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A B S T R A C T

Agriculture provides basic livelihood for a large section of world’s population. It is the oldest economic activity 
in India, with two third of Indian population involved in crop production. India is second largest producer of rice 
and biggest exporter globally, with rice which is most common staple crop consumed in country. However, there 
are several challenges for paddy production including small production yield, soil quality, seed quality, huge 
volume of water needed and biotic stress. Of these, biotic stress drastically affects yield and susceptibility to other 
diseases in paddy production. It is caused by pathogens such as bacteria, viruses, fungi, nematodes, all of which 
severely affect growth and productivity of paddy crop. To mitigate these challenges, infected crops are identified, 
detected, classified, categorized, and prevented according to their respective suffering disease by using con-
ventional methods which are not effective and efficient for growth of paddy crop. Thus, use of artificial intel-
ligence (AI) and a smart agriculture-based Internet of Things (IoT) platform could be effective for detecting the 
biotic stresses in very less time or online mode. For this, deep learning, and convolutional neural networks (CNN) 
multi-structured layer approach were used for diagnosing disease in rice plants. Different models and classifiers 
of CNN were used for detecting disease by processing high-spectral images and using logistic and mathematical 
formulation methods for classification of biotic paddy crop stresses. Continuous monitoring of stages of infection 
in paddy crop can be achieved using real-time data. Thus, use of AI has made diagnosing paddy crop diseases 
much easier and more efficient.

1. Introduction

India is an agricultural country since agriculture is primary activity 
of its population, of all crops, rice is most produced and consumed grain 
over whole country. In India, the production of rice utilizes largest area 
of agricultural land ~43.86 million hectares of land, with a productivity 
of about ~2390 kg/h which may be decreased owing to urbanization 
(Sethy et al., 2020a). As population and food demands are steeply 
increasing which led the global food security that poses a huge challenge 

for food production and for rice production. It has highest rate of con-
sumption when compared to other crops, with current demand of ~524 
million tons expected to increase to over ~700 million tons. Further-
more, it accounts for approximately 60 % of global food consumption. 
Studies have shown that, rice production needs to be increased by >40 
% from 2023 because of its high demand (SaberiKamarposhti et al., 
2024)[3]. Since rice is a staple food, demand for it is high globally and 
thus, to meet these demands, an increase in its production is one of the 
most important concerns at present. Changing environmental conditions 
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and increasing human population have led to the overexploitation and 
destruction of land used for its production (Verma et al., 2024). Along 
with this, there are still challenges in agriculture related to less aware-
ness in farmers, improper policies, plant related diseases related to biotic 
stress are still concerned of interest (Talaviya et al., 2020).

According to a survey by the Food and Agriculture Organization 
(FAO), United States of America (USA) (Wang et al., 2021), it has been 
estimated that plant diseases cost around ~220 billion dollars annually 
on a global economic scale. An average loss of 20–40 % occurs due to 
various diseases caused by biotic stress. Paddy (rice) crops are affected 
by various pathogens such as bacteria, fungi, viruses, and nematodes 
along with insects, weeds, and other pests, which are ultimately a major 
factor in hindering the growth, development, and production of rice in 
paddy fields. To detect these issues, conventional methods are being 
used to lower the effect of biotic stress on production of rice. The con-
ventional methods have several disadvantages such as less accuracy and 
precision; time consuming and prone to human errors. The imple-
mentation of artificial intelligence (AI) holds significant potential to 
address challenges related to agricultural management and productiv-
ity, particularly in developing countries like India. By integrating AI, it is 
possible to reduce costs associated with energy consumption, time, and 
equipment, thereby enhancing overall agricultural efficiency (Jackulin 
and Murugavalli, 2022). With technological advances, the AI is sup-
posed to have significant impact on the agricultural outputs by its proper 
integration with the farming system (Parbat et al., 2021). AI is a part of 
the computer science field which seeks to create an intelligent and 
highly accurate machine. Such a machine works by learning from 
experiential data (Talaviya et al., 2020). By integrating the Internet of 
things (IOT) (Wicaksono et al., 2021) with AI, “thing-to-thing" 
communication has been much easier and more efficient. Deep learning, 
convolutional neural networks (CNNs), artificial neural networks 
(ANNs), support vector machine (SVM), k-NN (Behmann et al., 2015), 
K-clustering, and machine learning are all sub-domains of AI (Tejaswini 
et al., 2022). Machine learning uses experiential data and statistical 
logistics to make the process of solving a specific task faster and with 
better accuracy. Data science and big data have advanced using machine 
learning, utilizing mathematical and logistical approaches/models to 
build an ‘intelligent’ machine with quick and accurate outcomes.

Of all the sub-classes of AI, neural networks are the most commonly 
and consistently used for machine learning. CNNs basically have three 
layers. The input layer is the input layer into which the input data is fed 
and processed. Data are split and used to create training and testing 
models (Wang et al., 2021; Debnath and Saha, 2022). The second layer is 
a set of layers into which the processed input data are received and 
processed, based on optimized CNN models and respective classifiers 

through its multi-level architectural layers. These multi-structured CNN 
layers are referred to as the convolutional layer, pooling layer, and fully 
connected layer (Jackulin and Murugavalli, 2022; Altinbilek and Kizil, 
2022) The convolutional layer extracts the required data from the input 
and optimize the values into a weight matrix. Logistic analysis is carried 
out using a data map obtained from machine learning. The max pooling 
layer segregates the input data and transmits the obtained maximum 
value using a mathematical approach to the next preceding layer at a 
specific field location on the data map. The fully connected layer pro-
cesses the output from the interconnected multiple architecture con-
volutional and pooling layers, and uses high-level mathematical 
reasoning functions to produce the final output. The third layer is the 
output layer which processes the resultant values from the other layers 
and uses probabilistic and logistic approaches to convert the class output 
into an equivalent score. Neural networks are efficient at predicting 
biotic stresses involving complex mapping of agricultural land, detect-
ing disease in crops at an early stage, infection prediction at every stage 
of a diseased plant’s development, and identification of fungal infection 
in the leaves of the plants (Fontana et al., 2021). Neural networks can 
also be used to predict the harmful effects of both weeds, and attacks by 
insects and pests on the plants that are detrimental to crop plant growth 
and production (Hoang Trong et al., 2020). Detection and classification 
of the bacterial, viral, and fungal pathogens, as well as nematodes that 
cause plant diseases have been made much easier, faster, and efficient 
(Çakir et al., 2023). This multi-structured CNN technique uses mathe-
matical and logistic approaches for each layer to process the input data 
at each stage and produce the final output result (Sharma et al., 2022).

This review examines the applications and advantages of using AI in 
rice production. Smart agriculture approaches and various fields of 
artificial intelligence, such as deep learning and machine learning have 
resulted in easier, faster, more cost-effective, and highly layered effi-
cient processes for experts and farmers to monitor their rice crop fields 
in a much more effective manner (Çakir et al., 2023). AI helps in diag-
nosing disease, level of infection and its causative agents such as path-
ogens and pests in the rice plant. Thus, AI will help humans to take 
appropriate actions for the protection of rice crops from various types of 
biotic stress and, subsequently, play a major role in enhancing the 
productivity of rice fields.

2. Current state-of-the-art of detection of biotic stress in paddy 
crops

Plants have evolved to survive various types of environmental 
stresses at the expense of their productivity. One of the major stress 
types is biotic stress, which is defined as the detrimental effects of living 

Fig. 1. Various pathogens that cause biotic stress.
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organisms such as pests, pathogens, insects and weeds on a plant’s 
growth and productivity (Çakir et al., 2023). Bacteria, fungi, viruses, 
and nematodes are some of the pathogens that attack crops and hinder 
their growth, by reducing their yield and affecting both their quantity 
and quality as shown in Fig. 1 (Kaur and Gautam, 2021). Biotic stress 
severely affects plants’ physiological processes and biochemical path-
ways, thus causing huge damage to their development process. Pests, 
such as insects, mites and even mammals, can cause harm by ingesting 
the plant’s tissues and spreading infection further throughout the plants 
(Deng et al., 2021). AI techniques such as deep learning, neural net-
works, clustering and SVM are extremely useful because of their ability 
to utilize big data and make use of a variety of processes to identify, 
detect and classify different causative factors that are responsible for 
biotic stress in plants (Houetohossou et al., 2023). Deep learning is the 
most well-known AI technique and uses large structured multi-layered 
networks. It achieves multi-level abstraction by analyzing hierarchical 
data from images of the diseased crop. Deep learning algorithms have 
much higher potential to train variable deep learning models, offering 
greater efficiency in identification and classification of diseased plants 
(Altinbilek and Kizil, 2022). Deep learning optimizes its sub-class, CNN, 
for fast learning and more efficient generation of the output. CNNs use 
an image-based AI technique, consisting of image acquisition, manipu-
lation, segregation, multiple feature extraction, analysis and finally 
image optimization for detection and categorization of different plant 
diseases these models such as “VGG-16 (Swain and Tripathy, 2024), 
VGG-19 (Cao et al., 2022), Dense Net, Alex Net and LeNet-5 (Al-Salman 
and AlSalman, 2024)”, which help in recognition, classification and 
categorization of crop stresses and identification of plant disease, can 
run on any device (Vardhini et al., 2020). CNN models consist of mul-
tiple image classifiers such as SVM (Kumar et al., 2021), Back Proportion 
Neural Network (BPNN) (Lu et al., 2024) and k- nearest neighbors 
(KNN) (Nasser Shah et al., 2019) operating on the multi-layered network 
structure of CNNs.

2.1. Early disease detection in paddy crop production

Paddy crops are very prone to infections caused by pathogens such as 
bacteria, fungi, nematode and viruses (Deng et al., 2021). For early 
detection of the disease, monitoring rice fields is a crucial preliminary 
measure. Visual inspection of the field enables the identification of 
infected leaves. Without timely intervention to manage the disease, the 
infection can spread rapidly throughout the entire paddy field, resulting 
in significant losses for the farmer (Sethy et al., 2020a). A system is 
required to assist farmers in the early detection of rice diseases, enabling 
timely intervention to protect paddy fields and mitigate reductions in 
rice production at an early stage. To achieve this, deep learning and big 
data analysis can be employed to process images of paddy fields, 
simulating the human brain by optimizing artificial neural networks to 
address common diseases in rice crops effectively (Çakir et al., 2023; 
Sharma et al., 2022). In the past, visual observations by experts were 
carried out for diagnosing disease in plants, but the risk of error was high 
and the results were inaccurate. Then, various spectroscopic and imag-
ing techniques were used which required sensors and instruments 
equipped with cameras and inbuilt electronic equipment but they were 
costly and were quite inefficient. Finally, automatic plant disease 
detection and diagnosis using machine learning was introduced, based 
on an unsupervised learning K clustering method and SVM technique, 
but the complex preprocessing and feature detection image technology 
ultimately reduced the efficiency of this system (Sharma et al., 2022). 
Plant imaging captures detailed plant visuals for health analysis, but 
relies on time-consuming human interpretation. Machine learning (ML) 
automates disease detection by analyzing large image datasets, 
improving accuracy over time. While plant imaging requires 
high-quality images, ML can utilize various image types, transforming 
them into actionable insights through algorithms. Table 1 describes the 
comparison between traditional and AI rice disease detection 

techniques.
However, deep learning and CNN have yielded much more relevant 

and accurate results then machine learning models because they directly 
extract the features of plants automatically and input the images 
therefore avoiding complex preprocessing steps (Debnath and Saha, 
2022). Mostly, rice blast, bacterial and brown spot diseases are found on 
rice leaves which cause severe infection to all the other crops very 
quickly.

Brown spot disease is a major chronic fungal disease which produces 
small brown spots on the surface of leaves and can be detected at an 
early stage using deep learning. A real-time image of the disease was 
taken by the deep CNN application, then stored, processed, and analyzed 
on a cloud server of an IoT-based system (Tejaswini et al., 2022). Then, 
the data from the file were labeled and the final image processed and 
stored on a shared network. Finally, a smart customized farming app was 
designed and connected to the cloud networking server from which a 
farmer could easily visualize the diseased crop on their mobile phones. 
Thus, they can easily observe and quickly take the required measures to 
prevent damage to the paddy crop field. The basic functions of this 
image processing include identification of infected sections of plant such 
as stem and leaf, measuring the affected area of the field, recognizing the 
shapes of the infected zone, and detecting the infected colored regions 
(Venkatamohan et al., 2023). The image is captured using sensors, 
cameras, drones, and scanners. Then the changes in images are found to 
the images by using robotics and remote sensing. The image quality is 
analyzed and edited using techniques such as filtering, normalization, 
resizing and cropping to obtain the desired image. The image and its 
background are improvised for better clarity by using k-clustering, text, 
shape and color changes (Venkatamohan et al., 2023). Features in the 
image are optimized by using techniques such as pattern extraction, 
texture, shape, coloring of the infected section in the final image, as 
shown in Fig. 2.

Evaluating the classification and prediction model performance in 
terms of its accuracy, recall and precision uses true and false parameters 
in the following equations (Dhiman and Saroha, 2022) : 

Model Accuracy (A) =
TP + TN

TP + FP + TN + FN
(1) 

Model Recall(R) =
TP

TP + FN
(2) 

Model Precision (P) =
TP

TP + FP
(3) 

where the true and false parameters are defined as:

TP - true positive (correctly classified, expected result)
TN - true negative (wrongly classified, expected result)
FP - false positive (wrongly classified, unexpected result)
FN- false negative (correctly classified, unexpected result)

Alongside disease detection, severity estimation is also an important 
topic of concern which can be easily resolved by using mainstream deep 
learning architecture models such as VGG16 (Houetohossou et al., 
2023), ResNet101 (Patil et al., 2023), Mobile Net (Anami et al., 2020) 
and EfficientNet-B0 (Patil et al., 2023). Precisely quantifying the degree 
of disease in the paddy leaf helps farmers to take preventive steps against 
that respective disease at the correct time. Deep learning approaches 
that can be used to identify the diseases here are RCNN, SSD and YOLO. 
EfficientNet-B0 (Patil et al., 2023) and RCNN produce the most accurate 
output model. The real-time image datasets of rice leaves are collected 
and administered with the public web database to eliminate the present 
robustness. The record is kept using the colored charge couple device 
with optimized required image acquisition distance.

Image annotation is an important step in disease severity quantifi-
cation as it highlights the exact region where the infection is present, as 
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Table 1 
Comparison between traditional and AI rice disease detection techniques.

Refs. Disease Traditional techniques Use of AI techniques Remarks

(Tejaswini et al., 2022) Rice leaf blast Visual analysis Deep Learning 
models

Continuous 
monitoring of 
infected 
leaves gives 
ineffective 
and 
inaccurate 
results 
whereas DL 
models 
produce 
efficient, 
accurate 
results in a 
faster time

(Latif et al., 2022) Brown spot disease Visual monitoring CNN Highly 
precise and 
accurate 
datasets for 
diseased rice 
leaf

Phytophthora black fungal 
disease

Visual assessment, Pathogen -inducesystem, Laboratory 
identification

SVM Detection 
algorithm 
used by SVM 
yields good 
rice leaf 
recognition 
and 
classification 
performance

(Nasser Shah et al., 2019) Brown plant hopper infection Manual detection K-clustering Classification 
of segmented 
images using 
K-clustering 
has much 
better 
performance 
in detecting 
BPH infected 
rice crop

(Rifa’I and Mahdiana, 
2020)

Bacterial leaf blight Camera Fuzzy system Fuzzy system 
produces 
highly 
accurate 
images for 
diagnosis of 
rice disease

(Sethy et al., 2020a) Rice Leaf smut disease Hyperspectral and Thermal imaging CNN It gives more 
accurate 
image 
processing 
and 
segmentation 
techniques for 
identifying 
rice leaf 
disease

(Haridasan et al., 2023) Rice sheath rot Visual assessment CNN More 
accurately 
diagnoses the 
disease

(Islam et al., 2021a) Leaf scald Visual monitoring Deep CNN Using a deep 
learning 
algorithm to 
optimize high 
precision and 
accuracy in 
tests 
validated 
using ResNet- 
V2 network 
architecture
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shown in Fig. 3. Graphical tools such as VCC annotation and Make Sense 
can be used to mark the place of infection in the diseased leaf image 
accurately (Doğan and Ergen, 2022). Mostly, a pink colored polygon 
shape is used to mark the diseased area. A polygon shape provides a 
more accurate and defined technique for inspection of complex spots 
and calculation of the affected area (Doğan and Ergen, 2022). The an-
notated image is exported in single COCO JSON file format as this 
provides information about the class category of image and dimensions 
of bounding box. Image resolution, depth layers, count of channels to 
obtain width of images are set and analyzed by the EfficientNet-B0 deep 
learning model. It is based on Mobile Inverted Convolution (MBCnvl) 
(Doğan and Ergen, 2022), with a convolutional layer which is composed 
of seven consecutive blocks thus minimizing the calculations.

This method of object detection in deep learning is used to locate the 
precise area of leaf infection. It is composed of three layers. The first, the 
regional proposal network (RPN) labels the possible leaf infected region 
by determining the spot anchor boxes which accurately detect the 
diseased leaf region on the image. This results in a feature map which is 
the input to the second layer, the region of interest (RoI), which further 
manipulates the resultant variable sized anchor boxes of the feature map 
into standard data. Finally, the third layer is the region-based CNN 
which is composed of two sub-layers, the Softmax layer and the 

regressor layer. The Softmax layer is also called the classifier layer, and 
detects the nature of the infection spot and checks for its background. 
The regressor layer searches for the coordinates of the bounding box and 
matches those to the location of the infection detected by the Softmax 
layer.

The training of the neural network is achieved using a training 
dataset, testing the deep learning model outcomes, and examining the 
test results. A multi-task loss function for classifying and bounding box 
regression losses is shown in Eq. (4) (Patil et al., 2023): 

Loss
({

l i
}
,
{

p i

})
=

1
N cls

∑
Loss cls(P i,GT i ∗ ) + λ ∗

1
N reg

∑
P i

∗ Loss reg(p i, gt i ∗ )
(4) 

L i = Likelihood factor that region will include an object or not
GT i∗ = Ground truth value for determining presence or absence of 
an object
p i = Predicted factor coordinates
gt i = Ground truth coordinates for bounding boxes
Loss cls = Classifier loss
Loss reg = Regression loss

Fig. 2. Functions of the deep convolutional network used.

Fig. 3. Paddy disease severity detection process using CNN.
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N cls = Classification normalization parameter
N reg = Regression normalization parameter

The severity quantification of rice disease is estimated after the 
RCNN algorithm is run, with the total infected area and total surface 
area covered by the leaf calculated. The percentage of rice disease 
severity is calculated using the ratio of diseased region (TDA) to leaf 
surface area (TLA) as given in Eq. (5) (Patil et al., 2023): 

Severity quantification(%) =

∑
Disease affected bounding box area (TDA)
∑

Total leaf bounding box area (TLA)
∗100

(5) 

It has been suggested that the implementation of deep learning with 
its model will help farmers improve the quality and efficiency of rice 
production (Patil et al., 2023). The early detection of disease in rice is 
helpful for farmers since they can easily identify the major cause of 
disease by using the early disease detection system. Then there would be 
good chance that farmers could destroy the root cause of the disease and 
take prevention against that disease at a very early stage.

2.2. Rice disease detection using a neural network

The diagnosis of the disease has, in the past, been carried out 
manually, ultimately giving rise to errors. Paddy fields are extremely 
prone to infections caused by bacteria, fungi, and viruses. Such in-
fections are highly contagious once contracted and endanger the entire 
crop in the field. AI uses algorithms to identify and analyze data relating 
to the symptoms of disease and infection. CNN is a sub-class that uses 
deep learning algorithms (Behmann et al., 2015; Lu et al., 2024) as 
shown in Fig. 4. It can process much greater volumes of data much 
quicker, making it a much simpler way to identify diseases in plants. It 
works astonishingly well for disease detection based on image identifi-
cation and categorization as either diseased or healthy.

Furthermore, these models comprise a multiple layer system which 
identifies each single detail needed for image processing from the source 
image using convolutional filters. The first layer is called the input layer 
into which input is fed an image. At this stage, the count of neurons and 

features are similar, that is, the number of pixels in the image is 
equivalent to the number of features in that image. Most of the data 
input to the first layer are optimized for the training model, with the rest 
being optimized for the testing model. There is then a series of hidden 
layers which use the output from the input layer. These are completely 
dependent upon the data and size of model, so includes the variable 
number of neurons or pixels in the image.

The last layer is the output layer that utilizes the data taken from 
both the input and hidden layers. It changes the output score of a class 
into an appropriate equivalent probability score by converting the result 
of every class using logistic functions.

Image edge detection is defined as a technique for determining the 
edges and borders in an image after processing using convolutional fil-
ters (Dhiman and Saroha, 2022). It is used to reduce image content and 
undesired information, thus allowing for the quick selection of relevant 
features. Also, it helps with compression and resizing of the image. The 
edges are detected by determining the intensity gradient function which 
focuses on the local maxima and minima of the image. A smoothing 
process is used to blur an image to minimize unwanted noise. The area 
where the highest level of gradient exists is determined by utilizing the 
non-maxima suppression methodology (Joshi et al., 2022).

A deep learning framework has been optimized to work with a sensor 
system, operated with smart phones, called Rice Bios (Joshi et al., 2022). 
This system aims to reduce the need for training, decrease computa-
tional time and minimize data storage. It is a user-friendly, quick, and 
accurate sensing system which identifies biotic stress in crops. The 
diagnosis of stress-inducing conditions in crops by continuous moni-
toring of the field has made farmers aware of the need to take prompt 
action to mitigate such problems with their crops to help in maintaining 
the gross productivity of the farm. This system helps farmers predict the 
current state of the rice crop by identifying the disease and classifying 
the crop as either healthy or diseased. The smart phone shows whether 
disease is present, and whether it is bacterial or fungal, alerting the 
farmer to take quick remedial actions, as shown in Fig. 5 (Joshi et al., 
2022).

To begin, an RGB image is captured with dimensions 256×256×3 
(height x width x number of channels). The ideal situation for the image 
is no background noise, which is achieved by minimizing the distance at 

Fig. 4. Layer architecture of CNN.
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regular angles and maintaining ideal light conditions. The enhancement 
of the image of an infected leaf is achieved by using RGB (red, green, 
blue), HSV and CIELAB color space values to eliminate unwanted fea-
tures and noise in the background of the image. The pixel intensity is 
measured by using the variance formula given in Fig. 6. with the final 
output image dilated using the 2D Otsu adaptive threshold technique.

The convolutional layer integrates the features in the image which 
are of low quality, such as colors, gradient orientation, and edges. The 
primary layers extract the high-level features such as leaf texture, and 
color coding in the infected portion of the leaf. Subsequently, further 
layers extract the low-level features from the input image. The input 
image is fitted over a kernel matrix to ensure correct functioning of the 
convolutional operation, a straight forward propagation using Eq. (6): 

q(k)
ij =

∑m

i=1

∑n

j=1
Wk

r y(i+ r)(j+ h) + b (6) 

where qij includes the sum of weight bias b and product of Wk
r y, and 

y(i+ r) (j+n) is the propagation path and the input features (Haridasan 
et al., 2023).

The features of the input image are extracted automatically, thus 
avoiding the complex processing procedures of disease detection in 
plants using a traditional approach. CNN is the best model for image 
processing, with an accuracy rate of 93.5 % over fully connected multi- 
structured networks when used for classification purposes (Tejaswini 
et al., 2022).

2.3. Pest management using artificial intelligence

Pests are one of the main threats to paddy crop production. Farmers 
across the country face huge losses every year from reductions in quality 
and quantity of rice due to pest attack in their fields (Yao et al., 2020). In 
the past, farmers have continuously monitored their crops manually 
which is a tedious and labor-intensive process. It is a very difficult task 
for farmers to protect their crops from pests during and even after 

production. Pesticides are mainly used to control the number of pests in 
the field. Conventionally, sticky traps were used to trap insects, which 
were then identified and counted manually in laboratories. Finally, a 
targeted pesticide could be produced to kill a specific pest in the field 
(Yao et al., 2012). Eventually, such a process became significantly 
error-prone, taking up a good deal of time due to the inaccurate 
assessment of the pests present in the rice crop field. As a result, the 
chances of incorrect detection of the pesticide were also common thus 
causing null effect to the pest in the paddy field. Machine learning and 
CNN have been used to create a much easier, faster and more efficient 
method of detection and identification, by using image processing. This 
combination of techniques is one of the most promising of all the deep 
learning techniques, providing end-to-end learning and input image 
processing without any prior knowledge (Koshariya et al., 2023).

The equations used to create such a CNN are as follows (Koshariya 
et al., 2023): 

Yj = f(wj ∗ x) (7) 

where Yj = Feature map y (jth output) f = Non-linear function

w = Jth Feature map
j = Convolutional operator
x = Input image

The pool layer reduces the feature space resolution for optimizing 
high input distortion. It passes the average input image value to the next 
image. The max pool value is passed to the next layer. 

Yjik = (p, q) ∈ Rmax
ik Xjpq (8) 

where Yjik = jth feature map

xjpq = Elements at point (p, q)
Rik = Field at location (i,k).

Fig. 5. Categorization of rice leaf disease using neural network.

Fig. 6. Image processing using CNN operations.
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The connected layer translates the output of the convolutional and 
pool layers, and applies a high-level reasoning function. In the past, the 
operator Softmax was used for resolving the classification problems in 
deep CNN but a SVM method is now frequently used as it produces more 
accurate, faster results. However, this method carries a high computa-
tional cost, which is a problem that can be solved by using a global 
average pool layer.

The insect light trap system was used before the use of sticky traps. It 
takes images of more than one insect and their features from top to 
bottom of the trap by using more than one camera. It is based on ma-
chine vision, comprising a cloud server and client platform such as a 
computer or mobile phone. It initially traps, kills, or releases insects by 
taking pictures and saving them on the server. The comparison uses 
approximately six color features, 18 shape features, and 54 texture 
features from a single image of each insect. A total of 156 features 
comprising images from the top to the bottom of the trap are analyzed 
and further used for training and testing of the SVM classifier. However, 
there is a major problem with the selection of just targeted insects and 
thus the results are inaccurate. An automated system using image pro-
cessing and AI has been developed to identify and count the Brown Plant 
Hopper (BPH) (Nasser Shah et al., 2019) present in a paddy field. It 
comprises image capture, image distortion, feature extraction, object 
segmentation and detection. For image capture, an image was first taken 
of the sticky traps by attracting insects to a light for about 4 h to avoid 
multiple insect collection and trapping only those insects with a similar 
size to BPH. A rectangular image of approximately 2490×1800 pixels 
was captured after 4 h and saved in JPG format. For image distortion, 
the image data are changed by using a transformation from RGB color to 
the HSI model, which is a color model based on human color perception. 
Each color in an image is defined in terms of Red (R), Green (G), Blue 
(B), hue (H), saturation (S) and intensity (I).

The HSI model is created from the RGB color model using Eqs. (9)–
(11), as given in Fig. 7: 

H = cos− 1

(
[1/2(R − G) + (R − B)]

[
(R − G)2

+ (R − B)(G − B)1
/

2
]

)

(9) 

S =
1 − min(R,G,B)

1
(10) 

I =
(R + G + B)

1
(11) 

Image segmentation is a crucial step as it enables counting of insects. 
It processes the image by separating the objects from the background.

The k-mean clustering classification is much more accurately based 
on features extracted between the edge and background, and the fore-
ground/background ratio and their difference. The k-mean algorithm is 
based on k number classes that are generated after choosing a center k 
cluster either randomly or heuristically, assigning a pixel value to the 
image and recomputing the cluster center. The undesired regions in the 
images are known as noise, which is variation in brightness or color 
data. Most noise appears much smaller than the target object and can be 
eliminated using appropriate filters. Image linearization (Liundi et al., 
2019) converts the image of the BPH to a binary black and white image 
which has brightness as two levels, 0 and 1. Smaller unwanted objects 
are eliminated when their pixel values are less than the standard set 
pixel value. Additionally, image feature extraction identifies objects and 
determines their features dependent on color, texture, size, and 
morphology thus finding the type of insect. Insect detection and 
counting in an image is achieved using the kNN classification method.

2.4. Identification of fungal and bacterial infections in rice using a neural 
network

Fungal and bacterial diseases such as rice blast, bacterial leaf blight, 
sheath rot of rice, potato late blight and gray tomato mold are some of 
the more common fungal diseases that have been problematic for paddy 
crop production, as shown in Table 2. They cause immense damage, 
hindering the growth of rice and destroying productivity (Liundi et al., 
2019). Some of the common fungal pathogens are Magnaportheoryzae, 
Botrytis cinerea, Phytophthora infestans and Sclerotinia sclertiorum. They 
are responsible for a significant reduction in rice production of 40–50 %. 
Identification of a fungal disease depends on first detecting the deteri-
orating health of the plant. However, since different fungal infections 
have the same symptoms, and can co-exist in the same field, it can be 
difficult to identify which fungal infection is present (Tejaswini et al., 
2022; Haridasan et al., 2023).

The most problematic disease of rice is false smut, caused by the 
fungus Ustillaginoidea virens. The pathogen is small and can be observed 
between the glumes. It spreads to be >1 cm in diameter, encircling the 
plants’ florets and releasing toxins which are dangerous to humans and 
livestock. Ultimately, this pathogen destroys the rice crop completely. 
Conventionally, detection of fungal disease was completely based on 
three methods namely, the observation method, symptom induction or 

Fig. 7. Detection and counting of pests in paddy fields.
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determining pathogen type at a laboratory scale (Arinichev et al., 2021). 
When using the observation method, incorrect and inappropriate dis-
ease detection results are likely. Due to many diseases having similar 
symptoms, the identification of disease is often incorrect. On the other 
hand, laboratory identification using pathogen cultivation is a very 
tedious process and it always requires highly skilled professions who are 
not available in smaller laboratories (Ouhami et al., 2021). The classic 
approaches followed by scientists to identify fungal diseases include 
optical techniques, microscopic techniques, biological approaches, 
culturing methods and genetic approaches as given in Fig. 8 (Ramesh 
and Vydeki, 2019). The basic steps behind all these approaches are first 
to take a picture of an affected region using cameras or scanners, 
isolating the affected section from the background, then analyzing the 
difference in the image by comparing its features after extraction of 
colors, textures, and shapes with the help of classification techniques 
such as neural networks, SVM, and k-NN (Haridasan et al., 2023).

The optical approach helps in detecting the physical symptoms of the 
disease and how much it has affected the plant. The microscopic 

technique analyzes the changes in the infected tissue of the plant and 
identifies the causative agent of that pathogen and its sporulation cycle. 
The biological approach uses AI to predict the degree and range of 
damage to the affected tissue as a percentage. The culturing method 
involves the isolation of fungus in a nutrient medium and observation of 
its external and cultural characteristics and pattern of growth. The ge-
netic approach uses molecular genetics techniques such as polymerase 
chain reaction (PCR) for diagnosing the fungi. By combining PCR with 
the ANN method (Liu et al., 2008), the level of infection in rice panicles 
can be determined, the main objective being to determine the different 
infection levels in diseased rice panicles (Liu et al., 2008). In relation to 
artificial neural networks, learning vector quantization (LVQ) is a su-
pervised learning technique, based on vector quantization differentiate 
variable input vectors. It also consists of input, hidden and output layers 
used to compare normal, mild and serious infection levels in the rice 
panicles (Liu et al., 2022). The input layer data is interpreted using the 
hyperspectral data processing technique. Trained weights having a 
mean square error < 0.01 are optimized in the hidden layer, with the 

Table 2 
Details of various fungal and bacterial diseases in paddy leaves.

Affected Leaf Scientific Name of 
Disease

Common name 
of Disease

Affected area

Cochliobolusmiyabeanus Brown spot Fungal disease affects mainly the leaves, leaf sheath, panicle branches, 
glumes and spikelet

Xanthomonas oryzae Bacterial leaf 
blight

This type of bacteria can survive the winter in plant detritus, but cannot 
endure a long time in just soil or water. These sores are frequently caused by 
insects. *

Magnaporthe grisea Rice Blast The crop is afflicted by a fungus. This disease affects rice kernels, leaves, 
collars, nodes, necks, panicle pieces, and leaf sheaths.

Sarocladiumoryzae Sheath rot of 
rice

Rotting occurs on the leaf sheath that encloses the young panicles. Infected 
panicles and grains are sterile, shriveled, unfilled and discolored.
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output layer node producing the final categorization of infection as 
normal, mild or serious.

Magnaportheoryzae (Galhano and Talbot, 2011) is another serious 
fungal disease-causing rice blast in a paddy crop. The physical symptoms 
that appear are lesions on leaves, stems, peduncle, panicle, seeds and 
roots. One of the most common signs is a diamond-shaped lesion on the 
affected leaves that are brown in color initially, but become black at a 
later stage. Sometimes, the affected leaves form spores called conidia on 
them. The branches become brittle and are easy to break off. The pedicle 
on the infected leaves do not produce seeds. It is a highly labor-intensive 
and tedious process to monitor and detect rice blast infection in rice 
fields for the farmers. However, AI and the Internet of Things can be 
combined to detect this disease efficiently. The spot color on plant parts 
can be detected using deep learning CNNs (Sethy et al., 2020b). The 
neural network approach uses hyperspectral data for detecting plant 
disease. Using an AI-based model and an IoT platform, AgriTalk created 
an application called Rice Talk, which used sensors for resolving field 
issues. They used non-image data for training, using a real-time AI 
mechanism integrated into an IoT platform (Sharma et al., 2020).

The application uses weather information from the central bureau of 
weather through software, and other real-time data, such as tempera-
ture, humidity, barometric pressure sensor and rainfall. from micro 
weather stations using AgriTalk sensors (Chen et al., 2020a). The Agri-
Talk server comprises the AgriTalk Engine, which inputs the information 
from weather stations, and the AgriTalk graphical user interface 

(AgriGUI), which provides the user with an AI-based IoT platform to 
create projects. The input data are sent to computer or smartphone and 
can be accessed on the web alert dashboard after being completely 
processed by the AgriTalk Engine. The AI training model also receives its 
input for labeling from an input device called Infection. The AI AgriTalk 
weather station gives the users real-time features, where a farmer can 
also check for diseases such as rice blast in its training feature. The web 
dashboard has an alert system which provides real-time information 
about the sensor outputs which is easily accessible on the smartphones. 
The application displays icons for showing barometric pressure 
(BARP-I), checking temperature (Temp-I), showing relative humidity 
(Humidity-I) and checking the growth rate of spore germination 
(Spore-I). The AgriTalk Engine is also connected to two cyber devices, 
namely the DataBank cyber device and ML cyber device. The DataBank 
cyber device receives data from the weather input device for 
pre-processing, while the ML cyber device helps the AI models to pro-
duce outputs for the alert system in the web-based dashboard available 
on smartphones as shown in Fig. 9 (Yao et al., 2012; Koshariya et al., 
2023).

2.5. Weed detection in paddy fields using artificial intelligence

Weeds are one of the most important factors that reduce rice pro-
duction. They not only increase costs but also affect the quality of the 
rice crop. They are undesired, fertile, competitive and deplete the crop 

Fig. 8. Classic methods of identification and classification of fungal disease in rice.
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environment by growing in every field, thus they are also known as a 
plant that grows irrespective of time and place. Weeds affect crops at any 
growing stage by competing for water, sunlight and nutrients (Aggarwal 
et al., 2022; Kamath et al., 2020), thus threatening their productivity. 
Hence, it is a main biotic constraint whose early control is a major need 
which is estimated to prevent the losses of rice crop up to 34 % and limits 
the use of chemicals and prevent from the pest attacks and diseases.

In the past, weeds were managed by cultural or non-chemical 
methods (Dinesh Kumar et al., 2021) such as hand-pulling and weed-
ing, puddling and flooding using manual labor which, ultimately, used 
to take about 7 to 10 days, depending on the area of the field, climatic 
conditions and workforce, to complete (Zhang, 2003). More recently, 
the time-consuming labor-intensive non-chemical manual method (P 
and Eagan, 2014) of weed control shifted to the use of chemicals. 
However, chemical methods significantly affect the soil’s properties 
such as pH, salinity, and the macro and micro nutrient level. They also 
affect the growth and grade of the rice crop in the field because of the 
herbicides sprayed (Partel et al., 2019) on to the crops directly over the 
entire field without understanding the distribution of weeds 
(Shibayama, 2001). It was an expensive approach but, more than that, it 

caused severe environmental pollution and risk to human life.
The combination of machine learning and digital images of weeds 

helps in recognizing the precise locations of weeds present in the paddy 
field with much higher accuracy (Cheng and Matson, 2015). Different 
weed detection models based on deep learning algorithms can apply the 
selection criteria that help in discrimination between the rice crops and 
the unwanted weeds based on feature detection and extraction from the 
image. Images of weeds can be collected in the paddy field by using 
cameras, polarization spectroscopy, hand-held spectroradiometers and 
satellites. An Unmanned Aerial Vehicle (UAV) is the most common 
research platform because of its availability, high quality data transfer 
and easy processing used to identify weeds in the rice field crop. UAVs 
use different types of data collection sensors such as Red Blue Green 
(RGB), multispectral and hyperspectral sensors (Eugenio et al., 2023). 
The RGB sensor is most commonly available and utilized in commercial 
cameras. It produces high-quality images, is low cost and has easy 
operational processes for object recognition, disease detection and 
phenology. optimizing machine learning (Barrero and Perdomo, 2018). 
A multispectral sensor is mainly used because it detects multiple RGB 
bands. The various multispectral images are captured and processed for 

Fig. 9. Functioning of AgriTalk using web-based server.
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input and output errors and unidentified data by using radiometric and 
atmospheric correction (Roslim et al., 2021). The sensor can be com-
bined with machine learning algorithms for Site-Specific Weed Man-
agement (SSWM). The drawback of these sensors is that they are 
inefficient at producing a good quality high-resolution spectral images 
and handling overlapping images.

The third sensor is the hyperspectral sensor (Sulaiman et al., 2022) 
which detects visible light but split across many more bands than just 
red, green and blue. It has a variable number of radiometric spectral 
bands, ranging from visible to infrared or sometimes microwave. It is 
much more complex than a RGB or multispectral sensor because of 
radiometric and atmospheric correction. It comprises of different image 
sizes and its data storage and quality assessment of image.

Image masking consist of the creating a binary mask to isolate spe-
cific regions of interest within the hyperspectral image, facilitating 
focused analysis and reducing computational complexity. A binary mask 
is essentially an image where the pixels of interest are marked with a 
value of 1 (white), and all other pixels are marked with a value of 
0 (black). This binary information helps in filtering out irrelevant data, 
enabling more accurate and efficient processing of the hyperspectral 
data. By applying a mask, we can, for instance, concentrate solely on a 
crop field within a larger image, ignoring surrounding areas like roads or 
buildings. This targeted approach not only enhances the precision of 
subsequent analyses, such as vegetation health monitoring or soil 
property assessment but also significantly reduces the data volume to be 
processed. A masking process is carried out after that image is converted 
into a format such as an RGB image. Binary information can then be 
extracted by converting the three component RGB image into a gray 
scale. It eliminates the unwanted background from the foreground ob-
ject and reduces unwanted data in the image. The weeds and crops are 
classified using machine learning algorithms such as SVM, KNN and USL 
based on parameters such as size, shape, and color. The machine 
learning algorithms identifies and discriminates between the weed and 
crop more precisely by optimizing a deep neural network (DNN) (Sen 
Debleena and Barnwal, 2020). Feature selection and extraction are 
carried out to classify the images with higher accuracy to identify fea-
tures such as shape, color, position and size (Kamath et al., 2020). The 
features that detect the weeds are categorized as spectral features, visual 
features, spatial features, and morphological features. Specifically, the 
color features and spectral features are mainly used when there is a 
significant difference in color between the weed and crop.

Overall, the sensors that were previously covered each have pros and 
cons that make them appropriate for a variety of uses. While multi-
spectral and RGB sensors provide more information, they only record a 
portion of the electromagnetic spectrum. Their main advantages are cost 
and simplicity of use, which makes them perfect for applications like 
vegetation assessment of health and agricultural surveillance that call 
for rapid and generic analysis. But their low spectrum resolution makes 
it difficult to distinguish between related elements. On the contrary, 
hyperspectral sensors record hundreds of consecutive spectral bands, 
providing fine-grained spectrum data capable of identifying even the 
smallest variations in the composition of the material. They are useful in 
applications like as ecological surveillance, precision agriculture, and 
mineral prospecting due to their excellent resolution of spectral infor-
mation. The drawbacks include their high price, intricacy, and massive 
data quantities, which call for a lot of processing power and knowledge. 
UAVs, offer flexibility and high spatial resolution. They may collect data 
from low-level locations by deploying a variety of sensors, including as 
RGB, multispectral, and hyperspectral ones. In situations like disaster 

response, precision farming, and structural inspection that need for 
regular, focused, and high-resolution data collecting over difficult or 
unreachable regions, they perform better than alternative approaches. 
The limits of UAVs include limited flying durations, regulatory re-
strictions, and weather sensitivity. UAVs, as opposed to manned or 
satellite aircraft, provide unmatched on-demand data collecting, but 
they have operational and logistical limitations that need to be 
addressed.

To obtain the green segment region and object part, and eliminate 
the soil background from the image, the following equation for the RGB 
third sensor is the hyperspectral sensor is used (Sohail et al., 2021): 

IPlant
(
XPixel,YPixel

)
= IG S (12) 

IPlant
(
XPixel,YPixel,G

)
− IGray

(
XPixel,YPixel

)
(13) 

where IPlant
(
XPixel,YPixel,G

)
represents the green segment region and 

IGray
(
XPixel,YPixel

)
denotes the rest of the background region.

To reduce the noise, a 3 × 3 filter mask is applied for median 
filtering, maintaining edges, and differentiating objects of interest with a 
specific threshold value. The threshold is estimated by using Otsu’s 
method of selecting the appropriate histogram according to the 
following equation (Sohail et al., 2021): 

Ibin(x, y) =
{

0, Imedian(x, y) < t
1, Imedian(x, y) ≥ t (14) 

Classification of the image is finally achieved using machine learning 
and deep learning algorithms to differentiate the weeds from the rice 
field by evaluating the accuracy assessment quality of the classified 
output image. The comparison of the classified pixels of the image with 
the ground truth pixel is carried out using a confusion matrix in terms of 
the producer accuracy and overall accuracy. The producer accuracy is 
defined as the probability of identifying a pixel accurately as class X 
where X is known as the ground truth class. The final calculation uses the 
following equation (Rosle et al., 2021): 

Producer accuracy =
caa

c.a
× 100% (15) 

where:caa = Element at a position aTh row and aTh column

c.a = Columns sums

Overall accuracy is defined as the total correctly identified percent-
age of pixels and is calculated by using (Gandhi et al., 2016): 

Overall accuracy =

∑U
a=1caa

Q
× 100% (16) 

where:

Q = Total number of pixels.
U = Total number of classes.

Weed detection accuracy is given by the area of observed weeds that 
intersect with areas of weeds detected by the algorithm divided by the 
area of observed weeds. This ratio is multiplied by 100 to give a per-
centage of area correctly identified as containing weeds. It can be 
calculated by using the following equation (Rosle et al., 2021):  

WdA (%) =
Area ofobserved weed objects intersecting Detected weed Objects × 100

Area ofObserved Weed
(17) 
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CNN is a well-used deep learning algorithm that can be used to 
identify the significant elements without the need for human assistance. 
This algorithm requires an input image structured such that its height 
(m) is equivalent to the width (m). Its depth (r) is called the channel 
number and, for an RGB image, is three.

The kernel filter for the convolutional layer is denoted by the letter k 
(n x n x q) where n is less than m, and q is less than or equal to r. The 
convolutional layer calculates the dot product between the input and 
weights by using (Rosle et al., 2021): 

hk = f
(

Wk ∗ x+ bk
)

(18) 

where:

hk = Feature maps in size (m – n – 1).
Wk = Weightage.
bk = Bias.

Deep learning can be used to classify weeds in paddy crop fields with 
a higher accuracy than suitable weed map (Tiwari et al., 2019). To 
accurately recognize weeds using deep learning algorithms, a large 
training dataset is required which contains data about weeds in a variety 
of environmental conditions. Once trained, such a system can achieve an 
accuracy of around 85–99 % detection of weeds in images of paddy crop 
fields (Bal and Kayaalp, 2021).

3. Application of artificial intelligence for predicting biotic 
stress in paddy crops

Biotic stress in paddy crops represents a major threat to their 
development and production. It is caused by various pathogens, pests 
and weeds and is a serious challenge for farmers and scientists as it can 
result in huge losses in crop production. The use of artificial intelligence, 
through sub-classes such as AI, has reduced the issues associated with 
identification, detection, and classification of diseases by using images 
of the affected parts of the rice plant. Multi-structured CNN models, such 
as VVG-16, VGG-19, Dense Net (Gandhi et al., 2016) and CNN classifiers 
such as SVM, back proportion neural network and k-NN, have been used 
for identification, diagnosis, and classification of diseases in paddy 
fields. Detection and classification of disease and the level of infection 
caused by the pathogens can be optimized and analyzed by using 
multi-layered neural networks (Al-Amin et al., 2019). Image datasets 

can be analyzed using variable image augmentation methods and cate-
gorization can be achieved by optimizing the training, validation, and 
testing processes for different CNN models (Kaundal et al., 2006). Smart 
agriculture in combination with AI can be used to create an application 
to detect and classify pests in paddy fields. The Line Bot application uses 
deep learning dataset training and testing processes with disease clas-
sification CNN models such as YOLOv3 to predict and diagnose a disease 
and its pathogen efficiently. Therefore, the application of AI helps in 
solving issues related to paddy crop diseases and, thus, in improving 
productivity.

3.1. Prediction of paddy cultivation using deep learning

Deep learning CNNs can be used for identification and classification 
of biotic stresses and diseases in paddy crop plants. The production of 
rice can be improved by using technologies such as machine learning, 
Big Data, and the Internet of Things to enhance productivity. Multi- 
layered CNNs (Chen et al., 2020b) with specific classifiers have been 
implemented to solve the multi-level problems associated with diag-
nosing biotic stress in paddy crops. There are various well-known CNN 
models that work well at recognizing, classifying and categorizing 
paddy crop stresses and their associated diseases, as shown in Fig. 10
(Anami et al., 2020; Sudar et al., 2022; Latif et al., 2022). SVM, Back 
proportion neural network (BPNN), K- nearest neighbor (k-NN) are CNN 
image classifiers (Atole and Park, 2018) that are used in CNN models for 
classification of objects in an image.

The average accuracy of every model has been found to be greater 
than 90 %.

The operation of CNN models is shown in Fig. 11 (Islam et al., 
2021b). First, image datasets are obtained by capturing images of the 
rice field using high-resolution cameras during daytime. Images are 
enhanced using multiple augmentation methods such as scaling, 
shearing, and translation. The image dataset comprises three 
sub-datasets: training, validation, and testing. Finally, they are resized 
to reduce the number of pixels to optimize computational time.

Transfer learning models are used for improving the use of CNN to 
process image datasets. These are easily editable using MathWorks’ 
Deep Network Designer application. VGG-16, Inception-V3, ResNet-50, 
and DenseNet-128 are some of the most common models that have the 
greatest potential for image processing since they are pre-trained. 
Testing the CNN models (Lu et al., 2017) involves using a paddy crop 
stress image dataset to produce batches of images to use as a training 

Fig. 10. Average recognition accuracy of different CNN models.
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dataset. After training, a validation process of comparing the outputs 
with known images helps determine which models perform best. Pre-
cision, updating and F1 score evaluation matrices are formed which are 
used for comparing the performance of all CNN models (Bhupendra 
et al., 2022). Thus, these models were compared to find highest average 
percentage for identification, classification, and categorization of paddy 
crops. The highest average accuracy of all the models was 92.61 %. The 
DenseNet CNN model showed the highest classification accuracy at 
99.75 % so can be used to make a much-improved model for classifi-
cation of diseases in images of paddy plants (Vellaichamy et al., 2021).

3.2. Application-based model for diagnosing paddy crop disease

There is lack of technological resources that helps in predicting the 
threats, pests and leaf diseases in paddy crop production (Firdaus et al., 
2020) for the farmers and experts. Thus, AI-based application helps in 
diagnosing paddy plant disease that are designed to provide real time 
day to day monitoring information about infected paddy crop 
(Poornappriya and Gopinath, 2020). The Line Bot application is made 
where an automatic chatbot is designed in collaboration with LINE ac-
count. Chatbot is designed as an automatic IoT robot that perform as a 
communication tool partner for the other person (Jain et al., 2022). The 
disease diagnosing engines are the main center hub that receives and 
store the information shared by the LINE Bot to it and further image 
processing is performed inside it and thus finally detects the disease 
objects in the paddy field images (Temniranrat et al., 2021). This 
application system is easy and practical in use even for the rice farmers 
to find out the area which is infected in the paddy leaves since, it uses 
images taken from the rice field directly using mobile LINE application. 
Starting with the image collection of infected rice paddy fields by 
clicking photographs from the fields, where physical symptoms were 
easily observed in the images (Chandolikar et al., 2022).

It was investigated the UAV multispectral remote sensing images and 
spatial-context-attention network (SCANet) to classify the nematode 
disease in pine with high precision and accuracy. SCANet achieved an 
overall accuracy of 79 % and enhanced capability of detection system of 
measurement over other methods (Qin et al., 2023). Furthermore Ma 
et al. (Zhu et al., 2023) employed the UAV equipped with cameras of 
multispectral and visible that united with YOLOv5 algorithm optimized 
for high-speed and high-accuracy detection. The model illustrates a 
precision of 98.1 % and accuracy of 97.3 %, showing it highly effective 
for detection infected plants. AI detects nematode diseases through a 
combination of remote sensing technologies, machine learning, and 
deep learning algorithms. Firstly, UAVs (drones) equipped with multi-
spectral and visible light cameras capture high-resolution images of the 
forest canopy. Multispectral imaging involves capturing light in multiple 
wavelengths, which aids to detect the subtle changes in vegetation 

health that are indicative of disease. Then images are preprocessed to 
enhance the quality and extract relevant features. Vegetation indices 
like NDVI (Normalized Difference Vegetation Index) and NDRE 
(Normalized Difference Red Edge Index) are computed to highlight 
differences between healthy and infected trees based on their reflectance 
properties in different spectral bands. Then, deep learning models such 
as YOLO, SCANet, and GoogLeNet are trained using labeled datasets. 
These datasets consist of images of both healthy and infected trees, 
annotated by experts. The models learn to identify the patterns and 
landscapes related with nematode infestation (Qin et al., 2023). To 
improve feature extraction, advanced techniques like 
spatial-context-attention mechanisms, Convolutional Block Attention 
Modules (CBAM), and Coordinate Attention (CA) mechanisms can be 
employed. These methods help the model focus on relevant areas of the 
image and enhance detection accuracy for small-scale infestations. In 
further stage, models are assessed employing different metrics mainly 
precision, recall, and overall accuracy. Precision measures the propor-
tion of true positive detections among all positive detections made by 
the model, while recall measures the proportion of true positives iden-
tified out of all actual positives. High precision and recall indicate 
effective detection capability. Once trained, these models can be 
deployed in UAVs for real-time monitoring of forests. The UAVs scan 
large areas, and the models process the images to detect and classify 
infected trees, facilitating timely intervention and control measures. The 
application steps as follows: preparation of training data is the next step 
and comprises three stages namely, training, validation and testing. The 
training and validation datasets together teach the deep learning model, 
while the testing dataset is used to evaluate its output. The algorithms 
used for training include Faster R-CNN, RetinaNet, YOLOv3and 
MaskR-CNN (Nawaz et al., 2022). These can be used to train a CNN to 
classify paddy crop diseases such as blast, blight, brown spot and narrow 
brown spot, bacterial leaf streak and rice stunt virus. The accuracy of 
object detection and location can be compared between deep learning 
models. Results can be categorized as either True Positive (TP), False 
Positive (FP), True Negative (TN) or False Negative (FN). The final 
precision (P) is calculated using the formula (Altinbilek and Kizil, 2022) 
: 

P=TP / (TP+ FP)

The CNN YOLOv3 can be used to predict limiting bounding boxes of 
objects and class probabilities using only one deep learning neural 
network with multiple enlarged layers in a single evaluation (Yumang 
et al., 2022). It can identify objects much faster and thus makes it more 
applicable for real-time applications. It utilizes binary cross-entropy for 
determination of objects class and mean squared errors bounding box 
regression. To use the Line Bot system, a user first must set up an official 
account to allow communication with the Line Bot platform. This gives 

Fig. 11. Functioning of variable CNN models.
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them access to online groups that specialize in aspects of the Line Bot 
application. For example, there is a rice disease group. Images from 
users are shared to an object prediction deployment GPU server. The 
final output image contains objects that are labeled with their classifi-
cation and prediction confidence, and is sent as a detection result image 
to the LINE Bot server. The LINE Bot server shares the predicted result 
images and text using the LINE Messaging API and LINE’s service plat-
form to the LINE Bot group and every user. Feedback logs are saved to 
use as data to improve the detection model. Thus, a smart 
application-based model using an AI server system and the Internet of 
Things together can easily, quickly, and much more accurately diagnose 
disease and its stages of infection in paddy crop plants.

3.2.1. Data preparation and training
For initiation of any systems, data preparation is the first stage which 

needs a lot of care and systems. The process of detection of biotic stress 
starts with the collection of images from infected rice fields, where 
physical symptoms are easily detected in the pictures captured directly 
from the grounds using the mobile LINE application. These descriptions 
are indispensable for structure a complete dataset to train AI models 
efficiently. Deep learning algorithms, such as YOLOv3, Faster R-CNN, 
RetinaNet, and Mask R-CNN, are also used in the training phase to 
categorize several paddy diseases that affect crops, such as rice stunting 
virus, bacterial leaf streak, blast, blight, brown spot, and narrower 
brown spot. These models are trained on labeled datasets, which are 
expert-annotated photos of both healthy and diseased trees. Using 
cutting-edge methods like spatial-context-attention mechanisms, Con-
volutional Block Attention Modules (CBAM), and Coordinate Attention 
(CA) strategies to improve feature extraction, the models are trained to 
recognize patterns and landscapes linked to nematode diseases.

3.2.2. Validation and testing
In the validation step, the model is adjusted and its training perfor-

mance is evaluated using a subset of the training dataset. This guaran-
tees the model’s good generalization to fresh, untested data. Measures 
like recall, precision, and total accuracy are used to assess how well the 
model works. Recall indicates the percentage of genuine positives found 
out of all real positives, whereas precision measures the percentage of 
true positive identifications among all positive detections produced by 
the model (Altinbilek and Kizil, 2022). Lastly, the output of the model 
that was trained is assessed using the testing dataset. After comparing 
the models’ precision in locating and detecting objects, the outcomes are 
divided into four categories: True Positive (TP), False Positive (FP), True 
Negative (TN), and False Negative (FN) (Yumang et al., 2022). For 
example, in a single assessment, YOLOv3 may use a single deep learning 
neural network with numerous layers to forecast class probabilities and 
restricting bounding boxes of objects. To calculate the ultimate preci-
sion, use the formula. After testing, these models may be used in un-
manned aerial vehicles (UAVs) to track forests in actual time. The 
models analyze the photos taken by the UAVs to identify and categorize 
sick trees, which allows for prompt intervention and management 
actions.

3.3. Challenges and opportunities related to using AI for biotic stress 
analysis

As discussed previously, rice is a basic food consumed around the 
world and the high demand for it presents major challenges for its 
production. Biotic stress negatively affects the growth and production of 
paddy crops. Developing an AI system which can accurately recognize 
paddy crop diseases caused by the fungi, bacteria, viruses, pests is a 
significant challenge. New data must consider the fact that the growth of 
paddy crops is related to parameters such as the cause of disease, the 
weather conditions, and its effects on the crop field. Training AI models 
to predict, analyze, and handle data with precision is highly time- 
consuming, complex, and expensive. It requires highly trained people 

who can easily help in identification, classification, and diagnosis of rice 
crop diseases. Also, farmers have trust issues with technological ad-
vancements, limited computational access, poor internet connectivity 
and are hesitant to use such applications. These models face a challenge 
from needing to be able to predict new variant threats to crops and their 
adaption. Sharing the image datasets for other purposes can raise pri-
vacy concerns. The inaccuracy and error in the results can be due to 
inappropriate processing of AI models. There is potential for such ap-
plications to help improve management, increase yield and reduce the 
environment stress in the paddy crop fields. Using the IoT (Joshi et al., 
2022) and AI together can produce an application which accurately and 
quickly helps in identification, categorization, and analysis of biotic 
stress in rice crops. Thus, AI helps in the prediction of paddy crop dis-
eases much faster and more accurately, increasing rice crop production.

4. Conclusions

Rice is the most common food grain produced and consumed all over 
the world by a large section of the population. The protection of paddy 
fields from attack by various pathogens and insects is of major concern. 
Such crops are prone to diseases from these causative agents which 
significantly reduce crop growth, development, and production poten-
tial. There is a need for an appropriate application for the farmers, and 
AI is one possible solution. In the past, detection of diseases in a paddy 
crop was mainly based on observations and monitoring of the symptoms, 
which was an inaccurate and time-consuming process. Deep learning, 
CNN, k-clustering, ANN, and SVM are various sub-fields of AI which can 
be used to identify and classify different paddy crop diseases. Deep 
learning is the most popular AI sub-class. It optimizes multi-layered 
structure processing of the image. Biotic stress in paddy crops can be 
detected, identified, and categorized using different CNN models such as 
VGG-16, VGG-19, DenseNet, and AlexNet. Different image classifiers, 
such as SVM, k- nearest neighbor (k-NN) and BPNN, all work with the 
CNN models. DenseNet was shown to have an accuracy of 99.75 %, 
(highest among all CNN models), when identified and classified paddy 
crop diseases. CNNs and the IoT can be used for a disease detection and 
classification system, where images captured by cameras, and drones 
can be manipulated and analyzed by a deep learning application that 
extracts features of the image and identifies diseased paddy crops. By 
optimizing a multi-layered network at input, hidden and output layer 
stages, the input images obtained can be processed by a multi-structured 
CNN. Training, validation, and testing sets use data from the input 
image. Machine learning involves using data from such images to 
improve the various CNN model, and improve their efficiency and ac-
curacy. Thus, using AI has made the process of identification and clas-
sification of paddy crop diseases much faster, easier, user-friendly, and 
highly efficient.
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