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A B S T R A C T

To prevent foodborne illness, adequate cleaning and disinfection (C&D) is essential to remove pathogenic bac-
teria from the slaughter environment. The aim of this study was to determine the presence of Campylobacter spp.,
Listeria monocytogenes, and extended-spectrum beta-lactamase-producing Escherichia coli (ESBL E. coli) before and
after C&D in slaughterhouses.

Samples from food- and non-food contact surfaces taken before and after C&D in one red meat and one poultry
slaughterhouse were analyzed for the target bacteria. Whole-genome sequencing and antimicrobial susceptibility
testing were performed.

In total, 484 samples were analyzed. Campylobacter spp. were isolated from 13.0% to 15.5% of samples before
C&D in the red meat and poultry slaughterhouse, respectively. Listeria monocytogenes was isolated before C&D in
12.5% and 5.2% of samples in the red meat and poultry slaughterhouse, respectively. It was noted that C. jejuni
was detected on multiple surfaces and that L. monocytogenes showed potential persistence in one slaughterhouse.
After C&D, L. monocytogenes was found in one sample. ESBL E. coli was not detected either before or after C&D.

These findings show the possibility to remove pathogenic bacteria from slaughter and meat processing fa-
cilities, but also indicate that deficiencies in slaughter hygiene pose a risk of cross-contamination of meat.

1. Introduction

The slaughter environment is continuously contaminated with tis-
sues, fecal matter, blood, and other body fluids from animals during the
slaughter process. Proper cleaning and disinfection (C&D) after
slaughter is therefore crucial to prevent cross-contamination and spread
of pathogenic bacteria. Failures in the C&D procedure can result in
foodborne outbreaks, e.g., a large outbreak with five-fold higher annual
reported cases of campylobacteriosis in Sweden in 2016–2017 was
found to be caused by inadequate cleaning of chicken transport crates
(Lofstedt, 2019). In the European Union (EU), campylobacteriosis has
been the most commonly reported bacterial zoonosis in humans since
2005, in many cases associated with consumption of broiler meat
(EFSA-ECDC, 2022). To control Campylobacter levels on broiler

carcasses, a process hygiene criterion was introduced into EU legislation
in 2018. It requires poultry slaughterhouses to make improvements in
slaughter hygiene and to review process controls if a microbiological
threshold of>3.0 log CFU Campylobacter per gram neck skin is exceeded
(EC, 2005). To ensure compliance with this criterion, poultry slaugh-
terhouses may also decide to sample surfaces, especially since
Campylobacter has been shown to resist C&D procedures and persist on
food contact surfaces (FCS) (i.e., defeathering machines, shackles,
conveyor belts) and non-food contact surfaces (NFCS) (i.e., sinks, floors)
for days to weeks, and cross-contaminate carcasses on the next slaughter
day (García-Sánchez et al., 2017; Peyrat et al., 2008).

Food businesses manufacturing ready-to-eat (RTE) foods in which
Listeria monocytogenes may pose a risk must sample equipment and the
processing environment, and conduct analyses for this bacterium (EG,
2005). Food businesses producing raw meat, such as slaughterhouses,
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may also decide to sample the environment for analysis of
L. monocytogenes, since listeriosis has a high fatality rate among
vulnerable consumers (EFSA Panel on Biological Hazards, 2018). Listeria
monocytogenes is known to resist C&D procedures due to its
biofilm-producing abilities (Møretrø et al., 2012; Stoller et al., 2019). In
meat processing plants, L. monocytogenes has been shown to persist in
the environment despite C&D procedures (Demaître et al., 2021; Gómez
et al., 2015; Martín et al., 2014; Muhterem-Uyar et al., 2015). It is also
well known that L. monocytogenes can cross-contaminate food and cause
outbreaks due to inadequately cleaned and disinfected surfaces (Martín
et al., 2014; Okpo et al., 2015; Stephan et al., 2015). There is an
increasing trend in the number of confirmed human cases of listeriosis in
Sweden (Public Health Agency of Sweden, 2018).

Another important food-borne bacterium that has been detected on
pig, sheep, bovine, and chicken carcasses in several European countries
is extended-spectrum beta-lactamase-producing Escherichia coli (ESBL
E. coli) (Bardoň et al., 2013; Biasino et al., 2018; Pacholewicz et al.,
2015; Tsitsos et al., 2022). One study found that ESBL E. coli was more
abundant in the environment of a sheep slaughterhouse than on the
actual carcasses (Atlaw et al., 2022). Other studies observed
cross-contamination with E. coli caused by inadequately cleaned
carcass-breaking equipment in a beef processing plant (Gill and
McGinnis, 2000) and cross-contamination with ESBL E. coli during
scalding and defeathering in a poultry slaughterhouse (Projahn et al.,
2019). Other ESBL-producing bacteria have been detected in the in-
testines of humans and animals and constitute a global public health
challenge due to the risk of increased spread of antimicrobial resistance
(AMR) leading to more difficult-to-treat infections (Palmeira and Fer-
reira, 2020; Ninios et al., 2014; Ramatla et al., 2023).

To ensure compliance with the microbiological criteria set for food
pathogens (i.e., L. monocytogenes and Campylobacter spp.) and hygiene
indicator bacteria (i.e., total aerobic bacteria, Enterobacterales, E. coli )
on carcasses, samples should also be taken from processing areas and
equipment, by using the ISO standard 18593 as a reference. The ISO
standard 18593:2018 describes surface sampling methods for both FCS
and NFCS (i.e., trolleys, slicers, cutting boards, conveyor belts, drains
and floors) (EG, 2005; Swedish Standards Institute, 2018). Sampling
must be risk-based, meaning that sampling plans differ greatly between
slaughterhouses. However, few previous investigations have evaluated
the efficacy of C&D procedures in controlling the occurrence of different
pathogenic bacteria in slaughterhouse environment.

The aim of this study was to determine the presence of Campylobacter
spp., L. monocytogenes, and ESBL E. coli on surfaces before and after C&D
in slaughter areas and adjacent meat processing facilities in two Swedish
slaughterhouses (red meat and poultry) and to study the AMR and ge-
netic similarity of the detected bacterial isolates. Another aim was to
compare strains isolated from the present study with those detected in
other studies.

2. Materials and methods

2.1. Study design

The two Swedish slaughterhouses included in the study were a
small/medium-scale red meat slaughterhouse, slaughtering approxi-
mately 100–120 swine and 25 cattle per day, and a large-scale poultry
slaughterhouse, slaughtering approximately 220,000 broilers per day,
both with adjacent areas processing raw meat (including cutting, meat

preparation, and packaging facilities). Both slaughterhouses used a
rotation of alkaline chemicals (i.e., sodium hypochlorite, sodium hy-
droxide and potassium hydroxide) and acidic chemicals (i.e. phosphoric
acid and acetic acid) for C&D, and a low-pressure water pump
(approximate pressure 28–35 bar) for application of these. Each
slaughterhouse was visited on six occasions, with sampling of slaughter
and raw meat processing areas performed before and after C&D on each
occasion (Table 1). No sampling was carried out during colder months
(December–March), as Campylobacter prevalence can be expected to be
low during this period (Hansson et al., 2007). Both FCS and NFCS,
including scald water, were sampled (Table 2). This investigation
formed part of a larger study reported in a previous publication, which
provides detailed descriptions of selection of sampling points
(Moazzami et al., 2023).

2.2. Sampling procedure

Swabbing for Campylobacter spp. was performed using three sterile
wiping cloths pre-moistened with 30 mL Cary-Blair transport medium
(National Veterinary Institute, Uppsala, Sweden). After sampling, an
additional 30 mL Cary-Blair medium were added to each sample before
transportation to the laboratory. Commercial pre-hydrated sponges
(Hydra-Sponge 1.5 × 3 inches Sponge w/10 mL Letheen broth, 3M
Health Care, St. Paul, USA) were used for swabbing for L. monocytogenes
and ESBL E. coli. For practical reasons, cutting blades (sampling points 6,
12, 19), salt injector needles (sampling point 20) and “Other” sampling
points (saw, display, cutting board) were sampled using commercial pre-
hydrated swabs (Swab-sampler with 10 mL D/E Neutralizing broth, 3M
Health Care, St. Paul, USA). Sampling was performed aseptically by
using new gloves for each sampling point, avoiding contact with the
sampler and immediately placing it in the commercial bag/container
after sampling. On flat surfaces, when possible, sterilized stainless steel
frames, stored in sterilized bags until just before use, were employed to
delineate the exact sampling area. Swabbing was performed using firm
and even pressure, with overlapping horizontal and vertical strokes.
Approximately 45 mL of scald water were collected in a sterile plastic
bottle from the upper part of the scald water tank, before C&D (directly
after slaughter finished) and after C&D (immediately before the next
slaughter shift started) and analyzed for L. monocytogenes, ESBL E. coli,
and Campylobacter spp. The same individuals performed all samplings
during the study. After each sampling, the samples were transported in
an insulated box with refrigerant gel packs to the Animal Biosciences
laboratory at the

Swedish University of Agricultural Sciences, Uppsala, Sweden. The
temperature was checked upon arrival. Only samples with temperature
2–8 ◦C were accepted for analysis, which began within 12 h after
sampling.

Abbreviations

C&D Cleaning and disinfection
ST Sequence type

Table 1
Time of sampling at the two Swedish slaughterhouses investigated in this study
and number of samples taken before and after cleaning and disinfection (C&D)
on each sampling occasion.

Occasion Slaughterhouse Month Year No. of samples

Before C&D After C&D

1 Red meat Oct 2020 20 20
2 Poultry Oct 2020 20 20
3 Poultry Nov 2020 20 20
4 Red meat Nov 2020 22 22
5 Poultry Apr 2021 18 18
6 Red meat May 2021 22 22
7 Poultry May 2021 20 20
8 Red meat May 2021 22 22
9 Poultry June 2021 20 20
10 Red meat June 2021 20 20
11 Red meat Aug 2021 20 20
12 Poultry Oct 2021 18 18
Total 242 242
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2.3. Detection of Campylobacter spp.

The soaked wiping cloth samples (section 2.2) were used for detec-
tion of Campylobacter spp., which was performed according to ISO
10272-2 (2017) with slight modifications. Upon arrival at the labora-
tory, 90 mL Bolton Broth (Oxoid CM0983, Oxoid, Basingstoke, UK) with
supplement (Oxoid SR0183E) and 5% Horse Blood Lysed (Håtunalab,
Bro, Sweden) were added to the wiping cloths, and blended in manually
from outside the bags. A 10 mL subsample of scald water was added to
90 mL Bolton broth. The samples were pre-incubated at 37± 1 ◦C for 4 h
in microaerobic atmosphere using CampyGen™ (Oxoid PO5091A,
Oxoid) in anaerobic jars, and then the jars were incubated at 41.5± 1 ◦C
for 44 ± 4 h. After enrichment, approximately 20 μL from each sample
were streaked on a plate of modified charcoal cephoperazone desoxy-
cholate agar (mCCDA) (Oxoid CM0739, Oxoid) and incubated at 41.5 ±

1 ◦C for 48 ± 4 h (Fig. 1). Characteristic Campylobacter colonies were re-
cultured on blood agar plates (National Veterinary Institute, Uppsala,
Sweden) and incubated at 41.5 ± 1 ◦C in microaerobic atmosphere for
48 ± 4 h, and were then identified to species level using matrix-assisted
laser desorption/ionization-time of flight mass spectrometry (MALDI-
TOF) (Bruker Daltonics, Billerica, Massachusetts, USA).

2.4. Analyses of Listeria monocytogenes and ESBL E. coli

Sponges were homogenized for 120 s at 240 rpm (easyMIX Lab
Blender, AES-Chemunex, Weber Scientific, Hamilton, New Jersey, USA).
Each swab sample and samples of scald water were vortexed for
approximately 10 s. Analysis of L. monocytogenes was performed ac-
cording to ISO 11290-1 (2018), with some modifications. For quanti-
tative analysis, 0.1 mL of original suspension, was surface-plated on a
Chromogenic Listeria Agar (ISO) plate (PO5183A, Thermo Fischer Sci-
entific, Wesel, Germany) (Fig. 1). Colonies characteristic of
L. monocytogeneswere enumerated. The detection limit was 1.0 log CFU/
area and for scald water 1.0 log CFU/mL. For qualitative analysis, 20 mL
buffered peptone water (BPW) (Oxoid CM0509, Oxoid) were added to
the original sponges and they were homogenized for 60 s at 240 rpm.
From this dilution, 5–10 mL were added together with half the sponge
(aseptically cut) to a stomacher bag containing 90mL room-temperature
Half Fraser broth (Oxoid CM0895B, Oxoid) with supplement (Oxoid
SR0166E, Oxoid). From the original swab sampler and scald water
suspensions, 5–10 mL were added to 90 mL Half Fraser broth. After
incubation at 30 ± 1 ◦C for 24 ± 3 h, approximately a 40 μL portion was
surface-plated on a Chromogenic Listeria Agar plate, which was incu-
bated at 37 ± 1 ◦C for 24 ± 3 h (Fig. 1). Characteristic colonies were re-

Table 2
Sampling points, surface material, and sampling area/volume of food contact
surfaces (FCS) and non-food contact surfaces (NFCS) in the two slaughterhouses.

Slaughterhouse Area Sampling point Material Area/
volume

Red meat Slaughter 1 Post-
dehairing
table pigs,
upper part
(FCS)

Stainless
steel

100 cm2

2 Scald water
pigs (FCS)

Liquid 1 mL

3 Table for
cattle organs,
evisceration,
upper part
(NFCS)

Stainless
steel

100 cm2

4 Conveyor belt
pig organs,
evisceration,
upper part
(NFCS)

Soft
plastic

100 cm2

5 Drain cattle,
carcass
inspection,
inside and
outside
(NFCS)

Stainless
steel

100 cm2

6 Cutting blade
cattle/pig,
carcass
splitting
(FCS)

Stainless
steel

20 cm2

Other a a 100 cm2

Processing 7 Cutting board
beef cuts,
upper part
(FCS)

Hard
plastic

100 cm2

8 Conveyor belt
beef cuts,
upper part
(FCS)

Soft
plastic

100 cm2

9 Conveyor belt
packaging
beef cuts,
upper part
(FCS)

Hard
plastic

100 cm2

10 Trolley beef
cuts, bottom
(FCS)

Stainless
steel

100 cm2

11 Drain below
cutting board,
inside and
outside
(NFCS)

Stainless
steel

100 cm2

Poultry Slaughter 12 Cutting blade
bleeding
(FCS)

Stainless
steel

100 cm2

13 Scald water
(FCS)

Liquid 1 mL

14 Plucking
fingers (FCS)

Rubber 5
fingers
(100
cm2)

15 Shackle after
stunning
(FCS)

Stainless
steel

1
shackle
(25
cm2)

16 Floor lairage
(NFCS)

Concrete 100 cm2

Other b b 100 cm2

Processing 17 Conveyor belt
chicken cuts,
upper part
(FCS)

Soft
plastic

100 cm2

18 Conveyor belt
chicken cuts,

Hard
plastic

100 cm2

Table 2 (continued )

Slaughterhouse Area Sampling point Material Area/
volume

upper part
(FCS)

19 Cutting blade
thighs (FCS)

Stainless
steel

25 cm2

20 Salt injector
needles (FCS)

Stainless
steel

5
needles
(25
cm2)

21 Drain below
cutting blade
thighs, inside
and outside
(NFCS)

Stainless
steel

100 cm2

a Saw, outside part (NFCS) (stainless steel); door between slaughter area and
chill room (FCS) (hard plastic).
b Conveyor belt, upper part (FCS) (hard plastic); conveyor belt, upper part

(FCS) (soft plastic); table for edible organs, upper part (FCS) (stainless steel);
computer display (NFCS) (hard plastic); cutting board, upper part (FCS) (hard
plastic).
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cultured on blood agar and incubated at 37± 1 ◦C for 24± 3 h, and then
identified to species level with MALDI-TOF.

For analysis of ESBL E. coli, 5–10 mL of the dilution were added
together with the other half of the sponge to a stomacher bag containing
90mL BPW. From the original swab sample and scald water suspensions,
5–10 mL were added to 90 mL BPW and incubated at 37 ± 1 ◦C for
18–24 h. Then 30 μL were surface-plated on CHROM-agar Orientation
(Chromagar, Paris, France), to which 1 mg/L cefotaxime had been
added, and incubated at 37 ± 1 ◦C for 18–24 h (Fig. 1). After incubation
for 18–24 h, characteristic colonies were selected for further re-culturing
on blood agar and incubated at 37 ± 1 ◦C for 24 ± 3 h. Identification to
species level was performed using MALDI-TOF.

2.5. Antimicrobial susceptibility testing

Testing for antimicrobial resistance (AMR) was performed on 11
C. jejuni, five C. coli, and one E. coli isolate. Susceptibility to selected
antimicrobial substances was assessed with a Thermo Scientific™ Sen-
sititre™ EUCAMP2 plate (for Campylobacter spp.) and Thermo Scienti-
fic™ Sensititre™ EUVSEC plate (for E. coli) (Thermo Fisher Scientific,
Waltham, MA, USA). The reference strains C. jejuni (Culture Collection
University of Gothenburg (CCUG) 33560) and E. coli (CCUG 17620)
were used as a quality control for the EUCAMP2 and EUVSEC plate,
respectively. Minimum inhibitory concentrations (MIC) of antimicro-
bials were determined by broth microdilution following the manufac-
turer’s instructions and epidemiological cut-off (ECOFF) values for
determining susceptibility were obtained from the European Committee
on Antimicrobial Susceptibility Testing (EUCAST) https://www.eucast.
org/mic_and_zone_distributions_and_ecoffs/(C. jejuni, C. coli, and
E. coli). No cut-off MIC value was available for sulphamethoxazole.
Multidrug resistance was defined as resistance to three or more anti-
biotic classes. However, for aminoglycosides each substance was
considered separately, because of the complexity of microbial resistance
mechanisms to this class (Swedres-Swarm, 2021).

2.6. Whole-genome sequencing of bacterial isolates

A total of 32 bacterial isolates (17 C. jejuni/C. coli and 15
L. monocytogenes) were subjected to whole-genome sequencing (WGS)
using Illumina technology. Bacterial genomic DNA was extracted and
purified using an EZ1&2 DNA Tissue Kit (Qiagen, Hilden, Germany)

together with an EZ1 Advanced XL instrument and a program card for
bacteria (Qiagen), according to the manufacturer’s recommendations.
DNA concentrations were measured using a Qubit dsDNA Broad Range
Assay Kit and a Qubit 4.0 instrument (Invitrogen, Carlsbad, CA, USA),
and were standardized in DNase- and RNase-free water (Sigma-Aldrich,
St Louis, MO, USA). Libraries were prepared using a Nextera XT DNA
Library Preparation Kit (Illumina, San Diego, CA, USA) according to the
manufacturer’s instructions. Normalization of libraries was performed
manually in 10 mM Tris-HCl, pH 8.5 with 0.1% Tween 20 using the
concentrations from a Qubit dsDNA High Sensitivity Kit and a Qubit 2.0
instrument (Invitrogen) and the average library size from a High
Sensitivity DNA ScreenTape Analysis D1000 Kit (Agilent Technologies,
Santa Clara, CA, USA) and a 4150 TapeStation (Agilent Technologies).
Sequencing was performed on a NextSeq 500 system (Illumina) gener-
ating 2 × 150-bp paired-end reads.

All analyses of sequence reads obtained were performed in
SeqSphere+ v. 8.5.1 (Junemann et al., 2013) (Ridom GmbH, Münster,
Germany). Sequence read quality and adapter content were evaluated
by FastQC v. 0.11.7 (https://www.bioinformatics.babraham.ac.uk/pro
jects/fastqc/), while Trimmomatic v. 0.36 (Bolger et al., 2014) was
used to remove any adapter sequences. Assembly was performed de novo
using SKESA v. 2.4.0 (Souvorov et al., 2018) with default settings, which
included downsampling to 180× coverage and assembly remapping and
polishing by BWA-MEM (Li, 2013). Mash Screen v. 2.1 (Ondov et al.,
2019) was used to check the assemblies for possible contamination.
Multilocus sequence typing (MLST) was carried out using existing
schemes for C. jejuni/C. coli (Dingle et al., 2001) and L. monocytogenes
(Ragon et al., 2008), and the Bacterial Isolate Genome Sequence data-
base (BIGSdb) (Jolley et al., 2018). Core genome MLST (cgMLST) was
performed using the respective schemes for C. jejuni/C. coli and
L. monocytogenes, available at https://www.cgMLST.org. The cgMLST
scheme for C. jejuni/C. coli contained 637 target loci (https://www.
cgmlst.org/ncs/schema/145039/locus/) and a cluster distance
threshold of 13, while the cgMLST scheme for L. monocytogenes con-
tained 1701 target loci (https://www.cgmlst.org/ncs/schema/690488/
locus/) and used 10 as cluster distance threshold. Minimum spanning
trees (MST) to visualize the cgMLST data were created in SeqSphere+
(Ridom, GmbH), ignoring missing alleles in the pairwise comparisons.
Identification of genes and/or point mutations causing AMR was per-
formed using BLASTX search in NCBI AMRFinderPlus v.3.11.2
(Feldgarden et al., 2019). Campylobacter jejuni isolates of ST257 in this

Fig. 1. Flow chart of analyses of L. monocytogenes, ESBL E. coli, and Campylobacter spp. BPW = buffered peptone water.
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study were compared to selected C. jejuni ST257 isolates from previous
studies conducted in Sweden (Frosth et al., 2020; Hansson et al., 2020;
Hansson et al., 2021a,b).

3. Results

In total, 484 samples were collected before (n = 242) and after (n =

242) C&D procedures. In general, each sampling point was sampled on
4–6 occasions before and after C&D, respectively. Not all sampling
points could be sampled on all occasions, e.g., when the cleaning staff
started to clean earlier than planned. Sampling points categorized as
“Other” were only sampled on the first sampling occasion (Table 2). In
both slaughterhouses, most surfaces were visually clean after C&D, but
traces of feces, feathers, meat, fat, etc. were observed on some surfaces.
Most surfaces were wet at the time of sampling, especially after C&D. All
samples had a temperature of 2–8 ◦C on arrival at the laboratory. Two
drains (sampling points 5 and 21, located in the red meat and poultry
slaughterhouses, respectively) were the only sites where both
Campylobacter spp. and L. monocytogenes were detected (Table 3).

3.1. Campylobacter spp

3.1.1. Red meat slaughterhouse
In the red meat slaughterhouse, Campylobacter spp. were detected in

both FCS and NFCS samples taken before C&D in the slaughter area on
five of six sampling occasions (4, 6, 8, 10, and 11) (Table 3). Campylo-
bacter spp. were isolated from eight (13.0%) of 62 samples taken before
C&D. Three Campylobacter species were identified: C. coli (n = 5) was
most commonly isolated, followed by C. jejuni (n = 3) and
C. hyointestinalis (n = 1). In one sample taken from the table for cattle
organs, both C. jejuni and C. hyointestinalis were isolated (Table 3).
Campylobacter jejuni ST58 isolates with indistinguishable cgMLST pro-
files were identified on the organ table and the cutting blade for car-
casses during the same sampling occasion (sampling occasion 11). The
other isolates were of different STs (ST828, ST1450, ST1470, ST6580,
ST6585) (Fig. 2). After C&D, Campylobacter spp. were not detected in
any of the samples.

3.1.2. Poultry slaughterhouse
In the poultry slaughterhouse, Campylobacter spp. were detected on

FCSs and on NFCSs before C&D in both the slaughter and processing
areas on two sampling occasions (2 and 3). In total, Campylobacter spp.
were isolated from nine (15.5%) of 58 samples before C&D. The only
species identified was C. jejuni, which was detected at least once at 80%
(8/10) of the sampling points, not counting “Other” (Table 3). All seven
isolates from sampling occasion 3 had indistinguishable cgMLST profiles
(ST257). When comparing the C. jejuni isolates of ST257 from the pre-
sent study with ST257 from other studies conducted in Sweden, the
isolates from the poultry slaughterhouse were most closely related to
three samples of calve feces from one dairy farm (4 alleles difference).
The cluster also include eight isolates from chicken cecal samples from
three different chicken producers and two isolates from fecal samples
from another dairy farm (Fig. 3). The remaining two isolates from the
poultry slaughterhouse were of different sequence types (ST19,
ST1525), although sampled on the same occasion (Fig. 2). Campylobacter
spp. were not detected after C&D in any of the samples.

3.1.3. Antimicrobial resistance in Campylobacter spp.
Of the five C. coli isolates detected in the red meat slaughterhouse

(sampling occasions 4, 6, 8, and 11), which belonged to five different
STs (828, 1450, 1470, 6580, 6585), four showed phenotypic resistance
to streptomycin. These isolates were also the only Campylobacter isolates
carrying the aadE-Cc gene. One C. jejuni isolate of ST19 detected in the
drain of the processing area in the poultry slaughterhouse showed
phenotypic resistance to ciprofloxacin and nalidixic acid, and had a
mutation of T861 in the DNA gyrase (gyrA) gene. All other

Campylobacter isolates from both slaughterhouses were phenotypically
sensitive to all six antibiotics tested (Table 4). Four C. coli isolates
without phenotypic resistance had the mutation 50S_L22_A103V and
one C. coli isolate without phenotypic resistance to quinolones had the
mutation of T861 in gyrA. No bacterial growth was observed on the MIC
plate of the sample containing both C. jejuni and C. hyointestinalis, so its
AMR value could not be determined. None of the Campylobacter isolates
showed multi-drug resistance.

3.2. Listeria monocytogenes

All L. monocytogenes isolates from both slaughterhouses, which
belonged to ST7, ST8, and ST9, were from clonal complex (CC) 7, CC8,
and CC9, respectively.

3.2.1. Red meat slaughterhouse
In the red meat slaughterhouse, L. monocytogenes was detected in

eight (12.5%) of the 64 samples collected before C&D and in one sample
(1.6%) collected after C&D (Table 3). Listeria monocytogenes was mainly
present in drains, on five of the six occasions when L. monocytogeneswas
detected, and could be enumerated in two samples (3.1 and 1.0 log CFU/
100 cm2) before and in one sample (1.0 log CFU/100 cm2) after C&D. In
the drain in the slaughter area (sampling point 5), five different STs were
identified (ST7, ST8, ST9, ST207, ST451) while in the drain in the
processing area (sampling point 11) the isolates were of ST9. All six L.
monocytogenes belonging to ST9 had indistinguishable cgMLST profiles
although they were isolated on three separate sampling occasions 15
weeks apart (drains in the slaughter and processing area, and the cutting
board in the processing area) (Fig. 4). In one drain, isolates of ST8 were
detected on two different sampling occasions nine weeks apart. In one of
the samples from drains, L. monocytogenes isolates identified in quali-
tative and quantitative analysis were of different STs (ST7 and ST9). Ten
(83.3%) of the 12 isolated L. monocytogenes were of serogroup IIa
(serotype 1/2a and 3a), while the others belonged to serogroup IIc
(serotype 1/2c and 3c).

3.2.2. Poultry slaughterhouse
In the poultry slaughterhouse, L. monocytogeneswas detected in three

(5.2%) of 58 samples taken before C&D, all in qualitative analyses, but
at levels below the limit of quantification. Listeria monocytogeneswas not
detected in any of the samples collected after C&D (Table 3). There was
no close relationship between L. monocytogenes isolates, which were of
STs 7, 8 and 504 (Fig. 4), but they were all of serogroup IIa (serotype 1/
2a and 3a).

3.3. ESBL-producing E. coli

Presence of ESBL E. coli was not detected in the present study. One
E. coli isolate was identified in a sample from the plucking fingers after
C&D, but was sensitive to all antibiotics tested (sulfamethoxazole,
trimethoprim, ciprofloxacin, tetracycline, meropenem, azithromycin,
nalidixic acid, cefotaxime, chloramphenicol, tigecycline, ceftazidime,
colistin, ampicillin and gentamicin).

4. Discussion

The analyses performed in this study showed that the C&D procedure
used efficiently removed/inactivated Campylobacter spp. and
L. monocytogenes from surfaces in the two slaughterhouses. Even on the
sampling occasion on which C. jejuni was detected on almost all surfaces
in the poultry slaughterhouse before C&D, C. jejuni was not detected in
the samples taken after C&D. However, other studies have reported
Campylobacter survival after C&D in poultry slaughterhouses
(García-Sánchez et al., 2017; Peyrat et al., 2008). It should be noted that
in this study, Campylobacter spp. were detected in a smaller number of
samples before C&D than in other studies. The low number of samples
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Table 3
Number of samples taken and identification of sampling points where Campylobacter spp., Listeria monocytogenes and extended-spectrum beta-lactamase Escherichia coli (ESBL E. coli) were isolated before and after cleaning
and disinfection (C&D) in the two slaughterhouses. Superscript numbers indicate the sampling occasions (1-12) on which the bacteria were detected.

Slaughter-
house

Area Sampling point C&D Total No. of samples for
Campylobacter spp.

C. jejuni C. coli C. jejuni and Total No. of samples for
L. monocytogenes and ESBL E. coli

L. monocytogenes ESBL E.
coli

C. hyointestinalis

Red meat Slaughter 1 Post-dehairing table pigsa Before 6 – – – 6 – –
After 6 – – – 6 – –

2 Scald water pigsa Before 4 – – – 4 – –
After 4 – – – 4 – –

3 Table cattle organs
(evisceration)

Before 5 1 (10) – 1 (11) 5 – –

After 5 - – - 5 – –
4 Conveyor belt pig organs

(evisceration)
Before 5 – 2 (6,8) – 6 – –

After 5 – - – 6 – –
5 Drain cattle (carcass

inspection)
Before 5 – 3

(4,6,11)
– 6 5 (4,6,8,10,11) –

After 5 – - – 6 - –
6 Cutting blade cattle/pig

(carcass splitting)a
Before 5 1 (11) - – 5 – –

After 5 - - – 5 – –
Other Before 2 - - – 2 – –

After 2 – – – 2 – –
Processing 7 Cutting board beef cutsa Before 6 – – – 6 1 (8) –

After 6 – – – 6 - –
8 Conveyor belt beef cutsa Before 6 – – – 6 – –

After 6 – – – 6 – –
9 Conveyor belt packaging

beef cutsa
Before 6 – – – 6 – –

After 6 – – – 6 – –
10 Trolley beef cutsa Before 6 – – – 6 – –

After 6 – – – 6 – –
11 Drain (below cutting

board)
Before 6 – – – 6 2 (8,11) –

After 6 – – – 6 1 (6) –
Poultry Slaughter 12 Cutting blade bleedinga Before 5 1 (3) - – 5 – –

After 5 - - – 5 – –
13 Scald watera Before 5 – – – 5 – –

After 5 – – – 5 – –
14 Plucking fingersa Before 5 – – – 5 – –

After 5 – – – 5 – –
15 Shackle after stunninga Before 5 1 (3) - – 5 – –

After 5 - - – 5 – –
16 Floor lairage Before 5 1 (3) - – 5 – –

After 5 - - – 5 – –
Other Before 5 - - – 5 1 (2) –

After 5 – – – 5 – –
Processing 17 Conveyor belt chicken

cutsa
Before 5 1 (3) - – 5 – –

After 5 - - – 5 – –
18 Conveyor belt chicken

cutsa
Before 6 1 (3) - – 6 – –

After 6 - - – 6 – –
19 Cutting blade thighsa Before 6 1 (3) - – 6 – –

After 6 - - – 6 – –
20 Salt injector needlesa Before 5 1 (3) - – 5 – –

After 5 - - – 5 – –
21 Drain (below cutting

blade thighs)
Before 6 2 (2,3) - – 6 2 (5,7) –

After 6 - - – 6 - –

a food contact surfaces.
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with Campylobacter was most likely due to low (around 5%) Campylo-
bacter prevalence in chickens in Sweden during the study period
(National Veterinary Institute, 2022), while most other countries have a
significantly higher prevalence of Campylobacter in their chickens (EFSA
and ECDC, 2022). Campylobacter jejuni was the only Campylobacter
species detected in the poultry slaughterhouse, confirming previous
findings that it is the most commonly detected Campylobacter species in
poultry (Hansson et al., 2021a; Hauge et al., 2023; Marotta et al., 2015;
Moazzami et al., 2021).

Campylobacter isolates, which were indistinguishable based on their
cgMLST profiles, were detected at multiple sampling points in both
slaughterhouses before C&D. Notably, many of these sampling points
were FCS such as the cutting blades in both slaughterhouses (sampling
points 6, 12, 19), as well as the conveyor belts for chicken cuts and salt
injector needles in the cutting area in the poultry slaughterhouse. This
raises concerns about the potential risk of meat cross-contamination
during production. In the poultry slaughterhouse in particular,
C. jejuni strain ST257 showed great potential to spread to many different

sampling points in both the slaughter and processing areas. This is a
hygiene challenge for food business operators, since the STs detected in
the poultry slaughterhouse (ST257 and ST19) are known to cause
human outbreaks and have been detected in chicken meat in Sweden
(Swedish Food Agency and Public Health Agency of Sweden, 2018;
Public Health Agency of Sweden, 2020). The C. jejuni ST257 isolates
were compared to those from other studies conducted in Sweden within
a similar time frame. From this comparison, fecal samples from cattle
collected in a different geographic region and time period were found to
be related to the C. jejuni isolates from the present study, complicating
the interpretation of the relationship between these isolates. One
possible explanation is that this sequence type is common and may have
been transferred through wild birds. Another possibility is that the iso-
lates do not share a common source, and differences in accessory genes
were not considered in the analysis, since only the core genome was
analyzed.

An AMR study of the Campylobacter isolates detected in this study
was performed to compare the occurrence of resistance against impor-
tant antibiotics that are included in the national surveillance program on
AMR in Sweden. Phenotypic and genotypic quinolone resistance was
observed for one C. jejuni isolate from the poultry slaughterhouse.
Campylobacter spp. with quinolone resistance have previously been
detected in poultry and poultry meat in Sweden and other European
countries (García-Sánchez et al., 2017; Hansson et al., 2021b; Torralbo
et al., 2015). The occurrence of resistance to fluoroquinolones was 20%
in Swedish broilers in 2022 (Swedres-Svarm, 2022). This is higher than
the occurrence found in the present study (9%), but the difference could
be due to the low number of Campylobacter isolates analyzed. The reason
for the resistance detected in the present study is unknown, but is un-
likely to be due to antimicrobial use, since chickens are not treated with
quinolones and are overall rarely treated with antimicrobials in Sweden
nowadays (Hansson et al., 2021b; T. Dzieciolowski, personal commu-
nication September 19, 2023).

Remarkably high (80%) phenotypic and genotypic streptomycin
resistance was observed in the C. coli isolates detected in the red meat
slaughterhouse. It could not be established whether these isolates orig-
inated from pigs or cattle, since both species were slaughtered in the
same facility. Campylobacter coli is known to be the most common
Campylobacter species in pigs, whereas in cattle C. coli is much less
frequently occurring than C. jejuni (Hansson et al., 2021b; Swe-
dres-Swarm, 2015; Thépault et al., 2018). At European level, C. coli
resistance to streptomycin is high in both pigs and calves (EFSA-ECDC,
2023). In Sweden, there is high (47%) phenotypic streptomycin resis-
tance in C. coli from pigs and half of resistant isolates are also sensitive to
other antimicrobials (Swedres-Swarm, 2019), which agrees with find-
ings in the present study. This resistance to streptomycin is difficult to
explain by selection pressure, since this compound is rarely used in
Sweden nowadays (Swedish Medical products Agency, 2013; Swe-
dres-Swarm, 2019). A possible explanation could be the mutable nature
of Campylobacter, which had developed several mechanisms for anti-
biotic resistance, including point mutations, acquisition of resistance
genes, and efflux systems (Wirz et al., 2010). This poses a threat to
human health, since AMR in animals and humans is linked, andmay lead
to difficulty in treating infections (EFSA-ECDC, 2023).

Listeria monocytogenes was found in drains in both slaughterhouses
on several sampling occasions. Interestingly, L. monocytogenes was more
frequently found in the drain in the slaughter area in the red meat
slaughterhouse than in the two drains in the processing areas in both
slaughterhouses. A possible reason could be that surfaces in slaughter
areas generally gets more soiled than in processing areas. As observed
for Campylobacter, the C&D procedure removed L. monocytogenes from
these sampling points. However, on one sampling occasion,
L. monocytogeneswas detected in a drain in the processing area in the red
meat slaughterhouse despite C&D. This is not surprising, since
L. monocytogenes is commonly found in drains in food processing plants
(Muhterem-Uyar et al., 2015). Isolates of L. monocytogenes ST9 with

Fig. 2. Minimum spanning tree of core genome multi-locus sequence typing
(cgMLST) data from Campylobacter spp. isolated from the red meat (R) and
poultry (P) slaughterhouse (n = 17) (first value after slaughterhouse type (R/P)
indicates sampling point, second value indicates sampling occasion). j =

C. jejuni. c = C. coli. Values on lines are number of allelic differences (line length
not proportional to number). Grey rings indicate genotypes belonging to the
same MST cluster. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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indistinguishable cgMLST profiles were found in the processing area of
the red meat slaughterhouse on three sampling occasions 15 weeks
apart. On one of these sampling occasions, this strain was detected after
C&D, while on the other two occasions it was detected before C&D.
There are possible explanations for this, e.g., the same strain may have
been re-introduced several times from pigs originating from the same
farms or the strain may have persisted in the slaughterhouse, but was not
detected after C&D due to e.g., relatively small sampling area. A limi-
tation in the present study was that the maximum sampled area was 100
cm2. To ensure that no pathogens are present, a considerably larger area

should be sampled (≥1000 cm2) (Carpentier and Barre, 2012; Swedish
Standards Institute, 2018). Because this study was part of a larger study
in which hygiene indicator bacteria were quantified (Moazzami et al.,
2023), it was not feasible to sample a larger area.

Other studies have shown that L. monocytogenes ST9 and ST121 are
the most common L. monocytogenes sequence types persisting in the food
industry and that ST9 in particular is associated with persistence in the
meat industry in several European countries, including Sweden’s
neighboring country Norway (Fagerlund et al., 2020; Melero et al.,
2019). Clonal complexes 7 and CC8 have previously been reported as the

Fig. 3. Minimum spanning tree of core genome multi-locus sequence typing (cgMLST) data from Campylobacter jejuni of sequence type 257 isolated from the poultry
(P) slaughterhouse (n = 7) in the present study and, samples from poultry caeca (n = 8), fecal samples from cattle (n = 10), samples from boot socks (n = 8) and water
pipes (n = 2) from other studies. Values on lines are number of allelic differences (line length not proportional to number). Grey zones indicate genotypes belonging
to the same MST cluster.

Table 4
Distribution of minimum inhibitory concentrations (MICs, mg/L) and antibiotic resistance (Res %) in Campylobacter jejuni (n= 11) and C. coli
(n = 5) isolates, expressed as number of isolates at different MIC values. White fields denote range of diluents tested for each antibiotic and
vertical bold lines indicate cut-off values used to define resistance. MIC values equal to or lower than the lowest concentration tested are
given as the lowest concentration tested.
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most commonly found CCs in Sweden (Møretrø et al., 2024). Clonal
complexes 7, CC8, and CC9 are also among the most common CCs in
other European countries (Fagerlund et al., 2022; Møretrø et al., 2024;
Stoller et al., 2019). Moreover, when L. monocytogenes is found in drains,
it has the potential to contaminate nearby FCS (Saini et al., 2012). It is
worrisome that L. monocytogenes was detected on two FCS before C&D,
and similar recovery of this bacterial species on FCS in poultry and red
meat slaughterhouses has been reported previously (Gómez et al., 2015;
Martín et al., 2014; Muhterem-Uyar et al., 2015). As with Campylobacter,
this poses a risk of cross-contamination of the meat (Martín et al., 2014).

Listeria monocytogenes isolates of ST8 and ST9, serogroups and se-
rotypes identified in the present study have been found to cause human
disease and outbreaks in Sweden and other parts of Europe, and some of
these have been found on meat processing surfaces, raw meat, and meat
products such as RTE (EFSA Panel on Biological Hazards, 2018; Martín
et al., 2014; Lindblad and Flink, 2017; M. Ricao, National Food Agency,
personal communication, March 7, 2023; Okpo et al., 2015; Ottoson,
2019). This shows the importance of controlling this hazard at slaugh-
terhouse level by applying adequate C&D procedures and a hygienic
slaughter process.

Campylobacter spp. and L. monocytogeneswere not isolated from scald
water either before or after C&D in the two slaughterhouses. This could
be due to the low volume of scald water analyzed in this study, or it
could indicate that viable bacteria of these pathogens were not present
(Osiriphun et al., 2012). Other studies conducted in poultry slaughter-
houses have detected Campylobacter spp. in scald water before C&D
(Torralbo et al., 2015) and after C&D (Peyrat et al., 2008). The tem-
perature of the scald water could have resulted in survival of the bacteria
in those studies, since it was 52 ◦C in the study by Torralbo et al. (2015),
although it was not specified by Peyrat et al. (2008). In the present
study, scald water temperature was approximately 60 ◦C and 54 ◦C just
before C&D and 45 ◦C and 44 ◦C after C&D in the red meat and poultry
slaughterhouse, respectively (Moazzami et al., 2023). Scald water tem-
perature was similar (52–56 ◦C) in other studies in which Campylobacter
spp. was not found in poultry slaughterhouses (Gruntar et al., 2015;
Hauge et al., 2023; Perez-Arnedo and Gonzalez-Fandos, 2019).

Presence of ESBL E. coli was not detected in this study, in line with
the decreasing prevalence of this pathogen in broilers, broiler meat and
pig meat in Sweden and some other European countries in recent years
(Althaus et al., 2017; EFSA-ECDC, 2023; Swedres-Swarm, 2021). How-
ever, it should be noted that on some CHROMagar plates, characteristic

E. coli colonies were found in mixed culture. Re-culturing attempts were
made for further identification, but it was not possible to obtain the
bacteria in pure culture. Thus, it is possible that these bacteria were
present in low concentration in some samples without being identified.

5. Conclusions

This study demonstrated that it is possible to remove pathogenic
bacteria such as Campylobacter spp. and L. monocytogenes from surfaces
in slaughterhouses and meat processing plants by proper cleaning and
disinfection, which create important hurdles in control of foodborne
pathogens. The serotypes, sequence types, and clonal complexes of
Campylobacter spp. and L. monocytogenes isolates detected on surfaces in
this study are known to cause human disease in Sweden and other Eu-
ropean countries. Therefore correct sampling of surfaces in slaughter-
houses and meat processing plants to detect these pathogens and, when
necessary, improve the C&D procedure is fundamental for production of
safe meat. This study also demonstrated that failure of the hygiene
process in slaughterhouses is associated with increased risk of cross-
contamination of meat during slaughter.
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