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A B S T R A C T

The acquisition of high-quality reference data is essential for effectively modelling forest attributes. Incorpo-
rating close-range Light Detection and Ranging (LiDAR) systems into the reference data collection stage of 
remote sensing-based forest inventories can not only increase data collection efficiency but also increase the 
number of attributes measured with high quality. Therefore, we propose a model-based forest inventory method 
that uses reference data collected by a car-mounted mobile laser scanning (MLS) system along boreal forest 
roads. This approach is used for the estimation of diameter at breast height (DBH) and stem volume at the in-
dividual tree-level from airborne laser scanning (ALS) data. In addition, we compare the estimates obtained using 
the proposed method with the ones derived from reference data collected by traditional field inventory of 265 
field plots systematically distributed over the study area. The accuracy of the estimates remained comparable 
regardless of the reference dataset used for estimation of DBH and stem volume. When using the field inventory 
dataset for model training, the root mean square error (RMSE) of DBH estimates were 4.06 cm (18.8 %) for 
Norway spruce trees, 6.3 cm (29.6 %) for Scots pine and 8.61 cm (55.9 %) for deciduous trees. Similarly, when 
evaluating predictions based on the MLS dataset as reference, RMSEs were equal to 3.97 cm (18.4 %) for Norway 
spruce, 6.12 cm (28.8 %) for Scots pine, and 8.98 cm (58.3 %) for deciduous trees. In general, biases were below 
1 cm for most species classes, with the exception of deciduous trees. The accuracy of stem volume also had 
RMSEs varying across different tree species. For the estimates based on traditional field inventory, the RMSEs 
were 0.176 m3 (38.8 %) for Norway spruce, 0.228 m3 (52.4 %) for Scots pine and 0.246 m3 (158 %) for de-
ciduous trees. When using the MLS dataset as a reference, the RMSEs were equal to 0.176 m3 (38.8 %), 0.228 m3 

(52.4 %), and 0.246 m3 (158 %) for Norway spruce, Scots pine, and deciduous trees, respectively. Car-mounted 
MLS demonstrated its potential as an efficient alternative for collecting reference data in remote sensing-based 
forest inventories, which could complement traditional methods.

1. Introduction

Forests are crucial ecosystems that sustain a diverse range of plant 
and animal species, while also providing essential services as carbon 
sequestration, water conservation, and soil stabilization. Moreover, they 
play a key role in transitioning towards a carbon-neutral economy and 
mitigating climate change impacts (European Commission, 2021). 
However, the demand for timber as a renewable material puts pressure 
on forest resources worldwide, making the establishment of manage-
ment practices that account for the complexity of forest ecosystems 
increasingly necessary. Hence, accurate assessments of forest structure 
and growth are necessary in order to plan interventions that balance the 

maintenance of biodiversity and sustainable timber production. In 
response to this need, LiDAR (Light Detection and Ranging) technology 
is used to obtain auxiliary information in the production of spatially 
explicit estimations of forest attributes such as growing stock, site index, 
and biodiversity mapping (Appiah Mensah et al., 2023; Lefsky et al., 
2002; Maltamo et al., 2014).

LiDAR-based variables are frequently combined with field reference 
data to construct predictive models for key forest attributes, such as 
Diameter at Breast Height (DBH) and stem volume, at individual tree- or 
area-level (Maltamo et al., 2014). These models are subsequently used to 
generate wall-to-wall maps of such attributes over large areas, varying 
from single forest estates to entire countries (Nilsson et al., 2017).
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In most operational remote sensing-based forest inventories, LiDAR- 
derived metrics are used to predict forest attributes at area-level, named 
area-based approach (ABA - Næsset, 2004, Næsset, 2002), with field plot 
data serving as the reference values in the modelling process (da Bispo 
et al., 2020; Kotivuori et al., 2016; Leite et al., 2020; Nilsson et al., 2017; 
Novo-Fernández et al., 2019). Such training data is usually collected 
using manual methods, which require low start-up cost but can be 
logistically challenging, since extensive field campaigns are usually 
necessary in order to sample the complete range of a given forest attri-
bute over large areas (Hyyppä et al., 2020a; Persson et al., 2022; Wang 
et al., 2016). In addition, the inclusion of variables such as stem profiles 
and above ground biomass (AGB) in reference data collection can be 
impractical, requiring destructive techniques or laboratory infrastruc-
ture and increase the total cost and time required for sampling (Hauglin 
et al., 2014; Hunčaga et al., 2020; Stovall et al., 2018). As an alternative, 
some attributes might not be measured during the surveys but estimated 
using mathematical models or approximations, which may cause the 
derived data to be non-representative of the actual forest conditions. For 
instance, using globally calibrated models on local scale to predict at-
tributes such as AGB can result in biased estimates as demonstrated by 
Brede et al. (2022) and Calders et al., 2022

Therefore, at the same pace as different LiDAR sensors and platforms 
become available, authors have explored the suitability of such tech-
nologies not only for producing wall-to-wall maps of forest attributes, 
but also for reference data collection. Different close-range LiDAR sen-
sors such as Terrestrial, Mobile and UAV-borne laser scanners (TLS, MLS 
and UAVLS, respectively) can collect high-resolution point clouds, 
proving three-dimensional data with unprecedented level of detail on 
forest structure and tree architecture (Hyyppä et al., 2020c; Olofsson 
et al., 2014). With such sensors, it is possible to extract tree attributes 
such as DBH directly from the point clouds with relatively high accuracy 
(Brede et al., 2022; Brede et al., 2017; Holmgren et al., 2019; Hyyppä 
et al., 2020c; Hyyppä et al., 2020b; Kuželka et al., 2020; Olofsson and 
Holmgren, 2016). For instance, Hyyppä et al. (2020c) found RMSEs of 
DBH estimates ranging from 2 to 8 % while comparing the performance 
of different MLSs and UAVLS. In addition, transitioning to LiDAR-based 
reference data collection could reduce uncertainties related with field 
measurements (Persson et al., 2022) and enable the sampling of attri-
butes that are difficult to measure by traditional means in large-scale 
surveys, as stem profiles and branch structure.

Nevertheless, the implementation of LiDAR-based reference data 
collection in operational scale remains a challenge. Apart from the high 
acquisition costs, some ground-based LiDAR systems such as TLSs and 
backpack-mounted or hand-held MLSs have limited scalability, since 
they are restricted to specific areas or plots, and require labor-intensive 
surveying campaigns (Calders et al., 2020). Such limitations hinder the 
operational use, particularly in cases where broad spatial coverage is 
required. In order to overcome these limitations, researchers have been 
investigating various combinations of sensors and platforms as potential 
tools for efficient data collection. As an example, Pires et al. (2022)
presented a solution for measuring DBH and stem curves in boreal for-
ests along roads using car-mounted MLS. The study reported DBH 
measurement accuracies ranging from 1.8 cm to 4.8 cm, which varied 
depending on the distance of the trees from the roadside. Similarly, 
Hyyppä et al. (2022) used a high-resolution airborne laser scanning 
(ALS) system mounted on a helicopter flying at low altitude to measure 
stem curves and DBH over boreal forest areas, yielding accuracies 
ranging from 2.2 cm to 2.9 cm in DBH estimation, depending on the test 
sites. In another study, Hyyppä et al. (2020a) extracted stem curves from 
below-canopy UAVLS, reaching RMSEs equal to 1.2 cm and 1.4 cm in 
sparse and obstructed forest plots, respectively (Hyyppä et al., 2020a).

Such combinations of sensors and platforms could enable automatic 
and detailed forest inventories of large areas and provide researchers 
and forest managers with a wider range of information, supporting 
better-informed decision-making. Furthermore, the automation of data 
collection and analysis can reduce the time and costs associated with 

traditional field surveys, while also providing more frequent updates on 
the forest conditions.

Understanding the effect of using innovative data collection methods 
in large-scale forest inventories is important for ensuring precise and 
effective forest management. Integrating an additional data collection 
method, such as car-mounted MLS, into forest inventory could introduce 
new uncertainties, which depend on the choice of the sensor and plat-
form used for surveying. As an example, the accessibility to certain parts 
of a forest stand by different platforms, such as all-terrain vehicles, cars, 
and below-canopy UAVs, may be restricted by terrain and vegetation 
conditions, resulting in the inability to collect reference data in those 
areas. Such limitation could result in the systematic inclusion of trees 
growing under certain condition (e.g. edge effects) in the reference 
dataset, and these trees might not be representative of the forest as a 
whole (Delgado et al., 2007; Harper et al., 2015). Moreover, problems 
with tree detection may lead to certain strata, such as trees with small 
DBH values, being underrepresented in the reference dataset (Brede 
et al., 2017; Holmgren et al., 2019; Hyyppä et al., 2020a, 2020b, 2020c; 
Liu et al., 2021).

With that in mind, this study proposes a model-based forest in-
ventory approach that uses a car-mounted MLS for reference data 
collection, and compares the estimates obtained using the novel method 
with those derived from reference data collected by traditional field 
inventory. With this analysis, we want to contribute to the advancement 
of remote sensing-based forest inventory methods and elucidate possible 
implications of using remote sensing-based tools in forest inventory. 
Specifically, we compare estimates of DBH and stem volume at the in-
dividual tree-level by using models trained with different reference 
datasets. Specific objectives are (i) to train ALS-based models for DBH 
and stem volume prediction using car-mounted MLS as reference for 
model training, (ii) to train ALS-based models using field inventory data 
as reference for model training, and (iii) to compare the estimates 
generated by both models.

2. Material and methods

2.1. Study area

The study area Remningstorp has approximately 1039 ha (ha) of 
forest area and is located in Southern Sweden (lat. 58.5 degrees N, long. 
13.6 degrees E), in a boreal forest region (Fig. 1). The dominant tree 
species are Norway spruce (Picea abies (L.) H. Karst.) – 85.7 %, Scots pine 
(Pinus sylvestris L.) – 9.1 %, and Birch (Betula spp.) – 3.4 %. The average 
stem density in the area is 580 trees/ha.

2.2. Aerial laser scanning

In October 2019, ALS data was acquired over the study area (Fig. 1) 
using a Leica Terrain Mapper-LN system mounted on an aircraft. The 
sensor operated at an altitude of approximately 1450 m and with an 
average speed of 115 knots, with a pulse frequency of 1600 Hz. The laser 
beam footprint was 35 cm and the field of view was 30 degrees. The 
resulting point density in the cloud is 22 points/m2, on average. 
Following the acquisition, the ALS point clouds were classified into 
ground and non-ground using the classification algorithm by Zhang 
et al. (2016), as implemented in the lidR package (Roussel et al., 2020) 
in R (R Core Team, 2020).

After the classification, the point cloud was segmented into indi-
vidual trees using the three-dimensional tree segmentation procedure by 
Holmgren et al. (2022). In this study, it was assumed that each segment 
corresponded to one tree crown. Finally, a set of ALS-derived metrics 
were calculated for each tree segment obtained in the previous step 
(Table 1). In this study, every 10th height and intensity percentiles, the 
95th and 99th height and intensity percentiles, along with descriptive 
statistics of intensity values, were used as predictors. In addition, a set of 
tree crown-related attributes, such as crown radius, area, and extent, 
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were included in the ALS-based metrics pool for their influence on a 
tree’s DBH (Hemery et al., 2005; Iizuka et al., 2022; Iizuka et al., 2018). 
These attributes were derived from the delineated tree crown produced 
by the tree segmentation algorithm. Crown area (CA) was defined as the 
area of the delineated tree crown and, given that crowns are not 
perfectly circular, the crown radius (CR) of a tree was defined as the 
radius of a perfect circle with an area equal to its crown area. Later, the 

crown extent (CE) was defined as diagonal length of the smallest rect-
angle containing each crown polygon. Finally, combinations of CR and 
the 95th height percentile were identified for their significant linear 
correlation with either DBH or stem volume.

2.3. Reference data collection

We use the terms “reference data” or “training data” to refer to the 
data used for estimating the model parameters in the model-based 
inference. In this study, two reference datasets were collected in the 
study area using different data collection methods. Therefore, we denote 
the reference dataset obtained through conventional field inventory as 
the “field inventory dataset”, or simply “FI dataset”. Similarly, we refer 
to the reference dataset collected through car-mounted MLS as the “MLS 
dataset”.

2.3.1. Field inventory dataset
The survey using standard field-based forest inventory consisted of a 

set of 265 circular plots with 10 m radius systematically distributed over 
the study area (Fig. 1). The plot centers were placed at 200 m distance 
from each other and, inside each plot, all living trees with DBH ≥ 4 cm 
had the DBH and tree position recorded using a DP POSTEX system 
(http://www.haglofsweden.com). In each plot, the heights of 1 to 5 

Fig. 1. (A) Overview of the study area, with field plots used for training showed as green circles, the field inventory plots used for validation shown as orange crosses 
and the roads scanned by the MLS survey in red. (B) Position of the study area in Sweden. (C) Close-up on the area from which MLS data was collected, considering 
the 20-40 m distance range to the roadside. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

Table 1 
Description of the ALS-based metrics used as independent variables in this 
study.

Metric Description

h10 – h99 10th to the 99th height percentiles
i10 – i99 10th to the 99th intensity percentiles
meani Mean of intensity values
stdi Standard deviation of intensity values
skewi Skewness of intensity values
kuri Kurtosis of intensity values
CR Crown radius
CA Crown area
CE Extent of crown polygon
CRh95 CR× h95

CR2h95sqrt
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CR2 × h95

√
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sample trees were measured with a hypsometer and the remaining trees 
had their heights estimated using the model in Eq. (1). The model was 
adjusted using the ordinary least squares with the height from the 
sample trees as reference and 95th height percentile from ALS predictor. 
The model’s goodness of fit is shown in the appendix A. 

Ĥ = β0 + β1 • h95 (1) 

where Ĥ is the estimated tree height, h95 is the ALS-derived 95th height 
percentile and β0 and β1 are the model parameters. The stem volumes 
were calculated by using the species-specific volume functions by 
Brandel (1990).

The tree positions acquired in the field were co-registered with the 
ones derived from ALS data using the co-registration algorithm by 
Olofsson et al. (2008). This algorithm aligns the positions of the field- 
measured trees to the ALS-derived positions using cross-correlation of 
the position images within a search radius from the field-measured po-
sitions. In this step, we used a search radius of 20 m and the ALS-derived 
positions considered the location of highest point within each ALS- 
derived tree segment. This step was necessary in order to ensure the 
correspondence between each field-measured tree and its respective 
ALS-derived segment. If a segment contained more than one field- 
recorded tree position, the tree with highest DBH was considered to 
be the ALS-detected tree (i.e. the one tree represented by the segment) 
and the other field-recorded trees within that segment were considered 
omission errors. Segments that did not contain any field-recorded tree 
positions were considered commission errors.

Altogether, 62 plots had no trees with DBH ≥ 4 cm and were not used 
in this study. Additionally, a visual assessment was conducted in order to 
assure the quality of the co-registration. The co-registration was 
considered not successful when the corrected tree positions were outside 
the plot area or when no field-detected tree was matched to an ALS 
segment. According to these criteria, the matching procedure was not 
successful in 9 plots. Finally, 13 plots were overlapping MLS data 

collection areas and were excluded from the analysis, resulting in 181 
plots effectively being used in this study. In terms of individual trees, 
3023 field-recorded positions were associated with their respective ALS- 
derived tree segment in the FI dataset (Fig. 2).

2.3.2. MLS dataset
In 2019, a car-mounted MLS survey was conducted in the study area 

(Fig. 1). The system consisted of a Riegl VUX1LR laser scanner, syn-
chronized with an Inertial Measurement Unit (IMU) and a GPS/GNSS 
system, resulting in a georeferenced point cloud with a point registration 
accuracy of 1.5 cm. The sensor was leaning 30 degrees from the hori-
zontal plane and had 330 degrees of field of view. The car kept an 
average speed of 8 km/h. Approximately 7 km of forests were scanned 
along both sides of the road during a 2-h survey. The roads were chosen 
according to their accessibility by car so the system could measure a 
large part of the test site without having to turn back. Stem attributes 
were extracted from the resulting point clouds as described by Pires et al. 
(2022): first, tree stems were identified in the point clouds using an arc 
detection procedure. Afterwards, a stem curve model was fitted to each 
detected tree stem. Finally, DBH and stem volume values were derived 
from the stem curves of each detected individual.

To ensure the best possible tree detection accuracy and prevent the 
inclusion of trees influenced by edge effects, Pires et al. (2022) suggested 
limiting the reference data for model calibration to only include detec-
ted trees within the distance range of 20–40 m from the roadside. 
Considering this range from the roadside and the distance traveled by 
the car as shown in Fig. 1 - C, the MLS data collection area summed 
approximately 28 ha of forests, which were used in the study. Moreover, 
the MLS-derived tree positions showed a systematic displacement in 
relation to the ALS-derived segments of approximately 1.5 m. Thus, the 
tree positions were manually adjusted to align the MLS-derived positions 
with the ALS-detected trees, resulting in 6432 MLS-derived tree posi-
tions matching their corresponding ALS-derived tree crowns (Fig. 2).

Fig. 2. Diameter at breast height (DBH) distribution of trees associated with an aerial laser scanner-derived tree crown in the Forest inventory and car-mounted 
mobile laser scanner (MLS) datasets.
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2.4. Estimation of forest attributes

Before training the models to estimate stem attributes based on the FI 
and MLS datasets, the trees in the FI dataset were divided into training 
and validation groups according to their field plots, creating a bench-
mark dataset for the MLS- and FI-derived models. Specifically, 70 % of 
the plots in the FI dataset (2050 trees) were used for model training, 
while the remaining 30 % (973 trees) were used for validation (Fig. 1 - 
A). Consequently, the FI-based models were trained on 70 % of the FI 
dataset, whereas the MLS-based models were trained using the entire 
MLS dataset. All models were then validated using the validation portion 
of the FI dataset.

In order to avoid collinearity issues in the models, only the 95th 
height percentile was considered amongst all height percentiles during 
variable selection. Ordinary least squares regression was used to esti-
mate the models’ coefficients independently for each reference dataset, 
and the results of the variable selection procedure are presented in the 
results section. DBH and stem volume estimation models were devel-
oped independently for each reference dataset. In this step, the selection 
of models with different combinations of explanatory variables was 
carried out using the backwards variable selection method implemented 
in the caret package (Kuhn, 2020) in R (R Core Team, 2020). Altogether, 
three models including one to three explanatory variables were evalu-
ated for each reference dataset. The objective was to identify the model 
that achieved the highest adjusted R2 value with the fewest number of 
explanatory variables. To prevent bias in estimating the DBH for trees 
with small values, the intercept in the DBH prediction model was set to 
zero. Furthermore, we applied a logarithmic transformation to the stem 
volume and ALS-derived metrics in order to enhance the linearity in the 
relationship between explanatory and target variables. To address po-
tential bias introduced by transforming the stem volume before model 
fitting, we employed the bias correction estimator (b) proposed by 
Snowdon (1991) - Equation 2). b is estimated separately for each dataset 
after training the volumetric model (i) and the final volume prediction is 
calculated by Eq. (3). This approach was adopted to ensure a more ac-
curate and unbiased estimation process. 

bi =
∑ni

j=1
Vij

/
∑ni

j=1
v̂ij (2) 

V̂ ij = v̂ij • bi (3) 

where n is the number of trees in the dataset i, Vij is the stem volume of 
tree j from dataset i. v̂ij and V̂ ij are the estimated stem volumes of tree j 
from dataset i before and after bias correction, respectively.

2.5. Accuracy assessment

The accuracy of DBH estimates was assessed by comparing the ALS- 
derived predictions trained on either the FI or MLS datasets to the field- 
measured values on the validation portion of the FI dataset at tree-level. 
Similarly, stem volume estimates were evaluated both at the individual 
tree- and plot-level by comparing ALS-derived predictions, trained on 
either the FI or MLS datasets, with the stem volume reference values on 
the validation subset of the FI dataset. As predictions for both variables 
were made at the tree level, plot-level estimates of stem volume were 
obtained by summing up all ALS-derived predictions within the area of 
each validation plot.

Specifically, the estimates were compared with their respective field- 
measured values in terms of Root Mean Square Error (RMSE - Eq. (4)) 
and bias (Eq. (5)). The relative RMSE and bias were calculated in rela-
tion to the mean values of the target variables in the FI dataset. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j

(
ŷj − yj

)2
/

n

√
√
√
√ (4) 

bias =
∑n

j

(
ŷj − yj

)
/

n (5) 

where n is the number of trees. ŷj and yj are target variable’s ALS- 
derived and field inventory values for tree j.

We used precision (Eq. (6)) and sensitivity (Eq. (7)) to assess the 
accuracy of the individual tree detection in the validation plots. 

Precisionp = TPp
/(

TPp +Cp
)

(6) 

Sensitivityp = TPp

/(
TPp +Op

)
(7) 

where TPp is the number of trees correctly detected trees (true positives), 
Cpand Op are the number of commission and omission errors in plot p.

3. Results

3.1. Individual tree detection

Table 2 shows the mean precision and sensitivity values in different 
diameter classes. The results indicate that the ITD method used in this 
study performs best in larger DBH classes, with precision and sensitivity 
values reaching nearly 100 % in trees greater than 40 cm in DBH. On the 
other hand, the method had its worst performance in detecting trees 
with DBHs ranging from 0 to 10 cm, where the highest commission and 
omission errors were noticed. In general, the performance of ITD in this 
DBH class negatively affected the overall accuracy of ITD, with 
approximately 70 % of all omission errors being trees with DBH ≤ 10 cm 
(Fig. 3).

3.2. Modelling forest attributes

Table 4 show the variables selected for different model sizes in the 
two reference datasets when modelling DBH and stem volume, respec-
tively. In both cases, models with 2 predictors were preferred over other 
options due to their fewer explanatory variables, despite achieving 
similar adjusted R2 values as the other models. Thus, while using the FI 
dataset, the selected independent variables for the DBH model were h95 
and CA. Using the MLS dataset, the combination of CRh95 and h95 had 
the best performance in the variable selection step (Table 3). For the 
stem volume models, h95 and CA were chosen as explanatory variables 
while using either the FI or the MLS dataset for model training (Table 4).

3.3. Prediction of stem attributes

The RMSE of the DBH estimates differed from 0.09 to 0.37 cm when 
comparing the models trained on the different datasets (Fig. 4). When 
using the FI dataset as reference, RMSEs ranged from 4.06 cm (18.8 %) 
in Norway spruce trees to 8.61 cm (55.9 %) in deciduous trees for pre-
dictions made a tree-level. When evaluating the predictions made using 
the MLS dataset as reference, RMSEs ranged from 3.97 cm (18.4 %) in 
Norway spruce to 8.98 cm (58.3 %) in deciduous trees also at tree-level, 
as shown in Fig. 4. Most biases were under 1 cm, with exception of the 
deciduous trees group, which exhibited bias of 2.77 cm (18 %) and 2.32 

Table 2 
Precision and sensitivity values of Individual Tree Detection (ITD) in Aerial 
Laser Scanning (ALS) data.

Diameter Class Precision Sensitivity

0–10 cm 51.6 % 22.8 %
10–20 cm 71.7 % 66 %
20–30 cm 83 % 89.6 %
30–40 cm 91.5 % 90.9 %
≥ 40 cm 98.5 % 98.5 %
Overall 81.3 % 70.9 %
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cm (15.1 %) for predictions made using the FI and MLS datasets, 
respectively.

For stem volume estimates, RMSE values obtained at individual tree- 
level (Fig. 5) were similar regardless of the dataset used for model 
training, with RMSEs ranging from 0.176 m3 (38.8 %) in the Norway 
spruce group to 0.228 m3 (52.4 %) in the Scots pine group for the FI- 
based estimations, as shown in Fig. 5. Meanwhile, the MLS dataset- 
based estimations per tree species showed RMSEs ranging from 0.176 
m3 (38.8 % - Norway spruce) to 0.246 m3 (158 % - deciduous). On the 
other hand, RMSE and bias were lower when comparing the results at 
plot-level (Fig. 6). In this case, MLS-based predictions had RMSE equal 
to 46.2 m3/ha (19.8 %) and bias equal to 2.5 m3/ha (1.07 %), while FI- 
based predictions showed RMSE of 43.7 m3/ha (18.7 %) and bias of 
− 11.5 m3/ha (− 4.92 %), as shown in Fig. 6.

4. Discussion

The purpose of this study was to compare the results from two model- 
based forest inventory approaches that use on different training data-
sets. The first training dataset was sampled with traditional field data 
collection techniques, in other words field plots allocated according to a 
systematic sampling design and measured using standard equipment 
such as calipers and hypsometers. In contrast, we assessed the suitability 
of car-mounted MLS as a method for field data collection. This method 
uses a purposive sampling design, restricting data collection to a range 
of 20–40 m from the road network. Overall, both inventory methods 
resulted in similar models with respect to variable selection and pre-
diction accuracy.

The MLS and FI datasets differed with respect to the sample size and 
possible measurement errors, which affected the estimated model pa-
rameters. With respect to the sample size, while the FI dataset contained 
2050 trees for training, the MLS dataset contained 6432 trees. At the 
same time the training sample size may impact model-based inference 
(Li et al., 2023), adding reference data does not necessarily enhance 
estimation accuracy (i.e. RMSE) after a certain threshold (Fassnacht 
et al., 2014; Lisańczuk et al., 2020). In this context, adequate repre-
sentation of the modeled trees attribute’s variability across the study 
area may have a more substantial impact on a model’s output than the 
actual size of the training dataset (Junttila et al., 2013). Moreover, both 
datasets are susceptible to different types of measurement and estima-
tion errors due to limitations from the instruments used during data 
collection. The DBHs in the FI dataset were measured with calipers, thus 
being subject to human errors such as challenges associated with 
measuring at 1.3 m height and incorrect annotation. Additionally, in this 
dataset the stem volume was estimated by a volumetric model calibrated 
at landscape-level, potentially introducing bias on the estimates when 
applied to a local scale as in this study (Brede et al., 2022; Calders et al., 
2022).

At the same time, the laser-based measurements of DBH and stem 
volume on the MLS dataset were subject to different kinds of errors. For 
instance, Pires et al. (2022) pointed out that the variability in stem 
detection by the MLS system, influenced by factors such as distance from 
the sensor to the tree and the presence of branches and understory 
vegetation around the stem can affect the accuracy of DBH and stem 
volume values on the MLS dataset. Accurate and precise measurements 
are crucial when collecting training data as they directly affect the 
reliability of the resulting models. In this sense, Hyyppä et al. (2022), 
Hyyppä et al., 2020b, Hyyppä et al., 2020c) suggested that maintaining 
errors on the training dataset under 10 % would be sufficient to produce 
accurate models based on close-range laser scanning. Hence, by 
restricting data collection to a 20–40 m range from the road, we ob-
tained MLS-derived measurements with sufficient quality to produce 
estimation models with similar prediction accuracy as the ones trained 
on the FI-dataset. Nevertheless, using data collected closer to the road-
side, such as within a 10–20 m range, could potentially improve MLS- 
based estimates by reducing measurement errors in the MLS dataset. 
When evaluating the accuracy of estimates in different distance ranges 
from the roadside, Pires et al. (2022) found that tree detection and es-
timates of DBH and stem volume within this 10–20 m range had lower 
errors when compared to estimates from greater distances, such as 

Fig. 3. Histogram of number of omissions and relative frequency in each 
diameter at breast height (DBH) class. Only trees with DBH ≥ 4 were measured.

Table 3 
Models with one, two and three independent variables for DBH (Diameter at 
Breast Height) estimation using the forest inventory (FI) or car-mounted MLS 
(MLS). Adj. R2: adjusted R2.

N◦ of 
predictors

FI dataset MLS dataset

Model Adj. 
R2

Model Adj. 
R2

1 DBHFI = α1 • h95 0.93
DBHMLS =

α1 • CRh95 0.96

2
DBHFI = α1 • h95 +

α2 • CR2h95sqrt
0.94

DBHMLS = α1 •

CRh95+ α2 • h95
0.98

3
DBHFI = α1 • h95 + α2 •

CR2h95sqrt + α3 • skewi
0.94

DBHMLS = α1 •

CRh95+ α2 • h95 +

α3 • i90

0.98

Table 4 
Models with one, two and three independent variables for stem volume estimation using the forest inventory (FI) or car-mounted MLS (MLS). Adj. R2: adjusted R2. ̂v is 
the estimated stem volume before bias correction.

N◦ of predictors FI dataset MLS dataset

Model Adj. R2 Model Adj. R2

1 v̂FI = eβ0+β1•lnh95 0.78 v̂MLS = eβ0+β1•lnh95 0.74
2 v̂FI = eβ0+β1•lnh95+β2•lnCA 0.80 v̂MLS = eβ0+β1•lnh95+β2•lnCA 0.79
3 v̂FI = eβ0+β1•lnh95+β2•lnCA+β3•ln h10 0.80 v̂MLS = eβ0+β1•lnh95+β2•lnCA+β3•lnmeani 0.79
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30–40 m from the roadside. In our analysis, data collected from 0 to 20 
m to the roadside was not used for modelling to avoid over-representing 
trees potentially affected by edge effects in the training data (Harper 
et al., 2015). However, further analysis is needed to evaluate how 
including these trees potentially under edge effect in the training data 
might influence the accuracy and robustness of the prediction models.

Despite the similar model predictions and prediction accuracies 
evaluated in this study, the DBH errors observed were generally 1–2 cm 
higher than the ones reported in other studies that aimed at modelling 
diameter at the individual tree level, when considering the DBH esti-
mation accuracy for the Norway spruce trees. For example, Sun et al. 
(2022) tested six different modelling methods for DBH prediction at 
individual tree level of Larch trees (Larix olgensis A. Henry), reaching 
RMSE values ranging from 1.92 cm with artificial neural networks to 
2.56 cm with linear regression. However, regardless of the method used, 
all models tend to underestimate the DBH values of trees with larger 
diameters. Fu et al. (2020) used a nonlinear mixed-effects model (NLME) 
for DBH prediction of Picea crassifolia (Kom.) trees, reaching RMSE equal 

to 4.4 cm at individual tree level. Finally, Hao et al. (2021) also used 
NLME for DBH prediction of Larch trees, yield RMSE of 1.94 cm at in-
dividual tree level with the inclusion of site-specific random effects, 
which significantly improved the model’s performance.

The errors in DBH estimation noticed in our study could have been 
caused different factors, such as the complexity of the target variable 
being modeled and the robustness of the statistical models used for 
prediction, which may involve considerations regarding model as-
sumptions, parameter estimation methods, and the incorporation of 
relevant covariates or predictors. In addition, the different accuracies in 
the estimation of DBH and stem volume across species groups can be 
partially explained by the fact that Norway spruce is the main tree 
species in the study area, accounting for 85.7 % of all trees, which 
caused the models to be optimized for this specific species. For this 
target variable, the inclusion of site- and species-specific relationships 
between DBH and the explanatory variables could potentially improve 
the accuracy of our predictions (Hao et al., 2021; Raumonen et al., 
2015).

Fig. 4. Field-measured vs. ALS-derived Diameter at Breast Height (DBH), in cm. The columns represent different reference datasets and the rows represent the 
different species groups. The red line is the 1:1 line, where field-measured and ALS-derived values are equal. The orange lines represent a 15 % deviation from the 1:1 
line. RMSE = Root Mean Square Error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Analogously, individual tree-level estimates of stem volume may also 
be improved by using different modelling techniques, such as general-
ized linear models and non-parametric estimation methods (Hauglin 
et al., 2018). For instance, Karjalainen et al. (2019) reached generally 
lower relative RMSEs for this variable, which varied from 29 % to 41 %, 
while testing the transferability of a non-parametric stem volume model 
amongst different sites. When aggregated to plot-level (Fig. 5), the 
values obtained in this study were in-line with other volume estimation 
methods, which reported RMSEs ranging from 15.5 % to 56.2 % in 
boreal and temperate forest conditions (Kandare et al., 2017; Kankare 
et al., 2011; Kukkonen et al., 2021; Vastaranta et al., 2012; Yu et al., 
2010). Similarly, Puliti et al. (2020) observed decreasing errors when 
comparing volume estimates at coarser levels, reaching relative RMSEs 
of 32.2 %, 27.1 % and 3.5 % at plot-, stand- and forest-level, respec-
tively, while assessing the potential of UAVLS in estimating growing 
stock without field data for model calibration. Furthermore, Hauglin 
et al. (2018) used accurately positioned harvester data as reference for 

volume models and reported relative RMSEs ranging from 19 % to 60 % 
at plot-level, depending on the forest strata.

Omission and commission errors in individual tree detection can also 
influence the accuracy of plot-level volume estimates. In this study, 
omission errors were also the most pronounced in small DBH classes, 
resulting in sensitivities equal to 22.8 % in trees from 0 to 10 cm and 66 
% in trees from 10 to 20 cm. Although these classes account for a smaller 
proportion of the total volume, cumulative omissions can result in sig-
nificant bias in total or mean values. This kind of detection error is a 
common cause of stem volume underestimation when aggregating tree- 
level results to an area unit (Kandare et al., 2017; Kukkonen et al., 2021; 
Sačkov et al., 2019; Vastaranta et al., 2012), as the omission of trees in 
the suppressed or understory forest layers is common in ITD algorithms. 
For instance, Wang et al. (2016) found omission rates varying from 
approximately 40 % to nearly 100 % of suppressed trees when 
comparing 9 distinct ITD algorithms in boreal forest conditions. Anal-
ogously, Sparks et al. (2022) reported higher rates of omissions in 

Fig. 5. Individual tree-level field inventory vs. ALS-derived stem volume, in m3. The columns represent different reference datasets and the rows represent the 
different species groups. The red line is the 1:1 line, where the field inventory and ALS-derived values are equal. The orange lines represent a 15 % deviation from the 
1:1 line. RMSE = Root Mean Square Error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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suppressed trees when benchmarking ITD algorithms in mixed-conifer 
temperate forests.

Finally, future studies should focus on improving individual tree- 
level DBH and stem volume models, as well as exploring the estima-
tion of tree species using remote sensing data. Potential improvements 
in tree attribute estimation and accurate identification of tree species 
would significantly contribute to more accurate and ecologically 
informed forest inventory and management practices.

5. Conclusion

In our analysis, we found that the estimation models trained with 
either the FI or MLS datasets presented similar values for RMSE and bias 
for estimates of DBH and stem volume at individual tree level. This 
implies that both methods perform similarly and hence the use of MLS 
for training data collection instead of conventional field inventory can 
save time and costs. Nevertheless, the results obtained in this study are 
limited to a Norway spruce dominated boreal forest ecosystem. There-
fore, future analyses, such as the proposed method’s performance in 
different forest conditions and the impact of seasonal environment 
variations on the data quality, are needed to fully elucidate the capa-
bilities and limitations of car-mounted MLS for training data collection.
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Appendix A. Appendix

Fig 1. A – Goodness of fit of tree height estimation model based on the 95th height percentile from aerial laser scanning data
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Functions for Individual Trees : Scots Pine (Pinus sylvestris), Norway Spruce (Picea 
abies) and Birch (Betula Pendula & Betula pubescens). Swedish Univ. Agric. Sci. 
Skogsfakta 11, 1-10. Garpenberg.

Brede, B., Lau, A., Bartholomeus, H.M., Kooistra, L., 2017. Comparing RIEGL RiCOPTER 
UAV LiDAR derived canopy height and DBH with terrestrial LiDAR. Sensors 
(Switzerland) 17, 1–16. https://doi.org/10.3390/s17102371.

Brede, B., Terryn, L., Barbier, N., Bartholomeus, H.M., Bartolo, R., Calders, K., 
Derroire, G., Krishna Moorthy, S.M., Lau, A., Levick, S.R., Raumonen, P., 
Verbeeck, H., Wang, D., Whiteside, T., van der Zee, J., Herold, M., 2022. Non- 
destructive estimation of individual tree biomass: Allometric models, terrestrial and 
UAV laser scanning. Remote Sens. Environ. 280 https://doi.org/10.1016/j. 
rse.2022.113180.

Calders, K., Adams, J., Armston, J., Bartholomeus, H., Bauwens, S., Bentley, L.P., 
Chave, J., Danson, F.M., Demol, M., Disney, M., Gaulton, R., Krishna Moorthy, S.M., 
Levick, S.R., Saarinen, N., Schaaf, C., Stovall, A., Terryn, L., Wilkes, P., Verbeeck, H., 
2020. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote 
Sens. Environ. 251, 112102 https://doi.org/10.1016/j.rse.2020.112102.

Calders, K., Verbeeck, H., Burt, A., Origo, N., Nightingale, J., Malhi, Y., Wilkes, P., 
Raumonen, P., Bunce, R.G.H., Disney, M., 2022. Laser scanning reveals potential 
underestimation of biomass carbon in temperate forest. Ecol. Solut. Evid. 3, 1–14. 
https://doi.org/10.1002/2688-8319.12197.

da Bispo, P.C., Rodríguez-Veiga, P., Zimbres, B., de Miranda, S.C., do Cezare, C.H.G., 
Fleming, S., Baldacchino, F., Louis, V., Rains, D., Garcia, M., Espírito-Santo, F.D.B., 
Roitman, I., Pacheco-Pascagaza, A.M., Gou, Y., Roberts, J., Barrett, K., Ferreira, L.G., 
Shimbo, J.Z., Alencar, A., Bustamante, M., Woodhouse, I.H., Sano, E.E., Ometto, J.P., 
Tansey, K., Balzter, H., 2020. Woody aboveground biomass mapping of the brazilian 
savanna with a multi-sensor and machine learning approach. Remote Sens. 12 
https://doi.org/10.3390/RS12172685.
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