
Vol.:(0123456789)

Journal of Pest Science (2024) 97:1795–1810 
https://doi.org/10.1007/s10340-023-01728-z

ORIGINAL PAPER

Efficacy of trapping protocols for Agrilus jewel beetles: a multi‑country 
assessment

Giacomo Santoiemma1 · David Williams2 · Everett G. Booth3 · Giacomo Cavaletto1 · James Connell4 · 
Gianfranco Curletti5 · Maarten de Groot6 · Sarah M. Devine3,14 · Abigail Enston2 · Joseph A. Francese3 · 
Emily K. L. Franzen7,14 · Mischa Giasson8 · Eva Groznik6,9 · Jerzy M. Gutowski10 · Tine Hauptman6,9 · 
Werner Hinterstoisser4 · Gernot Hoch4 · Björn Hoppe11 · Cory Hughes8 · Chantelle Kostaniwicz8 · 
Donnie L. Peterson12 · Radosław Plewa13 · Ann M. Ray14 · Aurélien Sallé15 · Krzysztof Sućko10 · Jon Sweeney8 · 
Kate Van Rooyen8 · Davide Rassati1

Received: 15 September 2023 / Revised: 20 November 2023 / Accepted: 24 November 2023 / Published online: 6 January 2024 
© The Author(s) 2024

Abstract
The genus Agrilus is one of the most diverse insect genera worldwide. The larval feeding activity causes extensive damage in 
both forests and orchards. In addition, more than 30 species have been introduced outside their native range so far, including 
the emerald ash borer Agrilus planipennis Fairmaire. Thus, the availability of efficient trapping protocols for early detection 
of Agrilus species at entry points is of utmost importance. In this study we tested whether trapping protocols developed 
for surveillance of A. planipennis in North America were also effective for other Agrilus species. In particular, through a 
multi-country assessment we compared the efficacy of detecting Agrilus species on: (i) green glue-coated prism traps vs. 
green Fluon-coated multi-funnel traps when baited with the green leaf volatile (Z)-3-hexenol or left unbaited; and (ii) green 
multi-panel traps vs. green multi-panel traps baited with dead adult Agrilus beetles (decoys). A total of 23,481 individuals 
from 45 Agrilus species were caught. Trap design significantly affected both species richness and abundance of Agrilus spe-
cies in several of the countries where the trapping experiments were carried out, and green prism traps outperformed green 
multi-funnel traps in most cases. On the contrary, the addition of a (Z)-3-hexenol lure or dead adult beetle decoys on to traps 
did not improve trap catches. Our study highlights that reliable trap models to survey Agrilus species are already available, 
but also that there is the clear need to further investigate chemical ecology of Agrilus species to develop semiochemical 
lures that can improve detection efficacy.
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Key message

• The genus Agrilus has > 3,300 species and includes a 
number of potentially invasive species

• Efficient trapping protocols are needed for surveillance 
and early detection of Agrilus species

• Green glue-coated prism traps generally performed better 
than green multi-funnel traps

• The addition of a (Z)-3-hexenol lure or adult beetle 
decoys to traps did not increase trap catches

Introduction

The genus Agrilus (Coleoptera; Buprestidae) is one of the 
most diverse insect genera with over 3,300 species described 
worldwide (Jendek 2016; Kelnarova et al. 2019; Jendek 
and Grebennikov 2023). Adults mainly feed on leaves of 
host trees while larvae develop in living subcortical tissues 
(Kelnarova et al. 2019). The larval feeding activity can be 
sufficient to kill a host, especially when it has already been 
weakened by other abiotic (e.g., drought) or biotic (e.g., 
defoliation) factors (Muzika et al. 2000; Brück-Dyckhoff 
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et al. 2019), causing extensive damage in both forests and 
orchards (Brown et al. 2015; Zhang et al. 2021; Perish et al. 
2023). In addition, the absence of visible evidence of feed-
ing within wood products has likely facilitated invasion by 
Agrilus species (Ruzzier et al. 2023). More than 30 species 
have been introduced outside their native range (Ruzzier 
et al. 2023), including the emerald ash borer A. planipen-
nis Fairmaire, which has caused massive ecological and 
economic damage in North America (Kovacs et al. 2010; 
Klooster et al. 2018). Given that further introductions can be 
expected due to increasing trade and climate change (Brock-
erhoff and Liebhold 2017; Meurisse et al. 2019; Pureswaran 
et al. 2022), the availability of efficient trapping protocols 
for the early detection of introduced Agrilus species at entry 
points is of utmost importance.

Among the numerous trap types developed for Agrilus 
monitoring programs around the world (e.g., Poland et al. 
2019; Imrei et al. 2020a), glue-coated prism traps and Fluon-
coated multi-funnel traps are the most commonly adopted 
and recommended types (European Food Safety Authority 
et al. 2020; Evans et al. 2020; Silk et al. 2020a). Indeed, 
both were found to efficiently catch high numbers of Agrilus 
species and detect (i.e., the ability to catch a single bee-
tle) them at low density (Francese et al. 2008, 2010a, 2011, 
2013; Marshall et al. 2010; Petrice et al. 2013; Crook et al 
2014; Brown et al. 2017; Rhainds et al. 2017). Other trap 
types and trapping strategies for Agrilus species have been 
developed over the years, including double-decker traps 
(McCullough and Poland 2017), branch-traps (Domingue 
et al. 2013), modified multi-funnel traps (Imrei et al. 2020b), 
fan-traps (Grégoire et al. 2022), and girdled or stressed trap 
trees (McCullough et al. 2009a, 2009b; Mercader et al. 
2013). Some of these other trap types have proven effec-
tive at detecting A. planipennis at sites with low population 
densities (e.g., double-decker traps, girdled trap trees), and 
for capturing a range of other Agrilus species (e.g., branch 
traps, modified multi-funnel traps), but with the exception 
of the modified multi-funnel traps (Imrei et al. 2020b), none 
are commercially available.

Irrespective of the trap type, visual stimuli present 
on the trap can strongly affect its efficacy. Agrilus spe-
cies strongly rely on color vision when searching for 
mates, suitable brood hosts, and food (Lelito et al. 2007; 
Domingue et al. 2011). Electroretinogram assays demon-
strated that both male and female A. planipennis adults 
are sensitive to green, blue, red and ultraviolet specific 
wavelengths (Crook et al. 2009). Subsequent field studies 
showed that green and purple traps are efficient to catch A. 
planipennis and other Agrilus species (Crook et al. 2009; 
Francese et al. 2010b, 2011, 2013; Petrice et al. 2013; 
Poland and McCullough 2014; Kim et al. 2016; Rhainds 
et al. 2017; Cavaletto et al. 2020). In particular, specific 
shades of green (i.e., wavelength range 525–540 nm, and 

reflectance in the 49–67% range) are very attractive for 
male A. planipennis (Francese et al. 2010b; Domingue 
et al. 2012; Poland et al. 2019; Parker et al. 2020) presum-
ably because it resembles foliage where they can find both 
mates and food (Rodriguez-Soana et al. 2007); thus, green 
is currently the most commonly adopted trap color for 
trapping Agrilus species (Rassati et al. 2019; Evans et al. 
2020; Sallé et al. 2020; Wittman et al. 2021). Another key 
visual cue used by males to locate females seems to result 
from the light scattering effect produced by the micro-
structures present on elytra of adult beetles (Lelito et al. 
2008; Domingue et al. 2014). In fact, dead adult beetles or 
bioreplicated decoys attached on leaves or plastic sticky 
cards were found to readily evoke the typical descending 
flights of males occurring when spotting a mate (Lelito 
et al. 2008; Domingue et al. 2014, 2015). Nonetheless, 
whether the presence of dead adult beetles or bioreplicated 
decoys on traps can increase trap efficacy is still unclear.

Besides visual stimuli, Agrilus species rely on olfactory 
stimuli when searching for mates, suitable host trees, and 
food (Pureswaran and Poland 2009; Silk et al. 2019; Imrei 
et al. 2020a). Many species breed in stressed trees and are 
particularly attracted to volatiles emitted from their hosts, 
suggesting that decisions regarding host suitability are made 
prior to alighting on the tree. For example, significantly 
more A. planipennis (McCullough et al. 2009a, 2009b), A. 
bilineatus (Weber) (Dunn et al. 1986), and A. anxius Gory 
(Silk et al. 2020b) or oak-associated Agrilus species (Sallé 
et al. 2020) were captured on traps placed on, or adjacent to, 
stressed (i.e., girdled) host trees compared to healthy host 
trees. Positive responses to extracts of host foliage and/or 
bark, as well as synthetic blends of compounds identified in 
host volatiles, have been observed in A. planipennis (Crook 
et al. 2008; Grant et al. 2010, 2011; Silk et al. 2011), other 
Agrilus species (Domingue et al. 2013; Vuts et al. 2016), 
and other species in the subfamily Agrilinae, namely Corae-
bus fasciatus (Herbst) (Fürstenau et al. 2012) and Coraebus 
undatus Fabricius (Fürstenau et al. 2015). Among these vol-
atiles, one of the most adopted is the commercially available 
green leaf volatile, (Z)-3-hexenol. This compound was found 
to efficiently attract A. planipennis adult beetles both alone 
and in combination with other lures (De Groot et al. 2008; 
Grant et al. 2010, 2011; Silk et al. 2011; Ryall et al. 2012; 
Crook et al. 2014) and is commonly used as the main attract-
ant in surveillance programs targeting the latter species.

In this study we tested whether trapping protocols most 
commonly adopted for surveillance of A. planipennis were 
also effective for other Agrilus species. In particular, we car-
ried out a multi-country assessment comparing the efficacy 
of detecting Agrilus species on: (i) green glue-coated prism 
traps vs. green Fluon-coated multi-funnel traps when baited 
with the green leaf volatile (Z)-3-hexenol or left unbaited; 
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and (ii) green multi-panel traps vs. green multi-panel traps 
baited with dead adult Agrilus beetles (decoys).

Materials and methods

Study sites and general experimental methods

The three trapping trials were carried out in 2021 and 2022 
in nine different countries in Europe and North America: 
Austria, Canada, France, Germany, Italy, Poland, Slovenia, 
United Kingdom (UK), and Unites States of America (USA) 
(Table S1). In USA, three states were involved (Massachu-
setts, Ohio and Kentucky). Not all countries carried out all 
three trapping trials (Table S1).

Irrespective of the trapping trial, some general criteria 
were followed. Traps were always set up in a complete ran-
domized block design within an oak-dominated forest, with 
20–40 m spacing between treatments and about 60 m among 
blocks. Using a big-shot catapult (Hughes et al. 2014) or a 
carbon-fibre telescopic pole, traps were always suspended 
in the mid to upper canopy, 10–30 m above the ground, 
preferably in open and sunny spots and avoiding complete 
shade under branches. Mid-upper canopy was preferred over 
ground level because several studies showed that species 
richness and abundance of Agrilus species are generally 
higher at the canopy level than close to the ground (e.g., 
Francese et al. 2008; Crook et al. 2008, 2009; Ryall et al. 
2012; Rassati et al. 2019; Sallé et al. 2020). Similarly, open 
sunny spots were preferred over shaded ones because traps 
more exposed to sunlight tend to catch more adults than 
those in shaded locations (e.g., Francese et al. 2008; Lyons 
et al. 2009). Traps were established in mid to late May, and 
beetles were collected every 2–4 weeks until mid to late 
August to cover the main flight period of Agrilus species 
(i.e., 4–8 collections).

Trial 1: Effect of trap design (green prism traps 
vs. green multi‑funnel traps) on Agrilus detection 
on unbaited traps

Field trials were conducted in 2021 in Canada, France, Ger-
many, Italy, Slovenia, UK and USA (Massachusetts and Ohio) 
(Table S1). Green (540 nm, 49% reflectance; see Wittman et al. 
2021), glue-coated prism traps were purchased from Ander-
matt Group (Grossdietwil, Switzerland and Fredericton, New 
Brunswick, Canada) (Fig. S1A), whereas green (530 nm, 49% 
reflectance; described by Francese et al. 2011) multi-funnel 
traps were purchased from ChemTica Internacional (Santo 
Domingo, Costa Rica) (Fig. S1B). Multi-funnel traps were 
pre-treated with a 50% solution of Fluon as a trap coating 
because of its ability to increase trap catch of woodboring bee-
tles (Graham and Poland 2012; Allison et al. 2016) including 

A. planipennis (Lyons et al. 2012; Francese et al. 2013). Each 
trap type was replicated 10 times in all but two of the countries 
(i.e., Slovenia and France) (Table S1). The collecting cup of 
the multi-funnel traps was filled with approximately 200 ml of 
50% propylene glycol solution either in water or in a solution 
as a pre-mixed marine / RV antifreeze in most of the countries. 
However, in a few cases either a saturated salt solution (table 
salt in water) or ventilated cups for dry trapping supplied with 
an insecticide net were used. The contents of the collecting 
cups from the multi-funnel traps were transferred to labelled 
containers and transported back to the laboratory for further 
analysis (the trap collection cup was reset with fresh solution 
following each collection). The green prism traps were exam-
ined at each collection date and any Agrilus beetles captured 
on the glue surface of the trap were picked off with forceps and 
transferred to a labelled collection vial or bag.

Trial 2: Effect of trap design (green prism traps vs. 
green multi‑funnel traps) and (Z)‑3‑hexenol lure 
(present vs. absent) on Agrilus detection

Field trials were conducted in 2022 in the same sites and 
countries as trial 1 in 2021 (Table S1), except for the addi-
tion of a site in each of Austria and Sweden and the replace-
ment of the Ohio site with a site in Kentucky in USA. Green 
prism traps and green multi-funnel traps were obtained from 
the same companies as in 2021 (i.e., Andermatt and Chem-
Tica Internacional). (Z)-3-hexenol lure pouches were pur-
chased from Synergy Semiochemicals Corporation (Delta, 
BC, Canada) or purchased together with the traps at Ander-
matt Group (i.e., Germany), and had a release rate of 50 mg/
day at 25ºC. Each treatment was replicated 5–10 times 
depending on the country (Table S1). Traps were checked 
as explained above for trial 1.

Trial 3: Effect of decoys on Agrilus detection in green 
multi‑panel traps

Field trials were conducted in 2022 in Canada, France, Italy, 
Poland, UK, and USA (Massachusetts and Ohio) (Table S1). 
Green multi-panel traps (i.e., Synergy Semiochemical Mul-
titrap panel trap) were supplied by Synergy Semiochemi-
cals Corporation (Delta, BC, Canada). Three individual 
dead Agrilus adult specimens were glued onto each panel 
surface of the multi-panel trap (i.e., 18 individuals/trap) to 
serve as decoys (Fig. S1C, D). Each country used as decoys 
the preserved cadavers of the most common Agrilus bee-
tle species captured in the 2021 field trial, namely A. olivi-
color Kiesenwetter in Italy, A. laticornis (Illiger) in France 
and UK, A. biguttatus (Fabricius) in Poland, A. crinicornis 
Horn in Canada and A. bilineatus in USA. We decided to 
bait traps with dead adults of a single species and test the 
effect on multiple species because previous studies showed 
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that the light-scattering effect produced by physical micro-
structures present on Agrilus species body is not species-
specific (Lelito et al. 2008; Domingue et al. 2011, 2014). 
Each treatment was replicated 10 times in all countries 
except France (Table S1). The collecting cup of the multi-
panel traps was filled with approximately 200 ml of 50% 
propylene glycol solution either in water or in a solution as 
a pre-mixed marine / RV antifreeze in most of the countries, 
except Canada where a saturated salt solution was used.

Statistical analyses

The effects of trap design (trial 1), trap design, lure and their 
interaction (trial 2), and decoy presence (trial 3), were tested 
using generalized linear mixed models (GLMMs). Models 
were fitted with a Poisson distribution, or negative binomial 
distribution when data were over dispersed, using a log link-
function. We opted for GLMMs over classic ANOVA given 
the non-normality and the correlated and longitudinal struc-
ture of the data. For each country and trial, species richness 
(i.e., total number of Agrilus species), total abundance (i.e., 
total number of Agrilus individuals), and the abundance of 
each Agrilus species (when represented by at least 10 indi-
viduals) were considered as response variables. In all cases, 
we treated the data collected from each trap and sampling 
period as a distinct statistical unit. This approach ensures 
more accurate parameter estimates and better model fit com-
pared to pooling data from different sampling rounds. The 
block identity and the trap identity within each block were 
included in the models as random factors to account for the 
temporal pseudoreplication (repeated measures on each trap) 
and for the nested design of the trials. For trial 2, pairwise 
multiple comparisons were run using post-hoc tests with 
Holm correction of p-values. All the analyses were carried 
out in R (R Core Team 2021). Models were fitted using the 
‘glmmTMB’ package (Brooks et al. 2022). Pairwise com-
parisons were run using the ‘emmeans’ package (Lenth et al. 
2022). Models were checked for overdispersion, residual dis-
tribution, and residual temporal and spatial autocorrelation 
using the ‘DHARMa’ package (Hartig 2022).

Results

General results

A total of 23,481 individuals from 45 Agrilus species were 
caught (Table S2). Six species were represented by more 
than 1,000 individuals; among them, A. laticornis was 
the most abundant species (6,665 individuals), followed 
by A. olivicolor (4,136), A. angustulus (Illiger) (3,158), 
A. obscuricollis Kiesenwetter (2,069), A. hastulifer Rat-
zeburg (1,296), and A. crinicornis Horn (1,240). By con-
trast, 21 species were represented by less than 10 individu-
als (Table S2). Three countries were represented by more 
than 2,000 individuals, from 10 or more different species, 
i.e., France (8,048), Austria (5,521) and Italy (2,449). Only 
Poland and Sweden, in which only one trapping experiment 
was conducted, were represented by less than 200 individu-
als (Table S2). In general, species richness at the sampling 
sites tended to decrease with increasing latitude.

Trial 1: Effect of trap design (green prism traps 
vs. green multi‑funnel traps) on Agrilus detection 
on unbaited traps

Trap type significantly affected both species richness and 
abundance of Agrilus species in France (Fig. 1A, I), Italy 
(Fig. 1C, K), UK (Fig. 1E, M) and Ohio (Fig. 1H, P), where 
green prism traps always outperformed green multi-funnel 
traps. On the contrary, no significant effect of trap type was 
observed in Germany (Fig. 1B, J), Slovenia (Fig. 1D, L), 
Canada (Fig. 1F, N), or Massachusetts (Fig. 1G, O) neither 
for species richness nor abundance.

At the species level, trap type significantly affected abun-
dance of 14 of the 33 Agrilus species collected in 2021, 
even though the effect was not evident in all countries where 
the species were collected (Table 1). In countries where the 
effect of trap type was significant, A. angustulus, A. arcu-
atus (Say), A. celti Knull, A. convexicollis Redtenbacher, 
A. curtulus Mulsant & Rey, A. hastulifer, A. laticornis, A. 
masculinus Horn, A. obscuricollis, A. olivicolor, A. putil-
lus Say, and A. viridis L. were caught significantly more in 
green prism traps than green multi-funnel traps, while the 
opposite trend was observed only for A. bilineatus (Table 1). 
The only species for which the effect of trap type was not 
consistent between countries was A. sulcicollis Lacordaire 
(i.e., better performance of green prism traps in France and 
green multi-funnel traps in Slovenia) (Table 1).

For species composition, most Agrilus species were col-
lected by both trap types (i.e., 23), seven exclusively by 
green prism traps and three exclusively by green multi-
funnel traps (Fig. S2A). When singletons and doubletons 
were excluded, no species was found exclusively in green 

Fig. 1  Means from the generalized linear mixed models (Poisson or 
negative binomial distribution with a log link-function) testing the 
effect of trap type on the mean number of species (i.e., species rich-
ness) and mean number of individuals (i.e., abundance) of Agrilus 
species collected per trap per sampling period in each of the eight 
different countries where the trial was carried out in 2021 (trial 1). 
Trap type: PT = green prism traps; MF = green multi-funnel traps. 
P-values: * = 0.05–0.01; ** = 0.01–0.001; *** =  < 0.001; ns = not 
significant (> 0.05). Bars are green for countries where a significant 
effect of trap type was found and grey for countries where the effect 
was not significant. Error bars indicate the 95% positive confidence 
interval. Note the nonlinearity of the y-axis (due to log-link function 
in the models)

◂
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multi-funnel traps, two exclusively in green prism traps, and 
21 in both trap types (Fig. S2A).

Trial 2: Effect of trap design (green prism traps vs. 
green multi‑funnel traps) and (Z)‑3‑hexenol lure 
(present vs. absent) on Agrilus detection

Both species richness and abundance of Agrilus species 
were affected by trap type in Austria (Figs. 2A, 3A), France 
(Figs. 2B, 3B), Italy (Figs. 2D, 3D), Slovenia (Figs. 2E, 
3E), Sweden (Figs. 2F, 3F), UK (Figs. 2G, 3G), Kentucky 

(Figs. 2I, 3I) and Massachusetts (Figs. 2J, 3J), where green 
prism traps outperformed green multi-funnel traps in all sites 
but Massachusetts, where the opposite trend was observed. 
On the contrary, there were no significant effects of trap type 
on species richness or abundance in Canada (Figs. 2H, 3H) 
and Germany (Figs. 2C, 3C). The (Z)-3-hexenol lure and the 
interaction between trap type and lure never affected species 
richness or abundance.

Trap type also significantly affected abundance of 15 out 
of the 36 Agrilus species collected in trial 2, but the effect 
was not evident in all countries where the species were 

Table 1  Output of the generalized linear mixed models testing the 
effect of trap type (trial 1) on abundance of single Agrilus species. 
In case of significant effect, the most efficient trap model is shown 
in parenthesis. PT = green prism traps; MF = green multi-funnel traps. 

P-values: ns = not significant (> 0.05); * = 0.05–0.01; ** = 0.01–
0.001; *** = <  0.001. nt = species represented by less than 10 indi-
viduals which was not statistically analyzed. – = species not collected 
in the country

Europe North America

France Germany Italy Slovenia UK Canada USA (MA) USA (OH)

A. angustulus *** (PT) ns nt nt – – – –
A. anxius – – – – – ns – –
A. arcuatus – – – – – nt ns *** (PT)
A. atricornis – – – – – – – nt
A. benjamini – – – – – – – nt
A. biguttatus nt nt – nt – – – –
A. bilineatus – – – – – ns ** (MF) –
A. celti – – – – – – – *** (PT)
A. cephalicus – – – – – – – nt
A. convexicollis nt nt *** (PT) nt – – – –
A. crinicornis – – – – – ns – nt
A. curtulus * (PT) – – – – – – –
A. derasofasciatus nt – – – – – – –
A. ferrisi – – – – – – – nt
A. frosti – – – – – – nt –
A. geminatus – – – – – – – nt
A. graecus nt – – – – – – –
A. graminis ns – ns – – – – –
A. hastulifer * (PT) – nt nt – – – –
A. juglandis – – – – – – nt –
A. laticornis *** (PT) ns ns ns *** (PT) – – –
A. lecontei – – – – – – – ns
A. litura – – nt – – – – –
A. masculinus – – – – – – – * (PT)
A. obscuricollis *** (PT) nt nt ns – – – –
A. obsoletoguttatus – – – – – nt nt nt
A. olivicolor *** (PT) ns *** (PT) ns – – – –
A. otiosus – – – – – – – nt
A. planipennis – – – – – – nt –
A. politus – – – – – nt – –
A. putillus – – – – – – – ** (PT)
A. sulcicollis * (PT) ns – * (MF) nt – – –
A. viridis *** (PT) ns nt – – – – –
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Fig. 2  Means from the generalized linear mixed models (Poisson or 
negative binomial distribution with a log link-function) testing the 
effect of trap type, (Z)-3-hexenol lure and their interaction on the 
mean number of species (i.e., species richness) of Agrilus species col-
lected per trap per sampling period in each of the ten different coun-
tries where the trial was carried out in 2022 (trial 2). (Z)-3-hexenol 
lure: UN = unbaited; BA = baited. Trap type: PT = green prism traps; 

MF = green multi-funnel traps. P-values: * = 0.05–0.01; ** = 0.01–
0.001; *** =  < 0.001. Bars are green for countries where a significant 
effect of either trap type, lure or their interaction was found and grey 
for countries where the effect of the latter variables were not signifi-
cant. Error bars indicate the 95% positive confidence interval. Note 
the nonlinearity of the y-axis (due to log-link function in the models)
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Fig. 3  Means from the generalized linear mixed models (Poisson or 
negative binomial distribution with a log link-function) testing the 
effect of trap type, (Z)-3-hexenol lure and their interaction on the 
mean number of individuals (i.e., abundance) of Agrilus species col-
lected per trap per sampling period in each of the ten different coun-
tries where the trial was carried out in 2022 (trial 2). (Z)-3-hexenol 
lure: UN = unbaited; BA = baited. Trap type: PT = green prism traps; 

MF = green multi-funnel traps. P-values: * = 0.05–0.01; ** = 0.01–
0.001; *** =  < 0.001. Bars are green for countries where a significant 
effect of either trap type, lure or their interaction was found and grey 
for countries where the effect of the latter variables were not signifi-
cant. Error bars indicate the 95% positive confidence interval. Note 
the nonlinearity of the y-axis (due to log-link function in the models)
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collected (Table 2). In countries where the effect of trap 
type was significant, A. angustulus, A. celti, A. convexicol-
lis, A. geminatus (Say), A. graminis Kiesenwetter, A. has-
tulifer, A. laticornis, A. lecontei Saunders, A. obscuricollis, 
A. olivicolor, A. putillus, A. sulcicollis, and A. viridis were 
caught significantly more in green prism traps than green 

multi-funnel traps, while the opposite trend was observed 
only for A. arcuatus and A. biguttatus (Table 2).

For species composition, most Agrilus species were col-
lected by all treatments irrespective whether singletons and 
doubletons were included or excluded (i.e., 21) (Fig. S2B). 
Only a few species were instead found to be exclusive to 

Table 2  Output of the generalized linear mixed models testing the 
effect of trap type and (Z)-3-hexenol lure (trial 2) on species richness, 
total abundance, and abundance of single Agrilus species. In case of 
significant effect, the most efficient trap model is shown in parenthe-
sis. PT = green prism traps; MF = green multi-funnel traps. P-values: 

ns = not significant (> 0.05); * = 0.05–0.01; ** = 0.01–0.001; *** = 
<  0.001. nt = species represented by less than 10 individuals which 
was not statistically analyzed.  The effects of (Z)-3-hexenol and the 
interaction between trap type and lure are not reported since they 
were never significant. – = species not collected in the country

Europe North America

Austria France Germany Italy Slovenia Sweden UK Canada USA (KY) USA (MA)

A. anxius – – – – – – – ns – –
A. arcuatus – – – – – – – nt ns ** (MF)
A. auricollis – – – – nt – – – – –
A. angustulus *** (PT) *** (PT) ns nt ns – – – – –
A. atricornis – – – – – – – – nt –
A. bilineatus – – – – – – – ns nt *** (MF)
A. biguttatus nt nt ns – nt – nt – – –
A. celti – – – – – – – – *** (PT) –
A. convexicollis nt – ns *** (PT) nt nt – – – –
A. crinicornis – – – – – – – ns nt –
A. croaticus – – – – nt – – – – –
A. curtulus – ns – – nt – – – – –
A. cyanescens – – – – nt – – – – –
A. defectus – – – – – – – – – nt
A. egeniformis – – – – – – – – nt –
A. egenus – – – – – – – – nt –
A. fallax – – – – – – – – nt –
A. ferrisi – – – – – – – – nt –
A. geminatus – – – – – – – – *** (PT) –
A. graminis *** (PT) *** (PT) – nt ns – – – – –
A. hastulifer *** (PT) *** (PT) – ns – – – – – –
A. laticornis *** (PT) *** (PT) ns *** (PT) * (PT) *** (PT) *** (PT) – – –
A. lecontei – – – – – – – – ** (PT) nt
A. litura *** (PT) – – nt nt – – – – –
A. masculinus – – – – – – – nt ns nt
A. obscuricollis *** (PT) *** (PT) nt nt ns – – – – –
A. obsoletoguttatus – – – – – – – ns nt nt
A. olivicolor *** (PT) *** (PT) ns *** (PT) ** (PT) – – – – –
A. otiosus – – – – – – – – ns –
A. pensus – – – – – – – nt – –
A. planipennis – – – – – – – – nt –
A. putillus – – – – – – – – * (PT) –
A. subrobustus – – – – – – – – nt –
A. sulcicollis *** (PT) *** (PT) ** (PT) nt * (PT) nt – – – –
A. suvorovi – – – – nt – – – – –
A. viridis nt *** (PT) nt nt – – – – – –



1804 Journal of Pest Science (2024) 97:1795–1810

certain treatments, and this value was even lower when sin-
gletons and doubletons were excluded (Fig. S2B).

Trial 3: Effect of decoys on Agrilus detection in green 
multi‑panel traps

The presence of adult Agrilus decoys on green multi-panel 
traps did not affect species richness and abundance of Agri-
lus species in any country (Table 3). At the species level, a 
significant effect of the Agrilus decoys was observed only 
on 3 of the 25 Agrilus species collected, i.e., A. hastulifer in 
France, A. sulcicollis in Poland, and A. bilineatus in Ohio 
(Table 3). Traps baited with decoys of A. laticornis collected 

fewer A. hastulifer than did unbaited traps. Similarly, traps 
baited with decoys of A. sulcicollis collected fewer A. sulci-
collis than did unbaited traps. Conversely, traps baited with 
A. bilineatus decoys collected more A. geminatus than did 
unbaited traps (Table 3).

For species composition, most Agrilus species were col-
lected by both unbaited and Agrilus decoy-baited multi-panel 
traps (i.e., 21), two exclusively by unbaited multi-panel traps 
and two exclusively by decoy-baited multi-panel traps (Fig. 
S2C). When singletons and doubletons were excluded, no 
species was found exclusively in unbaited multi-panel traps, 
one exclusively in decoy-baited multi-panel traps, and 21 in 
both trap types (Fig. S2C).

Table 3  Output of the generalized linear mixed models testing the 
effect of Agrilus decoy presence (trial 3) on species richness, total 
abundance, and abundance of single Agrilus species. The species 
used as decoy is indicated right under the country name. In case of 
significant effect, the most efficient trap model is shown in parenthe-

ses. Y = decoy presence; N = decoy absence. P-values: ns = not sig-
nificant (> 0.05); * = 0.05 – 0.01; ** = 0.01 – 0.001; *** = < 0.001. 
nt = species represented by less than 10 individuals which was not 
statistically analyzed. – = species not collected in the country

Europe North America

France
A. laticornis

Italy
A. olivicolor

Poland
A. biguttatus

UK
A. laticornis

Canada
A. crinicornis

USA (MA)
A. bilineatus

USA (OH)
A. bilineatus

Species richness ns ns ns ns ns ns ns
Total abundance ns ns ns ns ns ns ns
A. angustulus ns nt nt – – – –
A. arcuatus – – – – nt ns nt
A. betuleti nt – – – – – –
A. biguttatus nt – ns nt – – –
A. bilineatus – – – – ns nt nt
A. celti – – – – – – ns
A. convexicollis – ns nt – – – –
A. crinicornis – – – – ns – –
A. curtulus nt – – – – – –
A. defectus – – – – – – nt
A. geminatus – – – – – – * (Y)
A. graminis ns nt nt – – – –
A. hastulifer * (N) ns nt – – – –
A. laticornis ns nt ns ns – – –
A. lecontei – – – – – – nt
A. masculinus – – – – – – ns
A. obscuricollis ns nt nt – – – –
A. obsoletoguttatus – – – – nt – nt
A. olivicolor ns ns – – – – –
A. osburni – – – – nt – –
A. otiosus – – – – – – nt
A. planipennis – – – – – – nt
A. putillus – – – – – – ns
A. sulcicollis nt – ** (N) nt – – –
A. viridis nt nt – – – – –
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Discussion

More than 30 Agrilus species have been introduced outside 
their native range, including European species introduced 
into North American forests (e.g., A. sulcicollis) and North 
American species introduced into European forests (e.g., A. 
bilineatus) (Hızal and Arslangündoğdu 2018). For this rea-
son, the availability of efficient trapping protocols that can be 
integrated in surveillance programs is of utmost importance 
(Poland and Rassati 2019; Nahrung et al. 2023). Through 
extensive trapping trials in Europe and North America, we 
showed that trap types commonly used for early detection 
and monitoring of A. planipennis (i.e., green prism traps and 
multi-funnel traps) are reliable also for detection of other 
Agrilus species, even though depending on the scope of the 
surveillance programs one trap design might be more suit-
able than the other. In addition, our trials indicated that bait-
ing traps with (Z)-3-hexenol or adult beetle decoys does not 
seem to increase general trap efficacy.

Trap design significantly affected both species rich-
ness and abundance of Agrilus species in several of the 
countries where the trapping experiments were carried out. 
In particular, when a significant effect was found, green 
prism traps outperformed green multi-funnel traps in all 
cases but one. A very similar pattern was observed also 
at the species level. The efficacy of colored prism traps in 
attracting Agrilus species is well known (Francese et al. 
2008; Petrice et al. 2013; Poland et al. 2019), and this 
trap design has been used for monitoring the spread of the 
emerald ash borer in USA and Canada. Nonetheless, the 
higher efficacy of prism traps compared to multi-funnel 
traps that we found was rarely observed in previous stud-
ies (e.g., Francese et al. 2005), which often highlighted a 
similar efficacy of the two trap designs or even a higher 
efficacy of multi-funnel traps (Francese et al. 2011, 2016; 
Crook et al. 2014; Poland et al. 2019). We suggest three 
possible reasons why green prism traps generally per-
formed better than green multi-funnel traps in our study. 
First, previous Agrilus trapping studies have primarily 
focused on A. planipennis, while our study assessed the 
responses of other Agrilus species which may display dif-
ferent behaviors and preferences. Secondly, compared to 
multi-funnel traps, the glue-coated prism traps may have 
retained a greater proportion of beetles that alighted on the 
trap surface. Although Fluon-coating increases the capture 
rate of beetles in multi-funnel and intercept panel traps 
(Allison et al. 2011; Graham and Poland 2012), studies 
suggest that a proportion of beetles that contact the surface 
of multi-funnel traps do not fall into the collecting cup 
(Allison et al. 2014). Thirdly, adult Agrilus individuals 

landing on prism traps remain attached to the panel and 
could act as positive visual cues for other Agrilus species 
(Domingue et al. 2014, 2015) whereas this does not occur 
in multi-funnel traps.

Besides overall efficacy, other factors to consider when 
deciding to use prism traps or multi-funnel traps for Agrilus 
surveys include the need to reuse traps for multiple years, 
ease of deployment, and the overall goal of the trapping pro-
gram. Prism traps are discarded after one field season while 
multi-funnel traps can be reusable for many years if prop-
erly maintained (Francese et al. 2011). Additionally, at each 
trap check prism traps must be thoroughly examined in the 
field, which is time consuming particularly in bad weather, 
while multi-funnel traps are simply emptied by pouring the 
content of the collector cup in a plastic container (Francese 
et al. 2011). Prism traps may also be at a disadvantage in 
areas with high dust and pollen counts. This debris can coat 
the surface of the trap and render the glue inefficient. Glue-
coated surfaces in hot, sunny locations can also slough off 
of the trap surface taking samples with it (Francese et al 
2011). Furthermore, removal of beetles from prism traps 
and subsequent treatments to remove the glue from their 
body can damage them, negatively affecting morphological 
identification. Several studies showed that multi-funnel traps 
also efficiently catch longhorn beetles (Rassati et al. 2019), 
bark and ambrosia beetles (Marchioro et al. 2020; Thurston 
et al. 2022), and leaf-dwelling beetles (Sallé et al. 2020), 
while whether this is true also for sticky prism traps is still 
unclear (e.g., Skvarla and Holland 2011). Thus, despite our 
results suggest that for generic surveillance programs tar-
geting Agrilus species green prism traps might be preferred 
over green multi-funnel traps, the latter trap design might be 
preferred when targeting Agrilus species that do not show 
preferences for a specific trap design as found for more than 
half of the species caught in this study.

We also found that the addition of the green leaf volatile 
(Z)-3-hexenol did not affect species richness, total abun-
dance, or abundance of any Agrilus species in any of the 
countries where the trapping trials were carried out. This 
result is in contrast to the results of previous studies showing 
that (Z)-3-hexenol significantly increased trap catches of A. 
planipennis (De Groot et al. 2008; Grant et al. 2010, 2011; 
Silk et al. 2011), A. auroguttatus (Coleman et al. 2014), and 
A. sulcicollis (Domingue et al. 2014). However, lack of posi-
tive response to (Z)-3-hexenol has previously been observed 
for A. anxius (Silk et al. 2019), A. angustulus, A. graminis, 
A. laticornis, and A. obscuricollis (Domingue et al. 2013). 
Because so many of the same foliar and cortical volatile 
compounds are shared among different genera of trees, it fol-
lows that Agrilus species and other beetles that use olfactory 
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cues during host selection, likely respond most positively 
to particular blends and relative ratios of volatiles emitted 
from suitable hosts, more so than any individual compound. 
Indeed, van Wijk et al. (2011) suggested that the blend of 
compounds emitted from a suitable host is perceived as a 
distinct odor, different from its individual components.

Our field trials also indicated that the inclusion of adult 
beetle decoys on trap panels did not affect species richness 
and total abundance of most Agrilus species; however there 
did appear to be an effect for three individual species. Two 
species, A. laticornis and A. sulcicollis, were seemingly 
repelled by the presence of adult beetles of a different or 
the same species, respectively, while A. geminatus seemed 
to be attracted by the presence of adult beetles of A. bilinea-
tus. The general lack of an effect might be due to the small 
number of Agrilus individuals (i.e., three) that we glued on 
each trap panel. It is possible that any attractive effects of 
the decoys were obviated by stronger combined effects of the 
green color and the large size of the multi-panel traps, con-
trary to what was observed when smaller traps (i.e., branch-
traps) were used (Lelito et al. 2008; Domingue et al. 2014). 
The few significant repellent or attractive effects observed 
at the species level might be due to greater sensitivity of 
certain species to light scattering effects produced by adult 
beetles. In a previous study, only individuals of A. sulci-
collis were significantly more attracted to traps baited with 
decoys than unbaited traps, while no effect was observed 
for A. angustulus and A. laticornis (Domingue et al. 2013). 
In addition, different species might display different mat-
ing behavior (Lelito et al. 2011), leading to heterogeneous 
responses to decoy-baited traps.

Trapping programs are commonly carried out at entry 
points or other high-risk sites (e.g., Rassati et al. 2015a,b; 
Rabaglia et al. 2019; Mas et al. 2023), but their efficacy 
strongly depends on the availability of efficient trapping pro-
tocols for the target group of species. Our study highlighted 
that both green prism traps and green multi-funnel traps can 
be considered reliable trap models to monitor Agrilus spe-
cies, but also that the commonly used (Z)-3-hexenol is not 
universally attractive to all Agrilus species. Given that host 
volatiles and pheromones, especially when combined, can be 
used to increase trap attractiveness (Parker et al. 2020), more 
efforts should be done to discover new species-specific and 
generic lures to be used in surveillance programs for Agrilus 
species. A direct comparison of the three trap designs tested 
in this study would also be useful to understand whether 
green multi-panel traps can be eventually more efficient 
than green prism-traps and/or green multi-funnel traps. 
Despite the lack of an effect of adult beetle decoys glued 
on traps, future studies should further investigate whether 

it is possible to reproduce the light scattering effect on trap 
panels, for example using more adult beetles as decoys or 
exploiting technological advances to reproduce the micro-
structures present on beetle elytra on surfaces that can be 
then attached to trap panels. Traps of other colour wave-
lengths (and designs) should be also further evaluated (Imrei 
et al. 2020a). Finally, additional multi-country experiments 
involving more continents should be conducted. As shown 
in this and other studies (e.g., Roques et al. 2023), sharing 
information from trapping experiments conducted on dif-
ferent continents provides us with direct information on the 
efficacy of traps, lures, and other factors for detecting target 
species potentially at risk of introduction to our respective 
continents.
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