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Abstract The seasonal behavior of fluvial dissolved silica (DSi) concentrations, termed DSi regime,
mediates the timing of DSi delivery to downstream waters and thus governs river biogeochemical function and
aquatic community condition. Previous work identified five distinct DSi regimes across rivers spanning the
Northern Hemisphere, with many rivers exhibiting multiple DSi regimes over time. Several potential drivers of
DSi regime behavior have been identified at small scales, including climate, land cover, and lithology, and yet
the large‐scale spatiotemporal controls on DSi regimes have not been identified. We evaluate the role of
environmental variables on the behavior of DSi regimes in nearly 200 rivers across the Northern Hemisphere
using random forest models. Our models aim to elucidate the controls that give rise to (a) average DSi regime
behavior, (b) interannual variability in DSi regime behavior (i.e., Annual DSi regime), and (c) controls on DSi
regime shape (i.e., minimum and maximum DSi concentrations). Average DSi regime behavior across the
period of record was classified accurately 59% of the time, whereas Annual DSi regime behavior was classified
accurately 80% of the time. Climate and primary productivity variables were important in predicting Average
DSi regime behavior, whereas climate and hydrologic variables were important in predicting Annual DSi
regime behavior. Median nitrogen and phosphorus concentrations were important drivers of minimum and
maximum DSi concentrations, indicating that these macronutrients may be important for seasonal DSi
drawdown and rebound. Our findings demonstrate that fluctuations in climate, hydrology, and nutrient
availability of rivers shape the temporal availability of fluvial DSi.

Plain Language Summary The amount of dissolved silicon (DSi) in rivers is an important control on
numerous ecological and biogeochemical processes, such as types of algae that bloom and rates of carbon
sequestration. Compared to our knowledge of other nutrients, such as nitrogen and phosphorus, we have limited
understanding of what controls the timing and concentration of DSi in rivers. Previous work identified five
distinct seasonal patterns of DSi concentrations in rivers across the Northern Hemisphere; here we look at the
environmental variables that control these seasonal patterns.We found that rivers often have one to five seasonal
patterns over time due to interannual shifts in temperature, evapotranspiration, and streamflow. In addition, we
found that the average shape of the seasonal pattern for a given river, specifically minimum and maximum DSi
concentrations, was related to nitrogen (N) and phosphorus (P) concentrations, highlighting linkages between N,
P, and DSi cycling in rivers. This work identifies why river DSi concentrations exhibit both within and between
year variability, highlighting that temperature, streamflow, and nutrient availability control the timing of river
DSi availability for biological uptake.

RESEARCH ARTICLE
10.1029/2024JG008141

Key Points:
• Seasonal variations in annual riverine
dissolved silica concentrations (DSi
regime) were correctly classified 80%
of the time

• Climate and primary productivity
emerge as the most important drivers in
differentiating among average DSi
regimes

• Median nitrogen and phosphorus
concentrations strongly predicted
minimum and maximum DSi
concentration, regardless of regime
type
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1. Introduction
Hydrologic regimes, and to a lesser extent biogeochemical regimes, have been characterized across many
different environments (e.g., Berhanu et al., 2015; Pinay et al., 2007; Van Meter et al., 2020; Yang et al., 2002)
and have provided a valuable tool for evaluating how rivers respond to environmental change (Bard et al., 2015;
Schnorbus et al., 2014; Yu et al., 2018). Regimes provide a useful framework for describing the annual and
seasonal behavior of various watershed processes, such as discharge, dissolved oxygen, or productivity (Bern-
hardt et al., 2022; Post & Jones, 2001; dos Reis Oliveira et al., 2019) and are characterized by the timing,
magnitude, and rates of change in peaks and troughs. In this way, regime characterization provides a means for
comparing seasonal patterns among catchments and years, elucidating when shifts in systems may be taking place
due to changes in drivers, such as land use (Júnior et al., 2015; Thanapakpawin et al., 2007) and river flow
regulation (Magilligan & Nislow, 2005; Peñas & Barquín, 2019; Wang et al., 2017).

Seasonal regimes are integral to understanding how river ecosystems function and can influence numerous
biological processes as well as the overall condition, and development, and stability of aquatic communities (Van
Meter et al., 2020; Seybold, Burgin, et al., 2022; Seybold, Fork, et al., 2022). Seasonal regimes reflect the in-
tegrated signal of a stream's hydroclimatic conditions and watershed characteristics, including discharge, climate,
lithology, land use, and vegetation (Bernhardt et al., 2022; Bolotin et al., 2022). For example, the elemental
regimes of nutrients such as nitrogen (N) and phosphorus (P) are influenced by upland sources and moderated by
in‐stream biological uptake, transformation and removal pathways (e.g., Van Meter et al., 2020). As a key control
on aquatic primary production, nutrient availability directly influences energy availability for higher trophic
levels. Thus, seasonal fluctuations of nutrient concentrations can drive shifts in ecosystem structure and function,
influence the diversity and abundance of species, and control the overall condition and resilience of aquatic
ecosystems both in the rivers themselves and in downstream freshwater and coastal ecosystems (Loewen
et al., 2021; Van Meter et al., 2020; Williamson et al., 2021).

Silicon (Si) is an understudied nutrient in aquatic ecosystems, especially relative to N and P. Together these
nutrient (Si, N, and P) concentrations respond to both terrestrial and aquatic processes, thereby reflecting how
climate and land cover affect the terrestrial‐aquatic continuum (Bouwman et al., 2013; Conley, 2002; Cornelis
et al., 2011; Struyf et al., 2010). A variety of biogeochemical and hydrologic factors govern the concentration and
seasonal regime of dissolved Si (DSi) in rivers (Cornelis et al., 2010; Phillips, 2020), including: (a) lithogenic
mineral content (Meybeck, 1987; West et al., 2005; White & Blum, 1995), (b) chemical weathering rates
(Drever, 1994; Gaillardet et al., 1999), (c) regional erosion rates (Hilley & Porder, 2008), (d) hydrologic regime
(Carey et al., 2020; Godsey et al., 2009); and (e) terrestrial vegetation cycling (Carey & Fulweiler, 2012; Ful-
weiler & Nixon, 2005; Phillips, 2020). DSi has the potential to control phytoplankton and benthic algal species
composition, as diatoms (ubiquitous autotrophs in freshwater and marine systems) require DSi for growth and are
an important contributor to the base of many aquatic food webs. When streams are not DSi limited, diatoms can
outcompete other species assemblages (Sommer, 1988), and diatom blooms can drawdown stream DSi con-
centrations (Casey et al., 1981; House et al., 2001; Wall et al., 1998). However, DSi limitation, especially in
relation to N and P, can result in non‐siliceous species, including cyanobacteria, outcompeting diatoms (Conley
et al., 1993; Officer & Ryther, 1980; Teubner & Dokulil, 2002). DSi limitation of diatom growth has been widely
documented in aquatic systems, including freshwaters and northern marine ecosystems, particularly during the
summer and autumn (Giesbrecht & Varela, 2021; McNair et al., 2018; Schelske et al., 1986). As such, changes in
DSi availability, especially how DSi concentration varies seasonally, have direct impacts on phytoplankton
community and ecosystem structure and function.

Recent work by Johnson, Jankowski, Carey, Lyon, et al. (2024) showed substantial variability in seasonal dy-
namics of DSi across river systems. The authors identified five common DSi regimes across 201 streams in the
Northern Hemisphere, predominately from the US and Scandinavia, that span multiple climates (Johnson, Jan-
kowski, Carey, Lyon, et al., 2024; Figure 1). Many streams exhibited variability in DSi regime membership over
time, displaying different seasonal patterns across years. While these analyses demonstrated that there are more
diverse DSi regime patterns than previously recognized, the underlying drivers of the identified DSi regimes
remain unclear. The objective of this follow‐up study is to understand why different streams exhibit vastly
different seasonal patterns in DSi and why these patterns change over time.

To meet our objective and address these knowledge gaps, we leverage an existing database that includes DSi
concentrations and discharge from 201 rivers spanning the Northern Hemisphere Johnson, Jankowski, Carey,
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Sethna, et al. (2024) and the five distinct DSi regime behaviors identified by Johnson, Jankowski, Carey, Lyon, et
al. (2024). We also use newly acquired hydrologic, climatic, geologic, geomorphic, and biologic watershed
characteristic data from these same rivers to address three fundamental questions: (a) What factors are associated
with distinguishing Average DSi regime behavior across streams?, (b) What controls interannual variability in
DSi regime membership (e.g., Annual DSi regime behavior)?; and finally, (c) Within Average DSi regimes, what
processes control their overall shape? To address these questions, we apply a series of random forest machine
learning models to identify the most important environmental variables to differentiate among DSi regimes. We
hypothesized that average DSi regime behavior of a given river would be associated with metrics related to
average seasonality (e.g., average precipitation, net primary productivity (NPP)). In addition, we hypothesized
that interannual variability in DSi regime membership of a given river would be associated with changes in these
seasonal patterns, such as shifts in precipitation and temperature over time. Finally, we hypothesized that min-
imum and maximum concentrations would respond to different factors across DSi regimes. Overall, this work
aims to advance our ability to predict in‐stream DSi availability in light of changing climate and land cover
conditions and assess the potential implications for aquatic ecosystem structure and function.

2. Methods
2.1. Si Data Sets and DSi Seasonality Regimes

We used 189 of the 201 rivers published in the DSi data set (Johnson, Jankowski, et al., 2023) and in the regime
classification established by Johnson, Jankowski, Carey, Lyon, et al. (2024) (Figure 1a) for this analysis. This data
set includes monthly average DSi concentrations estimated from the Weighted Regression on Time, Discharge,
and Season (WRTDS) model (Hirsch et al., 2010; Johnson, Jankowski, Carey, Sethna, et al., 2024). Data were
sourced from published and/or publicly available data sets that: (a) ranged across eight climate zones, (b) occurred
between 18 deg N and 70 deg N, (c) varied in drainage area from <1 km2 to nearly 3 million km2, (d) had a mean
stream discharge from <0.01 m3/s to nearly 20,000 m3/s, (e) were perennial, and (f) had at least 5 years of DSi
measurements and continuous streamflow.

Prior work found that five distinct regimes best explained the variability in average DSi seasonal concentration
patterns in these rivers (Figure 1b; Johnson, Jankowski, Carey, Lyon, et al., 2024). The DSi regimes were
characterized by the timing of their minimum and maximum: (a) fall peak; (b) fall trough; (c) spring trough; (d)

Figure 1. (a) Distribution of sites colored by modal DSi regime behavior and (b) the shape of the DSi five regimes that emerged from Johnson, Jankowski, Carey, Lyon,
et al. (2024).
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spring trough‐fall peak; and (e) spring trough‐variable summer. Of the 189 rivers included in this study, the fall
trough regime contained the largest number of sites (62), whereas all other DSi regimes contained between 29 and
37 sites (Figure S1 in Supporting Information S1). Interestingly, all DSi regime types were observed across most
of the major Köeppen‐Geiger climate classification zones but some regimes, including the fall peak and fall
trough regimes, exhibited higher stability than other regimes (Johnson, Jankowski, Carey, Lyon, et al., 2024).

2.2. Driver Acquisition and Harmonization

To evaluate which variables were associated with DSi regime classification, we sourced watershed and climate
characteristics from globally available spatial data sets (Table 1, Table S1 in Supporting Information S1), hy-
drologic data from continuously monitored discharge (Table S2 in Supporting Information S1), and nutrient
drivers from discretely sampled stream nitrogen (N) and phosphorus (P) concentrations (Table S2 in Supporting
Information S1).

2.2.1. Spatial Data

We acquired globally available spatial data sets (Table 1) using the NASA Application for Extracting and
Exploring Analysis Ready Samples portal (AρρEEARS), which includes geospatial data from a variety of federal
data archives. We used data layers with global coverage in order to have consistent data sources across the extent
of our data set. We used watershed boundaries to extract spatial data from the gridded data sources, and acquired
watershed boundaries from existing data sources where possible (Table S3 in Supporting Information S1). When
watershed shape files were not available, we used the HydroBASINS database (Lehner & Grill, 2013) to generate

Table 1
Input Variables for Random Forest Model, Source, Scale, and Units

Parameter Data source Units
Spatial
resolution

Temporal resolution
used in models

Air Temperature Global Historical Climatology Network and Climate Anomaly Monitoring System
(GHCN_CAMS) Gridded 2 m Temperature (Land)

degrees
Celsius

0.5° Annual

Precipitation National Center for Environmental Information Global Precipitation Climatology
Project Monthly Precipitation Data Record

mm/day 2.5° Annual

Evapotranspiration MODIS/Terra Net Evapotranspiration 8‐Day L4 Global 500 m SIN Grid kg/m2 500 m Annual

Maximum Snow‐
Covered Area

MODIS Snow and Ice mapping project 8‐Day MOD10A2 proportion of
watershed

500 m Annual

Green‐Up Day MODIS/Terra + Aqua Land Cover Dynamics Yearly L3 Global 500 m SIN Grid date 500 m Annual

Net Primary
Productivity (NPP)

MODIS/Terra Net Primary Production Gap‐Filled Yearly L4 Global 500 m SIN Grid kgC/m2/year 500 m Annual

Land Cover USGS Earth Observation and Science Center Global Land Cover Characterization percent
watershed area

1 km Static

Lithology Global Lithological Map Database v1.0; PANGAEA percent
watershed area

0.5° Static

Maximum Daylength daylength function from R package chillR hours NA Static

Median N Chemistry Data mg/L NA Static

Median P Chemistry Data mg/L NA Static

Coefficient of Variation
in Q (CV(Q))

Discharge Data NA NA Static

5th percentile Q Discharge Data cms NA Annual

95th percentile Q Discharge Data cms NA Annual

Day of minimum Q Discharge Data day of year NA Annual

Day of maximum Q Discharge Data day of year NA Annual

Note. See Tables S4 and S5 in Supporting Information S1 for details on land use and lithology classification. Parameters labeled as “Annual” in the Temporal Resolution
Used in Models column were used in the Average, Annual, and Minimum/Maximum Si random forest models, whereas parameters labeled as “Static” were used only in
the “Average” and Minimum/Maximum Si random forest models. MODIS = Moderate Resolution Imaging Spectroradiometer; SIN = Sinusoidal tile grid.
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a watershed boundary. HydroBASINS provides a global coverage of nested sub‐basins at different scales. At its
highest level of sub‐basin breakdown, HydroBASINS divides a basin into two sub‐basins at every location where
two river branches meet given that each sub‐basin has an upstream area of at least 100 km2. To build watersheds
for sites in our data set, we identified the basin intersecting the sample coordinates at the finest level of
HydroBASINS delineation then iteratively included all upstream basins. Once all of these basin polygons were
identified, we fused them into a single shape and used that as the watershed boundary. HydroBASINS are quite
large relative to some of our streams (on average, the most granular delineation of basin results in polygons of
∼100 km2), but for this work HydroBASINS was not used to delineate any basins smaller than 2,000 km2.

Data were available at different temporal resolutions (Table 1), which we then summarized for use in either the
“Average regime” or “Annual regime” models (see methods below). Surface air temperature, precipitation, green‐
up day, and NPP were all available as annual mean values. We used the long‐term mean of all annual values for
the Average regime model and annual mean values for the Annual regime models. Evapotranspiration data were
available on an 8‐day time step, which we summarized to annual mean values. Snow‐covered area (percent of
watershed covered by snow) was also available at an 8‐day time step, from which we extracted the maximum
annual value for use in our models. Land cover and lithology and elevation data were all static (not time varying)
and were only used in the Average regime and DSi minimum and maximum concentration models. Land cover
data was sourced from the U.S. Geological Survey (USGS) Global Land Cover Classification product which
classifies land cover into urban, agricultural, rangeland, forest, open water, wetland, barren, tundra, and perennial
snow and ice and associated subclasses (e.g., forest cover includes deciduous, evergreen, and mixed classes)
following the land cover classification in (Anderson et al., 1976) (Table S4 in Supporting Information S1). Li-
thology data was sourced from PANGEA data set and lumped into volcanic, sedimentary, plutonic, metamorphic,
and carbonate/evaporite (Table S5 in Supporting Information S1).

Diatoms typically account for ∼80% of periphyton biomass and can have significant effects on stream DSi
concentrations (Casey et al., 1981; House et al., 2001; Wall et al., 1998). Processes such as stream velocity, and
nutrient and light availability exert strong controls on diatom production, particularly benthic algal (Francoeur &
Biggs, 2006; Hill & Dimick, 2002; Liess et al., 2009). Here we attempted to capture some of these factors through
median N and P concentrations, maximum discharge, and green‐up day but we were unable to include direct
measures of diatom uptake, stream velocity, or subannual differences in nutrient and light availability due to lack
of data availability.

2.2.2. Discharge Data

Daily discharge (Q) data were used to calculate annual discharge metrics to describe the timing and magnitude of
low and high discharge and variability in discharge (Table 1). Discharge records spanned the period of record of
DSi concentration. We used the annual coefficient of variation in discharge (CV(Q)) to describe the annual
variability in discharge and the annual 5th and 95th percentiles of Q (Q5 and Q95), day of year of annual
minimum Q, and day of year of annual maximum Q to describe the magnitude and timing of low and high
discharge. Minimum and maximum values were evaluated using visual assessment to ensure they were repre-
sentative of seasonal discharge conditions and not anomalously high or low values caused by instrumentation
error. These metrics were calculated for each year to generate annual values and averaged over all the years to get
a long‐term average value for each site. Discharge source data information is provided in Table S2 in Supporting
Information S1.

2.2.3. Nutrient Data

Median nitrogen (N) and phosphorus (P) concentrations were used as an index of the trophic state of each river
(Dodds & Smith, 2016; Paerl et al., 2016). We used data reported as nitrate (NO3) or nitrate and nitrite (NOx) for
N concentrations and data reported as phosphate (PO4) or soluble reactive phosphorus (SRP) for P concentrations.
All nutrient species represent inorganic dissolved forms available for biologic uptake. Median concentrations
were calculated from discrete observations spanning the period of record of DSi observations. Values were
adjusted to account for minimum detection limits and occurrences of spurious values (e.g., 0 or below) were
filtered out. The median of all values within a given species (e.g., NO3, NOx, SRP, PO4) was calculated for each
site. Due to differences in sampling strategies year to year, annual median values of N and P were not calculated,
and one median value of N and P across the period of record was used.
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2.3. Random Forest Analysis

We used a series of 12 random forest models to address our hypotheses. Specifically, we evaluated which factors
governed (a) membership in long‐term average seasonal DSi regimes (1 model, “Average model”), (b) inter-
annual DSi regime membership (1 model, “Annual model”), and (c) the shape of the DSi regimes by assessing
controls on the minimum and maximum DSi concentration within each Average DSi regime (10 models).
Random forest is a supervised machine learning technique that constructs many decision trees, and selects outputs
based on the modal decision from all trees (Breiman, 2001; Cutler et al., 2007; Regier et al., 2023). Each tree is
trained on a subset of the data, and uses a random selection of input variables, which leads to many uncorrelated
models and allows for classification without overfitting (Ishwaran et al., 2011). Random forest models have been
widely applied in hydrology and biogeochemistry because of their interpretability and flexibility (Yang & Oli-
vera, 2023; Bolotin et al., 2022; Konapala et al., 2020; Larras et al., 2017; Harrison et al., 2021).

Random forest classification models were used to predict Average and Annual DSi regime membership (e.g., fall
peak, fall trough, spring trough, spring trough‐fall peak, spring trough‐variable summer) and random forest
regression models were used to predict minimum and maximum DSi concentration within each regime. The
Average model and the minimum and maximum DSi concentration prediction random forest models were built
using all variables listed in Table 1, specifically temporally variable drivers including climate (maximum snow‐
covered area, precipitation, temperature), productivity (NPP, green‐up day, maximum daylength, N, and P),
hydrology (low flow, high flow, CV(Q), day of min flow, day of max flow) as well as static basin characteristics
including land cover and lithology. The Annual model was built using only temporally variable data (i.e., listed as
“Annual” in Table 1). Environmental variables come from different sources with different periods of record. To
ensure all variables would be included, the temporally variable model only includes data between 2002 and 2019,
which is the range of dates where data for all temporally variable drivers were available (Table 1). Only sites with
at least 10 years of overlapping driver and DSi data were used in the Annual model. Random forest models were
built in the randomforest package in R.

2.3.1. Variable Selection

Recursive feature elimination is a backwards selection algorithm that is widely used in random forest modeling to
select the optimal number of input features (or environmental variables in this study) that are most relevant to
predicting the output (Darst et al., 2018; Das et al., 2022). Recursive feature elimination builds a base model using
all features, ranks them by importance, and removes the feature with the least importance. The model is then
rebuilt excluding that feature. This process is repeated iteratively for each combination of features. Model per-
formance was evaluated at each interval using the root mean square error (RMSE), and the optimal combination
of features was selected based on the model with the lowest RMSE for each random forest model. Recursive
feature elimination was implemented using R package caret using five repeats of five‐fold cross validation, which
is a resampling procedure that reduces overfitting and improves performance of machine learning models built on
small sample sizes.

2.3.2. Random Forest Model Parameterization

Model performance was evaluated using out‐of‐bag error, which describes the proportion of time a given stream
was misclassified (e.g., wrong regime), for classification models, and mean squared error (MSE) for regression
models. Both out‐of‐bag error and MSE are minimized in tuning and optimization. Each model was tuned
independently to achieve the best classification accuracy or lowest MSE by adjusting the number of trees (ntree)
in the forest and the number of variables tried at each node in a given tree (mtry). Values of 100–2000 were tested
for the ntree parameter (similar to the ntree parameter optimization employed by Naghibi et al., 2017; Pham
et al., 2021). The tuneRF function from the R package randomforest was used to tune the mtry parameter. Each
base model was tuned before recursive feature elimination was employed, and then the model was re‐tuned after
recursive feature elimination. For classification models, the sampling size was set to sample equally across all five
DSi regimes despite unequal distribution of sites across DSi regimes.

2.3.3. Random Forest Model Variable Interpretation

The role of variables retained in each model was assessed using: (a) their importance in classifying DSi regime
membership or predicting minimum/maximum DSi concentration and (b) their marginal impact on predictor
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variables. Variable importance was evaluated using the mean decrease in accuracy (derived from out‐of‐bag
error) for classification models and the mean decrease in MSE for regression models. In both cases, permuta-
tions of the model are built where one variable is removed from the input variable set and the performance (either
classification accuracy or MSE) are evaluated without that variable included. Marginal impact of input variables
was evaluated using partial dependence plots for the top six most important variables for minimum and maximum
prediction models (Friedman, 2001; Greenwell, 2017). Partial dependence plots allow for evaluation of the
relationship between input and predictor variables. They account for the average effect of other predictors in the
model, and remove the effect of interactions with other features, thus removing the effect of collinearity between
input variables. The effect of a given variable is evaluated using a partial dependence function which marginalizes
the model output over the distribution of input variables, not including the variable of interest, so that the output
function (yhat) shows the relationship between the variable of interest and the predictor variable.

3. Results
3.1. Model Parameters

A total of 30 environmental variables were included in random forest modeling to represent climate, primary
productivity, discharge, lithology, and land cover characteristics at each site (Table 1). Correlations between all
variables were examined; the strongest (e.g., highest R2) correlations were observed between high flow and low
flow and among climate variables (Figure S2 in Supporting Information S1). Land cover and lithology variables
typically did not correlate strongly with all other drivers. Although multicollinearity generally does not impact the
predictive power of random forest models because each tree only uses a subset of input features, high correlation
between variables can skew the relative importance of included correlated drivers (Cammarota & Pinto, 2021;
Strobl et al., 2007). The relative impact of important variables was assessed using partial dependence plots, which
marginalize across all other variables and thus account for collinearity between variables.

3.2. Average DSi Regime Model Classification

The random forest model for predicting Average DSi regime behavior over the period of record (“Average”
model) retained all 30 of the input variables and accurately classified sites into their DSi seasonality regime 59%
of the time (out‐of‐bag error of 41%). Class error, which describes misclassification within a given DSi regime,
ranged from 24% in the fall peak regime (n = 37) to 69% in the spring trough regime (n = 29) (Figure 2), with
spring trough regimes (ST; STFP; STVS) predicted more poorly than the fall peak and fall trough regimes.

Climate and primary productivity variables emerged as most important in distinguishing among DSi regimes
(Figure 3). The most important variables were maximum proportion of snow‐covered area, maximum daylength,
green‐up day, and temperature. Additionally, some hydrologic variables including CV(Q), low flow discharge (q
(5)), and high flow discharge (q(95)) emerged as important.

The range of observed values for the six most important variables differed across DSi regimes (Figure 4). Dis-
tributions of important variable values were typically most different between fall peak and fall trough regimes,
with distributions of important variable values from regimes exhibiting a spring drawdown falling between the
two. Specifically, values for maximum snow‐covered area, temperature, and green‐up day in the fall peak regime
were the most different from other DSi regimes, indicating that sites within this regime were less snowy, warmer,
and exhibited an earlier green‐up day than the other DSi regimes. Values of variables in the fall trough regime
were more often closely aligned with values for the three types of spring‐trough regimes than the fall peak regime
(e.g., similar maximum snow‐covered area, green‐up day, temperature, and CV(Q)), but not always (e.g.,
maximum daylength). In particular, the fall trough and spring trough‐variable summer regimes showed similar
distributions of all variables; both had higher proportions of maximum snow‐covered area, longer maximum
daylengths, colder temperatures, and lower evapotranspiration than other DSi regimes. The spring trough and
spring trough‐fall peak regimes had similar distributions of driver variables, which often fell between the fall peak
and fall trough/spring trough‐variable summer regime distributions. Finally, the fall peak and spring trough‐fall
peak regimes showed higher CV(Q) compared to other DSi regimes.
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JOHNSON ET AL. 7 of 21

 21698961, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008141 by Sw
edish U

niversity O
f A

gricultural Sciences, W
iley O

nline L
ibrary on [03/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.3. Annual DSi Regime Model Classification

The random forest model for predicting Annual DSi regime behavior over the
period of record (“Annual” model) included 147 of the 189 sites included in
the Average regime model. The number of sites was reduced to match a
minimum of 10 years of DSi data between 2002 and 2019 (period where all
driver variables were available). Between 2002 and 2019, many sites
exhibited multiple DSi regime memberships (Figure 5). In general, the spring
trough regimes showed lower modal membership proportions compared to
the fall peak and fall trough regimes (Figure 5a). Additionally, the sites in the
spring trough regimes showed membership across more regimes compared to
sites in the fall peak and fall trough regimes (Figure 5b). Of the 147 sites
included, 79 sites were in the same DSi regime each year, 46 sites had
membership in two DSi regimes over their period of record, 17 sites had
membership in three DSi regimes, and 5 sites had membership in four DSi
regimes (Figure S3 in Supporting Information S1).

The Annual regime classification model performed better than the Average
regime classification model. Sites were accurately classified 80% of the time
(out‐of‐bag error = 20%), with a similar distribution of out‐of‐bag error to
Average regime classification behavior (Figure 6). Fall trough and fall peak
regimes showed lower out‐of‐bag error rates than the spring trough regimes.
The largest increases in prediction accuracy between the Average and Annual
models occurred for spring trough, spring trough‐fall peak, and spring trough‐
variable summer regimes, with prediction accuracy increasing by 123%, 50%,
and 78%, respectively (Figures 2 and 6) versus 13% and 19% for fall peak and
fall trough regimes, respectively.

All variables except day of minimum flow and day of maximum flow were
retained in the Annual regime model. A similar suite of variables emerged as
most important compared to the Average model, with temperature, evapo-
transpiration, q5, q95, maximum snow‐covered area, and precipitation in the

top six (Figure 7). We interpret variables that emerge as important within the Annual model to exhibit interannual
variability that drives interannual shifts in DSi regime membership (e.g., interannual variability in temperature
may drive interannual variability in DSi seasonality).

3.4. Prediction of Average DSi Regime Minimum and Maximum

To better understand the drivers of DSi cycling that create the shapes of the DSi regime classifications, we
predicted minimum and maximum DSi concentrations within each DSi regime using regime specific models (for
a total of 10 models–one predicting minimum and one predicting maximumDSi concentration for each of the five
DSi regimes). In general, models predicting minimum DSi concentration performed better (lower MSE) than
models predicting maximum DSi concentration (Table S6 in Supporting Information S1). The best performing
model was the minimum prediction model for the fall trough regime (MSE = 1.42). The worst performing model
was the maximum prediction model for the spring trough‐variable summer regime (MSE = 5.67).

Different variables and numbers of variables were retained for each model (Figure 8). The minimum DSi con-
centration prediction model for the fall peak, fall trough, and spring trough‐variable summer regimes and the
maximum DSi concentration prediction model for the fall peak and fall trough regimes retained the largest
number of variables. The minimum DSi concentration prediction model for the spring trough and spring trough‐
fall peak regimes and the maximum DSi concentration prediction model for the spring trough and spring trough‐
variable summer regimes retained the fewest variables. Median N and P concentrations showed the strongest and
most consistent importance across both the minimum and maximum prediction models. The average increase in
MSE if N and P were removed across minimum models was 0.44 and 0.20, respectively and the average increase
in MSE if N and P were removed across maximum models was 0.82 and 0.68, respectively. Additionally, in both
the minimum and maximum prediction models, CV(Q), precipitation, proportion of land that is evergreen/nee-
dleleaf forest, q(95) and q(5) emerged as most important (Figure 8).

Figure 2. Confusion matrix showing the classification accuracy of the
Average DSi regime model. Across a given row, each box indicates the
proportion of time the sites within a given regime were classified into other
regimes, with green boxes indicating the proportion of time sites were
correctly classified and pink boxes indicating the proportion of time sites
were inaccurately classified into each other regime. For example, in the fall
peak (FP) row (bottom row), sites were correctly classified 76% of the time,
and inaccurately classified into the spring trough (ST) regime 19% of the
time and into the spring trough‐fall peak (STFP) regime 5% of the time.
Rows sum to 1. Regimes are fall peak (FP), fall trough (FT), spring trough
(ST), spring trough‐fall peak (STFP), and spring trough‐variable summer
(STVS).
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Partial dependence plots were used to evaluate the relationship between input variables and minimum and
maximum DSi concentrations generated by the random forest regression models (Figure 9). We evaluated these
plots for variables that were consistently retained and important (as indicated in darker red, Figures 8a and 8b for
minimum and maximum, respectively) in predicting DSi minimum and maximum concentrations. Similar re-
lationships were observed for both the minimum andmaximumwith most variables. N and P had the strongest and
most consistent relationships with minimum DSi concentrations. In addition, both variables exhibited threshold
behavior, but in different ways; sometimes shifting from negative to positive (e.g., N concentration) or exhibiting
abrupt upward shifts (e.g., P concentration) at certain concentrations of N and P. Strong, positive relationships
between the maximum and minimum with CV(Q) were also observed in the fall trough and spring trough‐fall
peak regimes, with both DSi regimes exhibiting similarly threshold responses with step increases around a CV
(Q) value of 2.5. Additionally, the minimum and maximum DSi values for fall peak, spring trough‐fall peak, and
spring trough‐variable summer regimes increased with the proportion of evergreen needleleaf forest. Precipitation
was the only variable for which a negative partial dependence was observed, specifically in the spring trough‐fall
peak regime.

Figure 3. Variable importance, indicated by mean decrease in accuracy, for the Average regime classification model. Darker
red indicates higher importance of a given variable. The y‐axis shows variables retained in the model, ordered from most‐to‐
least important for the overall regime classification. The “overall model” column (far right) indicates the importance of each
variable in classifying regime membership across all five regimes, whereas the regime specific columns indicate variable
importance in classifying sites within a given regime: fall peak (FP), fall trough (FT), spring trough (ST), spring trough‐fall
peak (STFP), and spring trough‐variable summer (STVS). A mean decrease in accuracy of 0.05 in the overall model column
indicates that when a given variable was removed, the overall model performance declined by 5%. In contrast, when a
variable shows a high mean decrease of 0.10 for a given regime (e.g., green‐up day for fall peak), it indicates that removal of
that variable would increase the out‐of‐bag error for that regime by 10% (i.e., sites within that regime would be more
frequently misclassified).
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4. Discussion
Many stream ecosystems have strong and consistent seasonal patterns in their hydrological, chemical, and bio-
logical characteristics (Bard et al., 2015; Bernhardt et al., 2022; Bolotin et al., 2022; Crossman et al., 2016). We
found that this is mostly true for DSi concentrations, but also that there is substantial variation in the nature of
those seasonal signals. We also found variations in both the accuracy and the drivers of the Annual DSi model
compared to the Average DSi model. The Annual DSi regime model (80% prediction accuracy) showed tem-
perature, ET and flow were among the most important variables, while the Average model (59% prediction
accuracy) indicated climate and primary productivity variables (i.e., maximum snow‐covered area and maximum
daylength) were key in predicting DSi regimes. Finally, predictions of DSi minimum and maximum that control
the shape of DSi regime, were most sensitive to median nitrogen (N) and phosphorus (P) concentrations. This
suggests the availability of these nutrients in rivers plays a key role in driving the seasonal variation in stream DSi
concentrations. These findings indicate that accounting for spatial and temporal variability in the seasonality of
stream biogeochemical signals and understanding the drivers of that variability will be important in better un-
derstanding how stream DSi availability will respond to environmental change.

4.1. Climate Variables Were Most Important in Distinguishing Among DSi Regimes, With Fall Peak and
Fall Trough Regimes Predicted Most Accurately

In both the Average and Annual regime classification models, the fall peak and fall trough regimes were best
predicted compared to DSi regimes exhibiting spring trough behavior (e.g., spring trough; spring trough‐fall peak;
and spring trough‐variable summer). The fall peak and fall trough regimes also exhibited the highest stability over
time (Figure 5, Johnson, Jankowski, Carey, Lyon, et al., 2024) and showed the most differentiation in the var-
iables driving their behavior. In contrast, all three spring trough regimes were less stable and less well

Figure 4. Distribution of the six most important variables for distinguishing among DSi regimes in the Average regime prediction model. The DSi regimes include: fall
peak (FP), fall trough (FT), spring trough (ST), spring trough‐fall peak (STFP), and spring trough‐variable summer (STVS). Each panels (a–f) shows a different driver,
with each boxplot showing the distribution of that driver for a given DSi regime. Lower and upper lines of the boxplot box are quartile 1 and 3, respectively. The middle
line is the median. Vertical lines indicate minimum and maximum, if less than ±1.5*interquartile range (IQR). Points outside ±1.5*IQR are considered outliers and are
plotted above/below vertical lines. Colored dots show all values associated with the driver for each given DSi regime. The CV(Q) indicates the coefficient of variation
for river discharge.
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differentiated across driver variables (Figures 4 and 5). Lower stability in spring trough regimes may reflect
variability or shifts in winter and spring processes that drive DSi drawdown early in the calendar year. Draw-
downs in stream DSi concentrations have been linked to the timing of processes that are sensitive to climate
change and often exhibit a high degree of interannual variability, including dilution due to inputs of snow melt
(Pulliainen, 2024; Vorkauf et al., 2021; Zheng et al., 2022), onset of spring and growing season length (Menzel
et al., 2006; Monahan et al., 2016), and primary productivity, including DSi uptake by terrestrial plants and
diatoms (Carey & Fulweiler, 2013; Fulweiler & Nixon, 2005; Sommer & Lengfellner, 2008). Lower stability in
the spring trough regimes means that their average behavior is not consistently an accurate representation of their
seasonal dynamics, which may make it harder to predict the timing of DSi delivery to downstream ecosystems.

Climate and productivity variables, including maximum proportion of snow‐covered area, maximum daylength,
green‐up day, and temperature, emerged as most important in distinguishing among Average regime behavior.
This indicates that DSi seasonality regimes are more strongly controlled by climate and ecosystem productivity
than more static watershed characteristics such as lithology and land cover. Ecosystem productivity variables
retained in the model, including daylength and green up day, influence photosynthesis and nutrient acquisition
(including DSi) by terrestrial and aquatic primary producers thus DSi uptake on land and in the water. For
example, fall peak regimes had earlier green‐up timing than fall trough regimes, indicating that an earlier and
longer period of uptake of DSi by primary producers may have contributed to lower concentrations earlier in the
year in fall peak rivers. The relative difference in variable importance between static and dynamic (e.g., climate,
productivity, hydrology) variables in the Average regime model is consistent with other large synthesis efforts of
biogeochemical processes (Li et al., 2022; Phillips, 2020; White & Blum, 1995). This indicates that climate and
productivity variables are more influential than static or slowly changing watershed characteristics (i.e., lithology,

Figure 5. (a) Proportional membership of sites used in Annual regime analysis over the 18 years of record. Proportional membership was calculated as the number of
years spent in each DSi regime (regimes include fall peak (FP), fall trough (FT), spring trough (ST), spring trough‐fall peak (STFP), and spring trough‐variable summer
(STVS)) divided by the number of years in the period of record between 2002 and 2019. Darker blue indicates a higher proportion of time spent in a given regime, where
a value of 1 indicates 100% of the time the site was in the same regime. Sites are ordered on the y‐axis alphabetically within Average regime membership groupings.
(b) DSi regime membership of sites used in temporally variable regime analysis over the 18 years of record. Each column represents a year between 2002 and 2019 and
each row represents a site. Sites are ordered on the y‐axis alphabetically within Average regime membership groupings. The fill color of each grid cell (site‐year
combination) represents the DSi regime membership for that given site‐year combination. Where fill color is white, it indicates that data do not exist for that site for that
year.
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land cover) on seasonal DSi behavior. These static watershed characteristics
may also mediate the degree to which climate and productivity affect DSi
seasonality, but we did not evaluate these types of interactions in our model.

Compared to the Average regime model, different drivers emerged as
important in the Annual regime model, including low and high discharge,
while the importance of temperature and evapotranspiration became even
more pronounced. We interpret drivers that emerge as important in the
Annual regime model as not only capturing differences in environmental
variables among DSi regimes but also accounting for how the interannual
variability in those variables is related to shifts in DSi seasonal behavior over
time. This suggests that while average distributions of variables such as
maximum snow‐covered area, daylength, and green‐up day may differ among
DSi regimes, shifts in DSi regime membership across years are driven mostly
by differences in temperature, evapotranspiration, and discharge over time.
Given shifts in the seasonal patterns of temperature, evapotranspiration, and
hydrology due to climate change (Arnell et al., 2019; Bard et al., 2015; Li &
Thompson, 2021; Mastrotheodoros et al., 2020; Schnorbus et al., 2014; Yang
& Olivera, 2023; Yu et al., 2018), these results suggest that as warming
continues, patterns in seasonal DSi availability will shift concomitantly with
changes in hydroclimatic conditions.

4.2. Interannual Shifts in Annual DSi Regimes Suggest Changes in DSi
Transport and Uptake

When we allowed DSi regimes to vary over time, Annual DSi regime
membership classification accuracy increased by over 20% compared to
Average DSi regime membership classification (Figures 2 and 6). This in-
crease in predictive power indicates that there is substantial variability in
Annual DSi regime membership. Movement among DSi regimes over time
was not observed equally across DSi regimes (Figure S2 in Supporting In-
formation S1). Spring trough regimes exhibited lower proportional mem-

bership in their modal regime and more shifting among other DSi regimes relative to the fall peak and fall trough
regimes (Figure 5a). Additionally, the sites in the spring trough regimes showed membership across a broader
range of DSi regimes compared to sites in the fall peak and fall trough regimes (Figure 5b), consistent with
Johnson, Jankowski, Carey, Lyon, et al. (2024) who showed lower DSi regime membership stability in spring
trough regimes. We found that there were patterns in the nature of the observed shifts among DSi regimes
(Figure 5; Figure S3 in Supporting Information S1). For the fall peak regime, most sites shifted to the spring
trough‐fall peak regime over their period of record, while in the fall trough regime, most sites shifted to the spring
trough‐variable summer regime. However, the spring trough regimes showed much more variability in their
regime shifting behavior. Both the spring trough and spring trough‐fall peak regimes show shifts between all four
other DSi regimes, whereas the spring trough‐variable summer regime shows shifts between all DSi regimes
except the fall peak. Taken together, shifts among DSi regimes represent three dominant patterns: (a) increases in
fall DSi concentrations; (b) shifts and elongation of the timing of drawdown; and (c) dampening of the spring
trough.

Increases in fall DSi concentrations, as seen in the shifts from the spring trough regime to the fall peak and spring
trough‐fall peak regimes, may be interpreted as increased proportion of groundwater contributions in streamflow
as snowpacks decline (Huntington & Niswonger, 2012) or summer dry‐period base flows that persist longer into
the fall (Demaria et al., 2016; Jefferson et al., 2008). In streams that exhibit diluting DSi concentration‐discharge
behavior, proportional increases in groundwater contribution may lead to higher in‐stream DSi concentrations
during low flow. Increases in groundwater contributions to streamflow in low‐snow and low‐flow years are well
documented, and are expected to increase with climate‐induced declines in snowpack and extended drought
periods (Johnson, Harpold, et al., 2023; Segura et al., 2019).

Figure 6. Confusion matrix showing the classification accuracy of the
Annual regime model. Across a given row, each box indicates the proportion
of time the sites within a given DSi regime were classified into each other
DSi regime, with green boxes indicating the proportion of time sites were
correctly classified and pink boxes indicating the proportion of time sites
were inaccurately classified into each other DSi regime. For example, in the
fall peak (FP) regime (bottom row), sites were correctly classified 86% of the
time, and inaccurately classified into the fall trough (FT) regime 1% of the
time, into the spring trough (ST) regime 4% of the time and into the spring
trough‐fall peak (STFP) regime 10% of the time. Rows sum to 1. Regimes
are fall peak (FP), fall trough (FT), spring trough (ST), spring trough‐fall
peak (STFP), and spring trough‐variable summer (STVS).
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Shifts in DSi drawdown timing, as well as elongation of DSi drawdown, may also be indicative of warming. This
hypothesis is evidenced by shifts from the fall trough regime to spring trough‐variable summer regime and the
spring trough regime to spring trough‐variable summer regime. Shifts in the timing of drawdown earlier in the
year may indicate earlier snow and ice melt in high latitude and elevation sites leading to an earlier dilution signal
in the stream (Carey et al., 2020; Vorkauf et al., 2021; Zheng et al., 2022). Additionally, warmer spring and
summer temperatures may drive earlier uptake by aquatic primary producers (Monahan et al., 2016; Sommer &
Lengfellner, 2008) and terrestrial vegetation (Carey & Fulweiler, 2013; Fulweiler & Nixon, 2005). Similarly,
warmer, and longer, growing seasons may lead to an increase in biological productivity on land and in‐stream and
later autumn senescence, resulting in longer periods of DSi drawdown (Kienel et al., 2017; Michelutti et al., 2003;
Wasmund et al., 2019).

Lastly, we observed a dampening of the spring trough at some sites, evidenced by shifts from the spring trough‐
fall peak regime to the fall peak regime and the spring trough to the fall peak regime. These shifts may be
explained by two processes: (a) a reduction in the density of diatom communities present and/or shifting
species assemblage from siliceous (e.g., diatom) toward non‐siliceous species leading to less DSi uptake
(Gobler et al., 2017; Schlüter et al., 2012; Visser et al., 2016); or (b) increased mobilization of biogenic DSi stored
in the shallow subsurface (Mills et al., 2017; Scanlon et al., 2001), associated with shifts in infiltration and

Figure 7. Variable importance, indicated by mean decrease in accuracy, for the Annual regime classification model. The y‐
axis shows variables retained in the model, ordered from most‐to‐least important for the overall regime classification.
Individual regimes include: fall peak (FP), fall trough (FT), spring trough (ST), spring trough‐fall peak (STFP), and spring
trough‐variable summer (STVS). The “overall model” column (far right) indicates the importance of each variable in
classifying regime membership across all five DSi regimes, whereas the columns labeled with regime acronyms (e.g., FP)
indicate variable importance in classifying sites within a given DSi regime. For example, a mean decrease in accuracy (dark
red) of 0.2 in the overall model column indicates that when a given variable was removed, the overall model performance
declined by 20%. In contrast, when a variable shows a high mean decrease of 0.15 for a given regime (e.g., Maximum Snow‐
Covered Area for fall peak), it indicates that if that variable were to be removed the out‐of‐bag error for that regime would
increase by 15% (e.g., sites in that regime would be more frequently misclassified).
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flowpath activation driven by changes in precipitation phase and snowmelt rate and timing (Konapala et al., 2020;
Musselman et al., 2017).

Observed shifts among DSi regimes align well with expected warming‐induced changes in stream DSi con-
centrations. Climate‐induced shifting of DSi regime is further supported by the fact that temperature and hy-
drology variables emerged as most important in the Annual regime membership model, both of which are rapidly
changing associated with climate change (IPCC, 2023; Koutsoyiannis, 2020; Wu et al., 2022). Temperature and
hydrology exert strong controls on the mobilization and export of DSi and on the density, composition, and
productivity of algal communities (Bernhardt et al., 2022; Bondar‐Kunze et al., 2021; Carey et al., 2020;
Schneider, 2015; Struyf & Conley, 2012), and thus can be expected to alter DSi regime. However, it is not well
understood whether shifts in DSi regime are associate with gradual changes in climate or extreme events (e.g.,
droughts or floods), but elucidating these driving mechanisms can help to characterize the resilience of eco-
systems to ongoing change.

4.3. N and P Are Dominant Controls on DSi Minimum and Maximum Behavior Across DSi Regime
Membership

We found evidence of strong relationships between N, P, and DSi concentrations across the rivers included in this
study. This is likely because these elements often function together to support primary production in both aquatic
and terrestrial environments (Abbott et al., 2018; Carey & Fulweiler, 2012; Dodds & Smith, 2016; Hill
et al., 2012; LeBauer & Treseder, 2008). Median N and P concentrations were retained in both minimum and

Figure 8. Variable importance, indicated by mean decrease in accuracy, for the (a) minimum DSi concentration prediction model and (b) maximum DSi concentration
prediction model. The y‐axis shows variables retained in the model (same variables on both panels a, b). Each column of the x‐axis indicates the variables retained in the
model (colored box present) for the distinct DSi regimes: fall peak (FP), fall trough (FT), spring trough (ST), spring trough‐fall peak (STFP), and spring trough‐variable
summer (STVS). The absence of a colored box indicates that the variable was not retained in the model (e.g., in panel (b) within the ST (middle) column, N
concentration and P concentration were the only variables retained). The color of the box indicates the importance of each variable in prediction of DSi minimum or
maximum concentration given by the increase in mean squared error (MSE). A high importance indicates if that variable was removed, the MSE of the model would
increase. If variables were retained but had an increase in MSE value less than 0.05, they are filled gray. Note that color scales in panels (a, b) are different.
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maximum DSi prediction models across most DSi regimes, with the exception of the spring trough‐fall peak
regime that only retained N in both models and the spring trough‐variable summer regime that did not retain
N or P in the maximum Si prediction model (Figure 8). Median N and P concentrations were the most important in
predicting spring trough regime DSi minimum and maximum concentrations compared to other models
(Figure 8). Across all regimes, the relationships between both minimum andmaximumDSi concentrations with N
and P were positive overall, although non‐linearity and threshold behavior was observed in these relationships. At
low concentrations of N and P, DSi concentrations often experienced a brief drawdown as N and P concentrations
initially rose (Figure 9), indicating the importance of biological production in controlling DSi dynamics as the
limiting nutrients N and P initially increase from very low levels. These relationships indicate that, above a certain
concentration of N or P, DSi was independent of their concentration, suggesting that algal species assemblages
may have shifted away from diatoms to other species. However, more eutrophic rivers generally exhibited higher
DSi concentrations across DSi regimes, therefore small changes in DSi may be less notable relative to these
higher concentrations.

Stream ecosystems can experience limitation of N and P from both instream and terrestrial processes. We interpret
the emergence of median N and P concentrations as important in our models as indication that N and/or P
availability controls seasonal variation in DSi concentrations. Specifically, high importance of P concentrations
may be indicative of DSi uptake by instream processes, and high importance of N concentrations may be
indicative of DSi uptake by terrestrial processes (Dodds & Smith, 2016; LeBauer & Treseder, 2008), although
both terrestrial and aquatic systems can experience co‐limitation by N and P (Elser et al., 2007; Harpole
et al., 2011). For example, the high importance of P availability in the spring trough DSi minimum concentration

Figure 9. Partial dependence plots showing the relationship of the six most important variables for minimum (solid lines) and maximum (dashed lines) DSi concentration
across the five DSi regimes (colored lines). Lines are only present in a given panel when that variable was retained in the model (see Figure 8). The x‐axis (response)
shows the actual values of each variable and the y‐axis (yhat) shows the marginal impact of the variable on DSi minimum or maximum concentration. Marginal impact
means that the effect of all other variables have been reduced such that yhat shows the response of DSi minimum/maximum concentration to a given variable
independent of other variables included in the model. For example, the impact of N concentration on DSi minimum concentration in the spring trough regime (blue solid
line) is initially negative (i.e., an increase in median N concentration is associated with a decrease in DSi concentration) before becoming positive (i.e., an increase in N
concentration is associated with an increase in DSi concentration) over the rest of the response range. The difference in the extent of the lines within a given panel is due
to differences in the range in the response variable between DSi regimes (e.g., median N concentration in the fall trough regime ranges from 0 to just over 200 while
median N concentration in the spring trough‐fall peak regime ranges from 0 to nearly 800 μM).
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model suggests for in‐stream diatom production is driving springtime DSi drawdown (Admiraal et al., 1990;
Garnier et al., 1995; Wall et al., 1998). However, we do not see a strong linkage between P and DSi minimum
concentrations in other regimes that exhibit a spring drawdown (e.g., spring trough‐fall peak, spring trough‐
variable summer). There are several potential reasons for the lower importance of P concentration relative to
N concentration on DSi minimums in other DSi regimes: (a) diatom uptake may be masked by other processes
that control DSi minimum, such as high flows that flush DSi from the hyporheic zone or shifts in light availability
(Hester et al., 2017; Hill et al., 2009); (b) the relationships between DSi with P concentrations may provide only
limited insight into diatom uptake when P concentrations are very low (Trentman et al., 2021); or (c) processes
other than in‐stream diatom production may control in‐stream DSi minimum concentrations.

The importance of terrestrial biological processing in controlling in‐stream DSi dynamics is an outstanding
research question. In our work, N concentrations emerge as more important in predicting DSi concentrations
relative to P concentrations in the fall peak and the spring trough‐fall peak regimes, which supports the hypothesis
that terrestrial vegetation DSi uptake exerts influence on seasonal DSi dynamics in rivers (Carey & Fulweiler,
2013; Conley et al., 2008; Cornelis et al., 2010; Fulweiler & Nixon, 2005; Phillips, 2020). This hypothesis is
further supported by the high importance of maximum daylength and green‐up day as drivers in the Average
regime model.

It is important to underscore the limitations in our modeling approach and the explanatory features included in the
model. In our models, we use only median N and P concentrations across a given sites' period of record; given the
dynamic nature of N and P in aquatic systems, future work would benefit from incorporating temporal dynamics
when evaluating DSi behavior relative to N and P. In addition, there are several reasonable proxies for instream
diatom uptake of N, P, and DSi such as seasonal channel width to flow ratios (proxy for light availability), leaf on
and off timing, riparian area to stream width (proxy for hyporheic zone interaction), and stream velocity (i.e.,
scouring), which could be included in future work on DSi behavior (Francoeur & Biggs, 2006; Hill &
Dimick, 2002; Julian et al., 2008).

4.4. Hydrologic and Land Cover Controls on Seasonal DSi Regimes

Changes in land cover and the hydrologic cycle are occurring at rapid rates across the globe (Koutsoyiannis, 2020;
Song et al., 2018; Winkler et al., 2021; Wu et al., 2022). The emergence of land use and hydrologic variables
across most minimum and maximumDSi models indicate that instream DSi cycling is sensitive to hydrologic and
land use change. Specifically, CV(Q) emerged as important in predicting the minimum of the spring trough‐fall
peak regime and q(5) emerged as important in the predicting the minimum of the fall peak regime, suggesting that
streamflow exerts stronger controls on DSi minimum concentrations than N and P in systems where biologic
uptake is limited (Abbott et al., 2018; Moatar et al., 2017). Additionally, some land cover variables emerged as
important, including evergreen needleleaf forest in the spring trough‐fall peak regime and mixed forest in the
spring trough‐variable summer regime. Furthermore, cropland was retained in all models except the spring trough
models. Both cropland and evergreen needleleaf forest show positive associations (i.e., increasing proportion of a
given land cover leads to higher DSi concentrations) with both DSi minimum and maximum concentrations. This
finding supports prior work demonstrating that land cover is one of the most important factors in DSi mobilization
in temperate systems due to uptake of large quantities of Si by terrestrial vegetation, thus altering rates of
mobilization and dissolution of Si from terrestrial to aquatic systems (Carey & Fulweiler, 2012; Chen et al., 2014;
Conley et al., 2008; Struyf et al., 2010). The strong importance of green‐up day as a driver of the Average regime
model supplies further evidence that terrestrial vegetation uptake has a strong influence on stream DSi avail-
ability, almost regardless of the specific type of land cover. Given widespread changes in hydrology and land
cover, we may expect to observe continued shifts in the minimum and maximum concentrations of fluvial DSi.

5. Conclusion
Understanding the processes that control variable seasonal regimes of DSi can help to predict how DSi avail-
ability will change with anthropogenic perturbations and increased occurrences of extreme events (Ingram, 2016;
Satoh et al., 2022; Tabari, 2020). In this paper, we build upon prior work that identified five distinct seasonal
patterns across 200 rivers in the Northern Hemisphere, and find that Average regime membership was controlled
by climate and productivity variables, whereas minimum and maximum DSi concentrations were correlated with
median N and P concentrations. Additionally, accounting for interannual variability in DSi regime membership
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improved model classification by over 20%, with temperature, evapotranspiration, and discharge indicated as
driving shifts in Annual DSi regime membership. These findings emphasize the importance in accounting for
interannual variability in the timing and magnitude of nutrient export to downstream ecosystems, especially in
systems that are, and continue to be, impacted by climate change.

DSi availability in streams directly supports algal communities that contribute to carbon sequestration and
provide a high‐quality food source for higher trophic levels (Brett et al., 2000; Street‐Perrott & Barker, 2008;
Wang et al., 2016). Shifts in the timing of DSi availability across the seasonal cycle likely impact the timing of
DSi delivery to downstream ecosystems, including marine environments. This may result in shifts in algal
community composition if the delivery of DSi availability is decoupled from N and P dynamics. Future work
could quantify how stream DSi dynamics are shifting over time, how DSi regimes are shifting relative to other
nutrient regimes, and evaluate of the implications of these shifts for downstream DSi load delivery. Additionally,
future work would benefit from expanding study sites to include more representation from tropical systems,
which transport nearly 75% of DSi from rivers to oceans (Tréguer et al., 1995, 2021).

Data Availability Statement
Discharge and DSi data are published in Johnson, Jankowski, et al. (2023). Watershed characteristics and nutrient
data are published in Johnson, Jankowski, Carey, Sethna, et al. (2024). Scripts for random forest modeling are
published in Johnson (2024). Scripts for spatial data extraction are published in Lyon et al. (2024).
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