP activity is a common diagnostic tool 
to assess liver health in fish. In our study, feeding zebraf-
ish with a diet supplemented with mushroom extract or S. 
cerevisiae alone or in combination did not cause a marked 
change in the whole-body ALP activity when compared to 
the control group. This indicates that the dietary supple-
ments have no adverse effect on the zebrafish organs and 
hence on the health performance of the fish.

Additionally, we also measured cortisol and glucose 
levels in the fish to evaluate the physiological responses 
and metabolic changes in the fish due to feeding synbi-
otics. Cortisol is a stress hormone produced by the fish 
in response to changes in their environmental condi-
tions and nutritional factors [115–117]. Glucose, on 
the other hand, serves as a vital energy source for fish, 
supporting their metabolic processes and physiological 
functions [118, 119]. The combined analysis of cortisol 
and glucose levels allows to understand the impact of 
synbiotic feeding on fish stress levels, energy metabo-
lism, and overall health [120, 121]. Cortisol and glucose 
levels were shown to be directly influenced by stressful 
and unfavourable conditions [122]. The release of corti-
sol and glucose is influenced by various factors such as 
food, stress, culture conditions, disease, and water qual-
ity indices [123, 124]. Our results showed that dietary 
synbiotics caused no effect on the cortisol and glucose 
levels when compared with the group fed control diet. 
Since cortisol and glucose are commonly used as stress 
indicators, the lack of changes in their levels in the treat-
ment groups suggests that the synbiotic diet caused no 
nutritional stress conditions in the fish [125]. The effects 
of feeding synbiotics on the cortisol and glucose levels 
in fish have yielded mixed results. Some studies have 
reported no significant effects on these parameters, 
while others have observed increased or decreased lev-
els of glucose and cortisol. For instance, Yu et al. [123] 
observed an increase in the serum glucose content in 
the white-legged shrimp Litopenaeus vannamei fed 
a diet supplemented with Bacillus sp. and medicinal 
herbs. On the other hand, Sadat Hoseini Madani et al. 
[124] reported lower plasma glucose and cortisol levels 
in shrimp fed probiotic belonging to Bacillus species. 
Both these findings contrast with our results. These dis-
crepancies in the findings can be attributed to several 
factors like variations in experimental design, such as 
fish species, initial metabolic and health status of the 
experimental fish, feeding duration, specific combina-
tion of probiotics and prebiotics used in the synbiotic 
formulation, and dosage of synbiotics administered.
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Total blood protein is a valuable indicator of health and 
stress in various organisms, including fish [126, 127]. It 
refers to the combined concentration of proteins in the 
blood, encompassing albumins, globulins, enzymes, hor-
mones, and immunoglobulins. Our study used whole-body 
extract of zebrafish larvae to measure total blood pro-
tein levels indirectly. The highest total protein levels were 
recorded in zebrafish fed with a synbiotic diet. In agree-
ment with our results, there were earlier reports showing 
positive correlation between fish immune status and the 
level of total serum protein in fish fed with various fungal 
and mushroom products alone or in combination [26]. For 
instance, Abdel-Tawwab et al. [128] reported increased 
serum total protein, albumin, and globulin were observed 
in Nile tilapia fed Yucca schidigera and fungal. However, 
whole-body extracts contain protein from various tissues, 
which may not accurately reflect total blood protein levels 
to indicate accurately the overall health condition of fish. 
We therefore carried out further analysis of the whole-
body samples for albumin, total immunoglobulin and lyso-
zyme levels - key components of the defence system in fish 
that contribute markedly to the immune response in fish, 
albeit through different mechanisms. Albumins support 
immune function by aiding in the transport and distribu-
tion of immune-related molecules (e.g. antibodies, immune 
cells), while lysozymes combat microbial pathogens by 
degrading their cell walls. Our study found increased albu-
min, total immunoglobulin levels, and lysozyme enzyme 
activity in zebrafish fed with synbiotics compared to the 
control group. These results are consistent with previous 
studies showing the positive effects of fungal-enriched 
diets on fish immunity. For example, there was a marked 
enhancement in lysozyme activity and total immunoglob-
ulin level in Cyprinus carpio, Oncorhynchus mykiss, Huso 
huso, Pagrus major, Sciaenops ocellatus, Channa striata, 
and Oreochromis niloticus fed with diets supplemented 
with fungal product [129–137]. The observed increase in 
immune molecules in the synbiotic-fed group could be due 
to polysaccharides, such as β-glucan, mannan oligosac-
charides, chitin in the mushroom extract as well as in the 
fungal S. cerevisiae, and the production of beneficial bioac-
tive components by S. cerevisiae like vitamins, short-chain 
fatty acids in the gut of zebrafish. However, these are pure 
speculations, and warrants further research.

Conclusion
In summary, the in vitro assay demonstrated that the fungal 
probiont S. cerevisiae exhibited a preference for mushroom 
extract as a prebiotic. Subsequently, a synbiotic formula-
tion was developed using the selected combination of 107 
CFU/mL of S. cerevisiae and 100% mushroom extract. This 
synbiotic formulation showcased positive effects on the 
growth performances and health conditions of zebrafish, 
serving as an in vivo model organism. Our findings also 

suggest that the improvement in the growth performance 
was associated with a marked increase in the activities of 
digestive enzymes and immune responses, which possibly 
contribute to better nutrient utilization. Taken together, 
these results indicate that the combination of S. cerevisiae 
and mushroom extract holds promise as a potential synbi-
otic for aquaculture species. Further research is necessary 
to validate this formulation through on-farm nutritional 
trials in economically significant aquaculture species.
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