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A B S T R A C T

Remote sensing (RS) facilitates forest inventory across a wide range of variables required by the UNFCCC as well
as by other agreements and processes. The Conventional model-based (CMB) estimator supports wall-to-wall RS
data, while Hybrid estimators support surveys where RS data are available as a sample. However, the connection
between these two types of monitoring procedures has been unclear, hindering the reconciliation of wall-to-wall
and non-wall-to-wall use of RS data in practical applications and thus potentially impeding cost-efficient
deployment of high-end sensing instruments for large area monitoring. Consequently, our objectives are to (1)
shed further light on the connections between different types of Hybrid estimators, and between CMB and Hybrid
estimators, through mathematical analyses and Monte Carlo simulations; and (2) compare the effects and explore
the tradeoffs related to the RS sampling design, coverage rate, and cluster size on estimation precision. Primary
findings are threefold: (1) the CMB estimator represents a special case of Hybrid estimators, signifying that wall-
to-wall RS data is a particular instance of sample-based RS data; (2) the precision of estimators in forest inventory
can be greater for stratified non-wall-to-wall RS data compared to wall-to-wall RS data; (3) otherwise cost-
prohibitive sensing, such as LiDAR and UAV, can support large scale monitoring through collecting RS data as
a sample. These conclusions may reconcile different perspectives regarding choice of RS instruments, data
acquisition, and cost for continuous observations, particularly in the context of surveys aiming at providing data
for mitigating climate change.
1. Introduction

To meet net-zero goals by mitigating the net release of greenhouse
gases, the United Nations Framework Convention on Climate Change
mandates annual estimates of biotic and abiotic variables of interest
(VOIs) for monitoring emissions from the land-use, land-use change, and
forestry sector (COP 21, 2015; IPCC, 2018). Additionally, the Food and
Agriculture Organization of the United Nations underscores the impor-
tance of conducting forest inventories at local, regional, national, or
global levels (FAO, 2024). Many countries’ National Forest Inventory
(NFI) program readily offer precise estimates of this sort every five years
using stratified or other probability sampling procedures, categorized as
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design-based inference (Tomppo et al., 2010). However, it is difficult and
expensive for these programs to meet precision standards for annual
reporting, as the annual sample size of observations for a VOI in, e.g., the
US and China is only one fifth of the full sample size of just over 400,000
plots, despite being spatially balanced (Vidal et al., 2016; Hou et al.,
2021). This small sample size problem challenges monitoring efficiency
and reliability because design-based inference relies on large sample
sizes for adequate precision (Cochran, 1977; S€arndal et al., 1992).

Model-based inference can be a remedy for small sample size prob-
lems (Faber and Fonseca, 2014; Vandendijck et al., 2016). In comparison
to design-based inference, it can offer a higher level of precision with the
same sample size, or alternatively, a similar level of precision with a
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Table 1
The four cases of wall-to-wall or sample-based acquisition of X.

Case A CMB estimator for wall-to-wall X bμ1, dVarðbμ1Þ
Case B Hybrid estimation for non-wall-to-wall X

Case B.1 Simple random sampling of X bμ2, dVarðbμ2Þ
Case B.2 Cluster sampling of X bμ3, dVarðbμ3Þ
Case B.3 Stratified sampling of X bμ4, dVarðbμ4Þ
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smaller sample size (Hou et al., 2019, 2023). Model-based inference is
based on the concept of a population generated by a superpopulation
model (Chambers and Clark, 2012). Conceptually it is quite different
from design-based inference. The latter mode of inference asserts that the
population studied is fixed, but unknown. Probability theory applies
because we select random samples of population elements, based on
which we infer properties of the population (Gregoire, 1998). In
model-based inference, probability theory applies because the super-
population model generates random populations; however, the popula-
tion elements and associated auxiliary data remain constant under
standard conditions (Graubard and Korn, 2002); it is only the VOIs for
the population elements that vary. This inference paradigm does not
require probability sampling for observing y and X during the model
construction phase. Nevertheless, probability sampling ensures resilience
against deviations from the assumed proxy superpopulation model with a
sample that is balanced or representative in X (Chambers and Clark,
2012). A sample that is balanced in X is one where the sample mean of
the X-values approximates the population mean of the X-values
(Thompson, 2012).

Remote sensing (RS) has made it possible to conduct forest inventory
through use of conventional model-based (CMB) inference. The CMB
estimator can produce accurate estimates not only in a timely manner but
also at various geographical scales (McRoberts et al., 2006, 2013, 2018).
However, the CMB estimator necessitates remotely sensed auxiliary
variables, X, available wall-to-wall, meaning available for every element
of a population under consideration (Hou et al., 2018). This full RS
coverage requirement poses a challenge for cost-efficient monitoring at
national, provincial, or even county levels using advanced instruments
such as high-resolution spectral or LiDAR sensors, and thus acts as a
barrier to achieving information for pursuing net-zero objectives. Solu-
tions need to be explored.

Hybrid estimators potentially offer feasible solutions. These estima-
tors are compatible with non-wall-to-wall X selected using probability
sampling and are considered as special instances of model-based infer-
ence (Ståhl et al., 2016). There are two distinct phases involved in Hybrid
estimation. The first phase involves probability sampling of X, while
model-based principles are applied to the second phase, and the two
phases are independent of each other (Ståhl et al., 2011). However, while
Hybrid estimation does support non-wall-to-wall X in the form of RS
sample observations, these estimators are design-specific with (1) gen-
eral properties and connections to the CMB estimator that merit further
investigation; and (2) specific impacts of sampling design, RS cluster size,
and coverage rate for non-wall-to-wall auxiliary data, that are not yet
fully understood. Understanding the nexus of these factors could lead to
increased precision and reduced costs in practical applications.

Consequently, our objectives are to (1) shed further light on the
connections between different Hybrid estimators, and between CMB and
Hybrid estimators, through analytical assessment and Monte Carlo sim-
ulations; and (2) compare the effects and explore the tradeoffs related to
the sampling design, coverage rate, and RS cluster size on estimation
precision.

2. Model-based theories to support remote sensing forest
inventory

2.1. Overview

Model-based estimators utilize a proxy of the superpopulation model
for the relationship between the VOI and the auxiliary variables, X, to
estimate or predict parameters for the real-world population, such as the
populationmean, μ, or total, τ, for the VOI (Hansen et al., 1983). Based on
the remotely sensed X being wall-to-wall or not, there are at least two
types of estimators used in model-based inference: the CMB estimator
and Hybrid estimators. The CMB estimator requires wall-to-wall X, while
Hybrid estimators can work with non-wall-to-wall X selected by proba-
bility sampling. This section will first introduce four model-based
2

estimators, and then illustrate their connection and integration through
transiting from sampling of auxiliary data to wall-to-wall coverage, and
through estimator transformation. The analytical discoveries are empir-
ically examined with Monte Carlo simulations in Section 3. The findings
may benefit both theory and practice, facilitating broader use of
model-based inference for remote sensing-assisted forest inventory.

With wall-to-wall or sample-based acquisition of X, we consider four
cases, as listed in Table 1.

These four model-based estimators are based on four foundational
assumptions: (I) a target population U comprises N elements; (II) a
sample S1 selected from U contains m elements, with each element
having remotely sensed auxiliary variables, X, observed, except for the
Hybrid estimator for cluster or stratified sampling of X where m repre-
sents the number of clusters, each containing A elements; (III) a sample
S2 containing n2 elements for which each element has both y and X
observed; (IV) the sample S2 divides into S2 1 (containing n2 1 ele-
ments), S2 2 (containing n2 2 elements) and so on due to stratum-
specific modeling in Case B.3. The cluster size is denoted by A, and the
remote sensing coverage rate by the sampling intensity of S1, i.e., mA=N.
2.2. Conventional model-based estimator for wall-to-wall X

The CMB estimator utilizes a model to predict μ or τ of a VOI. Our
study specifically focuses on μ, because τ is then straightforwardly
derived as τ ¼ Nμ. The model may be linear or nonlinear and can be
expressed as the general expression, yi ¼ gðxi;αÞþ εi, where yi represents
the VOI value in the ith element of the population, xi is a vector of
remotely sensed auxiliary variables, α is a vector of model parameters,
and εi is a random error.

The point estimator, bμ1, is simply themean of wall-to-wall predictions
using a fitted model, expressed as

bμ1 ¼
1
N

XN
i¼1

gðxiU ; bαS2Þ (1)

where xiU denotes a vector of remotely sensed auxiliary variables for the
ith element in the population U of size N, i.e., wall-to-wall X; and bαS2 is a
vector of model parameters estimated using sample S2. Section 2.6
provides details about the modeling and estimation of model parameters.

The variance of bμ1 can then be obtained through Taylor series
approximation. If bαS2 is reasonably accurate, we can linearize the gð⋅Þ
model at true α, i.e., gðxiU ; bαS2Þ � gðxiU ;αÞþ ðbαS21 � α1Þg '1ðxiU ;αÞþ
ðbαS22 � α2Þg '2ðxiU ;αÞþ ⋯þ �bαS2p � αp

�
g 'pðxiU ;αÞ, where g

0
j ðxiU ;αÞ ¼ ∂

gðxiU ;αÞ=∂αj is a partial derivative with respect to the jth of p model pa-
rameters, and then use the second moment of the linearized function to
approximate the variance of bμ1 (Ståhl et al., 2011).

Thereby, the variance estimator of bμ1, dVarðbμ1Þ, is derived as

dVarðbμ1Þ¼
Xp

j¼1

Xp

k¼1

dCovS2�bαj; bαk

�bg 0

j
bg 0

k (2)

where dCovS2ðbαj; bαkÞ is the estimated covariance matrix for bαS2 with the

S2 sample, and bg 0

j ¼ 1
N

PN
i¼1g

0
j ðxiU ; bαS2Þ is the mean of the first-order

partial derivatives requiring remotely sensed wall-to-wall auxiliary var-
iables.
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2.3. Hybrid estimator for simple random sampling of X

Simple random sampling is straightforward to utilize, relatively effi-
cient for surveying both homogenous and heterogeneous populations,
although it can be expensive in terms of logistics or acquisitions due to
random selection of element locations (Daniel, 2011). When simple
random sampling is employed to select X of size m from U, i.e., S1, the
point estimator, bμ2, is expressed as (Ståhl et al., 2011)

bμ2 ¼
1
m

Xm
i¼1

gðxi1; bαS2Þ (3)

where xi1 represents a vector of remotely sensed auxiliary variables for
the ith element in the sample S1 of size m, i.e., non-wall-to-wall X,
selected by simple random sampling without replacement; and bαS2 is the
same as in Section 2.2.

To derive the variance of bμ2, both the sampling of S1 and the distri-
bution of bαS2 are considered. Since S2 is independent of S1 due to the
independency of phases, bαS2 is independent of xi1. Given that bαS2 is
unbiased or approximately so, then bμ2 � μ2 ¼ 1

m

Pm
i¼1gðxi1; bαS2Þ� μ2 ¼�

1
m

Pm
i¼1gðxi1;αS2Þ� μ2

�
þ 1

m

Pm
i¼1ðgðxi1; bαS2Þ� gðxi1;αS2ÞÞ ¼ D1 þ D2,

where D1 accounts for sampling and D2 for modeling. Because the two
components, D1 and D2, are uncorrelated, the variance of bμ2 is the sum of

each component's variance, expressed as Varðbμ2Þ ¼ N�m
N

σ2g
m þPp

j¼1
Pp

k¼1CovS2ðbαj; bαkÞES1ðg 0
jg

0
kÞ �

σ2g
m þ Pp

j¼1
Pp

k¼1CovS2ðbαj;bαkÞES1ðg 0
jg

0
kÞ, where σ2g is the population variance of gðxi;αÞ values;

CovS2ðbαj; bαkÞ only depends on the sample of S2; and g
0
j ¼ 1

m

Pm
i¼1g

0
j ðxi1;αÞ.

The first term of Varðbμ2Þ arises from the sampling uncertainty due to S1,
and the second term from the model variance. The finite-population
correction factor, ðN� mÞ=N, decreases Varðbμ2Þ, but can be dis-
regarded for populations that are large compared to the sample size of S1
(Patterson et al., 2019). Elaborate derivations can be found in Ståhl et al.
(2011, Appendix).

Thereby, the variance estimator of bμ2, dVarðbμ2Þ, is expressed as

dVarðbμ2Þ¼
sĝ2

m
þ
Xp

j¼1

Xp

k¼1

dCovS2�bα j; bαk

�bg 0

j
bg 0

k (4)

where sĝ2 is the S1 sample variance of gðxi1; bαS2Þ prediction; dCovS2ðbαj;bαkÞ is the same as in Section 2.2; and bg 0

j ¼ 1
m

Pm
i¼1g

0
j ðxi1; bαS2Þ applies to S1.

Notably, both the sample size of S1 and the model may affect dVarðbμ2Þ.
2.4. Hybrid estimator for cluster sampling of X

Cluster sampling is a cost-effective and time-efficient method due to
the surveying of nearby elements in a cluster. It is especially efficient for
homogeneous populations but less so for heterogeneous ones. When
using cluster sampling to select X in the form of m clusters by simple
random sampling without replacement, and each cluster contains A el-
ements, i.e., S1, the point estimator, bμ3, is expressed as (Ståhl et al.,
2011)

bμ3 ¼
1
m

Xm
i¼1

GiðbαS2Þ
A

¼ 1
m

Xm
i¼1

bGi

A
(5)

where bGi ¼
PA

a¼1gðxia1; bαS2Þ is the total of gðxia1; bαS2Þ prediction for A
elements in the ith cluster of S1.

Following the same logic as in Section 2.3, the variance of bμ3 can be

derived as Varðbμ3Þ ¼ 1
A2

σ2G
m þ 1

A2

Pp
j¼1

Pp
k¼1CovS2ðbαj;bαkÞES1ðG

0

jG
0

kÞ, where

σ2G is the population variance of cluster totals based on gðxi;αÞ values;
3

G
0

j ¼ 1
m

Pm
i¼1G

0
iðαS2Þ ¼ 1

m

Pm
i¼1

PA
a¼1g

0
j ðxia1;αS2Þ. Likewise, the first term

of Varðbμ3Þ arises from the sampling uncertainty due to S1, and the second
term from the model variance.

Thereby, the variance estimator of bμ3, dVarðbμ3Þ, is expressed as

dVarðbμ3Þ¼
1
A2

sĜ
2

m
þ 1
A2

Xp

j¼1

Xp

k¼1

dCovS2�bαj; bαk

�bG 0

j
bG 0

k (6)

where sĜ
2 is the S1 sample variance of cluster totals based on gðxia1; bαS2Þ

prediction at the element level; and dCovS2ðbαj; bαkÞ is estimated with S2;

and bG 0

j ¼ 1
m

Pm
i¼1

PA
a¼1g

0
j ðxia1; bαS2Þ. Note that (1) dCovS2ðbαj; bαkÞ is

consistent with Sections 2.2 and 2.3, and (2) the sample size of S1 and the

model may affect dVarðbμ3Þ through either or both terms.

2.5. Hybrid estimator for stratified sampling of X

Stratified sampling is an effective method for surveying diverse
populations, despite being somewhat labor-intensive in terms of strati-
fication and computation, which can lead to increased costs (Næsset
et al., 2013). In this approach, population elements are grouped into
distinct strata based on similarities in a discrete variable correlated with
the VOI, such as classes for forest cover, land use, or terrain (Gregoire and
Valentine, 2007). Each stratum contains sample elements which allow for
the estimation of a stratum-wise mean using a stratum-wise estimator.
These stratum-wise estimates can then be weighted and combined to
estimate the population mean.

When stratified sampling is utilized to select X in the form of m
clusters via simple random sampling without replacement from respec-
tive strata, and each cluster contains A elements, i.e., S1, the point esti-
mator, bμ4, is expressed as (Ståhl et al., 2011)

bμ4 ¼
XH
h¼1

Whbμh (7)

whereWh ¼ Nh=N is the weight for stratum h, which is computable using
a discrete variable and is used for stratification (Bechtold and Patterson,
2005); Nh and nh are the numbers of population and sample elements

within stratum h. bμh ¼
1
m

Pm

i¼1
GihðbαhÞ

1
m

Pm

i¼1
A

is the mean estimator of the hth stra-

tum with notations consistent with bμ3. GihðbαhÞ ¼
PA

a¼1gðxia1; bαhÞ is the
sum of the element level gðxia1; bαhÞ model prediction for A elements of
the ith cluster, and bαh is the estimated model parameters used for stratum
h. Note that this element level model can either be a global model con-
structed with S2, or a set of stratum-specific models constructed with
S2 1, S2 2 and so forth of respective strata.

Following the same logic as in Sections 2.3 and 2.4, the variance of bμ4

divides into sampling and modeling components, expressed as Vðbμ4Þ ¼
1
m

PH
h¼1

PH
k¼1

CovðGhðαhÞ�μhA;GkðαkÞ�μkAÞ
A2 WhWk þ

PH
h¼1

PH
k¼1

WhWk
A2

PPh
j1
PPk

j2

CovS2ðbαj1h; bαj2kÞES1ðG
0

j1hG
0

j2kÞ. Likewise, the first term of Varðbμ4Þ arises
from the sampling uncertainty due to S1, and the second term from the
model variance.

Thereby, the variance estimator of bμ4, dVarðbμ4Þ, is expressed as

dVarðbμ4Þ¼
1
m

XH
h¼1

XH
k¼1

WhWk

A2

Pm
i¼1

ðGihðbαhÞ � bμhAÞðGikðbαkÞ � bμkAÞ
m� 1

þ
XH
h¼1

�
XH
k¼1

WhWk

A2

XPh
j1

XPk
j2

dCovS2�bαj1h; bα j2k

�bG 0

j1h
bG 0

j2k (8)

where importantly, the cross-stratum covariance in the second term is
zero if stratum-specific models are used, and non-zero if a global model is
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used (Ståhl et al., 2011); bG 0

j1h ¼ 1
m

Pm
i¼1

PA
a¼1g

0
j1hðxia1h; bαhÞ. In case

stratum-specific variance is of interest, this estimator is expressed asdVarðbμhÞ ¼ 1
A2

Pm

i¼1
ðGihðbαhÞ�bμhAÞ
mðm�1Þ þ 1

A2

PPh
j1
PPk

j2
dCovS2ðbαj1h; bαj2kÞbG 0

j1h
bG 0

j2h.

Note that this formula considers that samples may be selected, or models
may be applied, in a way so that dependencies among strata arise, as may
be the case in applications where samples of RS data extend across
several strata or where the same model has been applied in several or all
strata.

2.6. Modeling

Both global and stratum-specific models were developed at the
element level. The global model applies to Cases A and B, while the
stratum-specific models only apply to Case B.3 in Table 1. With sample
S2, the global model takes the form of yS2 ¼ gðXS2;αS2Þ þ ε where ε �
Nð0;ΩS2Þ and αS2 denotes a vector of model parameters to be estimated.
This model illustrates the connection between the dependent VOI, yS2
(i.e., yS2 ¼ ½y1; y2;…; yn�

0 Þ, and remotely sensed independent variables,

XS2 (i.e., XS2 ¼ ½x0
1;…; x

0
n�

0
¼ ½1; x1;…; xp�). Similarly, stratum-specific

models depict stratum-specific relationships: with sample S2 1, yS2 1 ¼
gðXS2 1;αS2 1Þ þ γwhere γ � Nð0;ΩS2 1Þ; and with sample S2 2, yS2 2 ¼
gðXS2 2;αS2 2Þ þ v where ν � Nð0;ΩS2 2Þ.

In model-based inference, these models may be linear or nonlinear,
and involve different independent variables. However, for the sake of
comparability and simplicity, a linear model using the same independent
variables selected through “bootstrap stepAIC” procedure (Rizopoulos,
2022) was adopted: y ¼ Xαþ e, where α corresponds to αS2, αS2 1 or
αS2 2 in the global and stratum-specific models; X is a design matrix; e �
Nð0;ΩÞ with a positive definite matrix Ω corresponding to ΩS2, ΩS2 1 or
ΩS2 2.

The vector of model parameters α was estimated with weighted least
squares to accommodate heteroscedasticity (Carroll and Ruppert, 1988).

It has the form bα ¼ ðXT bΩ�1
XÞ�1XT bΩ�1

y, where bΩ is a diagonal matrix

with elements bΩi ¼ bσ2
i estimated using a variance function fitted with a

four-step procedure detailed in McRoberts et al. (2016). The
variance-covariance matrix of α was estimated with a robust HCCM
estimator that attenuates the effects of leverage points (Furno, 1996),

dCovðbαÞ ¼ ðXT bΩ�1
XÞ�1XT bΩ�1

diag

"
e2i

ð1�xiðXTbΩ�1
XÞ�1xTi

bΩ�1

i Þ
2

#
ð bΩ�1ÞTXðXT

ð bΩ�1ÞTXÞ�1, a key term inserted into Eqs. 2, 4, 6 and 8 for quantifying

model variance. Dividing e2i by ð1� xiðXT bΩ�1
XÞ�1xTi bΩ�1

i Þ
2
inflates e2i so

that the over-influence of observations with large variance is adjusted.
Despite employing the same modeling procedures, the estimates of bα

and dCovðbαÞ still vary for the global and stratum-specific models,
depending on whether the sample is S2, S2 1 or S2 2. The prediction
accuracy of the global model was evaluated utilizing the root mean

square error, RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n2

Pn2
i¼1

�byS2i � yS2i
�2q
, and its relative form

RMSE% ¼ RMSE=yS2 � 100, where yS2 ¼ 1
n2

Pn2
i¼1yS2i denotes the sample

mean of field observed VOI in S2. Similarly, RMSE and RMSE% were
calculated for stratum-specific models by substituting the subscript S2
with S2 1 or S2 2, and by substituting the sample size n2 with n2 1 or
n2 2.

3. Monte Carlo simulations

3.1. Procedures

Monte Carlo simulation encompasses a wide range of computational
algorithms that utilize repeated sampling to acquire numerical outcomes
(Harrison, 2010). Through the law of large numbers, the fundamental
idea is to employ randomness in addressing problems inherent in
4

probability. While the specific procedures may differ, they generally
involve four steps: (1) defining a population of potential inputs, (2)
randomly generating inputs from a probability distribution across the
population, (3) conducting a deterministic computation on the inputs,
and (4) consolidating the results (Kalos and Whitlock, 2009).

In this research, we utilized Monte Carlo simulation to validate and
compare CMB and Hybrid estimators. The population is introduced in
Section 3.2. Remotely sensed auxiliary variables, X, were available wall-
to-wall. They were used as such in the case of CMB, but as non-wall-to-
wall for Hybrid estimation. Probability samples of X were selected
through sampling methods such as simple random sampling, cluster
sampling, and stratified sampling. The population mean and variance
estimates for a specific design were calculated with corresponding bμ anddVarðbμÞ. The second and third steps were iterated a thousand times to

produce averaged estimates, bμ and dVarðbμÞ, thereby approximating EðbμÞ
and VarðbμÞ, while considering the stochastic variability inherent in
sampling X. However, the crucial matter is not the quantity of repeti-
tions, but instead the stability of the estimates. In this study, the repeti-
tions were considered adequate as the final average of estimates across
replications did not vary by more than 0.005 proportionally from any of
the previous 25 averages across replications (McRoberts et al., 2023).

The remote sensing coverage rate can be represented by the sampling
intensity of S1, i.e., mA

N , and the remote sensing cluster size A. To inves-
tigate the impact of remote sensing coverage on Hybrid estimation, we
analyzed seven different sampling intensities for sampling X in various
designs. Namely, S1 containing 720, 1,440, 3,600, 7,200, 14,400,
28,800, or 120,409 elements, corresponding to sampling intensity at
0.6%, 1.2%, 3%, 6%, 12%, 24%, or 100%. Higher sampling intensities
result in greater remote sensing coverage, but also lead to higher costs.
With simple random sampling of X where A ¼ 1, m is 720, 1,440, 3,600,
7,200, 14,400, 28,800, or 120,409. With cluster sampling of X, m de-
pends on A, e.g., m ¼ 720=A at sampling intensity 0.6%.

To assess the impact of remote sensing cluster size on Hybrid esti-
mation, we investigated six different cluster sizes, i.e., A containing 1, 2,
3, 4, 5, or 6 elements for cluster sampling of X. Larger cluster sizes make
logistics easier compared to simple random sampling, especially for
terrestrial laser scanning. For instance, with cluster sampling of X, the
cluster size A contains 1, 2, 3, 4, 5, or 6 elements, resulting in m being
720, 360, 240, 180, 144, or 120 at the sampling intensity of 0.6%.
Likewise, same rule about A andm applies to the stratified sampling of X.
3.2. Population and samples

The target population sits in Kou, Burkina Faso (Fig. 1), with a pop-
ulation size of N ¼ 120409 elements, each covering an area of 30 m by
30 m. A field campaign was conducted to observe 160 sample plots be-
tween November 2013 and February 2014, following the protocols of the
Land Degradation Surveillance Framework (Vågen et al., 2013). Table 2
presents the sample statistics.

The VOI represented the density of firewood volume (m3⋅ha�1). A
substantial portion of the local populace relies on subsistence agriculture
and livestock farming, which are heavily dependent on the natural goods
provided by trees, such as timber, firewood, medicinal plants, and animal
fodder. Firewood alone accounts for approximately 90% of the total
energy supply (Br€annlund et al., 2009). The firewood volume in each
sample plot includes both fallen and standing deadwood as well as living
trees, selecting only the non-rotten, viable woody material for fuelwood.
The density of firewood volume (m3⋅ha�1) was subsequently calculated
for each sample plot by dividing this plot-level firewood volume by a
factor of 0.09. Due to the lack of specific allometric models for the vol-
ume of particular tree species, a generalized model for dry climates as
described by Chave et al. (2005) was employed.

Utilizing unsupervised maximum likelihood classification (Richards,
2022), the population was categorized into dense or sparse forest cover,
resulting in specific weights and samples for S2 1 and S2 2 (Fig. 1). The



Fig. 1. Target population.

Table 2
Sample statistics.

Density attributes Min Max Mean SD

Basal area (m2⋅ha�1) 0 16.1 5.6 3.6
Firewood volume (m3⋅ha�1) 0 29.7 6.7 6.3
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weights were 57.5% for the dense and 42.5% for the sparse forest cover
areas. The sample sizes for S2, S2 1 and S2 2 in the population, dense
stratum, and sparse stratum, were n2 ¼ 160, n2 1 ¼ 89 and n2 2 ¼ 71,
respectively. Fig. 2 illustrates spatial layouts for samplings X at 6%
coverage. For resembling scanline patterns of ALS or UAV, a cluster
consists of elements in a linear formation.
3.3. Remotely sensed auxiliary variables

RapidEye imagery (RE) was acquired at a cost of 1.3 USD⋅km�2,
georeferenced to WGS84/UTM Zone 48N, and processed to Level-3A
with a resampled spatial resolution of 30 m. Candidate independent
variables used in modeling were calculated for RE, including the first
principal component of the spectral bands (PCA), the textures of PCA,
spectral features as detailed in Table 3 (www.indexdatabase.de), and the
textures of spectral features. Texture calculations included the mean,
variance, homogeneity, contrast, dissimilarity, entropy, angular second
moment, and correlation (Haralick et al., 1973).

4. Results and discussion

4.1. Validated nexus and integration

Appendix A.1 and A.2 demonstrate mathematically the connections
between CMB and Hybrid estimators and the connections among Hybrid
estimators. The nexus of these model-based estimators can be summa-
rized as follows: (1) the CMB estimator for wall-to-wall X is a specific
instance of the Hybrid estimator for simple random sampling of X; (2) the
Hybrid estimator for simple random sampling of X is a specific instance of
the Hybrid estimator for cluster sampling of X; (3) the Hybrid estimator
for simple random sampling of X is a specific instance of the Hybrid
estimator for stratified sampling of X; (4) the Hybrid estimator for cluster
5

sampling of X is a specific instance of the Hybrid estimator for stratified
sampling of X.

Evidently, the Hybrid estimator for stratified sampling of X is
expressed in form that can be applied in multiple cases, regardless of
whether the remotely sensed auxiliary variable is available wall-to-wall
or non-wall-to-wall. Alternative estimators take on forms derived from
this general estimator based on various sampling considerations in the
acquisition of X.

Empirical results (Appendix B) of Monte Carlo simulations confirmed
the analytical findings above. Fig. 3 provides an overview of these con-
nections along with conditions outlined for equivalence. The Hybrid
estimator for stratification of X represents the most general form of the
scrutinized model-based estimators. Other estimators for sampling X in
different ways can be derived from this general formula. Further, CMB
represents a specific instance of Hybrid estimation.

The rationale behind Fig. 3 can be applied to hierarchical model-
based estimation (HMB). HMB, while not included, is a variation of
CMB that breaks down the mean and variance estimators into multiple
components to integrate a nested model constructed to utilize simple
randomly selected, non-wall-to-wall but high-quality X (Saarela et al.,
2020). The essence of HMB is to reduce CMB variance by increasing the
sample size of y, not by increasing field observations, but by increasing
the predicted y-values of a nested model (Saarela et al., 2022). The more
accurate the predicted y-values, the more efficient the HMB estimation
(Chen et al., 2023).

Based on Fig. 3, we hypothesize that a combination of Hybrid and
HMB estimation can be derived to account for alternative samplings and
sampling variabilities of X in the HMB process. This combination would
encompass the advantages of both approaches by (1) supporting wall-to-
wall mapping, (2) leveraging the strength of high-quality but non-wall-
to-wall X, and (3) quantifying the uncertainty associated with sampling
X (Saarela et al., 2023).

4.2. Constructed models

Sample balancing is associated with non-informative sampling and is
a prerequisite for assuring effectiveness of model-based inference
(Chambers and Clark, 2012). The samples S2, S2 1, and S2 2 were
well-spread on the independent variable, PCA, of respective models in
Table 4. With balanced samples, the sample means of PCA are close to the

http://www.indexdatabase.de


Fig. 2. Illustration of the spatial layout of S1 and S2.
Subplot (a) demonstrates a simple random sample of
X, subplot (b) shows cluster sampling of X, and sub-
plots (c& d) exhibit stratified sampling of X, each at a
6% coverage rate. A cluster in subplots (b & d) in-
cludes six elements arranged linearly, mirroring
scanline patterns for ALS or UAV. S1 comprises ele-
ments in grey in (a) and (b), and in yellow for dense
stratum and blue for sparse stratum in (c) and (d); S2
consists of elements in red, representing sample plots
from Fig. 1. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the Web version of this article.)

Table 3
Spectral features obtained from RapidEye imagery.

Spectral Features Formula

Enhanced vegetation index (EVI) 2:5ðNIR� RÞ=ðNIR þ 6R� 7:5B þ
1Þ

Generalized Difference Vegetation Index
(GDVI)

ðNIR2 � R2Þ=ðNIR2 þ R2Þ

Normalized Difference Vegetation Index
(NDVI)

ðNIR� RÞ=ðNIR þ RÞ

Simple Ratio (SR) NIR=R
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population or stratum-specific means of PCA. In our case, sample means
of PCA were �0.04, 1.54 and �2.01 for S2, S2 1, and S2 2, and the
population, dense stratum, and sparse stratum means, of PCA were
�0.04, 1.33, and �1.89, respectively. Note that alternative classification
algorithms might further improve such balancing in the respective strata
(Rother et al., 2004; Silva et al., 2018). When independent variable is
linearly related to y, this balancing helps to yield a more precise estimate
for population parameters (Grafstr€om and Schelin, 2014). Fig. 4 de-
lineates covariations between dependent and independent variables at
the population and stratum-levels, suggesting useful classification by
forest cover.

Table 4 summarizes the global model constructed with S2, the dense-
stratum model with S2 1, and the sparse-stratum model with S2 2. No
model exhibits any systematic lack of fit, as indicated by the absence of
trends in the residual diagnostic graph, as shown in Fig. 5. The dense-
stratum model has the highest prediction accuracy rank in RMSE, fol-
lowed by the global model, and the sparse model. The global model was
utilized across all estimators, encompassing the CMB estimator for wall-
to-wall X, as well as Hybrid estimators for sample-based X. Conversely,
6

the stratum-specific models were exclusively applied to the Hybrid esti-
mator for stratified sampling of X.

4.3. Total remote sensing coverage outperformed by remote sensing
sampling

The influence of remote sensing sampling, coverage, and cluster size
on inference is documented in Appendix C with generalizability dis-
cussed in Appendix D. Fig. 6 presents a summary of the results obtained
from Hybrid estimation for the stratified sampling of X using global or
stratum-specific modeling. The variance is decomposed for sampling and
modeling components, and there are four relevant findings.

First, using stratified sampling for X can be more efficient than con-
ducting a complete survey of X. The Hybrid estimator for stratified
sampling of X, incorporating stratum-specific modeling at 6% coverage,
started to demonstrate higher precision compared to the CMB estimator
at 100% coverage (Fig. 6d). The variance of the Hybrid estimator with
stratum-specific modeling is not only smaller than its counterpart using a
global model, but it was also smaller than that of the CMB estimator with
full RS coverage (Fig. 6d, e, f; Appendix). However, the main reason is not
that stratum-specific models are significantly superior to the global
model. As shown in Table 4, the sparse-stratum model performed twice
as poorly as the global model. Both the omission of cross-stratum co-
variances and the stratum-specific weighting contribute to this finding.
The cross-stratum covariance in the second term of Eq. 8 is zero when
stratum-specific models are used and non-zero when a global model is
applied. This discovery suggests a new perspective on remote sensing
instrument, acquisition, and cost for planning remote sensing-assisted
forest inventories. For instance, when considering the cost of planning
extensive area monitoring, it may be more beneficial to obtain non-wall-
to-wall UAV or LiDAR samples through stratified sampling, instead of



Fig. 3. Nexus and integration of model-based estimators through converting the sampling of remotely sensed auxiliary variables (X) from a population of size N by the
number of strata (H), the number of elements in a cluster (A), and the number of clusters (m). With simple random sampling of X, A ¼ 1 holds, making m collapse to
the number of elements. With remote sensing, wall-to-wall coverage is expressed by m ¼ N, non-wall-to-wall coverage by m 6¼ N, and the cluster size by A.

Table 4
Constructed global and stratum-specific models.

Model Independent
variable

bα diagð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidCovðbαÞq

Þ RMSE
(m3⋅ha–1)

RMSE
%

Global
yS2

(Intercept) 6.72 0.34 4.35 64.18
PCA 1.95 0.11

Dense
yS2 1

(Intercept) 7.58 0.73 5.22 50.09
PCA 1.85 0.41

Sparse
yS2 2

(Intercept) 4.19 0.62 2.45 111.44
PCA 0.99 0.19

All parameter estimates were significantly different from zero at significance
level 5%.
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acquiring wall-to-wall RS data for the entire population with average
quality.

Second, large-scale forest inventory may not necessarily require
extensive RS coverage. As the RS coverage rate increases, the sampling
variance X converges to zero in a reverse J-shaped pattern, with cost-
effective sample size in our case at 12%, indicating little need for wall-
to-wall coverage of X (Fig. 6a, b, c; Appendix); the variance of the
Hybrid estimator with a global model converges to the variance of the
CMB estimator, consistent with the analytical finding that the CMB
estimator is a special case of Hybrid estimation when applying wall-to-
Fig. 4. Empirical distributions for the density of firewood volu
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wall coverage. The optimal sample size of X resides at the turning
point of this reverse J-shaped curve, which is, however, affected by the
RS cluster size. For a given RS coverage rate, small cluster sizes are
preferred. The larger the cluster size, the lower the precision, a pattern
particularly noticeable at low coverages. In this study, we only discuss
the scenario where the cluster sizes are equal. For cases where the cluster
sizes are unequal, we refer to Ståhl et al. (2011). In general, both the CMB
estimator and wall-to-wall coverage can be effectively replaced with
Hybrid estimation and non-wall-to-wall coverage, which will reduce
costs and improve the versatility of using cutting-edge remote sensing
instruments for forest inventory. A similar remark was made for the HMB
estimator in Chen et al. (2023). That said, we recognize that wall-to-wall
coverage may still be required for other objectives such as cartography.

Third, the variance component of modeling, rather than sampling X,
dominates the total variance. While the sampling variance decreased as
the coverage rate for X increased, as expected and consistent with design-
based inference (Hou et al., 2022; Xu et al., 2021), the modeling variance
remained stable at a high level. This suggests that the reduction of un-
certainty in modeling depends on increasing the sample size for y (i.e. the
S2 sample) rather than X. Additionally, stratum-specific modeling
effectively reduced both variance components. To further enhance pre-
cision, modeling is crucial by (1) increasing the sample size for y, (2)
incorporating more correlated X data such as from LiDAR, (3) using
stratum-specific models, and (4) refining the mathematical model form.
me (y) and PCA (X) at the population and stratum-levels.



Fig. 5. Graphs of residuals and predicted versus observed values for the different models.
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Fourth, the use of stratum-specific modeling offers greater flexibility
and efficiency compared to global modeling. Stratum-specific modeling
can result in both superior and inferior stratum-specific models relative
to the global model, but it ultimately yields higher precision. This is due
to the impact of good or poor models being amplified or discounted by
the stratum-specific weights (Eqs. 7 and 8), leading to five implications
for optimizing the sampling strategy: (1) strata with larger weights
require superior stratum-specific models compared to the global model;
(2) a poor stratum-specific model with a smaller weight may not signif-

icantly affect dVarðbμÞ; (3) if all stratum-specific models are good, dVarðbμÞ
decreases further, thereby increasing precision; (4) stratification is
crucial for optimizing weights and estimation; and (5) stratum-specific
modeling is versatile, allowing for the use of stratum-specific RS in-
struments, independent variables, and models, which enhances cost-
efficiency, the reuse of existing models, and most importantly, the
incorporation of county-wise models into the estimation of province-wise
parameters where a county is a domain or stratum of a province in NFI
programs (Czaplewski, 2023).

In the context of stratification, either independence or correlation
between strata is propagated through modeling. A stratum-specific
model maintains independence without the necessity to combine cross-
stratum covariances. Conversely, when a global model applies to each
stratum, these strata become correlated due to shared model structure
and parameters, necessitating the aggregation of cross-stratum co-
variances. This aggregation is represented in the double summation of
the second term in Eq. 8. This above is the feature of the Hybrid estimator
for stratified sampling of X, rather than a feature stemming from model
selection.

5. Conclusions

The study presents eight key findings: (1) the CMB estimator for wall-
to-wall X is a specific instance of the Hybrid estimator for simple random
sampling of X; (2) the Hybrid estimator for simple random sampling of X
is a specific instance of the Hybrid estimator for cluster sampling of X; (3)
the Hybrid estimator for simple random sampling of X is a specific
instance of the Hybrid estimator for stratified sampling of X; (4) the
Hybrid estimator for cluster sampling of X is a specific instance of the
Hybrid estimator for stratified sampling of X; (5) for a given RS coverage
rate, the larger the RS cluster size the lower the precision, a pattern
particularly noticeable at small RS coverage rates, indicating that a small
8

cluster size is preferred; (6) as RS coverage rate increases, the variance of
Hybrid estimators converges to that of the CMB estimator in a reverse J-
shaped pattern, with cost-effective sample size in our case at about 12%,
indicating little need for wall-to-wall X; and (7) an interesting observa-
tion was that the Hybrid estimator for stratified sampling of X, with
stratum-specific modeling, already at 6% coverage began to show higher
precisions than the CMB estimator at 100% coverage, suggesting that
non-wall-to-wall but stratified sampling outperformed wall-to-wall
acquisition; (8) the variance component due to modeling dominated
the overall uncertainty, implying that increasing the sample size of y,
using advanced X such as LiDAR, and employing alternative model forms
or modeling techniques are worthy directions to explore for variance
reduction. Overall, Hybrid estimation strikes a balance between cost-
efficiency and flexibility for large-scale monitoring based on remote
sensing data.
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