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strains from the tomato
core microbiome
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Maria Elena Massimino1, Ramesh Raju Vetukuri3*

and Vittoria Catara1*

1Department of Agriculture, Food and Environment, University of Catania, Catania, Italy, 2Department
of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy, 3Department of
Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
Introduction: Despite their adverse environmental effects, modern agriculture

relies heavily on agrochemicals to manage diseases and pests and enhance plant

growth and productivity. Some of these functions could instead be fulfilled by

endophytes from the plant microbiota, which have diverse activities beneficial for

plant growth and health.

Methods: We therefore used a microbiome-guided top-down approach to

select ten bacterial strains from different taxa in the core microbiome of

tomato plants in the production chain for evaluation as potential bioinoculants.

High-quality genomes for each strain were obtained using Oxford Nanopore

long-read and Illumina short-read sequencing, enabling the dissection of their

genetic makeup to identify phyto-beneficial traits.

Results: Bacterial strains included both taxa commonly used as biofertilizers and

biocontrol agents (i.e. Pseudomonas and Bacillus) as well as the less studied

genera Leclercia, Chryseobacterium, Glutamicibacter, and Paenarthorbacter.

When inoculated in the tomato rhizosphere, these strains promoted plant

growth and reduced the severity of Fusarium Crown and Root Rot and

Bacterial Spot infections. Genome analysis yielded a comprehensive inventory

of genes from each strain related to processes including colonization,

biofertilization, phytohormones, and plant signaling. Traits directly relevant to

fertilization including phosphate solubilization and acquisition of nitrogen and

iron were also identified. Moreover, the strains carried several functional genes

putatively involved in abiotic stress alleviation and biotic stress management,

traits that indirectly foster plant health and growth.

Discussion: This study employs a top-down approach to identify new plant

growth-promoting rhizobacteria (PGPRs), offering an alternative to the
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conventional bottom-up strategy. This method goes beyond the traditional

screening of the strains and thus can expand the range of potential

bioinoculants available for market application, paving the way to the use of

new still underexplored genera.
KEYWORDS
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1 Introduction

Modern farms make extensive use of pesticides to manage

diseases and pests as well as chemical fertilizers to enhance

productivity (Jacquet et al., 2022). However, the significant

negative effects of agrochemicals on both the environment and

human health have sparked increasing interest in alternative

methods for achieving safe, environmentally sustainable, and eco-

friendly crop production (Jacquet et al., 2022). Innovative strategies

that minimize reliance on conventional agrochemicals without

loss of agricultural productivity and ecological integrity are

highly desired.

Current research efforts seeking to reduce agrochemical use are

converging towards a prophylactic approach that emphasizes

agroecological cropping systems, biodiversity-aware breeding

programs, and precision agriculture, with a heavy focus on

biological control solutions (Jacquet et al., 2022).

Plant-associated microorganisms play vital roles in protecting

plants against abiotic and biotic stress factors (Compant et al., 2005;

Singh et al., 2011; Santoyo et al., 2016; Kelbessa et al., 2023). Some

constituents of the plant microbiota actively enhance nutrient

uptake (Das et al., 2022), improve nutrient utilization efficiency

(Kelbessa et al., 2023), and contribute to phytohormone modulation

(Backer et al., 2018), biocontrol (Compant et al., 2005), and the

induction of systemic resistance (Pieterse et al., 2014), thereby

promoting plant growth and health. These microorganisms are

known as Plant Growth Promoting Microorganisms (PGPM)

(Lugtenberg and Kamilova, 2009; Kumar et al., 2022).

Endophytes, i.e. microorganisms capable of residing in the

internal tissues of host plants, are major constituents of the plant

microbiota (Hardoim et al., 2015). Their beneficial effects often

exceed those of many rhizosphere-colonizing bacteria and may be

especially pronounced when the plant is growing under stress

conditions (Hardoim et al., 2015).

Many studies have sought to evaluate the potential of plant-

associated microbiomes as PGPM and Biological Control Agents

(BCA), but there remains a need to develop diverse biocontrol

solutions that can be effectively applied across various

environments and management practices (Das et al., 2022; Ayaz

et al., 2023). Many Plant Growth-Promoting Rhizobacteria (PGPR)

have been identified using bottom-up approaches based on
02
collections of bacteria that display desirable traits in culture-

dependent screenings (Compant et al., 2019; Anzalone et al.,

2021). However, relying exclusively on culture-dependent

selection methods has proven to be a time-intensive strategy that

can yield inconsistent results (Berg et al., 2017; Compant

et al., 2019).

Research into plant-associated microbial communities has

expanded rapidly with the advent of high-throughput sequencing

techniques, which have opened up new ways of investigating plant-

microbiome andmicrobe-microbe interactions (Bulgarelli et al., 2012,

2013; Knief, 2014; Du et al., 2020; Kelbessa et al., 2022). For example,

top-down approaches were recently used to identify Plant Growth-

Promoting (PGP) candidates based on data from microbial

community metagenome analyses in an effort to develop

biotechnological crop protection strategies (Compant et al., 2019).

Microbiome-guided methods for selecting beneficial bacterial strains

have mainly focused on the relative abundance and/or enrichment of

specific taxa under specific growing conditions (Zhuang et al., 2021),

including stress conditions (Kwak et al., 2018; Flemer et al., 2022), or

targeting taxa within the ‘core’microbiome (Tian et al., 2017; Bergna

et al., 2018; Penyalver et al., 2022).

The core microbiome consists of a set of microbial taxa

associated with a specific host or environment along with their

genomic and functional characteristics (Lundberg et al., 2012; Neu

et al., 2021). It includes microbial taxa that have become vital for

plant health as a result of evolutionary processes that have led to the

selection and enrichment of taxa that fulfill critical functions for the

fitness of the plant holobiont (Lemanceau et al., 2017; Toju et al.,

2018; Risely, 2020). Knowledge of core microbiome components,

e.g. microbial communities associated with a plant species across

various stages of development or under different growing

conditions, can thus provide valuable guidance when selecting

beneficial microorganisms that could be used to enhance crop

resilience and productivity through strategic application of

microbial inoculants or other biocontrol agents (Tian et al., 2017;

Bergna et al., 2018; Penyalver et al., 2022; Wang et al., 2023).

To plan future tomato microbiome engineering interventions

we previously used amplicon-based metagenomics to perform a

comprehensive analysis of tomatoes grown under greenhouse

conditions spanning the entire plant production chain (Anzalone

et al., 2022). The study involved sampling tomato seeds (Solanum
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lycopersicum L. cv. ‘Proxy’) and the rhizosphere of seedlings born

from those seeds in a commercial nursery. The development of the

seedlings ’ root microbiomes was then monitored after

transplantation into a greenhouse, in agricultural soil and coconut

fiber (soilless conditions) (Anzalone et al., 2022). The root-

associated bacterial communities differed significantly between the

nursery and production stages, and also between conventional and

soilless conditions in the greenhouse. These findings suggest that it

will be essential to account for the variability of the microbiome

when seeking to develop biocontrol solutions that will form stable

and effective interactions (Anzalone et al., 2022).

In this study, we sought to advance beyond the traditional

bottom-up approach for selecting PGPR strains by employing a

top-down strategy informed by microbiome analysis, focusing on

representative strains from the tomato core microbiome genera,

irrespective of their in vitro performance. The core microbiome

data on bacterial communities associated with different tomato

compartments during the growing cycle, obtained by Anzalone

et al. (2022) was used to guide the selection of new beneficial

bacteria from the same samples through in vitro cultivation. This

allowed us to expand strain selection to less explored genera, broadly

suitable for various application time and methods. Eventually, ten

bacterial strains from the tomato ‘core microbiome’ collection were

characterized and shown to exhibit plant growth promoting and

biocontrol properties in planta, even though some of them showed no

antagonistic activity in vitro. Along with strains in the genera

Bacillus and Pseudomonas we shed light onto the PGP phenotypes

of strains belonging to the Gram-negative genera Leclercia and

Chryseobacterium and the Gram-positive Micrococcaceae genera

Paenarthrobacter and Glutamicibacter. The construction of high-

quality genomes can significantly improve our capacity to investigate

and comprehend the intricate mechanisms that make bacterial agents

effective in biocontrol.
2 Materials and methods

2.1 Isolation of bacterial endophytes

The endophytes examined in this study were obtained from seed

and root endospheres of tomato (Solanum lycopersicum L.) cv.

‘Proxy’ from the same samples used in the metagenomic study in

Anzalone et al. (2022). More specifically, during the same production

cycle, samples were obtained from the endosphere of tomato seeds

(Seeds_T0) and roots of nursery seedlings before commercialization

(Plant_T1_Endo) and two months after their transplanting in

greenhouse either in agricultural soil (Plant_T2_Soil) or soilless in

a coconut fiber substrate (Plant_T2_CF) (Anzalone et al., 2022). Four

replicates of 20 seeds and four plant roots bulk samples for each

condition were analyzed. Samples were processed according to

Anzalone et al. (2021). Cultivable bacterial populations of total,

fluorescent, and spore forming bacteria were enumerated in

compliance with Anzalone et al. (2021). The root-associated

bacteria were selected from plates containing 30–300 colonies, i.e.,

typically 102 (1:100) dilution (Anzalone et al., 2021). Bacterial strains

were selected using a systematically randomized approach in which
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solid media plates were divided into six equal parts and colonies from

one of the six parts were collected as stated in Bergna et al. (2018).

Approximately 100 colonies per each biological replicate were

harvested, leading to a total of 2000 colonies that after purification

were preserved in 96 microwell cell culture plates (Anzalone et al.,

2021). Ninety-four representative bacteria were selected for further

investigation, based on KOH string test (Halebian et al., 1981) and

colony macromorphological diversity (size, color, and morphology of

the colony).
2.2 Molecular and phylogenetic
identification of bacteria isolated from the
tomato endosphere

Partial 16S rRNA gene amplification was obtained by PCR

using the universal primer pair 27F-1492R (Edwards et al., 1989;

Lane, 1991). The master mixtures consisted of 1 x Taq&Go G2 Hot

Start colorless PCR Master Mix (Promega), 0.5 mM of each primer,

and 1 µL of template in a total volume of 15 mL. Reactions were
performed with a GeneAmp® PCR system 9700 thermal cycler

using the thermal protocol described by Anzalone et al. (2021). The

DNA amplicons were quantified and sequenced by BMR Genomics

(Padova, Italy). The nucleotide sequences were searched against the

nucleotide collection database of the National Center for

Biotechnology Information (NCBI) using the Basic Local

Alignment Search Tool BLASTN (http://www.ncbi.nlm.nih.gov).

Sequences were aligned using the Clustal-W algorithm as

implemented in MEGA XI and deposited in GenBank; the

corresponding accession numbers were obtained. A phylogenetic

tree was generated based on the alignment profiles using the

Neighbor-Joining method (Kumar et al., 2018) with bootstrap-

based branch supports in MEGA XI.
2.3 Culture collection representativeness

To ascertain the representativeness of the strains of our collection

in the tomato microbiome in the production chain, we used 16S

rRNA sequencing data from the previous study of Anzalone et al.

(2022). The 16S rRNA gene sequences of culture collection isolates

were compared with the 16S rRNA gene amplicon-based

metagenomic data of seeds, root endosphere and rhizosphere

samples from Anzalone et al. (2022), using the Basic Local

Alignment Search Tool BLASTN (http://www.ncbi.nlm.nih.gov).

Sequences with ≥ 97% similarity were assigned to the same OTUs

(Carper et al., 2021; Krstić Tomić et al., 2023). In case of multiple

matches, the OTU with the highest identity percentage was selected

from those exceeding the set threshold.
2.4 Phenotypic characterization of
representative bacterial endophytes

In vitro tests were conducted as described by Anzalone et al.

(2021) to evaluate three PGP traits - siderophore production,
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phosphate solubilization, and growth on 8% NaCl – in the selected

94 bacterial endophytes. The production of hydrogen cyanide

(HCN) and 1-aminocyclopropane-1-carboxylic acid (ACC)

deaminase was assessed using the methods of Strano et al. (2017)

and Penrose and Glick (2003), respectively. All experiments were

performed twice using three independent replicates.
2.5 Antimicrobial activity of representative
bacterial endophytes

Bacterial endophytes were tested on Potato Dextrose Agar (PDA)

plates for in vitro antagonistic activity according to Anzalone et al.

(2021), against the following pathogens: the bacteria Clavibacter

michiganensis subsp. michiganensis strain PVCT 156.1.1 (Cmm),

Pseudomonas syringae pv. tomato strain PVCT 28.3.1 (Psto),

Xanthomonas euvesicatoria pv. perforans strain NCPPB 4321 (Xep)

and the fungi Fusarium oxysporum f. sp. radicis-lycopersici strain

PVCT 127 (Forl), and Botrytis cinerea strain Bc5 (Bot). Briefly,

bacterial pathogen suspensions were normalized to an OD600 of 0.1

(Anzalone et al., 2021) and inhibition halo radii (in mm) were

measured after 48 h of incubation. For fungal pathogens a mycelial

plug was placed in the center of the plate (Anzalone et al., 2021) and

the antifungal activity was expressed as a Percentage of Growth

Inhibition (PGI) according to Vincent (1947). All strains were tested

twice using three independent replicates.
2.6 Selection of strains for further trials

To identify key bacterial components of the tomato plant-

associated samples, the core microbiome of the samples reported by

Anzalone et al. (2022) was determined. The samples used in the

analysis represented tomato seeds (Seed_T0), the root rhizosphere

(Plant_T1_Rhizo) and endorhizosphere (Plant_T1_Endo) of tomato

plants ready for sale; and the rhizosphere and endorhizosphere of

tomato plants at flowering and fruit set after transplantation into

agricultural soil (Plant_T2_Soil_Rhizo; Plant_T2_Soil_Endo) and

coconut fiber bags (Plant_T2_CF_Rhizo; Plant_T2_CF _Endo). Five

replicates for each sample type were analyzed. Following the selection

criteria of Hamonts et al. (2018), bacterial core taxa up to the genus

level with prevalences ≥ 75% in the aforementioned samples (i.e. genera

that were consistently present across at least the 75% of the samples)

were investigated using themicrobiome package in R (Shetty and Lahti,

2019). Strains were selected arbitrarily from genera that were present

both in the bacterial collection and in the core microbiome. Only

bacterial strains that showed growth stability on Nutrient Dextrose

Agar (NDA) at 27 ± 1°C were further used.
2.7 In planta bioassays

2.7.1 Microorganisms’ growing conditions and
inoculum preparation

Bacterial strains were grown on NDA plates for 24 h at 27 ± 1°C.

Single colonies were inoculated in 25 mL of Luria-Bertani (LB)
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broth and incubated for 24 h at 27 ± 1°C in a rotary shaker (180

rpm). The bacterial cultures were centrifuged at 5,000 rpm for 15

min, and after discarding the supernatant, the pellets containing the

bacterial cells were resuspended in sterile water and the density was

adjusted to 1·108 colony forming units (cfu)·mL-1.

Xep suspensions were prepared as above, with a final

concentration of 1·108 cfu·mL-1 (Anzalone et al., 2021). To

produce Forl inoculum, fresh conidia were collected from

sporulating colonies grown for 14 days on PDA at 23°C. Petri

dishes were flooded with 10 ml of sterile distilled water, then conidia

were scraped using sterile spatulas and transferred to sterile 50 ml

tubes. After filtration through four layers of cheesecloth, the

concentration of the resulting spore suspension was estimated

using a hemocytometer under light microscopy and adjusted to

4·106 conidia·mL-1 (Manzo et al., 2016).

2.7.2 Plant material and growing conditions
Tomato plantlets of the variety Moneymaker were produced

from seeds in growth chamber. Briefly, seeds were surface-sterilized

by immersion in 3% sodium hypochlorite for 5 min followed by

three washing steps in sterile water (Ghadamgahi et al., 2022) and

dried on sterile filter paper in a laminar flow cabinet. Seed were

sown in trays filled with a commercial potting substrate

(Krukväxtjord Lera/Kisel, SW Horto). Trays were covered with

plastic bags and kept in a growth chamber under controlled

conditions (22°C/16 h light, 18°C/8 h dark, 60% relative

humidity). After germination, the chamber conditions were

changed to 25°C:22°C day:night. The light intensity was set at 300

µmol·m-2s-1 (Fan et al., 2013) and then changed to 225 µmol m-2s-1

when the plants were three weeks old. Plants were transplanted into

2 L volume pots for subsequent experiments.

2.7.3 In vivo biocontrol activity
The biocontrol activity of the selected bacterial endophytes was

assessed against the causal agent of Tomato Crown and Root Rot,

Fusarium oxysporum f. sp. radicis-lycopersici (strain PVCT 127), and

Xanthomonas euvesicatoria pv. perforans (strain NCPPB 4321) one of

the causal agents of Tomato Bacterial Spot (Osdaghi et al., 2021). Six

plants were used as replicates in each pathogen/endophyte

combination. Endophytes were applied by seed soaking (30

minutes) and soil drenching with 50 mL of the bacterial endophyte

suspension, three weeks after plant emergence and after

approximately three further weeks but exactly 72 or 24 h before

Fusarium and Xanthomonas inoculation, respectively.

For the artificial inoculations with Forl, 30 ml of conidial

suspension was poured into the soil near each tomato plant and a

wound in the crown was made by a razor blade to assist pathogen

penetration. Control plants were wounded in the same way but

inoculated with sterile water. The growth chamber was set at 22°C/

16 h light and 20°C/18 h dark, with 80% relative humidity. Disease

evaluation was performed 45 days after Forl inoculation (Vitale

et al., 2014). All seedlings were gently uprooted and their crowns

and stems were examined. To determine disease incidence, all

plants were sectioned to ascertain the presence of disease

symptoms and the percentage of infected tomato plants was
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determined. Disease severity was assessed by measuring the length

(cm) of vascular discoloration in each tomato stem.

For the bacterial spot biocontrol assay, Xep cell suspensions

(1·108 cfu·mL-1) or water as a negative control, supplemented with

0.01% tween 20, were spray-inoculated on tomato plants. Plants

were covered with plastic bags 24 h before pathogen inoculation and

remained covered for the following 72 h to maintain a relative

humidity of close to 100%. The growth chamber was set at 26°C/16

h light and 24°C/18 h dark, with 80% relative humidity. Six days

after inoculation, the disease incidence was recorded and the disease

severity was calculated by estimating the percentage of the leaf area

affected (necrotic tissue) by bacterial spot in approximately 10

leaflets using the ImageJ software (https://imagej.nih.gov/ij/).

2.7.4 Tomato growth promotion assay
Growth promotion activity was evaluated using a completely

randomized block experimental design. After transplanting, 20 mL

of the appropriate bacterial suspension (or water as a negative

control) was added to each pot by soil drenching (Anzalone et al.,

2021). Pots were observed regularly and watered daily as needed.

Shoot height was recorded at five different time points: T0

(treatment) and T1-4 (from 1 to 4 weeks after treatment). After

one month, the seedlings were uprooted and the fresh and dry shoot

and root weights were determined. For dry weight measurements,

plant shoots and roots were oven-dried at 70°C for three days before

weighing. Seven replicates were used for each treatment.
2.8 DNA extraction and whole
genome sequencing

Bacterial strains were grown in LB broth inoculated with a single

bacterial colony from a 24-h-old culture on NDA and incubated

overnight at 27 ± 1°C under continuous shaking (180 rpm). Total

genomic DNA was extracted from bacterial cultures using the

Wizard® HMW DNA Extraction Kit (Promega) according to the

manufacturer’s instructions. Complete bacterial genome sequences

were determined by a combination of long and short reads. Long and

short read sequencing were performed with an Oxford Nanopore

GridION X5 platform and an Illumina NovaSeq 6000 platform

(paired-end read length, 150 bp), respectively.
2.9 Pre-processing of reads, genome
assembly and annotation

Illumina raw reads were pre-processed (adapter trimming,

quality filtering [>Q30] and quality checking) with fastp v 0.23.4

(Chen et al., 2018).

The quality of raw Nanopore reads was checked with NanoPlot

v1.42.0 (De Coster and Rademakers, 2023). Adapters were trimmed

with Porechop_ABIv0.5.0 (Bonenfant et al., 2022). Seqkit v2.8.1

(Shen et al., 2016) was used for quality filtering with 1,000 bp read

length and Q10 quality cutoffs. Filtered nanopore reads were

assembled using Flye v.2.9.4 (Kolmogorov et al., 2019). PILON

v1.24 (Walker et al., 2014) was used for polishing with Illumina reads.
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CheckM v1.1.6 (Parks et al., 2015) was used to determine the

completeness and contamination of the assemblies. Assembly

statistics were computed with QUAST v5.2.0 (Gurevich et al.,

2013). Plasmer (Zhu et al., 2023) was used to identify plasmid

sequences. General annotation of genomes was performed using

Prokka v1.14.5 (Seemann, 2014).

GTDB-Tk v2.3.0 (Chaumeil et al., 2022) was used for

taxonomic annotation of each genome. Genome sequence data

were uploaded to the Type (Strain) Genome Server (TYGS), a

free bioinformatics platform available at https://tygs.dsmz.de, to

perform whole genome-based taxonomic analyses (Meier-Kolthoff

and Göker, 2019). Genomic relatedness was determined using

average nucleotide identity (ANI) values computed with

EzBioCloud (Yoon et al., 2017). Two genomes belonging to the

same species should have a dDDH of at least 70%, corresponding to

an ANI of at least 95% (Goris et al., 2007; Auch et al., 2010; Meier-

Kolthoff et al., 2013). Plant growth promoting traits (PGPT) were

predicted using the PGPT-Pred module of PLaBAse v1.01 (Patz

et al., 2021). PIFAR-BASE was used to identify ‘plant bacterial only

interaction factors’ from the annotated protein files for each strain

using the BlastP+HMMER Aligner/Mapper (Patz et al., 2021). The

bacterial version of antiSMASH 7.0 (Blin et al., 2023) was used to

screen for secondary metabolites.
2.10 Statistical analysis

Data from the PGP and biocontrol experiments were analyzed

by analysis of variance (ANOVA) using Minitab 20 statistical

software (Minitab, Inc., State College, PA). Means were separated

using Tukey’s post-hoc HSD test.
2.11 Data availability

16S rRNA gene sequences of the strains used in this work were

submitted to the GenBank database under accession numbers from

MZ066824 to MZ066917.

All of the assembled genomes and respective raw reads are

available under BioProject ID: PRJNA1096641.
3 Results

3.1 Isolation and identification of
bacterial endophytes

The bacterial endophytes examined in this study were obtained

from samples that were prepared for metagenomic analysis of

microbial communities in tomato plants at multiple stages in the

cultivation chain from nursery to greenhouse (Anzalone et al., 2022).

Bacteria (total, fluorescent, and spore-forming) were enumerated on

different media from samples obtained from the seed endosphere as

well as from the endorhizosphere of nursery plantlets and two months

after transplanting into either agricultural soil or coconut fiber bags.

The total, spore forming, and fluorescent bacterial population sizes in
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the seeds were 1.46, 0.4, and 0.8 log CFU per gram of seed, respectively.

The root endosphere bacterial concentrations of adult plants grown in

agricultural soil and coconut fiber substrate were similar, and both

were higher than the bacterial titers of plantlets in the nursery

(Supplementary Figure S1). From a collection of approximately 2000

bacterial colonies isolated across the entire experiment, ninety-four

representative bacteria from the endospheric (root or seed)

compartments were selected for further investigation. Based on

BLASTN sequence identities of partial 16S rRNA gene sequences,

the 94 bacterial isolates were assigned to genera spanning

seven orders (Supplementary Table S1): the Gram-positive Bacillales

and Micrococcales, and the Gram-negative Pseudomonadales,

Enterobacteriales, Flavobacteriales, Burkholderiales, and

Xanthomonadales. Identities ranging from 97 to 100% were observed

(Supplementary Table S1). More specifically, the Bacillales strains were

assigned to the genera Bacillus, Paenibacillus, Staphylococcus, and

Priestia; the Micrococcales strains belonged to the genera

Glutamicibacter, Microbacterium, Curtobacterium, Paenarthrobacter,

and Arthrobacter; the Pseudomonadales strains belonged to the genus

Pseudomonas; the Enterobacteriales strains belonged to the genera

Enterobacter, Ewingella, and Serratia; Flavobacteriales was represented

by the genera Flavobacterium and Chryseobacterium; Burkholderiales

was represented by a single strain of the genus Delftia; and

Xanthomonadales was represented by multiple strains in the genus

Stenotrophomonas. Sequences were deposited at GenBank under

accession numbers from MZ066824 to MZ066917 (Supplementary

Table S1). The majority of the strains in all samples belonged to the

order Bacillales and/or Pseudomonadales (Figure 1A). A dendrogram

showing the phylogenetic relationships of the selected bacterial strains

is shown in Figure 1B. Comparing the 16S rRNA gene sequences of our

culture collection isolates with 16S rRNA gene amplicon-based

metagenomic data from seeds, root endosphere, and rhizosphere

samples within the tomato growth chain (Anzalone et al., 2022), we

found that 88% of the isolates had representatives within the amplicon-

based metagenomic sequences at 97% identity (Supplementary

Table S2). The strains in culture collection represented 12.77% of the

total in seeds and 26.48%, 22.38%, and 27.40% of the total in the root

endosphere of nursery plantlets and plants in coconut fiber substrate or

agricultural soil, respectively (Figure 2A). Lower values were observed

in the respective rhizosphere samples (Figure 2A).
3.2 Phenotyping of beneficial
bacterial traits

The bacterial strains were characterized for different beneficial

properties, revealing that a high percentage of strains showed PGP

traits. Approximately 87% of the bacterial strains from the tomato

endospheric compartments could grow in 8% NaCl, while 51% were

able to produce siderophores and solubilize insoluble organic

phosphate. However, only 2% and 21% of the strains were

positive for HCN and ACC deaminase production, respectively

(Supplementary Figure S2A). Approximately 30% of the bacteria

(28 out of 94 strains) showed antagonistic activity towards all of the

tested phytopathogenic bacteria and fungi (Supplementary
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Figure S2B), while around 45% of the strains (41 out of 94) were

antagonistic to all the bacterial pathogens. The highest

antimicrobial activity (based on the number of antagonistic

strains and inhibition zone radius) was observed against C.

michiganensis subsp. michiganensis PVCT 156.1.1, followed by P.

syringae pv. tomato PVCT 28.3.1. Roughly 54% of the endophytic

strains (51 out of 94) inhibited the mycelial growth of the fungal

targets Fusarium oxysporum f. sp. radicis-lycopersici PVCT 127 and

Botritys cinerea Bc5 to at least some degree when compared to a

non-challenged colony. Moreover, 26% of the strains achieved at

least 60% growth inhibition against the former fungal pathogen,

while 11% of the strains achieved the same level of inhibition

against the latter (Supplementary Figure S2B).
3.3 Selection of strains from the core
microbiome for further trials

To select strains suitable for various applications throughout the

production chain, we determined the tomato core microbiome at the

genus level by analyzing bacterial communities in a continuous

experiment. We previously tracked their development from seeds to

seedlings and through to mature plants under two growing conditions

(Anzalone et al., 2022). Both the rhizosphere and endorhizosphere

bacterial communities were included in the analysis. Twenty-seven

core microbiome genera were identified across at least 75% of the

35 samples (prevalence > 75%) (Figure 3). Bacterial genera present

both in the core microbiome and among the bacterial strains

obtained in axenic culture included Flavobacterium, Pseudomonas,

Bacillus, Enterobacter, Chryseobacterium, Arthrobacter, and

Stenotrophomonas. We selected ten strains arbitrarily from these

genera, reflecting a degree of subjectivity in the choice process, and

excluded Flavobacterium and Stenotrophomonas strains due to their

observed instability under our growth conditions (Table 1). Therefore,

the selection did not take into account the in vitro potential of the

strains. Based on preliminary 16S rRNA identification, we selected two

and three strains of Pseudomonas and Bacillus, respectively,

which could potentially represent different species according to

BLASTN analysis (Supplementary Table S1). Additionally, we

selected one strain each of Enterobacter and Chryseobacterium

(Table 1). Three Micrococcaceae strains, identified as Arthrobacter

S54, Paenarthrobacter S56, and Glutamicibacter PFE44 by 16S rRNA

gene sequencing, were chosen as Gram-positive representatives of the

set (Table 1), with these strains being represented by a single

Arthrobacter OTU in the core microbiome (data not shown).

To evaluate the representativeness of the ten selected strains in

comparison to the total microbiome, we analyzed their 16S rRNA

gene sequences against 16S rRNA gene amplicon-based metagenomic

data (Anzalone et al., 2022). The selected strains accounted for 5.78%

of the microbiome in the seeds and 22.98%, 2.76% and 7.29% of the

microbiome in the root endosphere of nursery plantlets and plants in

coconut fiber substrate or agricultural soil, respectively (Figure 2B).

Except for Chryseobacterium sp. POE47, all strains exhibited more

than 97% similarity with the OTUs in the core microbiome (data

not shown).
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3.4 Genome sequencing of
beneficial endophytes

The genetic potential of the selected beneficial bacteria was

explored by using a combination of long-read Oxford Nanopore

and short-read Illumina sequencing to obtain their genomes in

order to identify traits associated with plant growth promotion and

biocontrol. The genomes were de novo assembled to create high
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quality, complete reference genomes, yielding individual genomes

whose characteristics are detailed in Table 2. Final assembly quality

was validated by estimating contamination and completeness.

Overall, the assembled genomes showed over 98% completeness

and <1% contamination (Table 2).

The genomic properties of all of the selected bacterial strains

were similar to those of other strains belonging to the same species

deposited in GenBank (data not shown).
FIGURE 1

(A) Distribution of cultivable bacterial communities in the endosphere samples of tomato seeds (Seeds_T0) and roots (Plant_T1, Plant_T2_CF, and
Plant_T2_Soil) at the taxonomic order level; (B) Phylogenetic tree based on 16S rRNA gene sequences of the 94 endophytic strains isolated in this
study. The evolutionary history was inferred using the Neighbor-Joining method. The evolutionary distances were computed using the Tamura 3-
parameter method. There was a total of 731 positions in the final dataset. Colors highlight the isolation source of each strain: green, Seeds_T0;
violet, Plant_T1; blue, Plant_T2_CF; orange, Plant_T2_Soil.
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The TYGS genome-based pipeline was used to refine the

identification of the ten bacterial strains based on 16S rRNA gene

sequencing (Yoon et al., 2017; Meier-Kolthoff and Göker, 2019)

(Table 1; Supplementary Table S3). Strains PSE31B, PFE42 and

PFE11 were all assigned to the bacterial species B. velezensis. The

two Pseudomonas strains were identified as P. salmasensis strain

POE54 and P. simiae strain POE78A. Two of the three bacterial

strains in the Microccoccaceae family were identified at the species

level as Glutamicibacter halophytocola strain PFE44 and

Paenarthrobacter ureafaciens strain S54. However, strain S56

could only be identified at the genus level as Paenarthrobacter sp.

with a dDDH value of 24% when compared to the closest genome

reference P. ureafaciens DSM 20126T; consequently, this strain may

belong to a new species. Similar results were obtained for

Chryseobacterium sp. POE47 and Leclercia sp. strains S52

(Enterobacter sp. by 16S rRNA gene sequencing) when compared
Frontiers in Plant Science 08
to the closest phylogenetic species Chryseobacterium taeanense

DSM 17071T and Leclercia tamurae H6S3T, for which the

corresponding dDDH values were 31.2% and 51.4%, respectively.

The calculated ANI values for each strain with the closest related

species supported these conclusions (Supplementary Table S3).

Table 2 summarizes the general genomic characteristics of the

sequenced strains.

Coding sequences were extracted from the genomes of the ten

selected strains and classified using the Clusters of Orthologous

Groups of proteins (COG) database, revealing four main functional

gene classes that were present in all ten genomes (Supplementary

Figure S3): (i) Amino acid transport and metabolism, (ii)

Carbohydrate transport and metabolism, (iii) Cell wall/

membrane/envelope biogenesis, and (iv) Transcription. Other

highly represented gene classes included translation, ribosomal

structure and biogenesis, signal transduction mechanisms, energy
FIGURE 2

Relative abundance of OTUs of the bacterial communities in the tomato growth chain (Anzalone et al., 2022) matching with the 16s rRNA gene
sequences of the 94 bacterial endophytic strains (A) and the ten further selected strains (B). Only sequences with ≥ 97% similarity were considered.
In cases of multiple matches, the OTU with the highest identity percentage was selected from those exceeding the set threshold.
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production and conversion, coenzyme transport and metabolism,

lipid transport metabolism, and inorganic ion transport and

metabolism. No genes in the chromatin structure and dynamics

or nuclear structure categories were detected in any genome

(Supplementary Figure S3). The “amino acid transport and

metabolism” class was the most strongly represent among the
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COGs in the three members of the Bacillus genus, the two

members of the Pseudomonas genus, and G. halophytocola

strain PFE44. The most abundant gene families identified in

Chryseobacterium sp. POE47 were associated with “cell wall/

membrane/envelope biogenesis”, while the most strongly

represented COG family for Leclercia sp. S52, P. ureafaciens S54

and Paenarthrobacter sp. S56 was “carbohydrate transport and

metabolism”. Further details of the COG analysis are presented in

Supplementary Figure S3.

In the KEGG analysis, genes associated with “protein families:

genetic information processing” were most abundant in the Bacillus

strains, Chryseobacterium sp, POE47 and Leclercia sp. S52. For the

two Pseudomonas strains, the “environmental information

processing” category was dominant, while “carbohydrate

metabolism” was dominant in the three members of the

Micrococcaceae family (Supplementary Figure S4).

At the protein level, analysis with OrthoVenn 3 (https://

orthovenn3.bioinfotoolkits.net) revealed that the highest number

of orthologous clusters was found in Pseudomonas species POE78A

and POE54 (3874 and 3826), followed by B. velezensis PFE11,

PFE42 and PSE31B (3273, 3253 and 3216). The lowest number was

recorded in Chryseobacterium sp. POE47 (1679) (Supplementary

Figure S5). The two pseudomonads shared 1387 clusters, while the

three B. velezensis strains shared 1377. The two Paenarthrobacter

strains (S54 and S56) shared 624 clusters, and 483 were also shared

with the other strain belonging to the Micrococcaceae family (i.e. G.

halophytocola PFE44). In total, 530 orthologous clusters were

shared by all ten selected strains. A total of 329 gene clusters were

specific to a single genome. Of these clusters, 101 belonged to

Leclercia sp. S52 and 228 were from Chryseobacterium sp. POE47

(Supplementary Figure S5).
3.5 Genes related to potential PGP and
biocontrol traits

A genome annotation analysis conducted using the PGPT-Pred

function revealed genomic features associated with plant growth

promotion. The genomes of all ten selected strains had similar

PGPT classes, with minor differences across the diverse taxa. In all

strains, the class with the highest proportion of genes was

“Colonizing plant system”, followed by “Stress control and

Biocontrol” , “Competitive exclusion”, “Biofertilization” ,

“Phytohormone and Plant Signaling”, “Bioremediation” and

“Plant immune response stimulation” (Supplementary Figure S6).

An insight in PGPT categories highlighted traits of interest linked to

direct and indirect effect on plant growth (Figure 4). All the

bacterial strains regardless of the taxonomic affiliation showed a

high number of genes related to osmotic, oxidative and salinity

stresses. Only G. halophytocola PFE44 showed genes encoding for

stress signaling proteins related to abiotic stress defense, but in turn

showed the lowest gene number related to biotic stress defense.

Chryseobacterium sp. POE47 had a lower number of genes related

to N acquisition, in particular, genes encoding for allantoine,

trigonelline and urea usage were not detected in the genome.

Notably, only the two Pseudomonas strains covered more gene
FIGURE 3

Relative abundance of bacterial genera of the tomato core
microbiome showing a prevalence ≥ 75%, i.e. genera that were
consistently present across at least the 75% of the samples of the
bacterial communities in the tomato growth chain according to
Anzalone et al. (2022). Bacterial genera are indicated in the right;
samples are indicated on the bottom (see Material and Methods
section for sample details).
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categories related to biotic stress defense, including those encoding

bactericidal, fungal, insecticidal and nematicidal compounds, and

phytotoxin degradation (Figure 4). The three Bacillus strains

distinguished for the high number of genes involved in

bactericidal compound biosynthesis. Supplementary Table S4

shows the full set of genes found in the ten genomes.

Annotation of the genomes against the ‘plant bacterial only

interaction factors (proteins) (PIFAR)’ dataset revealed two distinct
Frontiers in Plant Science 10
clusters among the bacterial endophytes: one comprising those

exhibiting antimicrobial activity and the other comprising those

that did not. Minor groups were further segregated based on their

taxonomic affiliation (Figure 5). P. salmasensis POE54 and P. simiae

POE78A belonged to the first group and showed the highest

percentages of toxin-related factors, which accounted for 44% and

42% of the identified PIFAR, respectively (Figure 5). The three B.

velezensis strains (PSE31B, PFE42 and PFE11) formed a second
TABLE 1 Isolation source and identification by partial 16S rRNA gene and whole genome sequencing of the ten bacterial endophytes selected based
on the core microbiome analysis.

Strain
ID

Isolation
source (substrate)

Class Order Family Identification

16S rRNA gene a Whole genome b

POE54 Roots (peat) Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas
fluorescens

Pseudomonas
salmasensis

POE78A Roots (peat) Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas
extremorientalis

Pseudomonas simiae

POE47 Roots (peat) Flavobacteria Flavobacteriales Weksellaceae Chryseobacterium sp. Chryseobacterium sp.

S52 Seeds Gammaproteobacteria Enterobacteriales. Enterobacteriaceae Enterobacter sp. Leclercia sp.

PSE31B Roots (soil) Bacilli Bacillales Bacillaceae Bacillus
amyloliquefaciens

Bacillus velezensis

PFE42 Roots (coconut fiber) Bacilli Bacillales Bacillaceae Bacillus velezensis Bacillus velezensis

PFE11 Roots (coconut fiber) Bacilli Bacillales Bacillaceae Bacillus subtilis Bacillus velezensis

PFE44 Roots (coconut fiber) Actinomycetes Micrococcales Micrococcaceae Glutamicibacter
halophytocola

Glutamicibacter
halophytocola

S54 Seeds Actinomycetes Micrococcales Micrococcaceae Arthrobacter sp. Paenarthrobacter
ureafaciens

S56 Seeds Actinomycetes Micrococcales Micrococcaceae Paenarthrobacter sp. Paenarthrobacter sp.
aThe nucleotide sequences were searched against the nucleotide collection database at the National Center for Biotechnology Information (NCBI) nucleotide database using Basic Local
Alignment Search Tool BLASTN (http://www.ncbi.nlm.nih.gov). bComplete bacterial genome sequences were determined by a combination of long and short reads. For long and short reads
sequencing, an Oxford Nanopore GridION X5 platform and an Illumina NovaSeq 6000 platform were used, respectively.
TABLE 2 General features of the genomes of the 10 strains selected.

Phylogenetic
affiliation a

Completeness
(%)

Contami-
nation

Size
(Mbp)

N50 L50 GC
(%)

Genes CDS rRNA tRNA misc-
RNA

POE54 Pseudomonas
salmasensis

98.99 0.40 6.08 6.09 1 60.31 5678 5502 19 73 83

POE78A Pseudomonas simiae 99.51 0.32 6.22 6.22 1 60.33 5995 5838 19 75 62

POE47 Chryseobacterium sp. 98.53 0.25 4.39 4.40 1 36.31 4481 4388 15 63 14

S52 Leclercia sp. 99.28 0.26 4.93 4.93 1 56.78 5052 4820 25 86 120

PSE31B Bacillus velezensis 98.79 0.00 4.02 4.02 1 46.41 4374 4178 27 87 81

PFE42 Bacillus velezensis 99.42 0.25 4.21 2.49 1 45.95 4534 4333 28 90 82

PFE11 Bacillus velezensis 96.91 0.54 3.99 3.99 1 46.41 5210 5017 27 86 80

PFE44 Glutamicibacter
halophytocola

93.73 0.92 3.72 3.72 1 60.40 4194 4086 19 65 23

S54 Paenarthrobacter
ureafaciens

95.21 1.17 4.41 4.41 1 63.53 4785 4683 18 58 25

S56 Paenarthrobacter sp. 96.39 0.29 4.20 4.20 1 63.87 4247 4149 18 57 22
fron
aThe genome sequence data were uploaded to the Type (Strain) Genome Server (TYGS) for a whole genome-based taxonomic analysis (Meier-Kolthoff and Göker, 2019). Genomic relatedness
was determined using average nucleotide identity (ANI) values computed with EzBioCloud (Yoon et al., 2017).
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distinct cluster with toxin factor percentages ranging from 35 to

38% (Figure 5). Leclercia sp. strain S52 clustered more closely with,

but separately, to Bacillus spp. The lowest toxin content was

detected in the Paenarthrobacter strains S54 and S56 (24 and

25%), which formed a cluster with G. halophytocola PFE44

(Figure 5). These strains belonging to the Micrococcaceae family
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had the highest content of hormone-related factors (18%). In the

remaining strains, hormone-related factors comprised only

7 to 10% of the total PIFAR (Figure 5). EPS was the second

most abundant class of factors across all genomes except

Chryseobacterium sp. POE47, where EPS was the most abundant

class, accounting for 29% of the total detected factors (Figure 5).

This strain clustered separately from the others. Detoxification

related factors comprised a significant proportion of the genomes

of all ten strains but were most abundant in Chryseobacterium sp.

POE47 (14%) and least abundant in the B. velezensis strains (7-8%)

(Figure 5). Supplementary Table S5 provides detailed information

on the predicted PIFAR.
3.6 Biosynthetic gene cluster mining

AntiSMASH 7.0 database analysis for secondary metabolites (Blin

et al., 2023) based on the number of Biosynthetic Gene Clusters (BGCs)

in each genome revealed a group comprising Bacillus and

Pseudomonas strains with 11 to 14 BGCs, as shown in Table 3. The

three members of theMicrococcaceae family (PFE44, S54 and S56) had

six to eight BGCs, while Chryseobacterium sp. POE27 and Leclercia sp.

S52, had the fewest BGCs (three and four, respectively).

The percentage of the genome encoding BGCs was highest in

Bacillus strains (17-19%), followed by Pseudomonas strains (6-7%).

The lowest BGC percentages were observed for Chryseobacterium

sp. POE47 (Table 3). P. salmasensis POE54 had the most BGCs (14),

with nine types being represented including NRPS (3), NRPS-like

(1), RiPP-like (3), arylpolyene (1), betalactone (1), NI-siderophore

(1), NAGGN (1), RRE-containing and hybrid (2) (Supplementary

Table S6). Moreover, region 13 of this strain’s genome exhibited

100% similarity with the BGC (GenBank: KX931446.1) responsible

for obafluorin biosynthesis. No putative metabolites could be

identified for the other clusters by MIBiG database comparisons.

BGCs associated with surfactin, fengycin, and bacilysin were

detected in all Bacillus strains. Other identified BGCs were
FIGURE 5

Percentage of genes encoding for ‘plant bacterial only interaction
factors (proteins)’ predicted through PIFAR-BASE (Patz et al., 2021).
Factor categories are specified on the right. Strain ID is indicated in
the bottom. POE54, Pseudomonas salmasensis; POE78A, P. simiae;
PSE31B, Bacillus velezensis; PFE42, B. velezensis; PFE11, B.
velezensis; S52, Leclercia sp.; S56, Paenarthrobacter sp.; S54, P.
ureafaciens; PFE44, Glutamicibacter halophytocola; POE47,
Chryseobacterium sp.
FIGURE 4

Number of genes of selected PGPT classes related to plant growth promotion and stress control in the genomes of the ten bacterial strains
sequenced in this study. PGPTs were predicted using PGPT-Pred module of PLaBAse v1.01 (Patz et al., 2021). S56, Paenarthrobacter sp.; S54, P.
ureafaciens; S52, Leclercia sp.; PSE31B, Bacillus velezensis; POE78A, Pseudomonas simiae; POE54, P. salmasensis; POE47, Chryseobacterium sp.;
PFE44, Glutamicibacter halophytocola; PFE42, B. velezensis; PFE11, B. velezensis.
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associated with various polyketides including difficidin, bacillaene,

and macrolactin, and with the siderophore bacillibactin. Bacillus

and Pseudomonas had higher numbers of PKS and hybrid clusters,

and RiPP-like clusters, respectively, than the other strains
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(Supplementary Table S6). BGCs encoding the siderophores

desferioxamine E and enterobactin were found in the three

strains belonging to the family Micrococcaceae and Leclercia,

respectively. A full list of the antiSMASH results can be found in

Supplementary Table S6.
3.7 In vitro biocontrol activity against
bacterial and fungal tomato pathogens

P. salmasensis strain POE54 and P. simiae strain POE78A, the

three B. velezenzis strains PSE31B, PFE42 and PFE11 and Leclercia

sp. strain S52 showed broad antagonistic activity against the three

bacterial and two fungal tomato pathogens used in the

antimicrobial assays (Table 4; Figures 6, 7). Chryseobacterium sp.

strain POE47 only showed antagonistic activity against Forl

PVCT 127. The three bacterial strains belonging to the genus

Micrococcales, i.e. G. halophytocola PFE44, P. ureafaciens S54 and

Paenarthrobacter sp. S56, generally showed no antagonistic activity

although Paenarthrobacter sp. S56 displayed minor activity against

Forl PVCT 127 (PGI, 21.1%) (Table 4; Figures 6, 7).

Figures 6 and 7 show the results of the antimicrobial activity

assays against bacterial and fungal tomato pathogens. It is

particularly notable that the Bacillus colonies expanded in the

medium, especially when challenged with the fungal pathogens

(Figure 7) and the Gram-positive bacterium Cmm strain PVCT

156.1.1 (Figure 6). Based on the radius of the inhibition halo, i.e. the

region where microbial growth is absent, P. salmasensis strain

POE54 showed the greatest inhibitory activity against Psto strain

PVCT 28.3.1 (Table 4; Figure 6).
TABLE 4 In vitro antimicrobial activity of the selected bacterial strains against bacterial and fungal tomato pathogens.

Strain Inhibition halos
(radius, mm) a

Inhibition halos + colony
(radius, mm) a

PGI a,b

Cmm Psto Xep Cmm Psto Xep Forl Bot

Pseudomonas
salmasensis POE54

10.6 ± 1.5 9.3 ± 0.7 3.7 ± 1.3 15.2 ± 1.2 11.6 ± 0.9 7.0 ± 3.1 27.3 ± 1.5 45.0 ± 5.2

Pseudomonas simiae POE78A 8.9 ± 1.9 3.6 ± 0.8 1.9 ± 1.5 12.1 ± 1.9 4.7 ± 1.0 3.9 ± 1.1 23.8 ± 4.8 18.2 ± 10.4

Chryseobacterium sp. POE47 – – – 2.7 ± 0.2 1.7 ± 0. 3 1.7 ± 0.5 22.2 ± 6.5 –

Leclercia sp. S52 11.1 ± 4.5 1.9 ± 0.3 4.3 ± 1.4 16.2 ± 2.3 7.2 ± 2.1 8.6 ± 0.6 9.7 ± 3.2 37.2 ± 8.8

Bacillus velezensis PSE31B 10.1 ± 0.6 2.8 ± 0.2 5.3 ± 1.2 18.4 ± 0.9 7.6 ± 1.0 12.6 ± 3.0 59.2 ± 2.0 57.9 ± 4.4

Bacillus velezensis PFE42 8.7 ± 0.8 2.8 ± 0.4 4.3 ± 2.3 21.6 ± 4.1 6.2 ± 1.3 12.9 ± 3.1 40.6 ± 3.0 63.6 ± 6.6

Bacillus velezensis PFE11 13.8 ± 0.9 3.8 ± 0.3 5.9 ± 1.2 19.5 ± 4.6 5.5 ± 0.2 10.3 ± 1.1 48.3 ± 1.7 61.1 ± 5.8

Glutamicibacter
halophytocola PFE44

– – – 2.6 ± 0.5 2.0 ± 0.7 2.6 ± 0.3 – –

Paenarthrobacter
ureafaciens S54

– – – 2.8 ± 0.2 1.9 ± 0.4 2.5 ± 0.4 – –

Paenarthrobacter sp. S56 – – – 2.4 ± 0.4 1.6 ± 0.3 2.1 ± 0.3 21.1 ± 2.8 –
Cmm, Clavibacter michiganensis subsp.michiganensis; Psto, Pseudomonas syringae pv. tomato; Xep, Xanthomonas euvesicatoria pv. perforans, Forl, Fusarium oxysporum f. sp. radicis-lycopersici;
Bot, Botrytis cinerea. aValues represent the mean of three replicates. bPercentage of Growth Inhibition (Vincent, 1947).
TABLE 3 Bacterial Biosynthetic Gene Clusters (BGCs) for secondary
metabolites predicted by AntiSMASH 7.0.

Strain Predicted
BGCs

Total
lenght
(nt)

% on the
total genome

Pseudomonas
salmasensis POE54

14 452,481 7.43

Pseudomonas
simiae POE78A

13 401,988 6.46

Chryseobacterium
sp. POE47

3 107,090 2.43

Leclercia sp. S52 4 147,037 2.98

Bacillus
velezensis PSE31B

11 713,844 17.75

Bacillus
velezensis PFE42

12 731,931 17.39

Bacillus
velezensis PFE11

13 761,807 19.09

Glutamicibacter
halophytocola PFE44

6 149,194 4.01

Paenarthrobacter
ureafaciens S54

7 175,824 3.99

Paenarthrobacter
sp. S56

8 183,353 4.37
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3.8 In planta biocontrol of bacterial and
fungal diseases

Tomato plants treated with each of the ten selected endophytic

bacterial strains were challenged with the fungal pathogen F.

oxysporum f.sp. radicis lycopersici strain PVCT 127 by inoculation

in the soil near the plant at the plant base (i.e. the crown) or with the

bacterium X. euvesicatoria pv. perforans strain NCPPB 4321 by

spray inoculation on the epigeal plant portion.

Forty-five days after inoculation, fusarium crown and root rot

symptoms were evaluated in longitudinal sections of tomato plants

running through the stem to the taproot. All control plants showed

dark brown discoloration of the vascular tissues at the stem base

extending about 3 cm above soil level and abundant production of

adventitious roots (Table 5; Figure 8A). With the exception of the P.

ureafaciens S54 treatment, all bacterial treatments reduced the

percentage of infected plants and significantly reduced disease

severity based on the length of discoloration at the crown base

(p<0.001) (Table 5). The highest biocontrol efficacy (93.81%) was
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achieved by using B. velezensis PSE31B; only 33% of the plants

treated with this strain had vascular discolorations and where

discoloration was observed it extended for less than 0.2 cm

(meaning that browning was observed only around the

inoculation wounds) (Table 5; Figure 8B). Notably, even bacterial

strains that showed no antagonistic activity in vitro, namely G.

halophytocola PFE44 and P. ureafaciens S54, exerted significant

biocontrol over fusarium crown and root rot.

Symptoms of bacterial spot observed six days after bacterial

inoculation included both pinpoint necrotic spots and/or larger

irregular spots that in some cases converged into larger lesions

surrounded by chlorotic areas (Figure 8C). Disease incidence (as

measured by the percentage of symptomatic leaflets) was not affected

by treatment with any endophytic strain except for Leclercia sp. S52

(Table 5). However, disease severity (i.e., the percentage of the leaf area

containing bacterial spots) was reduced by every bacterial treatment

other than those using P. ureafaciens strain S54 or Paenarthrobacter sp.

strain S56 (Table 5). The highest biocontrol efficacy (89.63%) was

obtained using P. simiae POE78A (Table 5; Figure 8D).
FIGURE 6

In vitro antimicrobial activity of the endophytic bacterial strains against tomato bacterial pathogens. Endophytic bacterial strains: 1, Bacillus velezensis
PSE31B; 2, B. velezensis PFE42; 3, Leclercia sp. S52; 4, Paenarthrobacter ureafaciens S54; 5, Pseudomonas salmasensis POE54; 6, Chryseobacterium
sp. POE47; 7, Pseudomonas simiae POE78A; 8, Paenarthrobacter sp. S56; 9, Glutamicibacter halophytocola PFE44; 10, B. velezensis PFE11. Bacterial
pathogens: Cmm, Clavibacter michiganensis subsp. michiganensis strain PVCT 156.1.1; Psto, Pseudomonas syringae pv. tomato strain PVCT 28.3.1;
Xep, Xanthomonas euvesicatoria pv. perforans strain NCPPB 4321.
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3.9 Growth promotion in tomato
nursery plantlets

All of the endophytic bacterial treatments other than those

using Leclercia sp. strain S52 resulted in growth-promoting activity,

although the effects were not always statistically significant. In

particular, treatment with B. velezensis strains PSE31B, PFE42

and PFE11, P. salmasensis POE54 and Paenarthrobacter sp. S56

significantly enhanced the height of nursery plantlets at all

monitoring time points (p<0.0001) (Figure 9). These bacterial

strains also positively influenced the fresh and dry biomasses of

roots and shoots (Table 6). The shoot fresh weight was significantly

higher in plants treated with B. velezensis strains, P. salmasensis

POE54, and Paenarthrobacter sp. S56 (p<0.001), although

the treatments did not significantly increase the shoot dry

weight in all cases (Table 6). Plants treated with the strains B.

velezensis PSE31B and PFE11 and Paenarthrobacter sp. S56 also

had significantly increased fresh and/or dry root weights

(p=0.001) (Table 6).
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4 Discussion

To identify potential bacterial bioinoculants, a microbiome-

guided top-down approach was used to select ten bacterial strains

belonging to different taxa from the core microbiome of tomato

plants at different stages in the production chain. Bacterial

endophytes isolated from tomato seeds and roots were thus not

selected on the basis of in vitro analyses of phenotypic characteristics

associated with PGP activity or antagonism against phytopathogenic

microorganisms. This approach resulted in the selection of taxa from

the comparatively understudied genera Leclercia, Chryseobacterium,

Glutamicibacter and Paenarthorbacter alongside taxa more

commonly used as biofertilizers and biocontrol agents such as

Pseudomonas and Bacillus species. Complete genome sequencing of

the strains led to the revision of identifications based on 16S rRNA

gene sequences in some cases and made it possible to dissect the

strains’ genetic makeup, focusing particularly on phyto-beneficial

traits. The resulting information provides valuable insights into the

potential biotechnological applications of the strains as efficient
FIGURE 7

In vitro antimicrobial activity of the endophytic bacterial strains against tomato fungal pathogens. Endophytic bacterial strains: 1, Bacillus velezensis
PSE31B; 2, B. velezensis PFE42; 3, B. velezensis PFE11; 4, Pseudomonas salmasensis POE54; 5, P. simiae POE78A; 6, Chryseobacterium sp. POE47; 7,
Glutamicicbacter halophytocola PFE44; 8, Leclercia sp. S52; 9, Paenarthrobacter ureafaciens S54; 10, Paenarthrobacter sp. S56. Fungal pathogens:
Forl, Fusarium oxysporum f. sp. radicis-lycopersici strain PVCT 127; Bot, Botrytis cinerea strain Bc5.
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bioinoculants for tomato growth and protection in different stages

of production.

Microbiome-guided approaches for selecting bacteria beneficial

to tomato growth have been used in several studies, only a few of

which have focused on the core microbiome (Tian et al., 2017;

Bergna et al., 2018). The plant core microbiome is defined as any set

of microbial taxa, along with their genomic and functional

attributes, that is distinctive to a specific host or environment

(Lundberg et al., 2012; Neu et al., 2021). Core microbes create

cores of interactions that can be used to optimize microbial

functions at the individual plant and ecosystem levels (Toju et al.,

2018). Generally, the association between the bacteria in the core

microbiome and the potential PGPRs is preceded by a preliminary

in vitro screening to select strains with the greatest potential as

bioinoculants (Tian et al., 2017; Bergna et al., 2018). However, such

bottom-up approaches may fail to detect bacteria that do not

express the desired characteristics in vitro but are nevertheless

important representatives of the core microbiome in nature

(Compant et al., 2019).

In this study, the core bacterial genera of the tomato

microbiome were considered on the whole to support the

selection of strains which application could be foreseen

irrespective of the application modality (e.g. seed dressing, soil

drenching) and the phenological stage. This is supported by the key

concepts of vertical and horizontal transfer of the microbiota, and

also apply to the core microbiota (Zeng et al., 2023). Indeed,

endophytes can be transferred both vertically from the seeds of

the previous generation’s plants or acquired horizontally by the
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surrounding environment (i.e. the rhizosphere) (Kong et al., 2019;

Li et al., 2019). Anzalone et al. (2022) had previously studied the

composition and shaping of the microbial community in the

rhizosphere in tomato plants cultivated with and without soil

from nursery growth to the greenhouse, revealing that these

bacterial communities were mainly shaped by the substrate or soil

in which the plants were grown and differed significantly between

plant compartments (rhizosphere and endorhizosphere) and plant

growth stages. Further selection allowed to set up a collection of

94 bacterial endophytes. As ubiquitous colonizers of plants,

endophytes are known to strongly influence plant health and

productivity; they can have a variety of desirable effects: plant

growth promotion, biotic and abiotic stress resilience and

resistance (Compant et al., 2005; Bulgarelli et al., 2013; Hardoim

et al., 2015; Santoyo et al., 2016)

A high proportion of the collected strains showed tolerance to salt

stress in vitro. This relatively high abundance of salt-tolerant bacterial

strains suggests that the typically high salinity of the water and soil in

the sampling area enriched the fraction of root endophytes with such

tolerance, as previously demonstrated by Flemer et al. (2022). Other

beneficial features observed in the collection included siderophore

production and solubilization of insoluble organic phosphate; in

addition, a few strains were able to produce hydrogen cyanide and

ACC deaminase. Moreover, around 30% of the strains showed broad

antagonistic activity against five tomato pathogens. Partial 16S rRNA

gene sequencing made it possible to provisionally assign most of the

strains of the collection to Bacillus and Pseudomonas spp. These

genera are the most highly represented among cultivable endophytic
TABLE 5 Biocontrol efficacy of the endophytic bacterial strains against Fusarium oxysporum f. sp. radicis-lycopersici PVCT127 (Forl) and
Xanthomonas euvesicatoria pv. perforans NCPPB4321 (Xep) in tomato plants in growth chamber.

Treatment Forl Xep

Disease
Incidence

(%)

Disease
severity a

Biocontrol
efficacy
(%) b

Disease
Incidence

(%)

Disease
severity c

Biocontrol
efficacy
(%) d

Control 100.00 a 2.73 a – 94.68 a 14.95 a –

Pseudomonas salmasensis POE54 66.67 a 0.94 b 65.44 73.06 ab 3.22 bc 78.48

Pseudomonas simiae POE78A 83.33 a 0.86 b 68.45 82.49 ab 1.55 c 89.63

Chryseobacterium sp. POE47 66.67 a 0.87 b 68.23 74.76 ab 4.35 bc 70.91

Leclercia sp. S52 50.00 a 0.58 b 78.78 52.94 b 2.27 c 84.83

Bacillus velezensis PSE31B 33.33 a 0.17 b 93.81 81.88 ab 2.80 c 81.29

Bacillus velezensis PFE42 83.33 a 0.82 b 69.90 84.48 ab 4.29 bc 71.27

Bacillus velezensis PFE11 66.67 a 0.57 b 79.17 77.20 ab 2.29 c 84.66

Glutamicibacter halophytocola PFE44 66.67 a 1.04 b 61.97 74.93 ab 3.94 bc 73.65

Paenarthrobacter ureafaciens S54 100.00 a 0.93 b 66.06 92.41 ab 11.28 ab 24.50

Paenarthrobacter sp. S56 66.67 a 1.09 b 60.22 81.94 ab 8.31 abc 44.44

P value e 0.092 <0.001 – 0.091 <0.001 –
Bacterial strains were applied by seed soaking and by soil drenching three weeks after plant’s emergence and 72 and 24 h before Forl and Xep artificial inoculation, respectively.
aValues represent the length (cm) of the vascular discoloration along the stem. bValues express the reduction of the vascular discoloration in plants treated with PGPRs compared to the control.
cValues represent the percent leaf area affected by bacterial spot. dValues express the reduction of leaf area affected by bacterial spot in plants treated with PGPRs compared to the control. eValues
(mean) in the same column followed by the same letter do not significantly differ based on post-hoc Tukey HSD test at P = 0.05.
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bacteria isolated from different plant species including tomato (Tian

et al., 2017; Bergna et al., 2018; Anzalone et al., 2021; Cochard et al.,

2022) and from different plant compartments, as reviewed by Riva

et al. (2022). Bacteria belonging to the Gram-positive genera

Arthrobacter, Curtobacterium, Glutamicibacter, Microbacterium,

Paenarthrobacter, Paenibacillus, Priestia and Staphylococcus and to

the Gram-negative genera Chryseobacterium, Delftia, Enterobacter,
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Ewingella, Flavobacterium, Serratia and Stenotrophomonas were also

part of our collection. Some of these genera have been isolated in

other studies on beneficial bacteria (Abbamondi et al., 2016; Tian

et al., 2017; Anzalone et al., 2021; Cochard et al., 2022).

Instead of limiting our search for potential beneficial properties

to strains well-known for high antagonistic activity in vitro, i.e.

Bacillus and Pseudomonas (Tian et al., 2017; Anzalone et al., 2021),
FIGURE 9

Time-course evaluation of tomato plant height in the PGP trial in growth chamber: T0 (before the treatments), T1-4 (1-4 weeks after the
treatments). Plants were treated by soil drenching immediately after transplant. Asterisks denote statistical significance compared to the not treated
plants (Control) based on post-hoc Tukey HSD test at P = 0.05. POE54, Pseudomonas salmasensis; POE78A, P. simiae; POE47, Chryseobacterium
sp.; S52, Leclercia sp.; PSE31B, Bacillus velezensis; PFE42, B. velezensis; PFE11, B. velezensis; PFE44, Glutamicibacter halophytocola; S54,
Paenarthrobacter ureafaciens; S56, Paenarthrobacter sp.
FIGURE 8

Symptoms of vascular discoloration in tomato plants artificially inoculated with Fusarium oxysporum f. sp. radicis-lycopersici PVCT127 (A) and in Bacillus
velezensis PSE31B treated plants (B). Arrows highlight the artificial wound to assist pathogen penetration. Bacterial spot symptoms in tomato plants
artificially inoculated with Xanthomonas euvesicatoria pv. perforans strain NCPPB 4321 (C) and in Pseudomonas simiae POE78A treated plants (D). In
both trials bacterial endophytes were applied by seed soaking and by soil drenching three weeks after plant’s emergence and 72 and 24 h before
pathogens inoculation (Fusarium and Xanthomonas, respectively).
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we broadened our selection to include less frequently studied genera

belonging to the core microbiome. After constructing high-quality

genomes for ten strains from the core microbiome that had been

assigned to diverse taxa based on preliminary 16S rRNA gene

sequencing, we obtained more conclusive species- or genus-level

identifications. Specifically, we discovered that the ten selected core

microbiome strains belonged to the following taxa: B. velezensis

(strains PSE31B, PFE42, PFE11), P. salmasensis POE54 and P.

simiae POE78A. Strains Enterobacter sp. S52 and Arthrobacter sp.

S54 were reassigned to Leclercia sp. and P. ureafaciens, respectively.

The taxonomic affil iations of G. halophytocola PFE44,

Paenarthrobacter sp. S56, and Chryseobacterium sp. POE47 were

confirmed. The last wo strains could only be classified at the genus

level by TYGS according to dDDH and ANI values below 70% and

95%, respectively, suggesting that they might represent new

bacterial species (Goris et al., 2007; Auch et al., 2010; Meier-

Kolthoff et al., 2013)

The ten bacterial strains from the tomato endosphere, although

to a different extent, exhibited biocontrol and/or PGP properties,

protecting tomato plants against biotic stress and stimulating the

growth of tomato seedlings regardless of their activity in vitro.

These results highlight the limits of in vitro screening methods,

which often fail to capture the complex interactions that occur in

the rhizosphere (Bulgarelli et al., 2013; Mendes et al., 2013).

Nutrient availability, soil pH, microbial competition, and plant

exudates all influence the efficacy of Plant Growth-Promoting

Bacteria (PGPB). Therefore, in vitro assays may not accurately

predict how bacteria will perform under field conditions (Berg and

Smalla, 2009). Furthermore, our strains underwent testing in two

distinct pathosystems featuring both belowground and

aboveground pathogens. In the trials, the endophytic bacteria
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were applied to tomato plants by soil drenching and to seeds by

seed coating. Importantly, given the diverse biocontrol mechanisms

employed by bacteria, which include competing for resources, niche

exclusion, and the production of antimicrobial compounds, it is

possible that our bacteria may have the capability to induce

systemic resistance in the tomato plants (Compant et al., 2005;

Lugtenberg and Kamilova, 2009; Singh et al., 2011; Pieterse et al.,

2014; Hardoim et al., 2015; Santoyo et al., 2016; Hanifah et al., 2023;

Kelbessa et al., 2023).

The selected Bacillus and Pseudomonas strains, and Leclercia sp.

strain S52, exhibited broad-spectrum antimicrobial activity against

five tomato pathogens in vitro. The Bacillus endophytes produced the

largest inhibition halos when tested against bacterial pathogens and

imposed the most significant radial growth inhibition on

phytopathogenic fungi. In accordance with this result, five different

Bacillus species (B. subtilis, B. velezensis, B. amyloliquefaciens,

B. pumilus, B. brevis and B. cereus) were previously shown to

exhibit strong antagonism towards diverse phytopathogens (Dimkić

et al., 2022; Etesami et al., 2023). This fact together with their high

growth rates and tolerance of unfavourable environmental conditions

has made them popular biocontrol agents (Fischer et al., 2013). The

B. velezensis strains (and especially PSE31B) also demonstrated

effective control over both tomato fusarium crown and root rot

and bacterial spot in planta, reaffirming previous reports of this

species’ significant biocontrol potential (Felipe et al., 2021; Chen et al.,

2022). Notably, B. velezensis belongs to the B. subtilis group, which

contains strains known for their ability to form beneficial associations

with plant roots and exert beneficial effects including plant growth

promotion and biocontrol of pathogens in several economically

important crops, including tomato (Balderas-Ruıź et al., 2021;

Felipe et al., 2021; Kashyap et al., 2021, 2022; Chen et al., 2022;
TABLE 6 Plant growth promotion efficacy of the endophytic bacterial strains in tomato plants in growth chamber.

Treatment Shoots Roots

Height (cm) a Fresh weight (g) a Dry weight (g) a Fresh weight (g) a Dry weight (g) a

Control 20.86 c 4.74 c 0.24 b 0.43 b 0.04 b

Pseudomonas salmasensis POE54 35.64 ab 10.09 ab 0.64 a 0.96 ab 0.11 ab

Pseudomonas simiae POE78A 24.86 bc 6.63 bc 0.39 ab 0.70 ab 0.06 ab

Chryseobacterium sp. POE47 31.64 abc 8.29 abc 0.43 ab 0.90 ab 0.10 ab

Leclercia sp. S52 20.64 c 4.61 c 0.27 b 0.54 b 0.06 ab

Bacillus velezensis PSE31B 36.42 ab 11.17 ab 0.65 a 1.13 a 0.13 a

Bacillus velezensis PFE42 34.14 ab 9.81 ab 0.54 ab 0.93 ab 0.11 ab

Bacillus velezensis PFE11 36.57 a 11.20 a 0.63 a 1.11 a 0.13 a

Glutamicibacter
halophytocola PFE44

26.71 abc 7.06 abc 0.41 ab 0.81 ab 0.06 ab

Paenarthrobacter ureafaciens S54 29.07 abc 7.50 abc 0.44 ab 0.73 ab 0.09 ab

Paenarthrobacter sp. S56 35.71 ab 10.40 ab 0.69 ab 0.97 ab 0.12 a

P value b <0.0001 <0.001 <0.001 0.001 0.001
Bacterial strains were applied by soil drenching after transplant.
aValues recorded four weeks after the bacterial treatments. bValues (mean) in the same column followed by the same letter do not significantly differ based on post-hoc Tukey HSD test at P = 0.05.
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Mosela et al., 2022). These strains also substantially promoted tomato

plant growth in the growth chamber, leading to significantly

increased shoot height and fresh and dry weight. These results are

consistent with previous reports by Dhouib et al. (2019) and

Balderas-Ruıź et al. (2021).

Our genomic findings for the Bacillus endophytes are consistent

with previous results and align well with the characteristic traits of

these species. Their antimicrobial activity may be partly due to their

production of diverse bioactive secondary metabolites, which is

driven by genes that are located within large genomic islands

(BGCs) encoding mega-enzymes including non-ribosomal peptide

synthetases and polyketide synthases (Ongena et al., 2007; Rabbee

et al., 2019). These metabolites include surfactin and fengycin

lipopeptides, which are known to exert antimicrobial activity

against various fungal and bacterial pathogens, and to induce

systemic resistance and promote biofilm formation (Ongena et al.,

2007; Zhao et al., 2017; Penha et al., 2020). A BGC encoding

enzymes producing the siderophore bacillibactin, which is highly

conserved in the B. subtilis group, was also identified (Miethke et al.,

2006). This siderophore enables efficient acquisition of Fe3+ and

other metals in iron-deficient environments, depriving plant

pathogens of essential elements (Niehus et al., 2017). Another

significant group of BGCs encoded enzymes producing

polyketides (e.g. difficidin, bacillaene, and macrolactin) that also

play a role in antimicrobial activity (Caulier et al., 2019), and the

cluster for the synthesis of bacilysin, a common broad-spectrum

antimicrobial dipeptide (Nannan et al., 2021).

Both P. salmasensis POE54 and P. simiae POE78A displayed

effective biocontrol of tomato diseases as well as plant growth

promoting activity, with P. simiae POE78A exerting the most

effective biocontrol activity against Xanthomonas euvesicatoria pv.

perforans in this study. Both P. salmasensis and P. simiae were

identified in a refined taxonomy of the larger P. fluorescens complex

(Vela et al., 2006; Girard et al., 2021). Pseudomonas spp. have

multiple traits that make them valuable biocontrol agents, including

rapid in vitro growth, effective utilization of root exudates, and

robust colonization and proliferation in the rhizosphere as well as

the production of diverse bioactive metabolites including

antibiotics, siderophores, volatiles, and extracellular enzymes,

enhancing their competitive edge against other microorganisms

(Haas and Défago, 2005; Mercado-Blanco and Bakker, 2007; Loper

et al., 2012; Raaijmakers and Mazzola, 2012; Fischer et al., 2013;

Höfte, 2021). Many root-associated pseudomonads possess BGCs

for the production of antimicrobial compounds such as cyclic

lipopeptide biosurfactants, 2,4-diacetylphloroglucinol, phenazines,

hydrogen cyanide, and pyrrolnitrin (Loper et al., 2012).

Pseudomonas strains have also been shown to effectively control

Fusarium oxysporum f. sp. radicis-lycopersici and Xanthomonas

euvesicatoria pv. perforans (Zhang et al., 2015; Anzalone et al.,

2021; Felipe et al., 2021).

At least two widely studied P. fluorescens biocontrol strains have

been reclassified as P. simiae, namely WCS417 (Berendsen et al.,

2015; Pieterse et al., 2021) and PICF7 (Martıńez-Garcıá et al., 2015).

The phenotypic and genomic determinants of these strains were

dissected and they were shown to exhibit biocontrol activity against

fungal, bacterial pathogens and nematodes in a wide range of plant
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species, and to induce systemic resistance in the host and improve

tolerance against abiotic stresses (Pieterse et al., 2021). The BGC for

obafluorin, a broad-spectrum antibiotic commonly associated with

P. fluorescens, was found in the genome of POE54 (Wells et al.,

1984; Scott et al., 2017). In addition to BGCs responsible for

siderophores, the genome of this strain contained many clusters

that display no apparent similarity to known BGCs in the MIBiG

database and thus warrant further investigation.

Leclercia sp. strain S52, which was isolated from tomato seeds,

showed good in vitro antimicrobial activity, and also efficiently

reduced the damage caused by Fusarium oxysporum f. sp. radicis-

lycopersici and Xanthomonas euvesicatoria pv. perforans during in

vivo trials but did not positively influence plant growth. Although

new rhizosphere-associated Leclercia species and related genera

have recently been described (Maddock et al., 2022), we were

unable to assign our strain to any known species, suggesting that

it may represent a new taxonomic entity. Despite ongoing concerns

about the use of Enterobacteriaceae species as PGPRs given the

existence of human pathogens within this taxon, several studies

have investigated this topic (Berg et al., 2005; Erlacher et al., 2015).

Many studies have confirmed that Enterobacteriaceae, including L.

adecarboxylata, are indigenous components of the plant

microbiome in different species (Kelemu et al., 2011; Erlacher

et al., 2014, 2015; Verma et al., 2015; Shahzad et al., 2017; Tian

et al., 2017; Anzalone et al., 2021). In particular, Anzalone et al.

(2021) found that 40% of the endophytic bacteria isolated from the

tomato endorhizosphere in four tomato farms within the area from

which our samples were taken belonged to the Enterobacteriaceae

family. L. adecarboxylata has previously been shown to promote

plant growth (Sarma et al., 2004; Shahzad et al., 2017) and to

mitigate both abiotic (Kang et al., 2019, 2021; Ahmed et al., 2021)

and biotic (Lee et al., 2023) stresses. AntiSMASH analysis revealed

that the genome of the selected Leclercia strain contained a BGC for

the production of enterobactin, a well-known siderophore with an

extraordinary iron affinity (Raymond et al., 2003).

Among the remaining selected strains, Chryseobacterium sp.

POE47 and Paenarthrobacter sp. S56 exhibited limited in vitro

antagonistic activity against the phytopathogenic fungus Fusarium

oxysporum f. sp. radicis-lycopersici PVCT127 but had no detectable

antagonistic effects against the tested phytopathogenic bacteria.

Moreover, G. halophytocola PFE44 and P. ureafaciens S54

exhibited no in vitro antagonistic activity at all. In addition,

Chryseobacterium sp. strain POE47 did not promote tomato plant

growth under our experimental conditions. However, in contrast to

its poor antimicrobial activity in vitro it did effectively control

fusarium crown and root rot and bacterial spot in planta. In

previous studies, Chryseobacterium species, formerly classified

under the genus Flavobacterium, were found to enhance plant

growth and exhibit biocontrol activity (Ramos Solano et al., 2008;

Sang et al., 2018). Flavobacterium strains directly contribute to plant

growth by promoting nutrient cycling and supplying beneficial

plant hormones (Dardanelli et al., 2010; Sang et al., 2018). A

recent study has also explored their halotolerance, suggesting that

they might be promising PGPR in saline environments (Jung et al.,

2023). Genome mining revealed that these species have a high

content of EPS-coding genes, which are known to enhance plant
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growth and drought tolerance (Naseem et al., 2018). Beneficial traits

related to stress relief, biocontrol, biofertilization, and

phytohormone production were also identified, in line with the

findings of Jung et al. (2023). Interestingly, our genomic analysis

showed that this strain had fewer BGCs than any of the other

selected strains, with none of them encoding genes producing

antimicrobial compounds. This likely explains its poor in

vitro antagonism.

The strains examined in this work included three bacterial

strains belonging to the family Micrococcaceae, a taxon that

was reclassified in 2016 (Busse, 2016). This caused its genera

to be renamed to Glutamicibacter, Paeniglutamicibacter,

Pseudoglutamicibacter, Paenarthrobacter, and Pseudarthrobacter

(Busse, 2016). While both Glutamicibacter PFE44 and the two

Paenarthrobacter strains (S54 and S56) effectively reduced the

severity of fusarium crown and root rot symptoms in planta, only

the Glutamicibacter endophyte significantly reduced bacterial spot

severity. Both Paenarthrobacter and Glutamicibacter species have

recently emerged as promising PGPR – for example, strains of P.

nitroguajacolicus mitigated water scarcity in tomato and increased

the vigor index values of tomato seedlings (Xiong et al., 2019;

Christakis et al., 2021; Fu et al., 2021; Riva et al., 2021; Vasseur-

Coronado et al., 2021). Genomic analysis of the Micrococcaceae

strains revealed a predominance of genes encoding toxins,

exopolysaccharides (EPS), phytohormones, and detoxification

products. Moreover, AntiSMASH analysis revealed a BGC

encoding desferrioxamine E, a siderophore widely produced by

Streptomyces and related bacteria (Horinouchi et al., 2010).

Desferrioxamine E plays a crucial role in ferric transportation and

indirectly acts against fungi (Horinouchi et al., 2010). Additionally,

EPS produced by G. halophytocola have been shown to mitigate

abiotic stresses and promote plant growth (Xiong et al., 2019; Chen

et al., 2023).

COG analysis highlighted four main functional gene classes (i.e.

Amino acid transport and metabolism, Carbohydrate transport and

metabolism, Cell wall/membrane/envelope biogenesis, and

Transcription) common in all strains. These classes are also

found among the most prevalent ones in other genomes of

beneficial bacteria and endophytes (Taghavi et al., 2010;

Martıńez-Garcıá et al., 2015; Slama et al., 2019) and are mainly

related to the basal metabolic activity of bacteria. The overall PGP

potential of the ten bacterial strains was evaluated in silico by using

the PGPT-Pred function of PLa-BAse (Patz et al., 2021) to analyze

the prevalence of genes predicting plant growth promoting traits.

This tool helped to unveil functional processes responsible for a

strain’s PGP activity by revealing groups of genes with direct and

indirect beneficial effects on plants. A comprehensive inventory of

genes related to colonization, biofertilization, phytohormones, and

plant signaling, among other processes was thus obtained for each

strain. As noted above, these genes included BGCs encoding

antimicrobial substances, chemotaxis- and surface attachment-

related genes pivotal for recruitment and colonization in the

rhizosphere (Knights et al., 2021), and bacterial secretion systems

that play essential roles in out-competing other rhizobacterial

strains during root colonization in the host plant (Lugtenberg and
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Kamilova, 2009; Pieterse et al., 2014; Lucke et al., 2020). The

identified genes with direct beneficial effects on plant growth

included those influencing traits related to fertilization such as

potassium and phosphate solubilization, nitrogen and iron

acquisition, sulfur assimilation, and carbon dioxide fixation, all of

which enhance nutrient availability (Vessey, 2003; Lugtenberg and

Kamilova, 2009; Singh et al., 2011; Das et al., 2022). The strains also

carried several functional genes putatively involved in abiotic stress

alleviation by stimulating plant immune responses and managing

biotic stress via fungicidal and bactericidal activities, indirect traits

that foster plant health and growth (Compant et al., 2005; Kelbessa

et al., 2023).

The plant interaction traits of the ten selected strains were

annotated using PIFAR to support the development of plant

bioinoculants that can rapidly establish in suitable environments

and form beneficial interactions upon application to plants. This

analysis clearly separated the strains showing in vitro antimicrobial

activity from those without such activity. Pseudomonas and Bacillus

strains, belonging to the first group, showed the highest percentages

of toxin-related factors compared to the other strains. Both genera

are known for producing linear or cyclic lipopeptides (Ongena et al.,

2007; Oni et al., 2022) that can exert toxic effects and contribute to

plant colonization, also in pathogenic strains (Oni et al., 2022). In

turn, the strains within the Microccocaceae family, belonging to the

second group, showed the highest content of hormone-related

factors. It is well established that PGPRs can excrete hormone for

root uptake or manipulate hormone balance in the plants to boost

growth and stress response (Backer et al., 2018). Such differences

between bacterial strains pave the way to a further exploitation of

each strain for the development of bioinoculants with specific target

activities, such as biofertilization, biostimulation, or biocontrol.

In conclusion, the studied Bacillus and Pseudomonas strains

exhibited high efficacy both in promoting plant growth and in

protecting against pathogens, justifying their predominance in the

bioinoculant market (Backer et al., 2018). However, other strains

belonging to less known and explored genera also demonstrated

effective PGP and BCA activity. The ten bacterial endophytes

examined in this work were selected based on the analysis of the

core microbiome of tomato seeds and the rhizosphere and

endorhizosphere of tomato plants at different stages within the

growing chain. The strains were arbitrarily selected among the

genera present in the core microbiota. Importantly, the collected

samples represent a wide range of management practices,

environmental conditions, nursery materials (seeds and

substrate), and conditions after transplantation into either

agricultural soil that had been used for tomato cultivation for

several years or soilless crop cultivation media. The genomic data

obtained in this work will in future be employed to plan the use of

the selected strains individually or in consortia by coupling strains

with different traits, effects, and mechanisms of action to obtain

synergistic beneficial effects. These strains could potentially be

applied as seed dressings or soil drenches at different stages of

plant growth, although further research will be needed to develop

reliable standardized treatment protocols with predictable effects

under specific conditions.
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(2023). Culture-dependent and metabarcoding characterization of the sugar beet (Beta
vulgaris L.) microbiome for high-yield isolation of bacteria with plant growth-
promoting traits. Microorganisms 11, 1538. doi: 10.3390/microorganisms11061538

Kumar, M., Poonam,, Ahmad, S., and Singh, R. P. (2022). Plant growth promoting
microbes: Diverse roles for sustainable and ecofriendly agriculture. Energy Nexus 7,
100133. doi: 10.1016/j.nexus.2022.100133

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X:
Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol.
35, 1547-1549. doi: 10.1093/molbev/msy096

Kwak, M.-J., Kong, H. G., Choi, K., Kwon, S.-K., Song, J. Y., Lee, J., et al. (2018).
Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat.
Biotechnol. 36, 1100–1116. doi: 10.1038/nbt.4232

Lane, D. (1991). “16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial
systematics,” in Nucleic Acid Technique in Bacterial Systematics, eds. E. Stackebrandt
and M. Goodfellow (New York, NY: John Wiley and Sons), 115–175.

Lee, S. H., Jeon, S. H., Park, J. Y., Kim, D. S., Kim, J. A., Jeong, H. Y., et al. (2023).
Isolation and Evaluation of the Antagonistic Activity of Cnidium officinale Rhizosphere
Bacteria against Phytopathogenic fungi (Fusarium solani). Microorganisms 11, 1555.
doi: 10.3390/microorganisms11061555

Lemanceau, P., Blouin, M., Muller, D., and Moënne-Loccoz, Y. (2017). Let the core
microbiota be functional. Trends Plant Sci. 22, 583-595. doi: 10.1016/
j.tplants.2017.04.008

Li, H., Parmar, S., Sharma, V. K., and White, J. F. (2019). “Seed endophytes and their
potential applications,” in Seed Endophytes: Biology and Biotechnology, eds S. K. Verma
and J. J. F. White (Cham: Springer International Publishing), 35–54. doi: 10.1007/978-
3-030-10504-4_3
Frontiers in Plant Science 22
Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis, E. W., Lim, C. K., Shaffer, B. T.,
et al. (2012). Comparative genomics of plant-associated pseudomonas spp.: Insights
into diversity and inheritance of traits involved in multitrophic interactions. PloS
Genet. 8, e1002784. doi: 10.1371/journal.pgen.1002784

Lucke, M., Correa, M. G., and Levy, A. (2020). The role of secretion systems,
effectors, and secondary metabolites of beneficial rhizobacteria in interactions with
plants and microbes. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.589416

Lugtenberg, B., and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria.
Annu. Rev. Microbiol. 63, 541–556. doi: 10.1146/annurev.micro.62.081307.162918

Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S.,
et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86-
90. doi: 10.1038/nature11237

Maddock, D., Arnold, D., Denman, S., and Brady, C. (2022). Description of a novel
species of Leclercia, Leclercia tamurae sp. nov. and proposal of a novel genus Silvania
gen. nov. containing two novel species Silvania hatchlandensis sp. nov. and Silvania
confinis sp. nov. isolated from the rhizosphere of oak. BMC Microbiol. 22, 289.
doi: 10.1186/s12866-022-02711-x

Manzo, D., Ferriello, F., Puopolo, G., Zoina, A., D’Esposito, D., Tardella, L., et al.
(2016). Fusarium oxysporum f.sp. radicis-lycopersici induces distinct transcriptome
reprogramming in resistant and susceptible isogenic tomato lines. BMC Plant Biol. 16,
1-14. doi: 10.1186/s12870-016-0740-5
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