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Environmental drivers of increased 
ecosystem respiration in a warming tundra
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Arctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2.  
Climate warming may stimulate ecosystem respiration and release carbon into  
the atmosphere3,4. The magnitude and persistency of this stimulation and the 
environmental mechanisms that drive its variation remain uncertain5–7. This hampers 
the accuracy of global land carbon–climate feedback projections7,8. Here we 
synthesize 136 datasets from 56 open-top chamber in situ warming experiments 
located at 28 arctic and alpine tundra sites which have been running for less than 
1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI)  
0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase  
in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings 
indicate that the stimulation of ecosystem respiration was due to increases in both 
plant-related and microbial respiration (n = 9) and continued for at least 25 years 
(n = 136). The magnitude of the warming effects on respiration was driven by variation 
in warming-induced changes in local soil conditions, that is, changes in total nitrogen 
concentration and pH and by context-dependent spatial variation in these conditions, 
in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites 
with stronger nitrogen limitations and sites in which warming had stimulated plant 
and microbial nutrient turnover seemed particularly sensitive in their respiration 
response to warming. The results highlight the importance of local soil conditions 
and warming-induced changes therein for future climatic impacts on respiration.

The fate of the globally important carbon (C) stock of the arctic and 
alpine tundra biome (hereafter referred to as ‘the tundra’) will be deter-
mined by the balance between climatic impacts on C uptake (plant 
photosynthesis) and release (ecosystem respiration (ER)2,9–12); that is, 
the sum of plant or autotrophic respiration and microbial or hetero-
trophic respiration13. As the tundra stores vast amounts of carbon and 
is warming at rates higher than the global average14,15, the consequences 
of global warming for C release from this biome have been a topic of 
hot debate over the past decades4,11,16,17. The overall magnitude, persis-
tency and drivers causing variability of the ER increase with warming, 
however, remain highly uncertain, especially for multidecadal time-
scales. This is due to large variability in the ER response to experimental 
warming across single- or multisite studies (for example, increases of 

8–52%; refs. 5,9,18–20), as well as poor representation of tundra sites 
in multisite meta-analyses of respiration5,6,9,21,22.

Indirect warming effects
Variability in the ER response to warming among tundra sites can be 
caused by differences in direct effects of warming on ER, for instance 
through changing kinetic rates of the underlying biological processes, 
as well as by indirect effects, through differences in warming-induced 
changes in abiotic (for example, microclimate23, soil conditions24,25 and 
permafrost thawing26,27) or biotic (vegetation and decomposer commu-
nity composition25,28–30) conditions. For example, warming-associated 
soil drying can increase heterotrophic respiration by increasing oxygen 
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supply for microbes in waterlogged or anaerobic soils, whereas it can 
decrease respiration by promoting water limitation of microbial 
metabolism in dry or aerobic soils23–25. Also, warming-driven changes 
in vegetation cover or composition may affect ER responses by alter-
ing the quantity of plant roots or the quantity and quality of litter, 
ultimately influencing autotrophic and heterotrophic respiration  
rates28,30–32.

Context-dependencies
Tundra ecosystems, covering a wide range of environmental condi-
tions33, are strongly heterogeneous in their climatic and soil conditions, 
as well as in their vegetation and microbial communities. ER responses 
to warming may vary as a result of these context-dependencies or 
context-specific environmental conditions3,11,27,34,35. For example, ER 
should theoretically increase more with warming in colder macrocli-
mates4,36–38 or in soils with greater soil organic carbon (SOC) pools, 
although this remains debated and probably depends on interacting 
factors such as soil moisture5,11,39 or SOC lability16,34. Similarly, soil pH 
may cause variability in the ER response magnitude by influencing the 
availability of key nutrients for plants and decomposers31,40. Further, 
the vegetation27,36,41,42 and microbial27,29,40,42 community abundance or 
composition can affect the autotrophic respiration and heterotrophic 
respiration potential27,40 and thus the ER response magnitude, through 

differences in net primary productivity (NPP), litter quantity and quality 
and carbon-use efficiency.

Understanding such indirect warming effects as well as context- 
dependencies might explain the variability in ER responses to warming 
across the tundra. Further, it might elucidate important underlying 
mechanisms of the responses. Most multisite meta-analyses have 
focused strongly on the magnitude, direction and climatological driv-
ers of the ER response5,6,9,21,22, whereas understanding the ecological 
mechanisms behind the ER response is essential to accurately pre-
dict the long-term impact of climate change on the terrestrial carbon 
cycle27,43. To improve predictions of C emissions for the tundra3,4,7,8,16, 
we urgently need better quantification and greater mechanistic under-
standing of how warming influences ER across the biome.

Objective and study design
Here we aim to quantify with meta-analysis the magnitude and vari-
ability of the impact of warming on ER across the tundra and to under-
stand with metaregression models how variation in the ER response 
depends on warming duration, indirect effects of warming and 
context-dependencies. We therefore collated 24,035 daytime, grow-
ing season ER measurements from 28 sites across the tundra biome, 
covering 56 passive in situ open-top chamber (OTC) warming experi-
ments44 across four continents, with warming duration ranging from 
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Fig. 1 | Study area, duration and environmental context of warming 
experiments across the tundra biome. a–c, ER was collected in 136 growing 
season measurement years across 56 independent OTC warming experiments, 
covering 28 distinct geographical sites across the tundra biome (a), capturing a 
wide range of experimental warming durations at the time of ER measurements 
(b) and environmental heterogeneity (c). The radius of the dots in a indicates 
the number of years in which ER was measured per experiment (range 
1–13 years; 63% of experiments with range greater than 1 year), the colour of the 
dots indicates the number of observations per dataset, that is, number of ER 
measurements in the growing season across all years in which measurements 

were conducted (details in Extended Data Fig. 1, Supplementary Methods 1  
and Supplementary Tables 1 and 2). The distribution of datasets is shown 
across the duration of experimental warming before ER measurements were 
taken, grouped into four classes (duration = ER measurement year − OTC 
treatment start year; note that ‘0’ refers to the first summer of experimental 
warming) (b) and categorical variables describing environmental contexts (c), 
from left to right: zone; soil moisture class; soil pH class; and vegetation type 
(B, barren; G, graminoid; P, prostrate shrub; S, erect shrub; W, wetland tundra). 
The maps were made with R.
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one summer to 25 years at the time of ER measurements (Fig. 1a and 
Supplementary Table 1). No single study has assessed the ER response 
to in situ experimental warming yet across a large spatiotemporal 
environmental gradient in the tundra, with a standardized experi-
mental setup while including also an extensive set of environmental  
drivers9,11,45. On the basis of previous studies, we expect an overall 
positive ER response to warming (both autotrophic respiration and 
heterotrophic respiration) across all experiments but significant 
variation in the magnitude of the response across time and space. We 
expect these differences in the magnitude to be driven (1) indirectly 
by variation in warming-induced changes in local environmental 
conditions, as well as (2) directly by context-dependent variation in 
environmental conditions. We focus on the growing season ( June–
August), which is when most ER measurements are taken and soils 

are most active. We calculated the ER response as Hedges’ g stand-
ardized mean difference (SMD)46, the difference in mean growing 
season ER of the unmanipulated control and the warmed OTC plots, 
divided by the pooled standard deviation. ER Hedges’ SMD values were 
calculated for every dataset, which was a distinct ER measurement 
year within an experiment and within a larger site, resulting in 136 ER 
SMD values (Fig. 1). Using a meta-analysis approach assigning higher 
importance to datasets with higher precision (that is, lower variance), 
we evaluated the magnitude and variability in the ER response to 
warming across the tundra biome. The long duration of warming 
at the time of ER measurements in several experiments (Fig. 1b and 
Supplementary Table 1) and the availability of repeated measure-
ments in many of the experiments (up to 13 datasets or repeated ER 
measurement years per experiment; Supplementary Table 1) enabled 
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Fig. 2 | Effects of experimental OTC warming on ecosystem ER. Experimental 
warming increased ER across the tundra biome but the magnitude of the 
response varied across time and space. Effect of OTC warming on ER Hedges’ 
SMD calculated as (mean ER of the warmed plots − mean ER of the control 
plots)/pooled standard deviation across the 136 growing season datasets  
(that is, unique experiment × ER measurement year combinations). On the top 
of the graph, a blue diamond shows the mean estimate (est. = 0.57 and 95% CI 
[0.44–0.70], error bars) of the ER response across the 136 datasets, as well as 
the Q value testing for heterogeneity and P value from the meta-analysis. Black 
dots represent ER Hedges’ SMDs of individual datasets and 95% CIs (black  
error bars) in alphabetical and chronological order. Individual datasets are 

represented by the experiment ID in black (left) and ER measurement year 
(right) in a colour scale ranging from dark blue, light blue, orange to red  
which represents increasingly longer warming duration at the time of ER 
measurements. Experiments with more than 1 year of ER data are grouped.  
See Supplementary Tables 1, 2 and 4 for details on the datasets and SMD and  
CI values. The black dashed vertical line (SMD = 0) represents no change in ER 
with warming whereas the areas to the right and left of it represent increased 
(SMD > 0) versus decreased (SMD < 0) ER with warming. Dashed vertical lines 
(x = 0.2, 0.5, 0.8 and −0.2, −0.5, −0.8) reflect small, medium and large positive 
and negative Hedges’ SMD, that is, increasingly greater ER increases and 
decreases with warming.
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us to evaluate whether and how the ER response to warming varied 
over time (Extended Data Table 2). Furthermore, the high number and 
wide geographic, climatic and habitat range of the included tundra 
sites (Fig. 1c), allowed us to analyse the drivers of variability in the 
ER response using metaregression (Extended Data Tables 3 and 4). 
These drivers included (1) changes in abiotic and biotic conditions 
induced by the warming treatment (that is, climatic, soil, vegeta-
tion and microbial community properties) and (2) the abiotic and 
biotic environmental context (that is, climatic, soil and vegetation 
community properties; Supplementary Methods 1). These two types 
of drivers allowed us to assess how the variation in the ER response 
magnitude depended on, respectively, indirect effects of warming 
as well as on context-dependencies. The database does not include 
gross primary productivity (GPP) data, as its inclusion in ER datasets 
is challenging because of the light-dependency of photosynthesis 
and associated high spatiotemporal variability of GPP measure-
ments (Methods). However, by focusing on ER and accounting for 
GPP indirectly through NPP and plant biomass, our analysis incor-
porates the response of plant growth to warming in the ecosystem  
carbon balance.

Experimental warming treatment
Warming with OTCs led to a mean 1.4 °C (95% confidence interval (CI) 
[0.9–2.0 °C]) (P < 0.001; n = 77) increase in growing season air tempera-
tures, a mean 0.4 °C [CI 0.2–0.7 °C] (P < 0.001; n = 118) increase in grow-
ing season soil temperature and a mean 1.6% [CI 0.8–2.4%] (P < 0.001; 
n = 111) decrease in growing season soil moisture compared to ambient 
conditions (based on meta-analysis models; Supplementary Table 3 
and Supplementary Methods 1). In line with previous studies5,28,30, 
experimental warming also increased soil organic matter (SOM) 
content of the mineral layer, aboveground biomass and mean height 
of the vegetation community, whereas it decreased the lichen cover  
(Supplementary Table 3).

Increased ecosystem respiration
As a result of the warming treatment, ecosystem respiration increased 
by a mean Hedges’ SMD of 0.57 [CI 0.44–0.70] (P < 0.001) (n = 136), 
reflecting that 30% [CI 22–38] (P < 0.001) more CO2 was respired, on 
average, in the experimentally warmed plots than in the unmanipulated 
controls (Fig. 2 and Extended Data Table 1). This mean magnitude is 
nearly four times greater than the previous 8% increase for the tun-
dra, calculated in a meta-analysis based on 18 tundra sites9. Further 
meta-analyses of all data on partitioned ER into plant-related (auto-
trophic) and heterotrophic respiration available in all experiments 
included in this study (n = 9) demonstrated that both autotrophic 
and heterotrophic respiration increased significantly with warming 
(mean Hedges’ SMD for autotrophic respiration = 0.44 [CI 0.08–0.80], 
P < 0.001 and for heterotrophic respiration = 0.92 [CI 0.36–1.48], 
P < 0.001; Extended Data Table 1 and Supplementary Discussion 1). 
On the basis of these limited data, the warming-induced increase in 
ER probably resulted from a significant increase in both plant-related 
and heterotrophic respiration, each contributing to the overall effect 
of warming on ER. Although the ER response to warming was overall 
positive and strong, there was significant heterogeneity across the 
datasets (Q value 731, P < 0.001; Fig. 2 and Extended Data Table 1), 
implying that ER responses to warming vary across time and/or space. 
The mean ER response remained positive and did not differ signifi-
cantly across the four age classes (Fig. 3a), hence the overall positive 
warming effect persisted for the 2.5 decades timescale of these experi-
ments. Investigating the temporal patterns further showed indications 
for nonlinear, positive responses over time (Fig. 3a,b and Extended 
Data Table 2): a decrease in the magnitude of the (still) positive ER 
response during 5–9 years of warming (moderator importance value 
or Qm = 63, P < 0.001, n = 28; Fig. 3b) was followed by an increasing 
magnitude during 10–14 years of warming (Qm = 5.6, P < 0.05, n = 15; 
Fig. 3b). Combined with the lack of change in the magnitude of the ER 
response over time during 0–5 and more than 15 years of warming, 
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Fig. 3 | Temporal patterns in ER responses with experimental warming 
duration. ER responses to warming faltered around the end of the first decade 
of warming but did not wane in the long term. a, Mean ER response to warming 
(ER Hedges‘ SMD) across the four experimental duration age classes, showing 
the kernel density estimation of the underlying distributions in violin plots as 
well as the single-factor metaregression model estimates and 95% CIs (in black). 
b, Relation between experimental warming duration and ER response to 
warming across the four age classes (Extended Data Table 2) with 95% CI (light 
grey area). Hedges’ SMDs for individual datasets (grey bubbles) are shown in  
a and b, calculated as (mean of the warmed plots − mean of the control plots)/
pooled standard deviation. Bubble size denotes the weight of the observation 
used in the metaregression model, quantified as the inverse of the square root 

of within-study variance, with greater bubbles indicating greater weights.  
Qm values, P values and sample sizes (n) are shown for the regression models, 
with Qm representing the Q value of importance of duration age class across all 
data in a and of experimental warming duration per age class in b. Significant 
regression lines in b are shown in blue. The black dashed horizontal line 
(SMD = 0) represents no change in ER with warming whereas the areas above 
and below represent increased (SMD > 0) versus decreased (SMD < 0) ER with 
warming. Dashed horizontal lines ( y = 0.2, 0.5, 0.8 and −0.2, −0.5, −0.8)  
reflect small, medium and large positive and negative Hedges’ SMD, that is, 
increasingly greater ER increases and decreases with warming. For detailed 
model output, see Extended Data Table 2.
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the overall slope across all years was non-significant, indicating that 
ER continued to be positive in locations with longer warming histories 
(Fig. 3a and Extended Data Table 2). Although the ER response to experi-
mental warming may thus falter around the end of the first decade 
of warming, our data do not provide evidence that ER responses to 
experimental warming wane in the longer term (that is, multidecadal  
duration).

Indirect warming effects
Variation in the magnitude of the ER response to warming in the tun-
dra was driven by variation in how warming indirectly changed soil 
conditions of the mineral layer, that is, of total N (TN) concentration 
and pH (Fig. 4 and Extended Data Table 3). In contrast, the variation 
in the ER response was not driven by differences in how warming 
changed the microclimate or the vegetation community structure 
(for example, biomass) and composition (for example, lichen cover) 
(Extended Data Table 3), despite warming inducing changes in the 
latter (Supplementary Table 3). Specifically, ER increased more 
with warming in experiments in which warming promoted greater 
increases in mineral layer TN concentration (Qm = 5.4, P < 0.05, n = 42; 
Fig. 4a) or caused smaller reductions in mineral layer pH (Qm = 4.2, 
P < 0.05, n = 27; Fig. 4b). Greater increases in TN concentration and 
smaller reductions in pH with warming suggest larger increases in 
N mineralization and N cycling with warming or stimulated micro-
bial activity5,47–49. Combined with our ER partitioning results showing 
increased heterotrophic as well as autotrophic respiration with warm-
ing (n = 9), stimulation of both microbial and plant activity might lead 
to the observed increase in ER with warming (Extended Data Table 1 and 
Supplementary Discussion 1). This result is based on 9 out of the 136 
datasets and should be verified with future large-scale ER partitioning 
studies. These nine datasets represent all the partitioning data that are 
now available from the 56 experiments, highlighting the methodologi-
cal challenges in measuring ER partitioning in a long-term warming  
experiment.

Context-dependent respiration responses
Surprisingly, variation in the ER response to warming was not related 
to any of the expected context-specific environmental drivers that 
reflect the tundra’s heterogeneous climatic conditions or vegetation 
community composition. None of the climatic (for example, ambient 
mean temperature and permafrost probability) or vegetation com-
munity drivers (for example, vegetation class and NPP) influenced 
the ER response across the large spatiotemporal environmental 
gradient covered by the 56 experiments (Fig. 1, Extended Data Fig. 2 
and Extended Data Table 4). Yet, our analyses did corroborate some 
expected context-dependencies in the ER response related to the 
soil conditions (Fig. 5, Extended Data Table 4 and Supplementary  
Methods 1). Nutrient-poor sites, that is, sites with lower TN concentration 
or with higher C:N ratios in the mineral layer, showed greater ER increases 
with warming than did nutrient-rich sites (TN: Qm = 6.3, P < 0.05,  
n = 43, Fig. 5a; C:N ratio: Qm = 4.7, P < 0.05, n = 39, Fig. 5b). Greater ER 
increases with warming in nutrient-poor sites may be linked to changes 
in stimulated belowground C allocation by the plants and subsequent 
soil priming by root leachates47. That is, warming has been shown to 
increase root production and thus labile C availability for rhizosphere 
organisms (that is, rhizosphere priming47–49). Especially in nutrient-poor 
conditions, this priming enhances decomposition, thereby increasing 
nutrient availability for plants (and potentially TN in the mineral layer) 
and ultimately stimulating autotrophic and heterotrophic respiration. 
This priming effect plays a larger role in these systems because of higher 
N-acquisition costs and thus greater ‘return on investment’ of priming, 
for plants in N-limited systems47,48,50,51. Thus, our results indicate that 
rhizosphere priming and the associated ER responses that come with 
the accelerated decomposition through priming, might depend on 
the degree of N limitation in tundra sites. Even though we did not find 
vegetation or microbial community drivers to influence the magni-
tude of the ER response, the importance of these soil parameters indi-
rectly suggest that both plant and microbial processes play a role in the  
sensitivity of the ER response to warming.
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Fig. 4 | Indirect warming effects on the ER response to warming.  
a,b, Warming-induced changes in TN concentration (a) and soil pH of the 
mineral layer (b) affected the ER response to experimental warming. Warming- 
induced changes in TN and pH on the x axis are quantified as Hedges’ SMDs  
of the soil conditions between the warmed and control plots, for example, 
(mean TN of the warmed plots − mean TN of the control plots)/pooled standard 
deviation. ER Hedges’ SMDs for individual datasets are shown on the y axis  
with grey bubbles, calculated as (mean ER of the warmed plots − mean of the 
control plots)/pooled standard deviation. Bubble size denotes the weight of 
the observation used in the metaregression quantified as the inverse of the 
square root of within-study variance, with larger bubbles indicating greater 
weights. The significant regression lines with 95% CI are shown with blue lines 

and shaded areas, respectively. Bottom left in each panel shows the Qm (Q value 
of importance of the environmental drivers), P value of the metaregression 
model and the sample size (n, number of datasets). The black dashed horizontal 
line ( y = 0) represents no change in ER with warming whereas the areas above 
and below represent increased (SMD > 0) versus decreased (SMD < 0) ER with 
warming. Dashed horizontal lines ( y = 0.2, 0.5, 0.8 and −0.2, −0.5, −0.8) reflect 
small, medium and large positive and negative Hedges’ SMD, respectively50, 
or increasingly greater ER increases and decreases with warming. The black 
dashed vertical line (x = 0) reflects no change in the soil condition with 
warming (with areas right and left of it representing increased versus 
decreased conditions with warming). For detailed model output, see Extended 
Data Table 3.
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Global implications of plant–soil linkages
The rate of warming in the tundra biome might be as much as 0.73 °C 
per decade (arctic tundra14,15), which greatly surpasses the global rate 
of 0.19 °C per decade52. The significant experimental warming of 1.4 °C 
[95% CI 0.9–2.0 °C] (P < 0.001; n = 77), that is, equivalent to two decades 
of regional warming across the tundra, increased growing season ER 
on average by 30% but with substantial variation in the magnitude of 
this response. Environmental drivers of variation in the ER response 
to warming were related to the extent to which warming had affected 
N-related soil parameters and to context-specific soil biogeochemistry 
in the mineral layer. Importantly, variation in these environmental driv-
ers influenced the magnitude but not the direction of the ER response 
to warming, as the overall ER response remained positive.

Our results demonstrate the importance of local soil conditions in 
mediating future warming impacts on respiration, specifically of the 
mineral soil layer deeper in the soil profile. Experimental warming can 
disproportionately stimulate both microbial and plant root activity, and 
thus ER, in deeper or mineral soil layers19,43,53 but only few studies have 
determined the depth at which most of the increase in ER originates 
because of methodological constraints. Our data show that the magni-
tude of the warming-induced ER increase in tundra sites is tightly linked 
to biogeochemical conditions, especially of the N cycle and changes 
therein, in the deeper mineral layer. This corroborates earlier findings 
that warming may have the strongest impact on biogeochemical condi-
tions at depth43, instead of at surface or subsurface organic soil layers. 
Particularly the relative availability of N in the mineral soil layer may 
determine warming-induced N turnover in tundra systems through 
plant–soil linkages involved in decomposition and rhizosphere priming 
processes51,54–56. We postulate that N-limited tundra sites, characterized 
by higher N-acquisition costs, are more responsive in their ER response 
to warming through stronger impacts of warming on decomposition 
and rhizosphere priming in these sites47,57,58. This is corroborated by the 
negative correlation between TN concentration in the mineral layer 
and the change in TN with warming (correlation coefficient = −0.43), 
indicating that N-limited sites also showed stronger stimulation of plant 
and microbial nutrient turnover under warmer conditions.

Spatial patterns
By upscaling our metaregression results, which predict the ER response 
to warming on the basis of the significant context-dependent driv-
ers (total N and C:N in the mineral layer, ratio of means (ROM) =  
0.05–0.16 × TN + 0.01 × C:N, Qm = 6.7, P < 0.05, n = 39) (Fig. 5), we visual-
ize spatial differences in the sensitivity of the ER response to warming 
across the arctic and circumarctic alpine region. Particularly sensitive 
areas to warming are the western and eastern parts of Siberia and parts 
of the Canadian arctic archipelago (Fig. 6). High uncertainty on these 
estimates (Fig. 6b), however, highlights an urgent need to address 
spatial sampling gaps in follow-up studies59. We also show that most of 
the uncertainty originates from the input data to the upscaling (Fig. 6c), 
that is, from the global gridded soil data (Methods), accounting for 
about 82% of total uncertainty. Considering these uncertainties, we 
can still use our model to provide an approximation of how much more 
C would be respired by 1.4 °C warming compared to present tempera-
tures, across the tundra region (Fig. 6 and Supplementary Fig. 7). For 
the arctic tundra region alone, our upscaling exercise suggests that 
a temperature rise of 1.4 °C would enhance ER from 1.2 to 1.5 PgC yr−1 
(increase of 0.37 PgC yr−1 with s.d. of 0.99 PgC yr−1), which corresponds 
to an increase of 32% (s.d. = 85%). Across the arctic and alpine tundra 
regions combined, ER would increase from 3.4 to 4.3 PgC yr−1 (increase 
of 0.86 PgC yr−1 with s.d. of 1.36 PgC yr−1) corresponding to an increase 
of 25% (s.d. = 40%).

Global and regional climate models which predict future C emis-
sions require robust understanding of the mechanisms behind spatial  
differences in the ER response to warming. The mechanistic under-
standing provided by this study and based on field experimental data in 
real-world settings (for example, the relationship between soil nitrogen 
and pH and the ER response to warming), should therefore facilitate 
model development and improve predictions of changes in carbon 
cycling with future warming3,7,8,16. By estimating spatial differences in 
sensitivity of the ER response to warming, our results can be used to 
benchmark key components of the C cycle for tundra systems in these 
climate models. Our study focuses on growing season patterns but 
investigating how ER changes with warming across the whole year will 
also be important to improve climate models60–62. Because expansion 
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Fig. 5 | Context-dependencies in the ER response to warming. a,b, TN 
concentration (%) (a) and C:N ratio (b) of the mineral soil layer affected the ER 
response to experimental warming. The environmental drivers on the x axis 
reflect mean values of measured soil conditions at the control plots of each 
experiment with available data. ER Hedges’ SMDs for individual datasets are 
shown on the y axis with grey bubbles, calculated as (mean ER of the warmed 
plots − mean of the control plots)/pooled standard deviation. Bubble size 
denotes the weight of the observation used in the metaregression quantified  
as the inverse of the square root of within-study variance, with larger bubbles 
indicating greater weights. The significant regression lines with 95% CI are 

shown with blue lines and blue shaded areas, respectively. Bottom left in each 
panel shows the Qm (Q value of importance of the environmental drivers),  
P value of the metaregression model and the sample size (n, number of datasets). 
The black dashed horizontal line ( y = 0) represents no change in ER with 
warming whereas the areas above and below represent increased (SMD > 0) 
versus decreased (SMD < 0) ER with warming. Dashed horizontal lines ( y = 0.2, 
0.5, 0.8 and −0.2, −0.5, −0.8) reflect small, medium and large positive and 
negative Hedges’ SMD, respectively50, or increasingly greater ER increases and 
decreases with warming. For detailed model output, see Extended Data Table 4.
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of the database across time and space will only further strengthen our 
understanding27,59, we welcome contributions of ER measurements 
taken in new warming experiments across the tundra, or in new years 
for included experiments: http://www.tundrafluxdatabase.com/.

The magnitude of the long-term land carbon–climate feedback criti-
cally depends on the balance between C uptake through changes in 
photosynthesis activity and C release through changes in ER1,43,63. We 
focused on ER as a critical component in this balance and evaluated 
how ER might change with future warming. We found sustained ER 
increases across 25 years of experimental warming. Short-lived res-
piration increases to 5–10 years of experimental warming have been 
observed in several but not all single-site studies5,9,22,64 as well as global21 
or high-latitude16 meta-analyses and have in some longer term studies 
been followed by renewed respiration increases as the duration of 
warming continued64. We found a decreasing and increasing tempo-
ral pattern in the magnitude of the positive ER response to warming 
between 5–10 years and 10–15 years of warming, respectively, and no 
significant overall slope when evaluating across 25 years of warming 
(Fig. 3). These results highlight two key findings. First, in tundra eco-
systems, ER remains enhanced with continued warming, at least up to 
2.5 decades. Second, the ER response to warming shows a nonlinear 
trend over time between 5 and 15 years of warming, during which the 
positive respiration response drops in magnitude, after which it rises 
again. This nonlinear pattern of ER increase over time may be due to 
the underlying microbial and plant processes responding to warming 
at different rates, for example, ranging from more immediate effects 
of warming on microbial and plant respiration through accelerated 
decomposition versus slower effects through changes in biogeochemi-
cal and hydrological soil conditions as well as in microbial or vegetation 
community composition7,43,64. The latter is corroborated by the clear 
importance of changes in soil biogeochemical conditions as drivers of 
variation in the ER increase. Our results indicate that several of these 
slower, indirect mechanisms of warming impacts on ER, that is, indirect 

effects of warming on ER through changes in soil nutrient availability, 
are already apparent during the time-span of up to 25 years of experi-
mental warming studies in the tundra.

Finally, our ER partitioning analyses demonstrated that the ER 
increases with warming were probably driven by both increased 
plant-related and heterotrophic respiration18,65,66. Taken together, 
these findings imply that the large soil C stocks in tundra systems have 
the potential to transform from acting as a global C sink to a source if 
warming were to increase ER to such an extent that the extra C respira-
tion cannot be compensated by equally strong increases in plant CO2 
uptake43,65,67.
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Methods

Data collection
Study design. We quantified and analysed the effect of warming on 
ecosystem CO2 respiration (ER) across tundra ecosystems by collecting 
original, previously published and unpublished, data from OTC warm-
ing experiments in the tundra biome. OTCs are small greenhouses 
which passively increase air temperatures during the snow-free season 
while allowing free entry of precipitation44. They are commonly used to 
simulate climate warming at a plot-scale in low-stature alpine and arc-
tic tundra systems (International Tundra Experiment network, ITEX68). 
We contacted potential data contributors (1) through email using the 
networks ITEX, WARM, InterAct and Permafrost Carbon, (2) at the 20th 
ITEX Meeting 9–13 September 2019 in Parma, Italy, and (3) by retriev-
ing contact details of authors of earlier published meta-analyses of ER 
measured in warming experiments. ER datasets were only included 
if (1) experiments were located in alpine or arctic tundra, (2) original 
ER measurements were available from both OTC and unmanipulated 
control (ambient temperature) plots and (3) ER was measured during 
the plant growing season (that is, June through August for all sites, 
except for the Australian site AUS_1: October through February; Sup-
plementary Fig. 2). This resulted in 24,035 data points from 136 ER 
datasets (that is, a unique site × experiment × ER measurement year; 
Supplementary Tables 1 and 2) from 56 unique OTC experiments across  
28 tundra sites.

One site could consist of one or several warming experiments (for 
example, covering local differences in vegetation communities or 
soil conditions) and contribute ER measurements from one or several 
occasions during one or several years (Supplementary Table 1 and 
Supplementary Figs. 1 and 2). Experiments differed in abiotic (for 
example, permafrost presence, ambient climate and soil type) and/
or biotic (for example, vegetation and size of microbial communities) 
conditions, as well as in warming treatment specifications. First, at 
the time of ER measurements, experiments differed in duration of 
their warming treatment (0–25 years, mean 7). Second, despite the 
common experimental warming setup, experiments differed in OTC 
size (0.3–0.7 m height), duration of OTC deployment (for example, 
year-round placement or winter removal of OTCs) and methodol-
ogy of flux measurements. We therefore collected methodological 
data on (1) OTC height, (2) whether or not OTCs were removed dur-
ing winter, (3) CO2 analyser producer (Los Gatos Research, LICOR, 
PP-system or Vaisala), (4) CO2 analyser type (infrared or laser),  
(5) measurement system (automated or manual and closed or open), 
(6) the timing of ER measurements (daytime or night time) and  
(7) ER measurement plot size. Details on the procedure used to check 
for methodological biases introduced by the factors described 
above are presented in the Supplementary Discussion 2. Because we 
observed no significant effects of these methodological factors on 
the ER response, we assume there is no methodological bias in our  
results.

Ecosystem respiration. For each dataset, we requested plot-specific 
daily average ER data and standardized all individual data points to 
the same unit, that is, gCO2 m−2 d−1. We removed 339 outliers (0.8% 
of the data) to account for measurement errors (data points outside 
the range of mean ER ± 3 × s.d. in a dataset following ref. 69). Subse-
quently, we calculated growing season average ER per experimental 
treatment (control versus warmed) per dataset as grams of carbon 
in CO2 m−2 d−1. For details on the sampling frequency, see Supple-
mentary Fig. 2 and Supplementary Table 2. All experiments meas-
ured daytime ER using dark or opaque chambers, except for ALA_1, 
which used automated clear chambers. For this experiment, we  
extracted night-time measurements based on the photosynthetically 
active radiation values (PAR < 5 µmol m−2 s−1) and included these as ER  
measurements.

Effect size calculation
We calculated effect sizes46 of the mean growing season ER response 
to warming, separately for each dataset. We used Hedges’ g SMD as 
primary effect size across all models and the log-transformed5 ROM as 
additional effect size to quantify percentage change in ER with warm-
ing. Hedges‘ SMD for each dataset was calculated as the (mean growing 
season average ER in warmed plots − mean growing season average ER 
in control plots)/pooled standard deviation. This is deemed an appro-
priate effect size to use here because it overcomes data measured on 
different scales through standardization, as well as corrects for variance 
heterogeneity that may be introduced with small sample sizes (n < 20) 
by including the pooled standard deviation46,70. Mean Hedges’ SMD 
values for each dataset were accompanied by 95% CIs of the standard 
errors, which reflect the precision of the effect size for each dataset70. 
The ROM was calculated as the log-transformed mean growing sea-
son average ER in warmed plots/mean growing season average ER in 
control plots, which we transformed to a mean percentage increase as 
100×(exp(ROM) − 1), that is, a more intuitive measure of changes in ER. 
See Supplementary Table 2 for the number of day-average ER measure-
ments and number of plots used for each of the 136 datasets and see 
Fig. 2 and Supplementary Table 4 for an overview of mean Hedges’ 
SMD and 95% CIs per dataset.

Temporal patterns
To assess the ER response to warming over time, we quantified the 
duration of experimental warming for each dataset as the difference 
between the year of ER measurement and the year in which the warming 
treatment started (Supplementary Fig. 1 and Supplementary Table 1). 
We further categorized the datasets into four ‘age classes’ on the basis of 
warming duration, with class 1 including datasets in which 0–5 years of 
warming had been ongoing at the time of ER measurements and classes 
2, 3 and 4 in which 5–10, 10–15 and more than or equal to 15 years of 
warming had been ongoing, respectively (Fig. 1). Note that duration = 0 
refers to when less than 1 year of warming took place, that is, one single 
summer of warming.

Environmental drivers ER
To quantify environmental drivers that might explain the variation 
in the growing season ER response to warming, we obtained several 
types of environmental data on a site-, experiment- or ER-measurement 
level and used these to analyse indirect warming effects and context- 
dependencies as drivers of variability in ER response to warming. See 
Supplementary Table 5 for sample sizes of all environmental drivers 
used to assess indirect warming effects and context-dependencies 
and Supplementary Methods 1 for a detailed explanation on how the 
different drivers were obtained and calculated.

Indirect warming effects. To investigate whether and how chang-
es in environmental conditions induced by the warming treatment  
influenced the ER response to warming, we quantified changes in the 
below-mentioned climatic and soil conditions as well as in vegetation 
and microbial communities for each dataset, by calculating effect 
sizes for these drivers: effect size calculation of ER data (above), for 
example, (mean air temperature warmed plots − mean air tempera-
ture in control plots)/pooled standard deviation. In doing so, we then 
tested whether changes in the environmental drivers due to warming 
influenced the changes in ER due to warming (see later section on  
‘Metaregression’). The included environmental drivers for this part of 
our analyses are related to (1) climatic conditions at ER measurement 
time, that is, air temperature (°C), soil temperature (°C) and soil mois-
ture (%); (2) soil conditions at plot level, that is, SOM (%), total C concen-
tration (TC) (%), total N concentration (TN) (%), C:N ratio, bulk density 
(BD) (g cm−3) and pH from the mineral, and/or organic, layer; as well 
as organic layer depth (OLdepth) (cm); (3) the vegetation community 



at plot level, that is, percentage cover per functional group (grami-
noids, forbs, deciduous shrubs, evergreen shrubs, mosses and lichens), 
aboveground biomass and mean community height, at plot level; and  
(4) the microbial community at plot level, that is, proxies for bacterial 
and fungal biomass and derived fungal:bacterial (FB) ratios (Extended 
Data Table 3). Although ER can be strongly correlated to GPP of the 
vegetation, our database does not include GPP data, as its inclusion and 
comparison across time and across several experiments is challenging 
because of the light-dependency of photosynthesis and associated 
high spatiotemporal variability of GPP measurements. However, both 
processes are (partly) driven by the activity of the vegetation, which in 
turn is driven by direct responses to their environment (for example, 
microclimate) as well as by, for example, its biomass and community 
composition. We therefore argue that to increase our mechanistic 
understanding of the underlying ecological drivers of ER response to 
warming, it is more meaningful to incorporate the role of the response 
of plant growth to warming for ecosystem respiration by including 
(changes in) plant biomass and community composition, as well as 
NPP (see section ‘Context-dependencies’) as potential drivers of ER, 
as we do here. Note that we refer to the soil total C and N concentration 
throughout the manuscript, because these drivers were measured on 
solid (dried) soil with CNS element analysers. Therefore, they refer to 
the sum of concentrations of both inorganic and organic compounds 
of C and N, even though TC most likely reflects primarily the SOC con-
centration because tundra soils contain limited-to-no inorganic C.

Context-dependencies. To evaluate whether and how the environ-
mental context influenced the ER response to warming, we included 
drivers quantifying the climate, soil conditions and vegetation com-
munity (Extended Data Table 4 and Supplementary Methods 1). For 
each dataset, (1) climate drivers included zone (low arctic, high arctic 
and alpine) and permafrost probability (values between 0 and 1) at site 
level and mean air temperature, soil temperature and soil moisture in 
the control plots at ER measurement time. Further, (2) soil conditions 
drivers comprised mean values of the SOM, TC, TN, CN, BD, pH and 
OLdepth data from the control plots per dataset (see above). In addi-
tion, we included soil pH class (pH low less than 5, medium 5–7, high 
more than 7), soil moisture class (dry, mesic and wet) and soil carbon 
stock (t ha−1) here at the experiment level. Finally, (3) vegetation com-
munity drivers included a vegetation class (five categories: barrens 
(B), graminoid tundra (G, grasses and sedges), prostrate shrub tun-
dra (P), erect shrub tundra (S) and wetlands (W), that is, based on the  
circumpolar arctic vegetation map (CAVM)71) and NPP (kgC m−2 yr−1) 
at the experiment level.

Statistical analyses
All analyses were performed using R v.4.0.3 unless specified otherwise72.

Modelling approach. Meta-analysis. To evaluate the effects of experi-
mental warming on ER, we performed multivariate meta-analysis with 
the rma.mv function from the metafor R package73, using the Hedges’ 
SMD of the growing season average ER data as primary effect size 
(Fig. 2 and Extended Data Table 1). In doing so, we obtained a mean 
pooled effect size of warming, taking into account the nestedness and 
repeated measurements in our 136 datasets. Each dataset was weighted 
by the inverse of its estimated sampling variance to increase both the 
precision of the estimated effect sizes and the statistical power in the 
meta-analyses74. We also performed a meta-analysis on the ROM as 
secondary effect size (see previous section on ‘Effect size calcula-
tion’), which provided a mean pooled ROM of warming (Extended Data 
Table 1). Further, to test whether environmental conditions (climate, 
soil, vegetation and microbial: see previous section on ‘Environmental 
drivers’) significantly changed themselves because of the warming 
treatment, we performed separate meta-analyses testing the effect of 
warming on each of these drivers, using Hedges’ SMD as primary effect 

size and raw mean differences (that is, the difference in absolute values 
of the driver between treatment and control means) as secondary effect 
size because the latter provides estimates of absolute changes in the 
drivers (Supplementary Table 3).
Metaregression. Temporal patterns. To evaluate whether and how 
the ER response varied with duration of experimental warming, we 
performed two types of single-factor metaregression models. First, 
we tested whether duration (number of years of warming at time 
of ER measurements) influenced the magnitude of the ER response  
(ER Hedges’ SMD). These models were performed across experiments 
and both (1) across the four age classes of duration, to analyse overall 
long-term patterns of warming effects and (2) in each age class (0–4, 
5–9, 10–14 and more than 15 years). This enabled to explore potential 
nonlinearity of patterns in ER response rates with warming over time 
(Fig. 3b and Extended Data Table 2a). Second, we tested (1) whether 
the age class influenced the ER response, that is, whether the mean 
ER response differed among the four age classes in sign or direction, 
as well as (2) whether the mean ER response per age class was signifi-
cantly different from zero (Fig. 3a and Extended Data Table 2b). This 
enabled to evaluate the persistency (continued existence) of the ER 
response over time.
Indirect warming effects. To assess whether the variation in the ER 
response to warming was driven by indirect effects of warming on 
environmental conditions, we ran single-factor metaregression models 
using the Hedges’ SMD of the different environmental drivers (reflect-
ing warming-induced changes in climate, soil, vegetation and microbial 
community conditions) as individual predictors and ER Hedges’ SMD 
as response (see previous section on ‘Indirect warming effects’; Fig. 4 
and Extended Data Table 3).
Context-dependencies. To assess whether variation in the ER response 
to warming could be explained by context-specific environmental driv-
ers related to climate, soil or vegetation, we performed single-factor 
metaregression models testing the influence of each of these drivers 
on ER Hedges’ SMD (see previous section on ‘Context-dependencies’; 
Fig. 5 and Extended Data Table 4).

We chose single-factor models to analyse the indirect warming 
effects and context-dependencies because the environmental driver 
data were unevenly spread across datasets (Supplementary Table 5) 
with different drivers missing from different datasets. Hence, multifac-
tor models would have led to significant reductions in sample size and 
thus power. Before all metaregressions, we checked for confounding 
and/or collinearity issues through boxplots and correlograms.

Random-effects structure. Because we did not assume all datasets to 
have the same true effect size and to account for methodological dif-
ferences across the datasets, we included a random-effects structure in 
all models5. Models were fitted with the following crossed and nested 
random effect structure: (~1 | experiment/dataset) + (~year | experi-
ment). The first component (the multilevel structure) corresponds to 
a three-level meta-analysis, allowing the individual estimates of each 
observation (dataset) to be nested in the experiment grouping‐level75,76. 
The second component (the autoregressive component) accounts for 
repeated samplings in the same site over several time points (years), 
by using a continuous autoregressive variance structure of true effects 
over time76–78. We modelled such a structure by setting struct = ‘CAR’ in 
the rma.mv function from the metafor R package73. This significantly 
improved the main meta-analysis model, that is, the model with the 
CAR structure had lower Akaike information criterion values than the 
model without; also, the acf-plot of computed ‘normalized or Cholesky 
residuals’ showed that autocorrelation was removed by adding the CAR. 
This random effect structure was then used for all meta-analyses and 
metaregression models.

Model visualization and validation. We considered and interpreted 
results as significant in our study if P < 0.05, as is commonly done in 
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meta-analyses79–81, whereas trends (P < 0.1) are described but not inter-
preted as significant (Extended Data Fig. 3). We visualized meta-analysis 
results through forest plots using the forest function from the meta-
for package8. Significant metaregression results were visualized by 
showing the actual observations with scatterplots and violin plots 
for continuous and categorical drivers, respectively; as well as the 
model predictions, that is, regression lines or group means ± 95% CIs, 
respectively. Models were validated by evaluating funnel and profile 
plots and testing the residuals for the assumption of normality and vari-
ance homogeneity73,82. Funnel plots of the main meta-analysis showed 
asymmetry, indicating possible ‘publication bias’ but because we did 
not work with only published datasets (that is, not a meta-analysis 
sensu stricto) we argue that this detected asymmetry most likely origi-
nated from true heterogeneity rather than publication bias83. We did 
not observe any other irregularities. Further, we calculated R2 of the 
significant metaregression models using McFadden’s pseudo-R2 by 
comparing log-likelihood values of the models to the one of the null 
model fitted through maximum-likelihood estimation. We report the 
omnibus test statistic Qm to estimate the amount of residual hetero-
geneity explained by each driver in the metaregression models, as well 
as the Q or QE value test statistic for heterogeneity for meta-analysis 
or metaregression models, respectively.

Supplementary analyses
To test the robustness of our results and to gain mechanistic insights 
which could help with further interpretation of our results, we per-
formed several supplementary analyses (Supplementary Discussion). 
First, to answer whether the increased ER was driven by increased plant 
(autotrophic) or microbial (heterotrophic) respiration, or by both, we 
collected all the available data on ER partitioning in tundra warming 
experiments and performed meta-analyses on ER, autotrophic respi-
ration and heterotrophic respiration for this subset (Extended Data 
Table 1b and Supplementary Discussion 1). Respiration partitioning 
measurements are destructive and hence alter ecosystem dynamics, 
making long-term measurements difficult. Hence, there is limited 
availability of continuous, simultaneous measurements of total ER 
and ER partitioning at the same site. Second, we analysed whether 
the differences in ER measurement methodology or OTC experiment 
setup resulted in methodological bias in our results (Supplementary 
Fig. 3 and Supplementary Discussion 2). Third, we analysed potential 
interactions of OTC microclimate effects on the ER response (Sup-
plementary Discussion 3). Fourth, we assessed whether mismatching 
of ER with environmental driver data from different measurement 
years influenced our results through performing a sensitivity analysis, 
that is, rerunning our metaregression models on the basis of several 
restrictive sample size scenarios (Supplementary Fig. 4 and Supple-
mentary Discussion 4). Fifth, we assessed whether the unbalanced 
sampling design from including two experiments with a much longer 
time series of repeated ER measurements (ALA_1 and GRE_6; Supple-
mentary Table 2) than other experiments had a strong influence on 
the meta-analysis outcome; Supplementary Discussion 5). Finally, we 
analysed the temporal patterns in experiments as well, to see if they 
differed from our results when analysing these patterns across experi-
ments (Supplementary Fig. 5 and Supplementary Discussion 6). Overall, 
these supplementary analyses confirmed the robustness of our results.

Spatial upscaling
We estimated spatial patterns in the sensitivity of ER to experimental 
warming and the resulting change in ER, by upscaling our findings on 
context-dependencies across the arctic6 and circumarctic alpine84 
tundra region (Supplementary Fig. 6). We performed the upscaling 
on the basis of the two context-dependent drivers which were signifi-
cant predictors of ER responses to warming based on our single-factor 
metaregression models, that is, TN concentration and C:N ratio of the 
mineral soil layer. For the upscaling, a two-factor metaregression model 

was used (see details below). The detailed procedure is outlined below 
and visualized in Supplementary Methods 2.

Soil input data. As input for the upscaling, we downloaded the mean, 
5th percentile and 95th percentile soil data (of TN, SOC concentration 
(%) and BD) for the study area with 250 m resolution from the ISRIC soil 
data hub85. Given that the study area was about 10 million km2, the 250 m 
resolution was not computationally feasible for Monte Carlo uncer-
tainty analysis (see section ‘Monte Carlo uncertainty analysis’) and thus, 
we aggregated the data to 1 km resolution (mean over each 1 km grid 
cell, ignoring the grid cells without values). A supercomputer was used 
to perform the analysis on the basis of the aggregated 1 km resolution. 
We first extracted the mean TN and SOC concentration for the mineral 
layer of each grid cell by defining the mineral soil layers within 0–60 cm 
depth using a TN threshold of 0.01 g g−1, a SOC threshold of 0.1 g g−1 
and a BD threshold of 1 g cm−3. We then calculated depth-weighted 
averages of each soil driver (TN and SOC) over the mineral layer for 
each 1 km grid cell. To estimate standard deviation (s.d.) for each grid 
cell, we used the 5th and 95th percentiles of the SOC and TN layers 
calculated as s.d. = (q.95 − q.05)/(2 × qnorm(0.95)), where q.95 and 
q.05 are 95th and 5th percentiles and qnorm is the inverse cumulative 
distribution function of a standard normal distribution. Because there 
was no dataset available for C:N ratio, we used the means and standard 
deviations of TN and SOC data to derive grid-cell-specific C:N ratios as 
SOC/TN, as advised by ISRIC soil data hub personnel. This derivation 
and the related uncertainty are described below in the section Monte 
Carlo uncertainty analysis.

Upscaling model. The regression model for upscaling was built with 
the log-transformed ROM as effect size (response variable), which 
allowed to calculate projected respiration as percentage change in 
ER with 1.4 °C warming (that is, the average warming achieved by the 
OTCs in our database), starting from a baseline ER. We used a two-factor 
metaregression model based on all ER datasets for which both TN con-
centration and C:N ratios of the mineral soil layer were available, with 
the following estimated coefficients: ROM = 0.05–0.16 × TN + 0.01 × 
C:N (QM = 6.7 (P < 0.05), QE = 274 (P < 0.001), n = 39).

Monte Carlo uncertainty analysis. To incorporate the uncertainty in 
the soil data and their relationship with ER changes into our upscaling 
estimates, we performed Monte Carlo simulations. To propagate uncer-
tainty in the input soil data, we generated 100 values for TN and SOC for 
each 1 km2 grid cell using the means and standard deviations derived 
from the ISRIC soil data. For each cell we sampled from a truncated 
multivariate random normal distribution (rtmvnorm from R package 
tmvtnorm), truncating the distribution of both variables to minimum of 
5% of the mean value to avoid negatives. Because truncation alters the 
characteristics of the sample, we adjusted the means so that the mean 
of the truncated distribution matched the target mean obtained from 
ISRIC. The correlation between TN and SOC was set at 0.8273. For each 
sample of TN and SOC, a C:N ratio was calculated. We took the potential 
bias of using C:N ratio based on TN and SOC as a proxy for C:N ratio into 
account by fitting a linear regression between the reported C:N values 
from the database of this study and the calculated C:N values based on 
the reported TN and TC (Supplementary Fig. 8). We fitted 100 regres-
sions to the scatter plot and used each regression to estimate the C:N 
ratio of each iteration (n = 100) in each grid cell.

To propagate more uncertainty derived from the estimated relation-
ship between ROM and TN and C:N, we then used the 100 pairs of TN 
and C:N of each 1 km2 grid cell as input for the upscaling model using 
predict.rma function from the metafor R package73. This resulted in 
100 predictions for ER percentage change (with associated prediction 
standard errors) for each grid cell. These 100 parameter sets were com-
bined to produce an overall predicted value by taking the average, with 
the associated standard deviation computed by treating the prediction 



distribution as a mixture of the 100 prediction intervals. The standard 
deviation of the resulting distribution is given by:
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where n is the number of simulated soil datasets and MEAN and SE are 
the vectors of the corresponding predicted means and standard errors.

This resulted in a predicted relative change in induced by 1.4 °C warm-
ing averaged over the 100 predictions pairs and the corresponding 
combined standard deviation, for each 1 × 1 km2 grid cell (Fig. 6 and 
Supplementary Fig. 7). To estimate spatial patterns in the absolute 
change in ER, we then multiplied this relative change in respiration with 
spatially explicit baseline ER (obtained by summing gridded data of soil 
respiration86 (data compiled from 1960 to 2011) and plant respiration87 
(data from 2015)).

We then estimated the relative contribution of model parameter 
uncertainty versus input soil data uncertainty to Monte Carlo estimates 
of the ER standard deviation (Fig. 6). Model predictions were conducted 
twice on the 100 input sets, first propagating both uncertainty sources 
(Fig. 6b) and subsequently by fixing metaregression parameters to their 
mean estimates and only allowing soil input data to vary. The same 
input data simulations were used in both runs to keep the data-related 
uncertainty constant. Figure 6c shows the ratio of the resulting 
standard deviations, that is, soil input uncertainty only/combined  
uncertainty.

Finally, we explored how well the distribution of our dataset com-
pares to the distribution of gridded soil data used for upscaling. 
Thereto, we created a scatter plot for TN and C:N ratio in which we 
overlaid both the observed (from our dataset) and gridded values (grid-
ded soil dataset used for upscaling) (Supplementary Fig. 9). Although 
the observed values from our dataset are slightly biased towards low 
TN values, overall, the observed values cover the main concentration 
of TN-C:N ratio distribution (about 64% when measured with Convex 
Hull polygon).

Data availability
Data will be available on Zenodo at https://doi.org/10.5281/zenodo. 
10572479 (ref. 88). The maps in Fig. 1 and Extended Data Fig. 1 were made 
with R (packages ggplot2 and country code) and for the maps in Fig. 6 
and Supplementary Figs. 6 and 7 country borders from Natural Earth 
were used and maps were done with R (package tmap).

Code availability
R scripts will be available on GitHub at https://github.com/mjalava/
tundraflux (ref. 89).
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Extended Data Fig. 1 | Maps showing the locations of the 28 sites (red dots) 
used for meta-analysis across four different continents: America (top left), 
Europe (top right), Asia (bottom left) and Australia (bottom right). Details 

in Supplementary Table 1. The radius of the red dots reflects the number of 
years that ecosystem respiration (ER) data was measured at each site, resulting 
in a total of 136 datasets.
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Extended Data Fig. 2 | Uniform distribution of ER response to warming 
across the environmental context of all datasets. ER response to experimental 
warming across the spatial environmental context (See Fig. 1 in Main text). 
Violin plots of the actual data across the categorical environmental drivers, 
that is, Climate Zone (a), Soil moisture class (b), Soil pH class (c) and Vegetation 
class (d), are displayed, showing the kernel density estimation of the underlying 
distributions. ER Hedges SMDs for individual datasets are displayed with grey 
bubbles, calculated as (mean ER of the warmed plots - mean ER of the control 
plots)/pooled standard deviation. Bubble size denotes the weight of the 
observation used in the metaregression models quantified as the inverse of the 
square root of within-study variance, with greater bubbles indicating greater 

weights. Within the violin plots, single-factor metaregression model estimates 
and 95% confidence intervals are displayed with black circles and error bars. 
Above the x-axis, the ‘Qm’ value represents the importance of the moderator or 
environmental driver with p-value (‘p-val’) for each model. Number of datasets 
(‘N’) for each environmental driver per category is shown above the violin 
plots. The black dashed horizontal line (SMD = 0) represents no change in ER 
with warming while the areas above and below represent increased (SMD > 0) 
vs. decreased (SMD < 0) ER with warming. Dashed horizontal lines (y = 0.2, 0.5, 
0.8 and −0.2, −0.5, −0.8) reflect small, medium and large positive and negative 
Hedges SMD effect sizes or increasingly greater ER increases and decreases 
with warming. For detailed model output, see Extended Data Table 4.



Extended Data Fig. 3 | Warming-induced changes in soil conditions drive  
ER response. Trends in warming-induced changes in soil conditions and in  
the vegetation community driving the ER response to experimental warming 
(p < 0.1): Hedges SMD of bulk density (BD) (a) and C:N ratio (b) of the soil  
mineral layer and of total N (TN) concentration of the soil organic layer (c) and 
aboveground biomass (d) and graminoid cover (e) of the vegetation community. 
ER Hedges SMDs for individual datasets are displayed on the y-axis with grey 
bubbles, calculated as (mean ER of the warmed plots - mean of the control 
plots)/pooled standard deviation. Bubble size denotes the weight of the 
observation used in the metaregression quantified as the inverse of the square 
root of within-study variance, with larger bubbles indicating greater weights. 
Top left in each panel shows the sample size (‘N’, number of datasets) and 

bottom left shows the ‘Qm’ (Q-value of importance of the environmental 
drivers) and ‘p’-value of the metaregression models. The black dashed 
horizontal line (y = 0) represents no change in ER with warming while the  
areas above and below represent increased (SMD > 0) vs. decreased (SMD < 0) 
ER with warming. Dashed horizontal lines ( y = 0.2, 0.5, 0.8 and −0.2, −0.5, −0.8) 
reflect small, medium and large positive and negative Hedges SMD, respectively50 
or increasingly greater ER increases and decreases with warming. The black 
dashed vertical line (x = 0) reflects no change in the environmental condition 
with warming (with areas right and left of it representing increased vs. 
decreased conditions with warming). For detailed model output, see Extended 
Data Table 3.
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Extended Data Table 1 | Meta-analyses evaluating effects of experimental warming on Ecosystem (ER), Autotrophic (Ra) and 
Heterotrophic Respiration (Rh)

From top to bottom: The different types of respiration responses used for meta-analyses, that is, ecosystem (ER) vs. autotrophic or plant (Ra) vs. heterotrophic or microbial (Rh) respiration,  
with ER = Ra + Rh; the different types of effect sizes used for meta-analyses, that is, Hedges SMD vs. Ratio of Means (ROM). From left to right: The type of respiration investigated (‘Response’);  
the model results for each response, testing whether respiration significantly changes with experimental warming (‘Slope’); the Q-value of heterogeneity; the output of the multilevel model 
structure (represented by σ2

1 and σ2
2) and of the autoregressive model component (tau² and rho); the sample size (‘N’ or number of datasets); and the percentage change calculated from the 

ROM as 100*(exp(ROM)-1). Meta-analysis results are presented as the mean model estimate (slope) and 95% confidence intervals, with a down/upward arrow (↓/↑) indicating significantly 
decreased or increased respiration with warming and the significance level based on p-values. Significant drivers and results are in bold.



Extended Data Table 2 | Metaregression models evaluating effects of experimental warming duration on ER response to 
warming

From top to bottom: Metaregression model results testing the effects of a) experimental warming duration and b) age classes based on experimental warming duration, on ER Hedges SMD for 
all data or for separate age classes. From left to right: The specific driver used as predictor to test the effect on ER Hedges SMDs (‘Driver’); the model results for each driver, testing whether ER 
Hedges SMDs are significantly influenced by the driver (‘Slope’); the ‘QE’-value of heterogeneity, as well as the ‘QM’-value, reflecting importance of the driver and the McFadden’s pseudo-R² 
(‘R²’); the output of the multilevel model structure (represented by σ2

1 and σ2
2) and of the autoregressive model component (tau² and rho); and the sample size (‘N’ or number of datasets). 

Metaregression results are presented as the mean model estimate and 95% confidence intervals (‘Slope (95%CI)’), with a down/upward arrow (↓/↑) indicating that higher values of the driver 
significantly decreased or increased ER responses to warming and the significance level based on p-values. Significant drivers and results are in bold.
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Extended Data Table 3 | Metaregression models evaluating effects of environmental drivers (indirect warming effects) on ER 
response to warming

From top to bottom: Metaregression model results testing the effects of warming-induced changes in local environmental conditions on ER Hedges SMD (‘indirect warming effects’). From left 
to right: The type of environmental driver investigated; the specific driver used as predictor to test the effect on ER Hedges SMDs (‘Driver’); the model results for each driver, testing whether ER 
Hedges SMDs are significantly influenced by the driver (‘Slope’); the ‘QE’-value of heterogeneity, as well as the ‘QM’-value, reflecting importance of the driver and the McFadden’s pseudo-R² 
(‘R²’); the output of the multilevel model structure (represented by σ2

1 and σ2
2) and of the autoregressive model component (tau² and rho); and the sample size (‘N’ or number of datasets). 

Metaregression results are presented as the mean model estimate and 95% confidence intervals (‘Slope (95%CI)’), with a down/upward arrow (↓/↑) indicating that higher values of the driver 
significantly decreased or increased ER responses to warming and the significance level based on p-values. Significant drivers and results are in bold.



Extended Data Table 4 | Metaregression models evaluating effects environmental drivers (context-dependencies) on ER 
response to warming

From top to bottom: Metaregression model results testing the effects of context-specific environmental conditions on ER Hedges SMD (‘context-dependencies’). From left to right: The type of 
environmental driver investigated; the specific driver used as predictor to test the effect on ER Hedges SMDs (‘Driver’); the model results for each driver, testing whether ER Hedges SMDs are 
significantly influenced by the driver (‘Slope’); the ‘QE’-value of heterogeneity, as well as the ‘QM’-value, reflecting importance of the driver and the McFadden’s pseudo-R² (‘R²’); the output of 
the multilevel model structure (represented by σ2

1 and σ2
2) and of the autoregressive model component (tau² and rho); and the sample size (‘N’ or number of datasets). Metaregression results 

are presented as the mean model estimate and 95% confidence intervals (‘Slope (95%CI)’), with a down/upward arrow (↓/↑) indicating that higher values of the driver significantly decreased or 
increased ER responses to warming and the significance level based on p-values. Significant drivers and results are in bold.
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