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Abstract

Long non-coding RNAs (lncRNAs) have emerged as important regulators of many bio-

logical processes, although their regulatory roles remain poorly characterized in

woody plants, especially in gymnosperms. A major challenge of working with

lncRNAs is to assign functional annotations, since they have a low coding potential

and low cross-species conservation.

We utilised an existing RNA-Sequencing resource and performed short RNA

sequencing of somatic embryogenesis developmental stages in Norway spruce (Picea

abies L. Karst). We implemented a pipeline to identify lncRNAs located within the

intergenic space (lincRNAs) and generated a co-expression network including protein

coding, lincRNA and miRNA genes.

To assign putative functional annotation, we employed a guilt-by-association

approach using the co-expression network and integrated these results with annota-

tion assigned using semantic similarity and co-expression. Moreover, we evaluated

the relationship between lincRNAs and miRNAs, and identified which lincRNAs are

conserved in other species. We identified lincRNAs with clear evidence of differential

expression during somatic embryogenesis and used network connectivity to identify

those with the greatest regulatory potential.

This work provides the most comprehensive view of lincRNAs in Norway spruce and is

the first study to perform global identification of lincRNAs during somatic embryogen-

esis in conifers. The data have been integrated into the expression visualisation tools

at the PlantGenIE.org web resource to enable easy access to the community. This will

facilitate the use of the data to address novel questions about the role of lincRNAs in

the regulation of embryogenesis and facilitate future comparative genomics studies.

1 | INTRODUCTION

Widespread adoption of RNA-Sequencing (RNA-Seq) and the ability

to generate sequencing libraries at deep coverage for increasingly

lower costs has revolutionised understanding of RNA in the past

decade (Stark et al., 2019; Szakonyi et al., 2019; Tang and

Tang, 2019; Zhao et al., 2019; Micheel et al., 2021; Rich-Griffin

et al., 2019). This has included the discovery of previously unknown
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classes of RNA as well as an appreciation of how much more diverse

existing, known classes of RNA can be (Santer et al., 2019; Szakonyi

and Duque, 2018; Bedre et al., 2019; Zhang et al., 2020; Micheel

et al., 2021). Among the newly defined classes of RNA are various

categories of long non-coding RNA (lncRNAs), which can either

overlap with protein-coding gene regions in sense or antisense or

can be entirely intergenic (lincRNAs). The suite of known lncRNAs

now includes those derived from introns (ilncRNAs) or natural anti-

sense transcripts (NATS), which can partially or completely span the

protein-coding region of genes, and circular non-coding RNAs

(ciRNAs).

It is common for an RNA-Seq analysis to identify hundreds to

many thousands of putative lncRNAs. A major challenge in genomics

is, therefore, to determine the signal from noise and to assign biologi-

cal function to the genuine lncRNA transcripts. Unlike protein-coding

genes, where the presence of defined protein domains or similarity to

previously annotated proteins can indicate function, there is currently

no such information for lncRNAs, rendering them an enigmatic class

of RNA. Indeed, lncRNAs tend to have low cross-species homology

and conservation (Deng et al., 2018; Ma et al., 2019; Jha et al., 2020)

with little selective constraint and weak selection (positive or nega-

tive/purifying)(Palazzo and Koonin, 2020), suggesting that they are

often evolutionarily young, representing a highly dynamic pool of

transcripts with a diverse range of regulatory potential. These charac-

teristics, alongside the failure to identify phenotypic effects resulting

from disrupted expression for many lncRNAs (Wierzbicki et al., 2021),

has raised questions about their biological significance (Palazzo

and Koonin, 2020) or the validity of many reported lncRNAs (Lee

et al., 2019). These challenges make assigning functional descriptions

to lncRNAs challenging, particularly as analyses commonly identify

large numbers of putative lncRNAs, making it hard to prioritise which

putative lncRNA genes should be functionally characterised. Despite

these challenges, there are now well-validated examples of function-

ally important lncRNAs, including COOLAIR (Swiezewski et al., 2009)

and COLDAIR, which both affect flowering time via their effects on

the expression of Flowering Locus C (FLC) in Arabidopsis thaliana. There

are also validated examples where the transcription of a lncRNA

(rather than the specific sequence of that transcript) represents the

functional mechanism via cis-acting effects on the transcription of a

proximal protein coding gene (Kindgren et al., 2018; Ali and

Grote, 2020), a functional mechanism that inherently results in low

selective constraint of the RNA transcript sequence but positional

constraint for transcriptional activity. As such, functional validation of

the biological mode of action for lncRNAs can be challenging and

can require non-conventional approaches rather than relying on

naïve knock-down/out or over-expression assays (Wang and

Chekanova, 2017; Wierzbicki et al., 2021).

To date, several genetic and epigenetic regulatory mechanisms

have been assigned to lncRNAs, including cis effects on transcrip-

tion of proximal genes or via a range of trans-acting effects, such as

functioning as micro RNA (miRNA) precursors, as endogenous target

mimics (eTM) of miRNAs (also referred to as sponges), inducing

RNA directed DNA Methylation (RdDM) and directing histone

modifications (Liu et al., 2015; Wang and Chekanova, 2017; Lucero

et al., 2020; Chen et al., 2020). Some lncRNAs can act to form RNA-

protein scaffolds, which can either interact with a DNA element to

guide the RNA-protein complex to target loci or can act indepen-

dently of DNA to form macromolecular complexes (Chen

et al., 2020). While the majority of lncRNAs are transcribed by RNA

polymerase II (Pol II), those involved in the canonical RdDM path-

way are transcribed by Pol IV and V, functioning to produce 24 nt

short RNAs (sRNAs) and to facilitate DNA methylation (Pol V)

directed by the 24 nt sRNAs. Although lncRNAs are not typically

conserved across species, there are consistent characteristics,

including lower average expression levels than protein-coding genes

and often highly specific expression domains (Wang and

Chekanova, 2017; Budak et al., 2020; Sang et al., 2021). There has

been less consideration of whether the presence of a lncRNA at a

certain physical position of a genome, for example, in relation to a

protein-coding gene, or within a co-expression network, for exam-

ple, co-expression with a miRNA, is more consistently conserved

even when sequence homology and conservation is lacking.

LncRNAs have been identified in a range of sample types and

conditions, including during developmental processes (Amor

et al., 2009; Ariel et al., 2014; Jiang et al., 2019; Yan et al., 2020),

abiotic and biotic stress responses (Qin et al., 2017; Seo

et al., 2017; Bazin and Bailey-Serres, 2015; Hou et al., 2020;

Zamora-Ballesteros et al., 2022; Ma et al., 2019; Jha et al., 2020)

from a diverse range of annual herbaceous plants through to

woody tree angiosperms (Tu et al., 2021; Xiao et al., 2020; Lemos

et al., 2020; Patturaj et al., 2022; Yan et al., 2020) and gymno-

sperms (Nystedt et al., 2013; Wang et al., 2018; Jiang et al., 2019;

Wu et al., 2019; Zamora-Ballesteros et al., 2022). However, exceed-

ingly few reported putative lncRNAs have been functionally vali-

dated, and few studies have attempted to assign functional

descriptions to identified putative lncRNAs. There remains extensive

uncertainty as to how many reported lncRNAs represent transcrip-

tional noise with no accepted method or established best practice

for defining a bona fide lncRNA. One useful and commonly applied

method of assigning functional descriptors to unannotated protein-

coding genes is the use of guilt-by-association evidence derived

from co-expression networks (Depuydt and Vandepoele, 2021). This

approach can be used to associate genes with functional descrip-

tions that are common to a set of co-expressed protein-coding genes

and to assign lncRNAs within biological categorisations such as Gene

Ontology. While a number of studies have taken this guilt-

by-association approach to assign tentative descriptions of function

to protein-coding genes, it has infrequently been applied to lncRNAs,

even when co-expression to protein-coding genes has been

analysed.

While an ever-increasing number of studies have catalogued

lncRNAs in angiosperm species, there remain few studies of their

expression in gymnosperms. Nystedt et al. (2013) reported the pres-

ence of a large pool of putative Pol II derived lncRNAs in Norway

spruce (Picea abies), identified using an RNA-Seq expression atlas

comprising different tissue types across a range of seasonal time
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points or developmental stages. However, the results must be viewed

with caution due to the highly fragmented nature of the genome

assembly, which can substantially inflate estimated gene numbers.

Given the extremely high content of transposable elements (TEs) in

conifer genomes and the tendency for TEs to contain transcription

factor binding sites and transcription start sites, it can be expected

that many non-coding transcripts may be present (Palazzo and

Koonin, 2020). While many of these may represent promiscuous tran-

scription, there is still great potential that a subset will have acquired

function. Indeed, an open question in conifer and gymnosperm geno-

mics is whether a greater proportion of the genome has regulatory

potential than typical angiosperm genomes and whether coniferous

species contain a greater number of functional non-coding RNAs as a

result of TE activity. We were therefore interested in identifying

lincRNAs in Norway spruce and employing a guilt-by-association

approach to assign putative functional descriptions. We reasoned that

a recently described RNA-Seq data resource profiling transcript

expression during somatic embryogenesis (SE) would be ideal for this

due to the extensive remodelling of the transcriptome that was shown

to occur during the SE process. SE in conifers results in multiplication

of the early-stage embryos for extended periods, generating an effec-

tively unlimited number of clonally identical somatic embryos. This

clonal multiplication makes SE a valuable tool for the forestry industry

to obtain clonally propagated trees from elite varieties (Egertsdotter

et al., 2019) and a powerful model system for studying the process of

embryogenesis.

2 | MATERIALS AND METHODS

2.1 | Transcriptome sequencing and data pre-
processing

RNA isolated from the eight developmental stages during somatic

embryogenesis (SE) was sequenced on Illumina HiSeq 2500 at Science

for Life Laboratory, Sweden (SciLifeLab) using 2x126bp paired-end

reads to an average read number of 24.1 ± 2.1 M reads per sample.

Three biological replicates were provided for each developmental

stage. Full experimental details are available in Stojkovič et al. (2024),

and the data is available at the European Nucleotide Archive (ENA) as

accession PRJEB72619.

The quality of the raw sequence data was assessed using

FastQC (v. 11.4; Andrews, 2012). Sequence reads originating from

ribosomal RNAs (rRNA) were identified and removed using SortMeRNA

(v. 2.1b;Kopylova et al., 2012; settings--log--paired_in--fastx--sam--

num_alignments 1) using the rRNA sequences provided with SortMeRNA

(rfam-5 s-database-id98.fasta, rfam-5.8 s-database-id98.fasta, silva-arc-

16 s-database-id95.fasta, silva-bac-16 s-database-id85.fasta, silva-euk-

18 s-database-id95.fasta, silva-arc-23 s-database-id98.fasta, silva-bac-

23 s-database-id98.fasta and silva-euk-28 s-database-id98.fasta). Data

were then filtered to remove adapters and trimmed for quality using

Trimmomatic (v. 0.46; Bolger et al., 2014; settings TruSeq3-PE-2.

fa:2:30:10 SLIDINGWINDOW:5:20 MINLEN:50). After both filtering

steps, FastQC was run again to ensure that no technical artefacts were

introduced. Read counts were obtained using Salmon (v. 0.11.2; Patro

et al., 2017).

2.2 | Identification of long intergenic non-coding
RNAs (lincRNAs)

We implemented a pipeline to identify putative lincRNAs on the pre-

processed data, where default settings were used unless specified.

We first in silico normalised the reads to reduce data redundancy and

then reconstructed the transcriptome using the de novo assembler,

Trinity (v. 2.8.3;Grabherr et al., 2011; Haas et al., 2013).

On the set of transcripts assembled by Trinity, we ran the following

programs, which are detailed below: TransRate (v. 1.0.3; Smith-Unna

et al., 2016), Detonate (v. 1.8.1; Li, Fillmore, et al., 2014), TransDecoder

(version 2.8.3; https://github.com/TransDecoder/TransDecoder/wiki;

Haas et al., 2013), GMAP (Genomic Mapping and Alignment Program;

v. 2020-11-15; settings-i 70000; Wu &Watanabe, 2005), Salmon Index

(v. 0.11.2; Patro et al., 2017), PLEK (predictor of long non-coding RNAs

and messenger RNAs based on an improved k-mer scheme; v. 1.2;

settings-minlength 200; Li, Zhang, et al., 2014), CNCI (Coding-Non-

Coding Index; v. 2; Sun et al., 2013), CPC2 (Coding Potential

Calculator version 2; v. 2.0 beta; settings-r TRUE; Kang et al., 2017),

PLncPRO (Plant Long Non-Coding RNA Prediction by Random fOrest;

v. 1.2; Singh et al., 2017) and BEDTools closest (v. 2.30.0; https://

bedtools.readthedocs.io/en/latest/content/tools/closest.html; Quinlan &

Hall, 2010).

To assess the quality of the de-novo transcript assembly, we used

Detonate and TransRate. TransDecoder was run to evaluate transcript

coding potential. GMAP was used to map the transcriptome to the

genome reference. Salmon Index was used to subsequently run

Salmon (Patro et al., 2017), a pseudoalignment tool used to map RNA-

Seq reads to the assembled transcripts for expression quantification.

PLEK, CNCI, CPC2, and PLncPRO were run to classify transcripts as

coding or non-coding. GMAP results were pre-sorted by chromosome

and start position after which the BEDTools ´closest´ option was used

to exclude transcripts with any overlap to the reference annotation.

Diamond (v. 0.9.40;Buchfink et al., 2014) was run using the TransDe-

coder results to check sequence similarities with protein-coding

regions of other species. The last step in the analyses was to run a

custom R script to find tissue-specific lncRNAs. This analysis gener-

ates a score of specificity ranging from 0 to 1, where 1 is specific and

0 is non-specific. We then filtered all those results, considering lincR-

NAs characteristics. We focused on transcripts that were identified as

having no coding potential by the four classification programs (PLEK,

CNCI, CPC2, and PLncPRO) and retained transcripts longer than

200 nt. We used the TransDecoder results and kept only transcripts

identified as having no coding potential and having a distance

>1000 nt from the nearest coding gene on the reference genome,

which was identified using the BEDTools closest function. We

removed transcripts with an expression value of NA in all stages of

the SE process.
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2.3 | Differential expression analysis of lincRNAs

Initially, the salmon abundance values of all the lncRNAs were

imported into R (v. 4.3.1; R Core Team 2015) using the tximport pack-

age (v. 1.28.0;Soneson et al., 2015). Subsequently, only the lincRNAs

previously identified by the pipeline were kept for further analysis.

For the data quality assessment (QA) and visualisation, the read

counts were normalised using zinbwave (v. 1.22.0;Risso et al., 2018).

The biological relevance of the data (e.g. biological replicates similar-

ity) was assessed by Principal Component Analysis (PCA) and other

visualisations (e.g. heatmaps), using custom R scripts. We normalised

the raw read counts in zinbwave with the following parameters:

K = 0, epsilon = 1e12, X = “�Stages”, obrvationalWeights = TRUE.

The weights from the ZINB model were used for differential expres-

sion analysis using the DESeq2 package (v. 1.40.2; Love et al., 2014)

with the following settings: sfType = “poscounts”, useT = TRUE,

minmu = 1e-6. The formula used in DESeq2 included the factor

´stage´ and this formula was used to identify DE lincRNAs between

consecutive stages of the experiment. The sets of DE lincRNAs were

extracted using the function ‘results’, provided with the optional fil-

ter ´rowMedians(counts(dds))´. DE lincRNAs considered for further

analysis were filtered by fold change (log2FC) ≥ 0.5 and P-values

adjusted for multiple testing (Padj <0.01), as suggested by Schurch

et al. (2016).

2.4 | sRNA sequencing and data pre-processing

RNA was isolated from eight developmental stages during somatic

embryogenesis (SE) from two embryogenic cultures, initiated and cap-

tured from seeds of the same tree. Cultures from a cell line K11-35,

initiated in 2011, were proliferated for embryo maturation and germi-

nation by the same protocol as described for the cell line K14-03 in

the section Plant material.

Isolated RNA was sequenced on Illumina HiSeq 2500 using

2x101 bp and 2x126 bp paired-end reads (in the first and second

sequencing batch, respectively) at SciLifeLab to an average read num-

ber of 22.3 ± 11.2 M reads per sample. Only forward reads were used

for sRNA analysis. Four biological replicates were provided for each

developmental stage/time. Sequencing was performed in two batches

corresponding to two separate experiments. The raw data is available

at ENA as part of accession PRJEB72619.

The quality of the sequencing data was assessed using FastQC

(v0.11.7; Andrews, 2012) and reads were manipulated using Kraken

(v13-274), a set of tools for quality control and analysis of high-

throughput sequence data (Davis et al., 2013). 30 adapter sequences

were identified, trimmed off providing the first 15 bp of the adapter

sequence, and reads containing ambiguous bases, not meeting the

quality threshold or having low complexity were discarded (�3pa

TGGAATTCTCGGGTG-geom no-bc-tri 40-qqq-check 20/5). Length

(18–24 nt) and quality filtered reads were mapped to rRNA and tRNA

sequences from genus Picea, downloaded from the RNAcentral data-

base (The RNAcentral Consortium 2017) using Bowtie (v 1.2.2;

Langmead et al., 2009) with 2 allowed mismatches. Reads matching

rRNA and tRNA sequences were removed from further analysis.

2.5 | Identification of miRNAs

Clean reads were used to identify small RNA clusters in the genome

of Picea abies (v1.0; Nystedt et al., 2013) using ShortStack (v3.8.5;

Johnson et al., 2016). Reads were mapped to the reference with no

mismatches allowed and with the placing of multi-mapping reads

(with not more than 100 mapping sites) guided by uniquely mapped

reads. A minimum of 0.5 read per million (RPM) was required to call

a cluster and stranded clusters, shorter than 300 nt, were checked

for folding requirements and miRNA features using default settings

and dicermin set to 18. After miRNA clusters were identified, the

number of primary alignments corresponding to the 50 and 30 mature

miRNA sequence from each miRNA cluster was counted in the

merged alignment file for each sample. Only miRNA counts in the

samples from the cell line K14-03 were used for further analysis as

there was only one sample available for each stage from the cell line

K11-35.

2.6 | Differential expression analysis of miRNAs

miRNAs having a minimum of one raw count in at least 2 replicates in

any of the time points were retained for further analysis. The raw read

counts were normalised using the main function in zinbwave (v1.10.0;

Risso et al., 2018) with parameters K = 2 and epsilon set to the num-

ber of miRNAs (340). Variation in the samples was explored using

principal component analysis (PCA). The weights from the ZINB

model were used for differential expression analysis using DESeq2

(v1.28.1). Wald tests were performed using model ‘ � Stage’ (settings
sfType = “poscounts”, useT = TRUE, minmu = 1e-6), and differen-

tially expressed (DE) miRNAs between consecutive stages of the

experiment were extracted using function ‘results’, provided with

option ‘filter = rowMedians(counts(dds)))’. DE miRNAs considered

for further analysis were filtered by log2FC ≥0.5 and P-values adjusted

for multiple testing (Padj <0.01).

2.7 | Annotation of known and novel miRNAs

Predicted miRNAs and their precursors were mapped to precursor

sequences from miRBase release 22 (Kozomara and Griffiths-

Jones, 2014) using BWA (v0.7.17 aln) with default settings using

the samse algorithm with the option-n 200 specified (Li and

Durbin, 2009) to report multiple primary alignments. Beforehand, all

uridines were changed to thymines. miRNA sequences often had

more than one primary alignment, therefore mapping results of pre-

dicted miRNA precursors and 50 and 30 mature miRNAs were com-

pared. When there was a miRBase hit common to all three sequences

or at least two of them, it was chosen as the preferred hit. In all other
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instances, miRBase hits from all primary alignments of the miRNA

sequences were reported.

2.8 | Gene co-expression network inference

The lincRNAs expression data were transformed to homoscedastic,

asymptotically log2 counts using the variance stabilising transforma-

tion as implemented in DESeq2. We then merged the three different

classes of RNAs to be able to build the network. Then, ten network

inference methods (aracne, clr, genie3, llr-ensemble, narromi, pcor,

pearson, plsnet, spearman, and tigress; Haury et al., 2012; Guo

et al., 2016; Schäfer and Strimmer, 2005; Zhang et al., 2013;

Ruyssinck et al., 2014; Faith et al., 2007; Huynh-Thu et al., 2010;

Margolin et al., 2006) were run using the Seidr toolkit (Schiffthaler

et al., 2023). The networks were aggregated using the inverse rank

product (IRP) method (Zhong et al., 2014) and edges were filtered

according to the noise-corrected backbone (Coscia and Neffke, 2017)

at multiple backbone values. We used Receiver Operating Character-

istics (ROC) curves to assess the specificity and sensitivity of each

individual backbone network (Allen et al., 2012). ROC makes curves

based on probability, where the True Positive Rate (TPR) is plotted

against the False Positive Rate (FPR) (Davis and Goadrich, 2006).

These values are calculated using a Gold standard based on KEGG

pathways (Sferra et al., 2017). We used these methods to threshold

the network and selected a backbone value of 1 for downstream ana-

lyses. Network partitions were identified using InfoMap (Rosvall and

Bergstrom, 2008) with default settings. The network was further

visualised and processed using Cytoscape (v. 3.10.1; Shannon

et al., 2003).

2.9 | Conservation and clustering analysis

To evaluate if the lincRNAs belonging to the co-expression network

were conserved, we ran a blastn (v. 2.11.0+; Altschul et al., 1990)

against a set of genomes that were downloaded from the PlantGenIE.

org (Sundell et al., 2015) resource: Amborella trichocarpa, Arabidopsis

thaliana, Eucalyptus grandis, Ginkgo biloba, Gnetum montanum, Nicothi-

ana tabacum, Physcomitrella patens, Pinus taeda, Populus trichocarpa,

Populus tremula, and Vitis vinifera. Moreover, cd-hit-est (v. 4.8.1;

W. Li & Godzik, 2006) was used to identify potential lincRNAs families

by identifying transcripts with >80% identity, which were defined as a

cluster/family.

2.10 | Functional enrichment analysis

An in-house tool (gopher2; https://github.com/bschiffthaler/gofer2

executed using the script ‘gopher.R' from https://doi.org/10.5281/

zenodo.10391673) was used for Gene Ontology, MapMan and Pfam

enrichment. The gopher tool implements the Parent Child test from

Grossmann et al. (2007) for Gene Ontology enrichment and a Fischer

exact test for other enrichment tests and applies Benjamini-Hochberg

multiple testing correction. All the enrichments with a Benjamini-

Hochberg adjusted P-value lower than 0.05 were considered significa-

tive and used for analyses.

2.11 | Prediction of miRNA targets and miRNA
sponges

Target predictions were performed for all the miRNA present in the

network using psRNATarget (Dai et al., 2018) against all the coding

transcripts present in the network. Default settings from scoring

schema V2 were used, only hsp size was changed to be equal to the

size of the miRNA sequences in the query. A strict Expectation value

3 was used to select the targets.

miRNA sponges were identified using psRNATarget on the set of

miRNAs and lincRNAs present in backbone1, following the rules

described by Wu et al. (2013) and having a strict Expectation

value of 3.

2.12 | Prediction of lincRNAs acting as miRNA
precursors

miRNA precursors (pre-miRNA) were aligned against the lincRNAs

using blastn. The lincRNAs homologous to miRNA precursors with

e-value = 1e-5 were defined as miRNA precursors.

2.13 | Guilt-by-association functional annotation
of lincRNAs

The backbone of the co-expression network, which was generated

by Seidr, served as input for New Gene Ontology Annotation

(NewGOA), as proposed by Yu et al. (2018). NewGOA was cloned

on June 1st 2021 from https://github.com/Ayllonbe/gni_predictors.

The method constructs a hybrid network combining both the co-

expression network and the GO network. NewGOA employs a bi-

random walks algorithm to traverse the hybrid network, navigating

through the interconnected nodes and edges. Through this iterative

process, the algorithm dynamically explores the network topology,

identifying potential functional associations between genes and

their corresponding GO terms. We filtered NewGOA predictions

based on their PredictionScore to keep only those with the score in

the upper quantile (PredictionScore > = 2^-13), which retained 731

lincRNAs.

2.14 | Resource overview

The resource comprises global identification of lincRNAs and miRNAs

during the process of somatic embryogenesis development. All raw

sequencing data is available at the ENA as accession PRJEB72619
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and all derived (normalised) expression values used for the analyses

presented are available at the SciLife (Science for Life Laboratory,

Sweden) FigShare resource at doi:10.17044/scilifelab.25315867. In

addition, the FigShare resource includes the transcript assembly fasta

file and details of the filtered set of lincRNAs used for network analy-

sis. The gene expression data and co-expression network have been

integrated within the PlantGenIE.org resource (Sundell et al., 2015) to

enable easy visual exploration. Within PlantGenIE.org, the expression

levels of lncRNAs can be visualised using the exImage, exPlot and

exHeatmap tools. The lncRNAs are also included in the co-expression

network for this dataset in the exNet tool. Gene information pages

for lncRNAs have also been included. Gene lists can be created that

contain a combination of protein-coding and lncRNA genes (or either

type exclusively). All scripts used to perform the presented analyses

are available at the Git repository DOI: 10.5281/zenodo.10716226.

This resource was developed to identify whether lincRNAs are differ-

entially expressed during the development process of somatic

embryogenesis and to ascertain the subset that has the highest co-

expression network connectivity as an indication of their regulatory

potential to direct future studies.

3 | RESULTS

3.1 | Long intergenic non-coding RNA
identification and differential expression during
somatic embryogenesis

We utilised an existing RNA-Seq dataset profiling transcript expres-

sion during somatic embryogenesis (SE) of Norway spruce to perform

a de novo transcript assembly from which we identified putative inter-

genic long non-coding RNAs (hereafter lincRNAs). Previous analysis of

protein-coding genes using these data revealed extensive changes in

the transcriptome at the assayed stages of SE (Stojkovič et al., 2024).

We, therefore, considered that this dataset was suitable for identify-

ing lincRNAs with a clear signal of active regulation.

Raw reads

Trinity
387,368 transcripts

Salmon

Classification

Distance > 1000 bp
Length ≥ 200 nt
23,211 transcripts

NewGOA
annotation

Co-expression
network

1,113 transcripts

Unique: 172,819
Multi mapping: 153,596
Translocated: 34,507

NewGOA
selection

731 transcripts

PLEK,CNCI,
PLncPRO,CPC2,
TransDecoder

231,
328

tran
scri

pts

GMAP
360,922 transcripts

Unique: 25,921
Multi mapping: 3,446
Translocated: 1,615

BedTools Closest

Transcript assembly

Gen
ome align

ment
Protein coding potentialQuantification

Non
-cod

ing trans
cript

s
Stage Specificity
and expression
341,154 transcripts

Quality control and
expression filtering

F IGURE 1 An overview of the implemented pipeline including details of the number of transcripts remaining after certain analysis and
filtering steps.
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The transcript assembly comprised 387,368 sequences (Figure 1),

which we filtered to remove those with any overlap to annotated genes

(188,052 transcripts overlapping 30,916 annotated genes). Of the

remaining 199,316 transcripts, 5,835 were removed as they had evi-

dence of protein-coding potential, potentially representing coding

genes missing in the current genome annotation, expressed pseudo-

genes or lncRNAs with small open reading frames producing short pep-

tides. We then applied expression filters to the remaining sequences to

identify the subset of lincRNAs that had consistent detectable expres-

sion (among replicates) in at least one sampled developmental stage,

identifying 1,774 that were considered in further downstream analyses.

This filtered set largely contained unique sequences (1,492), although

480 clustered at 80% identity into 198 clusters containing between

two and 14 sequences, representing potential lincRNA families or cases

of duplication, with most (148) containing two sequences. Within clus-

ters, most transcripts originated from multiple loci, but 68 clusters con-

tained potential splicing isoforms from a single locus (this number is

likely an underestimate as some transcripts,8.9% in total, were split

across scaffolds in the assembly).

Protein coding genes had higher average expression levels

(Figure 2A) and broader expression (i.e., expressed in a larger propor-

tion of stages and having a lower stage specificity score; Figure 2B)

than lincRNAs. Stage specificity was used to divide each gene class

into genes with broad or narrow (specific) expression. For both gene

classes, expression was higher for genes with broad expression

(Figure S1A), which suggests that broad expression was not merely a

signature of low-level promiscuous transcription. Stages S7 and, most

notably, S8 had the highest representation of lincRNAs with specific

expression (Figure S1B). Protein coding genes contained a greater

number of exons, with clear enrichment of lincRNAs having one or

two exons (Figure 2C). There was also a notable difference in GC con-

tent of the two gene classes, with protein-coding genes having higher

GC content and a narrower distribution (Figure 2D).

To ascertain whether the expression of the filtered set of lincRNAs

captured among-sample relationships was similar to that represented

by protein-coding genes, we performed a Principal Component Analysis

(PCA), which revealed a highly similar structure in both datasets

(Figure 3A,C). For both gene types, there was one group of samples

A

C

B

D

D
en

si
ty

D
en

si
ty

D
en

si
ty

GC contentNumber of exons

Protein coding genes

Long intergenic non coding RNAs

D
en

si
ty

Log10(expression) Stage specificity

F IGURE 2 Characteristics of protein coding genes and the identified long intergenic non-coding RNA (lincRNA) genes. Protein coding genes
represent annotated genes from the v1 Norway spruce genome. A Density distribution of protein coding and lincRNA gene expression values.
Values are log10 variance stabilising transformation (VST) normalised. B Stage specificity of protein coding and lincRNA genes. Stage specificity is
a score ranging from 0 to 1 where a score of 1 indicates highly specific expression (i.e., expressed at only one sampled stage) and 0 indicates
expression across all sampled stages. C The number of exons in protein coding and lincRNA genes. D GC content (proportion) in protein coding
and lincRNA genes.
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representing stages S1 and S2, a second group comprising samples

from S3-S6 and a final group containing samples from S7-S8. Samples

from stage S6 were more distinctly separated from those of S4 and S5

based on lincRNA expression than for protein-coding genes.

We identified differentially expressed genes (DEGs) between

progressive stages of the development series (Figure 3B,D). For protein-

coding genes, there were major transitions in the transcriptome at

stages S2-S3 and S6-S7 (as reported in Stojkovič et al., 2024), which

were similarly reflected in the number of lincRNA DEGs. There were,

however, differences in the balance of up-and down-regulated genes,

with a higher proportion of up-regulated lincRNA between stages S2-S3

and a less pronounced representation of up-regulated genes at S6-S7.

For both classes of gene there were very few DEGs between S1-S2

despite similar numbers of expressed genes at all stages, suggesting a

steady-state transcriptome in these two stages.

3.2 | miRNA identification, differential expression
and lincRNA sponge prediction

As one of the known roles of lincRNAs is their interaction with

miRNAs to act as ‘sponge’ sequences, we analysed short RNA data

generated from the same samples used to profile mRNA to identify

and quantify miRNAs. We identified 422 mature miRNAs produced

from 211 clusters (see FigShare resource for details), among which

most had a predominant sRNA size of 21 nt or 22 nt (67% and 24% of

clusters, respectively; Figure S2). Of sRNA reads that aligned to identi-

fied miRNAs, most (80%) aligned to miRNAs of length 21 nt, with a

further 16% aligning to miRNAs of length 22 nt. 340 miRNAs reached

the expression threshold used for filtering and were analysed further,

of which 294 had been previously reported in miRbase (Kozomara

and Griffiths-Jones, 2014) while the remaining 46 were novel to this

study (see FigShare resource for details). Among this expressed set of

miRNAs, 69% were of length 21 nt while 24% were 22 nt. Known and

novel predicted miRNAs had similar and expected patterns of first

base composition, with a dominance of sequences starting with a ura-

cil (Figure S3).

In general, the pattern for DE miRNAs was similar to that of

protein-coding and lincRNA genes (Figure S4), although the greatest

number of DE miRNAs occurred between S2-S3 (65 miRNAs), fol-

lowed by S7-S8 (50 miRNAs) and S6-S7 (44 miRNAs). There were

120 DE miRNAs representing 112 unique mature sequences originat-

ing from 103 unique precursor sequences (see FigShare resource for

details). Similar to DEGs, few miRNAs were DE in mid-maturing

F IGURE 3 Expression characteristics of protein coding (A,B) and the identified long intergenic non-coding RNA (lincRNA) genes (C,D).
A Principal component analysis (PCA) plot of gene expression values for protein coding genes. The PCA was performed using variance stabilising
transformation (VST) normalised expression values. Samples are coloured to indicate sample stage. B The number of up (green bars) and down
(blue bars) regulated protein coding genes at stage transitions of the sampled somatic embryogenesis developmental process. Differential
expression was defined by a false discovery rate corrected P-value <0.05 and log2 fold change <0.5. C PCA plot of normalised gene expression
values of identified lincRNA genes. Samples are coloured to indicate sample stage. D The number of up (green bars) and down (blue bars)
regulated lincRNA genes at stage transitions of the sampled somatic embryogenesis developmental process.
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embryos compared to early-maturing embryos and during desiccation.

All but five DE miRNAs had computationally predicted targets (see

FigShare resource for details), with 87% (1442 genes) of 1658 unique

predicted targets expressed in our dataset, of which 59% were DE

(850 genes). DE target genes were detected for 101 DE miRNAs.

Among the predicted pre-miRNAs, 14 were sequence-similar to

12 predicted lincRNAs. Excluding those lincRNAs as they represented

potential pre-miRNAs, there was one predicted miRNA sponge.

Although the correlation of expression between the sponge and

associated miRNA was not significant (P-value = 0.1, r = �0.34;

Figure S5), there was a general pattern of lower miRNA expression

during stages where the sponge lincRNA was more highly expressed.

This may indicate that a linear correlation test is not indicative of the

regulatory relationship. However, future work is needed to validate

the role of this lincRNA as a miRNA sponge.

3.3 | Guilt-by-association annotation of lincRNAs

To explore the potential role of lincRNAs more comprehensively, we

calculated a co-expression network that included protein coding,

lincRNA genes and mature miRNAs (Figure 4). We filtered all three

classes using the same expression criteria before network calculation.

For protein-coding genes, 66,360 genes were classed as expressed, of

F IGURE 4 Co-expression network comprising protein coding, long intergenic non-coding RNA and micro-RNA genes. Nodes within the
network are coloured to indicate their assigned cluster membership. The eigengene expression profile for a subset of clusters is represented as
inserts around the co-expression network. Edges within the network have been omitted for visual clarity. The associated network file is available
at the FigShare resource detailed in the data availability statement.
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which 28,697 were included in the network. We considered that

inclusion in the co-expression network suggests that these genes are

regulated during SE and of potential biological interest. For miRNAs,

329 were included, while for lincRNAs 1,774 were included. We

examined network connectivity metrics of the different gene classes,

which revealed that both lincRNAs and miRNAs had similar network

connectivity metric distributions to protein-coding genes (Figure 5).

This similarity was greater for lincRNAs, with several lincRNAs having

higher connectivity than the subset of the protein-coding genes anno-

tated as transcription factors.

As lincRNAs lack any functional annotation, and as classical tools

for assigning functional annotations do not work for non-protein cod-

ing genes, we employed a guilt-by-association approach to assign

lincRNAs functional descriptions based on their co-expression with

expressed protein-coding genes. This was achieved using a method

that simultaneously considers both a co-expression network graph

and the graph relationship of assigned Gene Ontology (GO) terms

(NewGOA; Yu et al., 2018). Protein coding genes had higher NewGOA

score values than lincRNAs (Figure S6), reflecting the additional chal-

lenge of assigning putative functional descriptions to lincRNAs. We

additionally performed sequence similarity searches against reference

genomes to determine the conservation of lincRNAs, considering con-

servation as an additional signal of functional potential. Very few

lincRNAs had any evidence of conservation, with 655 conserved

among the considered gymnosperm species (see FigShare resource

for details).

We performed functional enrichment tests of co-expression clus-

ters using the pre-existing annotation of protein-coding genes (See

FigShare resource for details) and focused on the fifteen largest clus-

ters (Figure S7 depicts the eigengene expression profile for each of

these 15 clusters). For each cluster, we examined the proportion

of protein-coding, lincRNA and miRNA genes and the number of each

type assigned an annotation using NewGOA (Table 1). In general,

there were three dominant expression profiles comprising genes with

high expression in proliferation stages (S1-S2; cluster 4), those

with expression during maturation (S3-S5; cluster 1) and those

with expression at the later desiccation and germination stages

F IGURE 5 Co-expression network connectivity measures for protein coding, long intergenic non-coding RNA, micro-RNA and transcription
factor genes. A Distribution of PageRank scores. B Distribution of betweenness scores. C Distribution of strength scores. All parts are violin plot
representations of the data distribution. The significance of distribution comparisons identified using a Kruskal-Wallis test is indicated above the
distributions.

TABLE 1 The number of genes in different categories within co-
expression network clusters.

Genes lincRNAs miRNAs

Cluster1 2876 (2771) 193 (160) 35 (33)

Cluster2 1226 (1189) 40 (36) 20 (20)

Cluster3 1433 (1380) 17 (17) 1 (1)

Cluster4 1031 (811) 549 (335) 188 (149)

Cluster5 639 (604) 30 (23) 4 (4)

Cluster6 965 (928) 23 (19) 2 (1)

Cluster7 719 (690) 23 (19) 1 (1)

Cluster8 674 (644) 13 (10) 0

Cluster9 942 (879) 5 (5) 0

Cluster10 492 (474) 2 (2) 0

Cluster11 535 (516) 12 (9) 0

Cluster12 603 (583) 25 (22) 0

Cluster13 356 (334) 9 (9) 0

Cluster14 439 (432) 14 (14) 0

Cluster15 228 (204) 40 (24) 5 (1)

Values in parentheses indicate the number of genes assigned annotation

using NewGOA.

10 of 15 CANOVI ET AL.
Physiologia Plantarum

 13993054, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ppl.14537 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [07/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(S6-S8; cluster 6). Functional enrichment of these three clusters

revealed significant enrichments including nitrogen compound meta-

bolic process (GO:0006807) during proliferation (cluster 4); nutrient

reservoir activity (GO:0045735) during maturation (cluster 1); and

photosynthesis (GO:0015979), plastid (GO:0009536), chlorophyll-

binding (GO:0016168), and thylakoid (GO:0009579) during germina-

tion (cluster 6). Cluster 2 had a distinctive expression profile with

expression in all stages except S6, representing desiccation and

embryo dormancy. This cluster had enrichment for categories includ-

ing cell cycle (GO:0007049), cell division (GO:0051301) and DNA rep-

lication (GO:0006260), likely representing the repression of these

processes.

We further considered the five lincRNAs with the highest net-

work connectivity (PageRank score). To indicate the potential biologi-

cal processes that these could be involved in, we examined their

annotation assigned by NewGOA and the functional enrichment

results of their first-degree network neighbours and network cluster.

Of note, there were five lincRNAs in the 50 highest-ranked genes

within the network (genes of all classes were ordered by rank).

4 | DISCUSSION

The Norway spruce genome is large (�20 Gb) and comprised primarily

of repetitive sequences, yet is estimated to contain a similar number

of protein-coding genes to other diploid plant species (Nystedt

et al., 2013). As repetitive elements are known to be a source of both

regulatory motifs and regulatory effects and to create various ncRNAs

(Palazzo and Koonin, 2020) we were interested in exploring the diver-

sity and extent of lncRNA expression in Norway spruce as a represen-

tative conifer species. It had previously been reported that there is

extensive expression of lncRNA in Norway spruce (Nystedt

et al. 2013), but that observation was not based on a detailed and

dedicated analysis. To perform such a dedicated analysis, we utilised

an existing data set profiling gene expression during the process of

somatic embryogenesis (SE), which was shown to comprise extensive

transcriptome changes with distinct transcriptome remodulation

events and expression of a large proportion of all annotated protein-

coding genes (Stojkovič et al., 2024). We reasoned that these charac-

teristics would maximise the detection of any expressed lncRNAs and

that the clearly defined expression profiles observed for protein-

coding genes would enable similar distinction of clear regulation for

lncRNAs. Evidence of regulated expression can be used as a signal to

filter spurious, stochastic expression resulting from non-specific Pol-II

binding and transcriptional initiation.

Our analysis identified 1,774 transcripts that passed the stringent

set of structural and expression-based filters applied. We note, how-

ever, that there was a far more extensive set of lncRNAs detected

prior to applying those filters (Figure 1; 23,211 transcripts) and it is

likely that a proportion of the excluded transcripts represent genuine

lncRNAs. In this study, we focused specifically on intergenic lncRNAs

(lincRNAs) as we felt that the current quality of gene annotation in

Norway spruce would result in a high error rate for defining lncRNAs

with overlap to annotated protein-coding genes. The fragmented

nature of the genome assembly also negates any inference of cis or

trans relationships to other genes or genomic features. Taken

together, the set of lincRNAs we present is, therefore, more likely

to represent a lower bound estimate of the diversity of lncRNAs

expressed in Norway spruce. Despite these caveats, we identified

an extensive set of lincRNAs with clear differential expression pro-

files during SE (Figure 2C,D). Similar to previously reported studies

of lncRNAs in plants, this set of identified lincRNAs had a lower

average (Figure 2A) and more sample-specific (Figure 2B) expression

than protein-coding genes. The lincRNAs were also shorter, with

fewer multi-exonic genes (Figure 3C). Among the lincRNAs, 12 tran-

scripts corresponded to precursors of 14 miRNAs. The number of

lincRNAs we identified is consistent with other similar studies, how-

ever, we note that such comparisons are problematic as there is a

lack of consistency in applied methodology and filtering. It can be

seen from Figure 1 that even small changes to the filtering criteria

applied at various steps of the pipeline could result in large changes

in the number of lincRNAs considered, especially given the initially

very high number of transcripts derived from the transcript

assembly.

The expression profiles of the lincRNAs contained sufficient

biological signals to clearly separate the sampled stages of SE,

revealing similar among-sample relationships to those based only

on protein-coding genes (Figure 3A,C). Similarly, the patterns of dif-

ferential expression were similar for the two classes of genes with

the same two major transitions in the transcriptome present

between stages S2-S3 and S6-S7 (Figure 3B,D). These observations

indicate that lincRNAs and protein-coding genes are under active

regulation to a similar extent, with regulated expression providing

circumstantial evidence of biological function. However, except for

the few cases where a clear indication of function can be assigned,

such as lincRNAs predicted to act as miRNA sponges, the functional

role and significance of these lincRNAs remain enigmatic and

unexplored. As such, an important first step in any species is to first

catalogue and characterise the expression of the population

of lincRNAs to enable subsequent selection of candidate genes

for downstream hypothesis generation and functional validation

studies.

One of the major challenges in studying lncRNAs is a lack of

methods to assign biological functions to non-coding transcripts.

Unlike protein-coding genes, where sequence homology and the pres-

ence of conserved protein domains can be used to infer function,

there are currently no sequence, structure, or context-based methods

to associate lncRNAs to biological processes or functions. One

method to overcome this barrier is to use a guilt-by-association

approach to assign functions on the basis of annotations of protein-

coding genes with similar expression profiles. This is commonly

achieved using methods such as co-expression networks, clustering,

or other correlation-based approaches to group lncRNAs with

protein-coding genes. The same approach has previously been

applied to protein-coding genes of unknown function, with evidence

that this can achieve a high degree of reliability (Depuydt and
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Vandepoele, 2021). There are also methods available to take into

consideration both co-expression and functional annotation links

between genes (Yu et al. 2018). We applied these concepts to our set

of linRNAs by inferring a gene co-expression network using an ensem-

ble method (Schiffthaler et al. 2023) that included protein coding,

lincRNA genes and miRNAs (Figure 3). This network was used as input

to NewGOA, a tool that infers functional annotation using both the

expression network and Gene Ontology (GO) term relationship

graphs. This enabled us to assign a putative function to 731 lincRNAs

(Table 2). We were also interested in determining whether lincRNAs

tended to be less centrally integrated into the gene expression net-

work. Our expectation was that lincRNAs would be less central as

they are evolutionarily young and typically have low and narrow

expression. It has also previously been shown that central genes are

enriched for high expression and signatures of purifying and positive

selection (Mähler et al., 2017). However, the global distribution of

several centrality measures for lincRNAs was highly similar to that

of protein-coding genes (Figure 5), with some lincRNAs being ranked

as highly for centrality or betweenness measures as transcription fac-

tor genes. It will be of interest to explore patterns of selection for

these lincRNAs as population genetics data become available for coni-

fer species. Similarly, as more reference quality gymnosperm genomes

become available, it will be interesting to determine patterns of cross-

species conservation to discover how this varies for lncRNAs of con-

trasting network centrality and to compare these patterns to those in

genomes with contrasting degrees of repetitive element retention and

activity.

5 | CONCLUSIONS

Using an extensive collection of RNA-Seq data profiling SE develop-

ment in Norway spruce we identified lincRNAs with clear evidence of

differential expression during the process of SE. The identified

TABLE 2 Five most highly ranked long intergenic non-coding RNAs defined by PageRank.

Expression profile

First Degree Neighbours Functional Enrichment
PageRank score
(Global rank)Total Coding Non-coding MapMan Pfam GO

TRINITY_DN96496_c0_g1_i1

(Cluster15)

101 92 9 16 10 0 0.000737942 (9)

TRINITY_DN12829_c0_g1_i5

(Cluster9)

30 30 0 7 12 0 0.000704327 (13)

TRINITY_DN52747_c1_g1_i1
(Cluster2)

70 63 7 (2) 18 19 1 0.000657588 (19)

TRINITY_DN6985_c1_g1_i1
(Cluster13)

39 39 0 5 18 0 0.000531214 (29)

TRINITY_DN20571_c0_g1_i1

(Cluster7)

57 57 1 (1) 18 28 1 0.000448974 (45)

Gene IDs in bold indicate conservation in other plant genomes (detailed in Methods). MapMan terms, Pfam domains and GO terms represent significantly

enriched terms within the set of first-degree neighbours (q-value <0.05).
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lincRNAs represent interesting candidate genes for future characteri-

sation studies to validate and elucidate their biological functions dur-

ing SE development. To facilitate access to the resource, we have

included the set of identified lincRNAs within the gene expression

visualisation tools at the PlantGenIE.org resource and have made all

presented data and analyses available in public repositories. Integra-

tion of the data in PlantGenIE.org offers easy and intuitive visualisa-

tion of expression profiles during SE and visual exploration of the co-

expression network, for example, to identify sets of co-expressed

genes. This work presents one of the most comprehensive explora-

tions of lincRNAs in a conifer species and demonstrates that lincRNAs

may serve important regulatory roles during developmental processes

such as somatic embryogenesis.
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