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Abstract 

Global food security is increasingly threatened by numerous challenges, including widespread 

malnutrition. Nutritional deficiency, particularly in essential micronutrients such as Zinc (Zn) 

and Iron (Fe), affects over three billion people worldwide, with pregnant women and children 

being the most vulnerable. Wheat, as principal cereal crop, provides more than 50% of daily 

caloric for many populations, contributing essential nutrients such as proteins, vitamins, 

minerals, and phytochemicals. Wheat’s adaptability to diverse growing conditions and its wide 

production and consumption make it the most important staple crop globally, and a strong 

candidate for addressing nutritional deficiencies. However, enhancement of wheat’s quality 

traits is constrained by the limited genetic diversity within modern cultivars. In contrast, wild 

relatives and ancient cereals harbor significant genetic variation that can be exploited for crop 

improvement. Identifying, characterizing, and deploying key genetic loci for quality traits, 

facilitated by modern breeding tools such as marker-assisted selection (MAS),—offer pathways 

for the enhancement of both functional and nutritional qualities in wheat. This review examines 

the current understanding and advancements in wheat quality improvement, with an emphasis 

on ancient cereals and alien germplasms, and highlights the role of advanced breeding 

methodologies for optimizing the nutrition, sensory, and end-use qualities of wheat across 

different growing environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 
 

Table of Contents 
1. Introduction ......................................................................................................................................... 1 

2. Genetic Diversity ................................................................................................................................. 3 

3. The Wheat Crop .................................................................................................................................. 4 

4. Importance of Genetic Diversity for Wheat Improvement .................................................................. 5 

5. Plant Breeding-Based Solutions .......................................................................................................... 6 

6. Wheat Nutrient Composition ............................................................................................................... 7 

6.1 Wheat Energy Contribution ............................................................................................. 7 

6.2. Wheat Protein .................................................................................................................. 8 

6.2.1 Wheat Gluten Protein ................................................................................................ 9 

6.2.2 Wheat Gluten Subunits .............................................................................................. 9 

6.2.3 Genetic Control of Wheat Gluten ............................................................................ 11 

6.2.4 Measurement of Wheat Protein Content and Gluten Composition ......................... 12 

6.3 Wheat Amino Acid Composition ................................................................................... 13 

6.4 Wheat Mineral Composition .......................................................................................... 16 

6.5 Dietary Fiber in Wheat ................................................................................................... 17 

7. Wheat Phytochemicals ...................................................................................................................... 18 

7.1 Polyphenols in Wheat ..................................................................................................... 19 

7.1.1 Antioxidants in Wheat ............................................................................................. 20 

8. Different Genetic Origin of Wheat .................................................................................................... 22 

8.1 Wheat-Alien Introgression Lines ................................................................................... 22 

8.2 Landraces, Old and Ancient Wheat ................................................................................ 23 

9. Wheat Growing Conditions in Sweden ............................................................................................. 25 

9.1 Organic Farming and Its Importance.............................................................................. 25 

9.2 Heavy Metals .................................................................................................................. 26 

9.2.1 Cadmium Impact on Food Security Challenges in Sweden and Possible Solution 26 

10. Wheat Bread-Making ...................................................................................................................... 28 

10.1 Bread-Making Quality .................................................................................................. 28 

10.2 Bread-Making Quality Testing ..................................................................................... 29 

11. Other Quality Test ........................................................................................................................... 29 

11.2 Sensory Evaluation ....................................................................................................... 29 

11.2.2 Sensory Evaluation Techniques ............................................................................ 30 

11.2.3 Descriptive Analytical Analysis Assessment ........................................................ 30 

12. Molecular Markers .......................................................................................................................... 30 

12.1 High-throughput genotyping in wheat ......................................................................... 31 

12.2 Genome-Wide Association Studies (GWAS) .............................................................. 33 



V 
 

12.3 Kompetitive Allele Specific PCR (KASP) ................................................................... 34 

Acknowledgement ................................................................................................................................. 34 

References ............................................................................................................................................. 35 

 
List of Figures: 
 
Figure 1: Genetic variations in wheat wild relatives. Adapted from (Voss-Fels et al., 2019) 
with modifications. ..................................................................................................................... 5 
Figure 2: Some important quality traits in wheat (Contribution of 100g of whole wheat to the 
daily recommended intake (DRI)) .............................................................................................. 7 
Figure 3: Protein composition and Gluten subunits in wheat .................................................. 10 
Figure 4: Phytochemicals composition in wholegrain wheat (Adapted from Ammar et al., 
2023 and Tian et al., 2022). ...................................................................................................... 21 
Figure 5: Causes and effects of Cadmium uptake in wheat grain ............................................ 27 
 

List of Tables: 

Table 1: Protein and corresponding genes related to wheat grain quality ............................... 12 
Table 2: List of important amino acids and minimum recommended adult intake (RAI) of 
essential amino acid (g/100 g protein) from protein (%N × 5.7) according to WHO/FAO/UNU 
Expert Consultation (2002, Geneva, Switzerland). .................................................................. 15 
Table 3: Comparative table showing the maximum allowable cadmium levels (in mg/kg wet 
weight) for different crops in Sweden and the EU (Commission regulation, 2023). ............... 28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1. Introduction 

The world faces numerous challenges, including an increasing population, climate change 

resulting in extreme weather conditions (Patz et al., 2014), and political instability (Aisen and 

Veiga, 2013), which threatens food security. Other concerns such as pest and disease infestation 

on crops (McBeath and McBeath, 2010), increasing changes in food preferences of consumers 

due to an increased health awareness (Shiferaw et al., 2013), and malnutrition from 

inappropriate food consumption, aggravate the problem. A coordinated effort is being made to 

find sustainable and environmentally friendly solutions to these concerns in which breeding 

plays a crucial role by developing crops rich in nutrients, which can contribute to addressing 

nutritional deficiencies and improving food security (Bouis, 2002; Welch and Graham, 2004; 

Agovino et al., 2019; Singh et al., 2021; Reynolds and Braun, 2022). A key aspect of addressing 

these global challenges is understanding cereal grains' role in human nutrition and food security. 

Cereal grains have been a major part of the human diet for thousands of years with a significant 

impact on the development of the human civilization (Sarwar et al., 2013; Shiferaw et al., 

2013). Thus, cereals are essential staples for the everyday existence of billions of people, 

thereby contributing to over 50% of the global daily calorie intake (Awika, 2011). In addition 

to protein, cereal grains contain a plethora of other chemical compounds that are beneficial to 

the body, such as fatty acids, vitamins, elements such as iron, calcium, zinc, phosphorus, 

manganese, copper, molybdenum, polysaccharides, and bioactive compounds, e.g. phenolics 

(Borneo and León, 2012). Among the various cereal grains, wheat stands out as a particularly 

important staple crop due to its wide adaptability and nutritional profile. 

Wheat is a major staple crop among the cereals (Shewry and Hey, 2015a; Tadesse et al., 2016) 

which is grown across the world, specifically in the temperate regions, and it provides both 

energy and nutrition to the human food (Le Gouis et al., 2020). Wheat is an important source 

of carbohydrates, protein, vitamins, dietary fiber and phytochemicals, thereby, contributing 

both to growth cells and the regulation of cell functions (Bálint et al., 2001; Hussain et al., 

2012b; Irakli et al., 2015; Guzmán, et al., 2019). The increasing global demand for wheat is 

driven by its versatility in food production and the need to meet diverse dietary preferences. 

Currently, there is an increasing need for wheat in new markets outside its climate adaptation 

region (Le Gouis et al., 2020). The capacity to create novel food products, each with unique 

quality components, is raising the consumption of wheat and driving the global demand for it 
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(Shewry and Hey, 2015a). Wheat grain quality is essential, although the requirements varies 

across the value chain, e.g. for farmers, millers, food processors, and consumers, and the 

processing method and end-use product plays a vital role (Hernández-Espinosa et al., 2018). 

The quality traits of wheat include characters such as grain texture, milling quality, protein 

attributes, mineral content, vitamin, baking quality, grain and flour colour and flavour. Thereby, 

specific quality standards are utilized for wheat to suit a wide range of food products (Ganno et 

al., 2017). Understanding the factors influencing wheat quality, including genetic and 

environmental interactions, is crucial for meeting these diverse requirements. 

Several studies (Graybosch et al., 1995; Curic et al., 2001; Budak et al., 2003; Yong et al., 

2004; Johansson et al., 2005; Drezner et al., 2007; Horvat et al., 2012) have shown that end-

use quality (EUQ) of wheat is influenced by both genotype and environment (agronomic input 

and weather), and their interactions. To improve the various quality attributes of wheat, the 

amount and pattern of genetic diversity in available germplasm need to be utilized (Kronstad, 

1986; Warburton et al., 2006, Kashif et al., 2021). Knowledge of genetic control over quality 

traits, gene-environment interactions, and how these interactions affect the expression of quality 

traits will improve breeders' selection efficiency (Subedi et al., 2023). To enhance these quality 

traits, breeders can employ various modern technological approaches to accelerate the 

development of superior cultivars. 

Enhanced selection and accelerated development of cultivars with distinctive grain properties 

will potentially be achieved through the use of various approaches applying modern 

technologies such as genomic tools (molecular markers, genomic selection, genetic data 

platforms, etc.), genome editing, high-throughput phenotyping, speed breeding and big data 

handling, etc. (Gordeeva et al., 2019; Gordeeva et al., 2020; Loskutov; Khlestkina, 2021; 

Johansson et al., 2024). In elite cultivars, yield has been prioritized over quality attributes, 

making them a less suitable source of genes for enhancing unique qualities in wheat (Rajaram 

and Braun, 2008; Reynolds et al., 2009). Old cultivars, ancient cereals e.g. spelt, einkorn and 

emmer, wheat wild relatives such as Aegilops spp., and wheat introgression lines (crosses 

between wheat and close relative cereals) are good sources of genetic variation for distinctive 

quality features (Gadaleta et al., 2023). Additionally, the growing demand for organic products 

necessitates the development of wheat cultivars that thrive under organic farming conditions. 

In recent years, the demand for organically grown crops has increased due to their lower 

chemical footprint, which is believed to contribute positively to public health and the 
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environment (Zaccone et al., 2010). This believes may relate to the fact that organically grown 

crops environment typically exhibit higher microbial biomass and activity, as well as greater 

biodiversity (Reganold et al., 2010). Thus, there might be a need to develop wheat cultivars for 

different markets, and for both conventional and organic field production. This trend is 

particularly relevant in countries like Sweden, where organic farming is on the rise and plays a 

significant role in the agricultural landscape. 

Wheat is a major crop in Sweden and also a major exportable item (FAOSTAT, 2022). Recent 

years have resulted in significant fluctuations in global wheat yield, although, for Swedish 

wheat production a general increase is reported from 1971 to 2020, and the total production 

volume was 3.21 million tonnes in 2020 (FAOSTAT, 2022). Sweden is among the countries in 

the EU with the highest share of organic farmland in terms of percentage of total EU agricultural 

land in 2021 and also with a high organic food consumption per capita (Eurostat, 2023). This 

introductory paper aims to delve deeper into the specific qualities of wheat that are valuable for 

both conventional and organic production, focusing on ancient and alien cereal lines. It will 

summarize the current state-of-the-art knowledge related to nutrition, taste, texture, and EUQ 

in ancient cereals and wheat-alien introgression lines and outline methods for assessing these 

parameters. 

2. Genetic Diversity 

Genetic variation refer to the diversity of genetic material within populations or species and 

arises from differences in DNA sequences among individuals (Cardinale et al., 2012; Bhandari 

et al., 2017). This diversity lead to a range of phenotypic traits such as height, yield, disease 

resistance, and environmental tolerance (Ribaut et al., 2002). Genetic variation is generated 

through several processes, including random mutations during DNA replication, 

recombination, and genetic drift (Oladosu et al., 2016). Mutations, which are heritable changes 

in the DNA sequence, can introduce new alleles or genetic variants, thereby contributing to the 

genetic diversity within a species (Begna, 2021). Genetic variation serves as the foundation for 

evolution by providing the raw material upon which natural selection acts (Salgotra and 

Chauhan, 2023). Furthermore, artificial selection harnesses genetic diversity to enhance 

specific traits for breeding objectives (Gregory, 2009). Genetic variation is important because 

it can enhance resistance to biotic stresses such as diseases and pests, increase tolerance to 

abiotic stresses such as drought, heat and salinity, improve yield, influence end-use quality 

traits, and provide protection against future uncertainties (Jaiswal et al., 2010; Rahmatov et al., 
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2016a; Lan et al., 2022). However, effectively managing and utilizing genetic variation requires 

understanding its nature and distribution (Hilbish and Koehn, 1987). This can be determined 

using morphological, biochemical, or molecular markers which are tools that help in assessing 

genetic diversity and aid in the selection of desirable traits for breeding programs (Jaiswal et 

al., 2010; Bhandari et al., 2017). 

3. The Wheat Crop 

Wheat belongs to the grass family (Poaceae), includes a variety of species whose seed are 

cultivated as staple foods globally (Devos, 2010). Alongside rice and maize, wheat is one of 

the three major crops that contribute more than 55% of the crop-based food energy to the human 

global population (Awika, 2011). The origin and domestication of wheat can be traced to the 

Fertile Crescent, where its wild ancestors first emerged (Feldman, 2001; Zohary et al., 2012). 

The genus (Triticum) encompasses species that are diploid (2n = 2x = 14, AA), tetraploid (2n 

= 4x = 28, AABB), and hexaploid (2n = 6x = 42, AABBDD) (Vishwakarma et al., 2018; Sharma 

et al., 2021). The domesticated wheat species are derived from wild ancestors: Triticum urartu, 

Aegilops speltoides, and Aegilops tauschii, which contributed the AA, BB, and DD genomes, 

respectively (Levy and Feldman, 2022). Wild emmer (Triticum turgidum ssp dicoccoides) was 

domesticated as T. turgidum ssp dicoccum, from which T. turgidum ssp durum and other 

tetraploid species are thought to have originated, potentially from a cross between T. Urartu 

and Ae. speltoides (Zeibig et al., 2022).  

Wheat is cultivated across various climates, ranging from temperate to tropical regions (Mondal 

et al., 2016), with a significant role as staple crop in temperate regions (Shewry, 2009). It is 

grown as both winter wheat, sown in autumn and harvested in summer, and spring wheat, sown 

and harvested within the same year. Wheat is classified based on characteristics such as texture, 

color, and gluten content (Guzmán et al., 2014; Vishwakarma et al., 2018), resulting in classes 

such as hard red spring wheat, hard red winter wheat, soft red winter wheat, and soft white 

wheat (Posner, 2000; Finney et al., 1987). Wheat is used to produce a wide range of food 

products, including bread, pasta, breakfast cereals, pastries, and snacks (Posner, 2000; 

Mastrangelo and Cattivelli, 2021). Additionally, wheat is utilized in animal feed (Adamović et 

al., 1998), beverages (Pasqualone et al., 2018), and for biofuel production (Tishler et al., 2015). 

Wheat plays a relevant role in food security especially global nutrition (Shewry and Hey, 

2015a). However, its cultivation is increasingly threatened by various diseases (Figueroa et al., 
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2018), pests (Lopes et al., 2016), and environmental stresses such as drought (Steenwerth et al., 

2014), and frost (Xiao et al., 2018), which can adversely affect both yields and quality. 

4. Importance of Genetic Diversity for Wheat Improvement 

One major prerequisite for developing new cultivars or achieving breeding objectives is the 

presence of genetic diversity for the targeted trait of interest (Monasterio and Graham, 2000). 

Modern wheat cultivars are bred to adapt to the environments in which they are grown. They 

are designed to achieve high yield, resist prevailing diseases, and tolerate abiotic stresses such 

as drought (Bedő and Láng, 2015). As a result, the genetic base of these cultivars is often 

narrower than that found in old, ancient and alien wheat lines (Raman et al., 2010). With climate 

change expected to alter cultivation conditions significantly, novel genetic variation might be 

required to maintain functionality, enhance nutritional value, reduce grain heavy metal uptake, 

and provide resistance to emerging pathogenic strains (Rahmatov, 2016b; Alvarez and Guzmán, 

2018; Bashir et al., 2023; Gadaleta et al., 2023; Lan et al., 2024). Several methods can introduce 

novel genetic diversity into an adapted wheat background, including hybridization, mutation, 

asexual reproduction, recombination, and genetic engineering (Rauf et al., 2010; Li et al., 2012; 

Nadeem et al., 2018). To date, hybridization has been the primary method for gene transfer 

(Molnár-Láng and Linc, 2015; Alvarez and Guzmán, 2018). Wheat-alien introgression lines, 

old and ancestral cultivars, heritage crops, wild wheat relatives, and landraces are abundant 

reservoirs of valuable traits (Cakmak et al., 2000; Kashif et al., 2021). These resources offer 

potential for enriching breeding programs aimed at improving modern cultivars (Chhuneja et 

al., 2006; Johansson et al., 2020b; Gadaleta et al., 2023). 

 

                             

 
Figure 1: Genetic variations in wheat wild relatives. Adapted from (Voss-Fels et al., 2019) with modifications. 
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5. Plant Breeding-Based Solutions 

Plant breeding provides powerful tools for developing new crop cultivars to address various 

challenges facing modern agriculture (Ceccarelli and Grando, 2020), including feeding an 

increasing population (Fedoroff et al., 2010; Hawkesford et al., 2013), combating climate 

change (Snowdon et al., 2021; Messina and Cooper, 2022), tackling food insecurity (Lenaerts 

et al., 2019), and alleviating nutritional deficiencies (Srinivasa et al., 2014). Leveraging the 

latest advancements in breeding technologies (Yu et al., 2020) and genetic research (Sun et al., 

2022), plant breeders can substantially contribute to developing a more sustainable and resilient 

food system for the future (Nestel et al., 2006; Cooper and Messina, 2022). 

Historically, plant breeding has focused on selecting plants with desirable traits such as larger 

grains and a greater number of flowers and fruits resulting in increasingly productive crop 

cultivars (Fischer and Edmeades, 2010). Recent studies have demonstrated the opportunity to 

develop climate-smart crops designed to be resilient, adaptable to varying climatic conditions, 

and capable of thriving in stressful environments (Cooper and Messina, 2022). Such crops could 

play a vital role in ensuring food security even under climate change conditions, which brings 

extremes and increasingly frequent and severe droughts (Ceccarelli and Grando, 2020). With 

predicted climate change scenarios, crops tolerant to dry conditions will become increasingly 

important (Cooper and Messina, 2022). Drought-tolerant crops can be developed through 

traditional breeding methods or modern technologies. Traits associated with drought tolerance 

include deeper root systems (Lan et al., 2022; Liu et al., 2023), improved heat stress tolerance 

(Bellundagi et al., 2022), and enhanced water use efficiency (Hou et al., 2023). Additionally, 

many people globally suffer from nutrient deficiencies (Stein, 2010; WHO, 2022), leading to 

various health problems (Black, 2003). Developing crops with higher levels of essential 

nutrients, such as iron, zinc, and vitamins, is crucial for improving the nutritional content of the 

food supply (Ortiz-Monasterio et al., 2007; Velu et al., 2022). Furthermore, crop diseases cause 

significant yield losses, thereby threatening global food security (Mahmuti et al., 2009). 

Developing disease-resistant crops is crucial for global food security (Piquerez et al., 2014). 

This involves identifying resistance-conferring genes or traits and using them to breed new 

cultivars via traditional or molecular breeding methods such as genetic engineering (Li et al., 

2012; Rahmatov et al., 2019). Furthermore, breeders have the potential to develop nitrogen-use 

efficient crops, contributing to sustainability by reducing the need for chemical fertilizers (Hitz 

et al., 2017). 
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6. Wheat Nutrient Composition  

Wheat is arguably the most important food crop globally, given its significant consumption and 

impact on human nutrition (Shewry and Tatham, 2016). Wheat contributes approximately 30% 

of the calories, more than 20% of the protein, 37-40% of the dietary fiber, 38-40% of iron (Fe), 

and nearly 30% of the folates to the daily intake of adults in highly industrialised countries 

(Shewry and Tatham, 2016). Wheat is also a valuable source of vitamins and minerals such as 

thiamine, riboflavin, niacin, and folate (Batifoulier et al., 2006; Shewry and Hey 2015a). Aside 

from its nutritional properties, wheat is a valuable source of other minerals such as phosphorus, 

potassium, calcium, and magnesium (Li et al., 2004). 

 

 
Figure 2: Some important quality traits in wheat (Contribution of 100g of whole wheat to the daily recommended intake 

(DRI)) 

6.1 Wheat Energy Contribution  

Energy is essential for all living organisms, including humans, for whom carbohydrates are the 

primary source, contributing 45-70% of the total energy intake (Lafiandra et al., 2014). 

Carbohydrates are classified based on their degree of polymerization and sugar composition 

into monosaccharides, disaccharides, oligosaccharides, starch (amylose and amylopectin) and 

non-starch polysaccharides (fibers). Mature wheat grain contains approximately 65-75% 

carbohydrates, the majority of which is starch. Around 1% consist of monosaccharides (glucose 

and fructose) and disaccharides (maltose and sucrose), another 1% is oligosaccharides 
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(raffinose and fructo-oligosaccharides), 1-2% is fructans, and about 10% comprises cell wall 

polysaccharides (cellulose, arabinoxylan and dietary fibers). Wheat bran consists of 50% of 

polysaccharides with a low starch content, whereas the starchy endosperm is composed of 

approximately 83-84% starch (Shewry et al., 2020). The remaining 16-17% comprises proteins, 

fats, vitamins, and minerals. Wheat bran also contains bioactive compounds such as 

polyphenols and antioxidants, which offer various health benefits, like reducing inflammation, 

improving digestion, and protecting against chronic diseases (Stevenson et al., 2012).   

6.2. Wheat Protein 

Wheat is renowned for its versatility and ability to be processed into various food products 

(Shewry and Tatham, 2016). These characteristics are primarily determined by the protein 

concentration and composition in the wheat caryopsis (Gupta et al., 1996). The wheat grain is 

formed by two sperm cells fertilizing the egg, where one develops into the starchy endosperm 

and the other forms the germ and bran (Bechtel et al., 2009). The starchy endosperm, which 

contains mainly starch, also contributes storage proteins known to significantly impact the 

bread-making quality of wheat (Payne, 1987). The protein content in a mature wheat seed is 

normally 7 – 22% of the dry weight (Vogel et al., 1976; Shewry and Hey, 2015a).  

Wheat proteins are classified into two major types based on solubility: gluten and non-gluten 

proteins (Ma et al., 2019). Non-gluten proteins include albumin, which is soluble in water, and 

globulin, which is soluble in a saline solution. Among the non-gluten proteins are the alpha-

amylase inhibitors, which modulate starch digestion (Singh et al., 2001). Gluten proteins form 

the cohesive mass known as gluten, which remains after washing dough made from flour and 

water with a substantial volume of water or saline solution (Shewry, 2019). These proteins 

constitute approximately 80% of the total protein content in mature wheat grain (Shewry and 

Hey, 2015a; Bromilow et al., 2017) and are composed of gliadin, which is soluble in 60-70% 

alcohol, and glutenin, which is soluble in either alkali or acid solutions (Shewry and Tatham, 

2016). Gliadin imparts viscosity and extensibility to the dough, enhancing its ability to stretch 

without deforming easily, while glutenin contributes strength and elasticity (Shewry et al., 

2003a).  

The combined influence of gluten proteins is pivotal for wheat processing, as they provide a 

range of functional attributes critical for baking (Johansson and Svensson, 1995). Numerous 

studies (Johansson, 1989; Ma et al., 2019; Shewry, 2019) have shown that the composition of 

the gluten proteins plays a central role in determining the fundamental characteristics of both 
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flour and dough, ultimately influencing their suitability for transformation into finished 

products. 

6.2.1 Wheat Gluten Protein 

The properties that underpin dynamic functionalities and end-use qualities of wheat are 

influenced not only by the gluten protein concentrations but also by the composition and 

combination of different gluten proteins and their subunits (Johansson et al., 1994; Shewry et 

al., 2003a; Liu et al., 2023). The balance between gliadin and glutenin components in wheat 

flour significantly affects its functional properties (Johansson et al., 2013; Ma et al., 2019). 

Glutenins are particularly influential in the bread-making characteristic of wheat flour due to 

the formation of intra- and inter-chain disulphide bridges (covalent bonds) within and between 

subunits (Johansson and Svensson, 1998; Johansson et al., 2013; Shewry and Hey, 2015a). This 

property of the glutenins contributes to the formation of the dough and its complex matrix of a 

continuous network, resulting in elastic properties and strength (Johansson et al., 2013). 

Gliadins, on the other hand, primarily form intra-molecular disulphide cross-links in their native 

state (Markgren et al., 2020, 2022) and contribute to the viscosity of wheat dough, allowing it 

to stretch without easily breaking (Shewry et al., 2003a). 

6.2.2 Wheat Gluten Subunits 

The processing, functional, and end-use qualities of wheat flour are strongly influenced by the 

composition of the gluten proteins (Payne, 1987; Johansson and Svensson, 1995). Techniques 

such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) are widely 

utilized to separate gluten proteins and subunits based on size or molecular weight; thus, aiding 

in understanding their composition (Gupta et al., 1996). Additional analytical methods, 

including isoelectric focusing (IEF), high-performance liquid chromatography (HPLC), 

capillary electrophoresis and mass spectroscopy, have also been adapted to analyse 

compositional variation and the polymerisation behaviour of these proteins. Gliadin, a 

component recognized for imparting viscosity and extensibility to wheat dough, primarily 

comprises individual gluten protein units in their monomeric form (Wrigley et al., 2006). 

Gliadin can be further divided into distinct subunits, namely alpha, beta, gamma, and omega, 

each contributing to its overall structure and functionality (Shewry et al., 2003a). A newly 

identified subunit referred to as delta has been reported in recent studies (Altenbach et al., 

2019), although ongoing research is dedicated to confirming its existence and characteristics. 

Due to the similarity of their amino acid sequences, alpha and beta gliadin subunits are 

collectively designated as alpha-type gliadin subunits (Wrigley et al., 2006). In contrast, the 
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Glutenin component, which imparts elastic properties to wheat gluten, is divided into high 

molecular weight glutenin subunits (HMW-GS) and low molecular weight glutenin subunits 

(LMW-GS) monomers (Wieser et al., 2023). HMW-GS are generally known as polymers, while 

LMW-GS are referred to as monomers in their native state. LMW-GS can be further separated, 

based on size, isoelectric points, and composition into B, C, and D subunits (Shewry, 2019). 

The B-type subunit of LMW-GS has two groups differentiated by methionine and serine amino 

acids (Wrigley et al., 2006). HMW-GS are polymeric gluten proteins and can be divided into 

x- and y-type subunits (Shewry et al., 2003b). Examples of HMW-GS pairs include 1, 2*, 21* 

from the 1A chromosome, 6+8, 7+9 from the 1B chromosome, and 5+10, and 2+12 from the 

1D chromosome (Johansson and Svensson, 1995). Molecular and biochemical studies have 

revealed that gluten proteins are structurally and evolutionary associated, and that they are 

either soluble in alcohol-water mixture as monomers (gliadins) or in basic or acidic condition 

as reduced subunits (glutenin polymers) (Bromilow et al., 2017). Based on solubility, gluten 

proteins are classified into three groups (Shewry and Tatham, 2016). The HMW subunits group; 

the sulfur-rich group, which includes alpha-type gliadin, gamma-gliadins, and B- and C-type 

LMW glutenin subunits; and the sulfur-poor group, which consists of omega-gliadins and D-

type LMW glutenin subunits (Shewry and Halford, 2002). The amino acid sequence of C- and 

D-type LMW glutenin subunits is similar to omega gliadins, with the former exhibiting 

additional cysteine residues that enable interchain disulfide bridge formation, an effect of 

mutation (Bromilow et al., 2017). 

 
 

Figure 3: Protein composition and Gluten subunits in wheat 
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6.2.3 Genetic Control of Wheat Gluten 

Several studies have reported chromosomal locations of gluten protein genes, which is crucial 

for identifying genes controlling gluten protein and developing markers for rapid selection of 

these traits among different wheat genotypes (Shewry et al., 2003a; Distelfeld et al., 2006; 

Wang et al., 2020; Zhou et al., 2021). Gliadin protein genes are located on Gli-A1, Gli-B1 and 

Gli-D1 loci of hexaploid wheat (Camerlengo et al., 2017). These loci linked to omega and 

gamma-gliadins subunits and are located on the short arms of chromosomes 1A, 1B and 1D, 

respectively (Hsia and Anderson, 2001). Similarly, alpha-type gliadins are linked to genes 

located on Gli-A2, Gli-B2 and Gli-D2 loci on the short arms of Chromosomes 6A, 6B and 6D, 

respectively (Dubois et al., 2016). The genes encoding HMW-GS are complex and located in 

Glu-A1, Glu-B1 and Glu-D1 loci on the long arm of chromosomes 1A, 1B and 1D, respectively, 

where eaach locus are containing x- and y-type subunits based on size and biochemical 

properties (Shewry, 2019). However, due to gene silencing, wheat genotypes typically have 

between three to five HMW-GS genes. For instance, Glu-A1 may contribute none or one 

subunit, Glu-B1 may contribute one or two, and Glu-D1 consistently contribute two subunits 

(Johansson et al., 1993).  Notably, the x- type is the only expressed HMW-GS at Glu-A1 and 

Glu-B1 when only one subunit is expressed at these loci (Shewry et al., 2003a). There are also 

allelic differences among HMW-GS that contributing to genetic variation influencing baking 

properties of wheat. These differences can be analyzed using the SDS sedimentation test 

(Johansson et al., 1993; Johansson and Svensson, 1995). The differences include subunits such 

as 1x, 2*x, 6x, 7x, 8y, 9y, 5x, 2x, 10y and 12y HMW-GS.  The subunit 1Ax5 has a unique 

disulfide structure, and 1Ax7 is consistently present in high amounts compared to other 

HMWGS. (Johansson et al., 1993; Johansson and Svensson, 1995). The LMW-GS are 

controlled by genes located at the GLU-A3, Glu-B3 and Glu-D3 loci on the short arm of the 

homoelogous chromosomes 1A, 1B and 1D (Shewry and Tatham, 2016). 
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Table 1: Protein and corresponding genes related to wheat grain quality 

Protein/Enzymes Gene Chromosome 
location 

Reference 

Granule-bound 
starch synthase 1 

Wx-1 7AS, 7BL, 7DS Chao et al. (1987), 
Ainsworth et al. 
(1993), Yamamori et 
al. (1994) 

Starch Snythase II or 
SGP-1 (SGP-A1, 
SGP-B1 and SGP-
D1) 

SS-IIa 7AS, 7BS, 7DS Li et al (1999, 2003) 
Shimbatal et al. 
(2005) 

Starch branching 
enzyme SGP2 

SBE IIa, -IIb 2AL, 2BL, 2DL Nair et al. (1997), 
Rahman et al. (2001) 

Grain Hardness    
Puroindoline A (Pin 
A) 

Pina- D1 5DL Li et al. (2008) 

Puroindoline B (PIN 
B) 

Pin b-D1 5DS Ali et al. (2015) 

Grain softness 
Protein 

Gsp-1 5DS Jolly et al. (1996) 

α- and β- gliadins Gli-2 6AS, 6BS, 6DS Metakosvsky et al. 
(1984) 

ɤ- and Ѡ-gliadins Gli-1 1AS, 1BS, 1DS Metakosvsky et al. 
(1984) 

HMW-GS Glu-1 1AL, 1BL, 1DL Payne (1987) 
LMW-GS Glu-3 1AS, 1BS, 1DS Singh and Sheperd 

(1988). Liu (1995) 
 

6.2.4 Measurement of Wheat Protein Content and Gluten Composition 

Protein plays a significant role in the human diet, it helps in biochemical and enzymatic 

processes in support of the body's optimal growth and development, hormonal regulation, and 

disease prevention, among others (Hoffman and Falvo, 2004; Mæhre et al., 2018; Hayes, 2020). 

Protein is a critical component of wheat, and the quality of wheat protein indicate not only its  

nutritional value, which is essential for human health and well-being (Johansson et al., 2014; 

Shewry and Hey, 2015a), but also affects the economic value of the various products made 

from it (Hayes, 2020). The concentration of protein is a key factor in determining wheat protein 

value (Hayes, 2020). Several researchers have employed different techniques to quantify 

protein content, including the Kjeldahl technique, Dumas technique, Near-infrared reflectance 

spectrometry (NIR), Size-exclusion high-performance liquid chromatography (SE-HPLC) and 

UV-spectroscopy (Mæhre et al., 2018). All of these methods have their advantages and 

limitations, and most of the more recent techniques are correlated to the Kjeldahl method, which 

involves sample digestion in the presence of strong acid for nitrogen release and quantification 
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using a titration method (Mariotti et al., 2008). The protein content is then calculated by 

multiplying the nitrogen concentration with a specific conversion factor of the wheat part used 

(Whole grain, flour, or bran) (Maclean et al., 2003). However, the accuracy of protein 

measurement of this method is still debatable (Mariotti et al., 2008). The SE-HPLC method is 

considered a more reliable techniques for measuring protein quantity (Hayes, 2020). This 

method often involves the digestion of wheat flour by Sodium dodecyl sulfate (SDS) and 

sodium phosphate buffer in two extraction steps to obtain SDS-extractable and SDS-

unextractable proteins (sonicated sample), with the amount and size distribution of proteins 

later analyzed using SE-HPLC system (Lan et al., 2023). From the chromatogram, large 

polymer protein (LPP), small polymer protein (SPP), large monomer protein (LMP), and small 

monomer protein (SMP) are calculated separately for both SDS-extractable and SDS-

unextractable proteins according to the specified retention time (Lan et al., 2023). Total SDS-

extractable protein (TOTE) calculated from the sum of all SDS-extractable large and small 

polymers along with large and small monomers, correlates well with protein content as shown 

by several authors (Johansson et al., 1995; Johansson et al., 2013; Alvarez and Guzmán, 2018; 

Lan et al., 2023). TOTE demonstrates a strong correlation with alternative protein 

quantification techniques such as the Kjeldahl and Dumas methods, as evidenced by the 

research conducted by Lan et al. (2023). Likewise, the percentage of SDS-unextractable 

polymer protein in total polymer protein (%UPP) serves as a valuable metric for assessing 

gluten strength (Wrigley et al., 2006). This metric is derived by summing the quantities of SDS-

unextractable large and small polymer proteins and then dividing by the total sum of SDS-

unextractable large and small polymer proteins, as well as SDS-extractable large and small 

polymer proteins, and then multiplying by 100%. This parameter has been established as a 

significant gauge of gluten's cohesive strength, substantially influencing functional attributes 

and bread-making proficiency of wheat dough (Johansson et al., 2013; Lama et al., 2023). 

6.3 Wheat Amino Acid Composition 

Amino acids are fundamental components of proteins and serve as the building blocks for 

neurotransmitters and hormones (Dietzen, 2018). Each amino acid is an organic compound 

containing an amino (-NH2) and a carboxylic acid (-COOH) functional groups. Proteins consist 

of chains of alpha-amino acids, distinguished by the separation of amino and carboxylic acid 

groups (side chain R-group) by a single carbon atom, often chiral, which impart unique 

properties to each amino acid. The further arrangement of amino acids within a protein chain 
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and their interactions with the environment determine the protein's distinctiveness and 

complexity (Zeece, 2020). 

Approximately 20,000 genes encode about 100,000 distinct proteins in the human body (Lopez 

and Mohiuddin, 2024). Despite the existence of hundreds of natural amino acids, only about 20 

are essential for producing proteins in humans and most other life forms. These amino acids are 

primarily L-isomers, with exceptions such as glycine, which lacks a chiral center, and cysteine, 

which has an S-absolute configuration due to its sulfur-containing R-group. Selenocysteine and 

pyrrolysine have been reported with functional significance as the 21st and 22nd amino acids, 

respectively, by recent studies, but they do not apply to human protein synthesis (Zhang and 

Gladyshev, 2007). These 22 amino acids, upon translation, can undergo post-translational 

modifications, further enhancing protein diversity. The production of neurotransmitters, 

hormones, muscle development, and other cellular processes in the human body requires a 

specific quantity of amino acids (Lopez and Mohiuddin, 2024). 

After ingestion, dietary are broken down into amino acids, which then assist in food digestion, 

tissue growth and repair, energy provision, and other bodily functions. Several metabolic 

pathways involve amino acids within human cells. Amino acids are classified into three groups 

(Table 2) based on their necessity for growth, nitrogen balance and how they are absorbed into 

the body. The first group consist of non-essential amino acids, which are synthesized in the 

body from metabolic intermediates (Wu et al., 2013). The second group includes essential 

amino acids, which cannot be synthesized by the body and must be obtained from food (Lopez 

and Mohiuddin, 2024). Conditional amino acids make up the last group and these are considered 

conditionally essential due to the inability of the body to produce them in adequate amounts 

during periods of physiological stress, such as growth illness, stress, injury or gestation 

(Grimble, 1993).  

These essential amino acids are available from complete proteins, primarily sourced from 

animal products except for soybeans, which are a notable plant-based source. Incomplete 

proteins, often plant-based, also provide these essential amino acids. Wheat protein 

concentration and amino acid composition are critical factors influencing its processing into 

various food products (Johansson and Svensson, 1998; Siddiqi et al., 2020; Shewry, 2023). 
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Table 2: List of important amino acids and minimum recommended adult intake (RAI) of 
essential amino acid (g/100 g protein) from protein (%N × 5.7) according to WHO/FAO/UNU 
Expert Consultation (2002, Geneva, Switzerland). 

Amino Acid Necessity from Food 
WHO adult intake 

(g/100 g protein) 

Sufficient 

availability in 

wheat 

Alanine Non-essential - Yes 

Asparagine Non-essential - Yes 

Aspartic acid Non-essential - Yes 

Glutamic acid Non-essential - Yes 

Lysine Essential 4.5 Limited 

Isoleucine Essential 3.0 Yes 

Leucine Essential 5.9 Yes 

Phenylalanine Essential 3.8 Yes 

Phytophan Essential 0.6 Yes 

Histine Essential 1.5 Yes 

Threonine Essential 2.3 Limited 

Methionine Essential 1.6 Limited 

Valine Essential 3.9 Yes 

Arginine 
Non-

essential/Conditional 
- 

Yes 

Cysteine 
Non-

essential/Conditional 
- 

Yes 

Glutamine 
Non-

essential/Conditional 
- 

Yes 

Tyrosine 
Non-

essential/Conditional 
- 

Yes 

Glycine 
Non-

essential/Conditional 
- 

Yes 

Proline 
Non-

essential/Conditional 
- 

Yes 

Serine 
Non-

essential/Conditional 
- 

Yes 
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Wheat is rich in most of the essential amino acid when compared to the recommended adult 

intake, except for lysine, which is present in limiting amounts, with this disparity being more 

pronounced in white flour compared to wholemeal flour (Tkachuk, 1966; Simmonds, 1962; 

McDermott and Pace, 1957; Shoup et al., 1966.). The starchy endosperm, from which white 

flour is derived, contains a significant amount of gluten protein that is specific to it. This gluten 

protein, which constitutes approximately 80 % of wheat protein, is limited in lysine but boasts 

a substantial abundance of proline and glutamine (Shewry and Hey, 2015a). 

6.4 Wheat Mineral Composition 

Staple crops like cereals need to be improved nutritionally, as public concern has increased in 

recent years regarding the daily diet's nutrient and health value (Hefferon, 2015). This is 

unsurprising, as micronutrient deficiency drastically affects human health globally, with a call 

to address this by incorporation of a dense quantity of essential nutrients into staple diet 

(Johansson et al., 2020b; Bansode and Kumar, 2015; Gupta et al., 2021). Wheat is an important 

cereal source of minerals and other nutrients in daily human diet (Welch and Graham, 1999; 

Hussain et al., 2010). Wheat contributes approximately 15%, 11%, 13% and 14% of Fe, Zn, 

Mg and Cu, respectively, from bread alone (Henderson et al., 2003). Until recently, wheat 

improvement focused on yield and disease resistance, but now the focus is shifting toward 

breeding for nutritional qualities alongside with the aforementioned traits (Welch and Graham, 

1999; Morris and Sands, 2006). The condition of having less than adequate levels of essential 

minerals in human daily diet is known as malnutrition, which can lead to hidden hunger 

(Bansode and Kumar, 2015). Hidden hunger, recognized as a significant contributor to diseases 

and infections on a global scale, persists extensively in developing nations and also affects 

developed countries (Puntis, 2009; Kiran et al., 2022). Among the essential minerals required 

in the human diet, Fe and Zn are the most critical, affecting over 2 billion people worldwide, 

most of whom are women and children (Gupta et al., 2021). Lack of Fe causes anaemia, 

impaired cognition and fatigue, while Zn deficiency results in stunted growth, cell damage, and 

increased susceptibility to infections (Cakmak et al., 2004). Children aged 0 to 24 months, as 

well as pregnant and lactating women, are most affected (Gupta et al., 2021). The increasing 

number of people adopting vegetarian diets, especially in developed countries, may exacerbate 

hidden hunger, as meat is a primary source of these minerals. Generally, hidden hunger not only 

affects general health but also has economic implication, as an unhealthy population may not 

be optimally productive (Welch and Graham, 1999). Among the strategies to mitigate hidden 

hunger is food fortification (Bouis and Welch, 2010), which involves supplementing grains 
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with essential nutrients (Borrill et al., 2014). However, this strategy has limitations, including 

limited availability to rural dwellers and the significant cost implications over time. Another 

strategy is improving existing cultivars through the use of wild relatives of the crop, which are 

rich in these micronutrients, a process known as biofortification (Aigul et al., 2019). This 

approach can be economical, sustainable and more accessible to everyone. To optimize 

biofortification strategies, it is essential to understand the genetic mechanisms that control iron 

Fe and zinc Zn accumulation in wheat grains. By leveraging genetic tools such as Genome-

Wide Association Studies (GWAS) and Quantitative Trait Locus (QTL) mapping, researchers 

can identify specific genes and loci that contribute to the accumulation of these essential 

micronutrients. Recent genetic studies on wheat have identified key QTLs and genes 

responsible for the accumulation of Zn and Fe, critical for biofortification efforts. For Zn, a 

significant QTL on chromosome 6D plays a major role in grain Zn concentration, with 

additional QTLs mapped on chromosomes 1A, 3A, 4A, 5B, and 7A. The gene 

TraesCS6D01G234600 has been linked to Zn translocation (Roy et al., 2022; Ma et al., 2023). 

For Fe, several QTLs, particularly on chromosome 4B, regulate Fe uptake, overlapping with 

Zn QTLs. Other important loci for Fe are located on chromosomes 3A, 2B, and 5A (Harrington 

et al., 2023). Chromosome 4B is a hotspot for both Zn and Fe accumulation, suggesting shared 

genetic pathways (Crespo-Herrera et al., 2016). This knowledge can then be used to develop 

wheat varieties that are richer in Fe and Zn, addressing nutritional deficiencies in populations 

that rely heavily on wheat as a staple. 

6.5 Dietary Fiber in Wheat  

Adequate level of dietary fiber in daily human diet are known to have a positive impact on 

human health (Lovegrove et al., 2020). Dietary fibers consist of carbohydrates that resist 

digestion and absorption in the small intestine, instead traveling intact to the colon, where they 

undergo either complete or partial bacterial fermentation (Ibba et al., 2021). Regular intake of 

dietary fibre has been linked to lower risk of cardiovascular disease, diabetes, obesity, and 

colorectal cancer. It also supports colon health by improving digestion, regulating blood sugar 

levels and intestinal movement (Barber et al., 2020). Given its widespread consumption as a 

staple cereal, wheat plays a significant role in providing dietary fibre to human diets (Lovegrove 

et al., 2020). However, it is worth noting that wheat is mainly consumed as white flour 

containing 2-3 % dry weight of fibre. In contrast, health-promoting components, such as dietary 

fiber, are primarily concentrated in the bran of a whole grains, which contain 11-15% dry weight 

of fibre (Gebruers et al., 2008; Andersson et al., 2013). This preference for refined products 
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contributes to increased obesity and chronic diseases. The key components of dietary fibre in 

wheat are arabinoxylan (AX), β-glucan, cellulose, and lignin, which are constituent of non-

starch polysaccharides and non-polysaccharide compound found mainly in the cell wall 

(Gebruers et al., 2008). Arabinoxylans (AX) constitute the major portion of dietary fiber (DF) 

within wheat grain, mainly concentrated in the bran, where they make up 13–22% of its dry 

weight (Ibba et al., 2021). Improving wheat cultivars with elevated arabinoxylan (AX) content 

could prove to be an effective strategy for enhancing daily dietary fiber (DF) intake.  While 

tocols, sterols, and arabinoxylan fiber exhibit high heritability (Shewry et al., 2010), researchers 

have identified significant genomic regions for arabinoxylan (AX) on chromosomes 1A, 1B, 

2B, 3B, 5A, 5B, 7A, and 7B (Lovegrove et al., 2020). The identification of these genomic 

regions can facilitate targeted breeding programs aimed at increasing fiber content in wheat. 

The recommended daily intake of dietary fiber for adults ranges from 30 to 35 grams for men 

and 25 to 32 grams for women (Burley et al., 2017). A recent study reviewed dietary fibre 

intake in European countries, finding that adults typically consume 18 to 24 grams per day for 

men and 16 to 20 grams per day for women, indicating a significant gap between recommended 

and actual intake (Barber et al., 2020).  

7. Wheat Phytochemicals 

Wheat, an essential cereal in the human diet, comprises three main components: germ, starchy 

endosperm, and bran (consisting of pericarp, testa, hyaline, and aleurone layers) accounting for 

approximately 2–3%, 81–84%, and 14–16% of the grain weight, respectively (Tian et al., 

2022). Whole grains are abundant sources of various health-prompting compounds, including 

dietary fibre, vitamins and phytochemicals (Onipe et al., 2015). Phytochemicals, biologically 

active compounds of plant origin, offer significant health benefits beyond basic nutrition and 

may reduce the risk of chronic diseases (Okarter et al., 2010). The primary phytochemical 

groups found in whole grains include polyphenols, carotenoids, flavonoids, vitamin E 

compounds, β-glucan, inulin, and curcumin (Liu, 2007). While over 5,000 individual 

phytochemicals have been identified in fruits, vegetables, and grains, many remain 

undiscovered, necessitating further research to fully elucidate the health-promoting effects of 

phytochemicals in whole-grain foods (Liu, 2004). Epidemiological studies have linked the 

consumption of whole grain products to a reduced risk of chronic diseases such as obesity, type 

2 diabetes, cardiovascular diseases (CVDs), and cancer (Okarter et al., 2010). 

Despite the potential health benefits, phytochemicals in grains have received less attention 

compared to those in fruits and vegetables, partly due to the lower concentration of antioxidant 
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capacity reported in earlier studies (Liu, 2004). This discrepancy may be attributed to limitation 

in extraction methods, primarily aqueous solutions of methanol, ethanol, and acetone, which 

predominantly extract free phenolic compounds, overlooking the bound phenolics, which 

constitute approximately 75% of the total (Adom and Liu, 2002). Recent advancements in 

extraction techniques, such as high-performance liquid chromatography (HPLC), have revealed 

a more comprehensive profile of phytochemicals in whole grains, indicating their richness 

beyond previous estimations (Kool et al., 2011). The underestimation of phytochemicals in 

whole wheat grains may have obscured their potential as valuable sources of health-promoting 

compounds, comparable to those in fruits and vegetables (Adom and Liu, 2002). The bran and 

germ of whole wheat are concentrated sources of bioactive compounds and may impart greater 

health benefits when consumed as part of a diet, thus helping to reduce the risk of chronic 

diseases (Adom et al., 2003). Phytochemicals in whole grains are distributed as free, soluble-

conjugated, and bound forms, with a significant portion bound to cell wall materials (Menga et 

al., 2023). These bound phytochemicals, resistant to digestion in the upper gastrointestinal tract, 

may undergo colonic fermentation, releasing their beneficial effects locally and systemically 

(Liu, 2007). 

The cumulative and synergistic effects of various bioactive components present in whole grain 

foods, some unique to them, may confer greater health benefits than isolated compounds (Liu, 

2004). The synthesis and accumulation of phytochemicals in wheat are influenced by genotype 

(Shewry and Hey, 2015), the growing environment (Shewry et al., 2010), and their interaction 

(Lu et al., 2015). Further research into these factors is vital for enhancing the phytochemical 

content of wheat, thereby promoting its potential health benefits. Recognizing the growing 

consumer demand for healthy food options, wheat breeders and producers are increasingly 

considering phytochemical content as a quality parameter alongside conventional end-use 

properties (Shewry et al., 2012a), in which wild relatives of wheat could be a potential 

foundation for such variation (Shewry and Ward, 2012b). 

7.1 Polyphenols in Wheat 

The quantity and composition of polyphenols in wheat products are crucial for health and well-

being due to their antioxidant and anti-inflammatory properties (Kiani et al., 2021). 

Polyphenols are a diverse group of phytochemicals that share a common chemical structure 

characterized by an aromatic ring with one or more hydroxyl substituents (Ayad and Akkal, 

2019). These compounds can be categorized into several classes, with the principal groups 
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encompassing flavonoids, phenolic acids, tannins, stilbenes, alkylresorcinols and lignans 

(Shewry and Ward, 2012b; Luna-Guevara et al., 2018). Phenolic acids are the most abundant 

polyphenol in wheat and include ferulic acid, vanillic acid, caffeic acid, syringic acid, and p-

coumaric acid (Buczek et al., 2023). Most phenolic acids in wheat are bound to cell wall 

components, accounting more than 90% of their total content, with ferulic acid being the 

predominant form (Sosulski et al., 1982). Ferulic acid is especially abundant in the aleurone, 

pericarp, and embryo cell walls of various grains and is present in trace amounts in the starchy 

endosperm (Zhang et al., 2023). It comprises 70–90% of the total polyphenol content in wheat, 

with derivatives such as dihydroferulic, sinapic, caffeic, vanillic, syringic, p-coumaric, and 

phydroxybenzoic acid also detected, primarily in the bran and occurring in both free and bound 

forms (Bresciani et al., 2016). Among phenolic acids, diferulic acids (DFAs) are of particular 

interest due to their ability to form cross-links between polysaccharide chains, thereby 

influencing the structural integrity of cell walls. Diferulic acids include isomers such as 8-8 FA, 

8-5 DFA, 5-5 DFA, 8-O-4′ DFA, and 8-5 benzofuran DFA, existing in monomeric and 

oligomeric forms. DFAs, particularly dimers of ferulic acid, can be extracted alongside other 

phenolic acids, with most present in insoluble fractions (Parker et al., 2005; khosravi et al., 

2020). Flavonoids, is another major polyphenol group in wheat, especially prominent in colored 

cultivars and include apigenin, chrysoeriol, kaempferol, quercetin, and luteolin, predominantly 

found in conjugated forms with various sugars (Dinelli et al., 2011). Anthocyanins, specific 

flavonoid compounds present in colored wheat cultivars, include cyanidin, malvidin, petunidin, 

and delphinidin, occurring mainly in their sugar derivatives, albeit in lower concentrations 

compared to phenolic acids (Liu et al., 2010). These pigments provide color and also contribute 

to the antioxidant capacity of wheat products. Polyphenols contribute to the color, taste, and 

nutritional value of wheat and have been studied for their potential health benefits, including 

anti-inflammatory, anticancer and antioxidant properties. 

7.1.1 Antioxidants in Wheat 

Polyphenols are a diverse group of phytochemicals renowned for their potent antioxidant 

properties, largely due to their ability to donate electrons and neutralize free radicals. These 

phenolic compounds, abundant in whole grains, play a significant role in combating oxidative 

stress, with high phenolic content strongly correlated with increased antioxidant potential 

(Khosravi et al., 2020). Antioxidants, which include both naturally occurring and synthetic 

compounds such as vitamins and minerals, are crucial in neutralizing free radicals within the 

body (Mamta et al., 2014). Their essential role extends to reducing the risk of chronic conditions 
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such as cancer, coronary artery disease, muscular degeneration, and serious eye diseases, while 

simultaneously enhancing immune function (Akond et al., 2010). Polyphenols, as part of these 

antioxidant systems, offer numerous health benefits. They help reduce the risk of diabetes, 

cardiovascular diseases, and obesity and they serve as anti-mutagenic, anti-allergenic, anti-

inflammatory, antimicrobial, and anti-apoptosis agents (Balasundram et al., 2006). For 

instance, polyphenols exhibit antioxidant activities by inhibiting oxidase enzymes, protecting 

antioxidant enzymes, reducing free radical generation, and inactivating free radicals. These 

mechanisms make polyphenols effective antibacterial, anticancer, and anti-inflammatory 

agents (Kardum et al., 2014; Zhao et al., 2017). Polyphenols are synthesized in plants in 

response to physiological and oxidative stresses, serving protective roles against pathogen 

attacks, UV radiation, and physical damage (Al-Rawahi et al., 2013). The antioxidant activity 

of whole grain wheat varies among different species and genotypes, emphasizing the potential 

to exploit genetic variation to enhance the polyphenol content in wheat, thereby promoting 

human health benefits (Shewry and Hey, 2015b). Efforts to breed wheat varieties with higher 

antioxidant capacities could lead to healthier dietary options and align with consumer demand 

for nutrient-rich foods. 

 

Figure 4: Phytochemicals composition in wholegrain wheat (Adapted from Ammar et al., 2023 and Tian et al., 2022). 



22 
 

8. Different Genetic Origin of Wheat 

8.1 Wheat-Alien Introgression Lines 

Common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD)  originated from a series of 

hybridizations involving Triticum urartu, which contributes the  AA genome, a species believed 

to be Aegilops speltoides that provides the BB genome and Aegilops tauschii, which carries the 

DD genome (Sarka and Stebbins 1956; Dvořák et al., 1993; Matsuoka, 2011; Levy and 

Feldman, 2022). Common wheat belongs to the Poaceae (grass family), which includes 

important cereals such as durum wheat, barley, and rye, and falls under the tribe Triticeae. This 

tribe encompasses over 500 wild and cultivated species across several genera, including 

Aegilops, Leymus, Secale, Triticum, Agropyron, and Thinopyrum (Rey et al., 2015). Members 

of this tribe are recognized for their beneficial agronomic characters which includes resistance 

to biotic and abiotic stresses, enhanced nutritional profile, increased yield, wide environmental 

adaptation, reduced lodging, and earliness (Bedő and Láng, 2015; Rahmatov et al., 2016; 

Johansson et al., 2020b). Species carrying these traits have been hybridized with common 

wheat, followed by the subsequent identification and mapping of the genes associated with the 

traits of interest to specific loci (Rabinovich, 1998). Wheat-alien introgression, which involves 

transferring chromosome segments from wild wheat relatives into cultivated wheat, has been a 

valuable tool in wheat breeding programs by introducing new genetic variability into the 

common wheat gene pool (Molnar-Lang et al., 2016; Rahmatov, 2016b; Johansson et al., 

2020b). This is complex and time-consuming process that requires careful planning, precise 

breeding, and thorough selection to incorporate new traits while maintaining desirable 

characteristics. Additional breeding and selection are often necessary to ensure stable and 

consistent trait expression across generations. 

Homologous chromosome pairing in wheat, particularly with chromosomes from the tertiary 

gene pool, is controlled by the pairing homoeologous loci, Ph1 and Ph2, located on 

chromosomes 5BL and 3DS, respectively (Gill et al., 1993; Sutton et al., 2003). The Ph1 locus 

plays a dominant role during meiosis, ensuring that only true homologous chromosomes pair 

and preventing recombination between homoeologous chromosomes (Rawale et al., 2019). 

This mechanism is essential for maintaining the genomic stability of hexaploid wheat (Triticum 

aestivum), which has genomes from three ancestral species (AA, BB, and DD). The deletion of 

the Ph1 locus, as seen in the ph1b mutation in hexaploid wheat and ph1c mutation in tetraploid 

wheat, reduces the strict control over chromosome pairing, facilitating homoeologous 

recombination and genetic material transfer between wheat and other species (Giorgi and 
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Barbera 1981; Sears 1977). This process provides valuable opportunities for wheat breeding by 

introducing desirable traits, such as disease resistance, drought tolerance, and improved quality, 

from the tertiary gene pool into the wheat genome (Yazdani et al., 2023; Lan et al., 2023). 

Alien gene introgressions are well-known for their notable impact on disease resistance, though 

they typically display limited influence on product quality, except for the 1BL.1RS 

translocation (Kaur et al., 2022). While this translocation is known to have a negative effect on 

baking quality, it has proven extremely useful in combating several strains of wheat rust and 

powdery mildew diseases. However, the recent shift in plant breeding focus towards quality 

traits, driven by health and environmental concerns, underscores the need for proactive pursuit 

of attributes aligned with these priorities. Recent research has revealed increased levels of iron 

(Fe) and zinc (Zn) in wheat resulting from the incorporation of genes from Leymus racemosus 

and Leymus mollis, and additional reports indicate increased levels of these minerals alongside 

reduced cadmium content through introgressions from 1R, 2R, 5R, and Leymus spp. 

Furthermore, wheat-Leymus hybrids have shown promising enhancements in protein content 

and gluten strength, suggesting potential improvements in bread-making attributes. The gene 

complex SR31/Yr9/Lr26/Pm9 has notably contributed to agricultural productivity, and recent 

gene introductions such as Sr59, Pm56, and Yr83 offer further prospects for enhanced 

agricultural performance through targeted gene transfer approaches. 

Successful introgression has been reported for rye (Secale cereale), Thinopyrum junceiforme, 

leymus racemosus and leymus mollis (Merker and Rogalska, 1984; Merker and Lantai, 1997; 

Ellneskog-Staam and Merker, 2002; Kole, 2011) with 1BL/1RS wheat-rye translocation 

proving to be extremely useful in the fight against several strains of wheat rust and powdery 

mildew diseases. Introgressed chromosome segments from rye into wheat genome such as 

1AL/1RS (from Amigo), 1BL.1RS, 1DL.1RS, 2BL.2RS, 3BL.3RS, 5AL.5RS, 1R + 2R, 1R 

+3R, 5R + 4R + 7R AND 1R + 6R +4R +7R, and 1B(R) substitutions have been documented 

to be useful against several insects and different strains of stem, stripe and leaf rusts wheat 

pathogens (Rabinovich, 1998; Rahmatov et al., 2016; Johansson et al., 2020b). 

8.2 Landraces, Old and Ancient Wheat 

The importance of landraces in safeguarding genetic diversity is rooted in their inherent 

competitiveness and capacity to thrive in distinct environments, a trait developed from 

numerous cycles of human-driven evolution, and supported by a diverse genetic foundation 

(Gadaleta et al., 2023). Emerging as dynamic populations, landraces were cultivated during the 

evolutionary progression of crops through human selection in recently inhabited areas 
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following the onset of agriculture until the late 19th century. This period saw the emergence of 

inbred lines and cultivars in the early 20th century, making a transition away from genetically 

heterogeneous collections of plants. (Peleg et al., 2011). Due to their extensive genetic 

diversity, landraces manifest substantial allelic variability associated with diverse traits 

including end-use functionality and nutritional quality, including micronutrient content (Zn and 

Fe), fatty acid profiles, phytochemicals, vitamins, amino acid, protein composition, baking 

properties, sensory attributes, as well as factors such as disease resistance, and adaptability 

(Johansson et al., 2020b, 2021; Sönmez et al., 2023). Despite the contention that the yield 

potential of landraces is considered a notable limitation, they remain a valuable resource for 

reintroducing lost alleles into modern cultivars. This process serves to enhance the functional 

and nutritional potential of these cultivars. Wheat cultivars grown in Sweden from 1900 to 1960 

are classified as "old cultivars" according to research by Hussain et al., in 2010 and Johansson 

et al., in 2021. These cultivars have been notably recognised as a distinct reservoir of essential 

minerals within the human dietary context, as documented by Hussain et al., in 2010. 

Furthermore, they represent a potential reservoir for achieving elevated and consistent gluten 

strength, as highlighted by Lan et al., in 2023. Additionally, these cultivars exhibit adaptability 

to resource-constrained environments, primarily attributed to their efficient nitrogen utilization 

mechanisms, as elucidated by Pourazari et al., (2015). These exceptional attributes, despite their 

well-documented yield reduction compared to modern cultivars as reported by Pourazari et al. 

(2015), offer valuable prospects for harnessing these distinctive features in the strategic 

development of novel cultivars designed to enhance end-use qualities.  

Heritage crops bear significant agricultural importance, rooted in their historical and cultural 

significance (Shewry and Hey, 2015b). These plants harbour extensive genetic diversity, 

offering potential contributions to human nutrition, crop enhancement, and resilience against 

environmental challenges, beyond their cultural value. Heritage crops embody a blend of 

biodiversity, culture, and sustainability, yielding insights into a resilient agricultural approach 

that bridges the past with the present (Cabas-Lühmann et al., 2023). Integrating heritage crops 

into contemporary food systems through strategic plant breeding holds promise for addressing 

current challenges. 

Certain wild and primitive wheat cultivars, including Triticum monococum, Triticum dicoccon, 

Triticum dicoccoides, and Aegilops speltoides, exhibit promise as genetic sources for essential 

micronutrients, surpassing cultivated wheat cultivars and advanced breeding lines (Cakmak et 

al., 1999, 2000). Literature consistently reports elevated levels of the carotenoid lutein 

(resulting in a yellow colour) in einkorn, emmer, and Khorasan (Kamut) wheat, in contrast to 
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bread wheat, often chosen for its white appearance (Shewry and Hey, 2015b). Additionally, 

discernible differences emerge between ancient crops and modern cultivars concerning 

phenolic acids, other phytochemical compounds, polar metabolites, and dietary fibres (Shewry 

et al., 2015b, 2017). 

9. Wheat Growing Conditions in Sweden 

9.1 Organic Farming and Its Importance 

To meet one of the United Nations' goals of responsible consumption (SDG 12), consumers' 

desires for nourishing and delicious food options that contribute to overall well-being and 

safeguard against chronic ailments need to be satisfied, which could change attitudes toward 

food wastage, leading to its reduction (Johansson et al., 2014). However, this must be 

accompanied by responsible and sustainable production, promoting biodiversity and positively 

impacting the environment. The conventional farming system, characterized by its extensive 

reliance on synthetic chemicals (fertilizers and pesticides) that gained prominence post World 

War II (1939–1945), has been identified as having detrimental effects on agricultural 

sustainability (Tudi et al., 2021). Remarkably, while this system has historically delivered high 

yields, it has also resulted in enduring negative consequences for human health, animal welfare, 

biodiversity, and environmental integrity (Scherer et al., 2018; Agovino et al., 2019). Numerous 

reports have highlighted organic farming as a potential solution to these challenges (Hussain et 

al., 2012a; Tuomisto et al., 2012; Reganold and Wachter, 2016; Meemken and Qaim, 2018; 

Pekala, 2020), and it also offers the prospect of supplying nutritious food to our growing global 

population (Foley et al., 2011). According to the International Federation of Organic 

Agriculture's (IFOAM) definition, organic agriculture, which includes practices like organic 

farming, is a production system that puts the health of soils, ecosystems, and people first. It 

depends on ecological processes, biodiversity, and local adaptations rather than the use of inputs 

with harmful effects. Organic agriculture integrates tradition, innovation, and scientific 

knowledge to enhance the overall environment and foster equitable relationships, aiming to 

improve the quality of life for all involved (IFOAM, 2008). The principles of organic 

agriculture, founded on the values of health, ecology, fairness, and care, have driven the 

growing global demand for organic food products (Willer, 2010; Gamage et al., 2023). This 

growth in demand has resulted in a worldwide expansion of organic production areas, notably 

in Europe, where Sweden stands out as one of the leading countries (Hussain et al., 2012a; 

Statistics Sweden, 2021). The European Union aims to allocate at least 25% of agricultural land 
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to organic production by 2030 through initiatives like the EU Green Deal and Farm to Fork 

strategies, while Sweden has set a more ambitious target of 30% (European Commission, 2020; 

Moschitz et al., 2021; Statistics Sweden, 2021). Notably, Sweden experienced an annual growth 

rate of 8% in organic food demand between 2015 and 2018, and the Green Public Procurement 

(GPP) Act has set a goal of sourcing 60% of all food purchased by the public sector from 

organic sources by 2030 (Swedish Government, 2017; EkoWeb, 2020). The cultivation of 

nutritionally enriched and tasty wheat cultivars, integral to Swedish culture as the most 

produced and consumed cereal crop, can be effectively advanced through organic farming 

practices, offering a scientific approach to promote both end-use qualities and well-being.  

9.2 Heavy Metals 

Heavy metals, defined as metallic elements with an atomic weight greater than 40.04 atomic 

mass units, can act as toxic contaminants impacting human health (Agency for toxic substances 

and disease registry (ATSDR), Castro-Gonzalez and Mendez-Armenta, 2008). These metals 

enter the environment through both natural processes, such as weathering of the earth's crust, 

and human activities such as mining, industrial discharge, chemical fertilizers and pesticides 

and urban runoff (Martin and Griswold 2009; Jorhem et al., 2013). Human exposure to heavy 

metals primarily occurs through the consumption of contaminated food and water, establishing 

a cyclic pathway involving industry, atmosphere, soil, water, food, and humans (Ming-Ho, 

2005; Morais et al., 2012). To mitigate health risks, Commission Regulation (EU) 2021/1323 

sets maximum allowable concentrations for heavy metals such as lead, mercury, cadmium, tin, 

and arsenic in food and feed (European Commission, 2021). 

9.2.1 Cadmium Impact on Food Security Challenges in Sweden and Possible Solution 

In Sweden, the concentrations of cadmium, a naturally occurring heavy metal in soil, fluctuate 

based on geographical and soil variations, entering the food chain through crop absorption and 

raising concerns (The Swedish National Chemicals Inspectorate, 1998; Edirisinghe and 

Jinadasa, 2019). Dietary exposure is influenced by the consumption of larger food quantities 

including wheat (European Food Safety Authority, 2012; Jorhem et al., 2013). This metal, 

which persists in the body and accumulates in the kidneys, poses health risks such as 

cardiovascular diseases, osteoporosis, cancer, renal tubular dysfunction with prolonged 

exposure (Hallenbeck, 1984; Rafati-Rahimzadeh et al., 2017). Plant breeding techniques can 

be employed to effectively decrease the absorption of cadmium, alongside reducing the 

activities that contribute to its accumulation (Grant et al., 2008; Zaid et al., 2018; Chen and 
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Wu, 2020). Cadmium although non-essential for plant growth, disrupts vital metabolic 

pathways by competing with essential elements such as Fe and Mn (Gao et al., 2018), as well 

as Zn and Ca (Clemens and Ma, 2016), potentially causing health issues and imbalance within 

biological systems (European Food Safety Authority, 2012; Rafati-Rahimzadeh et al., 2017; 

Rubio et al., 2023). Identifying genes responsible for Cd accumulation is crucial for breeding 

wheat varieties with low Cd content. Several studies have reported genes linked to Cd uptake 

in wheat, including TaHMA2 and TpNRAMP5 (Wiebe et al., 2010; Tan et al., 2013). 

Additionally, 26 QTLs related to Cd stress have been identified, with two QTLs on 

chromosomes 4A and 5D specifically influencing Cd accumulation in roots (Ci et al., 2012). In 

durum wheat, the Cdu1 gene, located on chromosome arm 5BL, plays a major role in regulating 

Cd concentration in grains (Penner et al., 1995; Knox et al., 2009; Wiebe et al., 2010). These 

findings provide valuable genetic targets for developing wheat varieties with reduced Cd 

accumulation, improving food safety and crop quality. 

 
Figure 5: Causes and effects of Cadmium uptake in wheat grain 

Cadmium thresholds for foodstuffs in the European Union (EU) are governed by specific 

regulations aimed at minimizing exposure to this toxic metal. The EU has set maximum 

permissible levels of cadmium in various food categories, with thresholds based on the type of 

crop or product. These thresholds are laid out in regulations such as EU 2023/915 and earlier 

ones like EU 488/2014 and EC 1881/2006. 
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Table 3: Comparative table showing the maximum allowable cadmium levels (in mg/kg wet 
weight) for different crops in Sweden and the EU (Commission regulation, 2023). 

Crop/Foodstuff Sweden (Aligned with EU) Sweden Cadmium 
Threshold (mg/kg) 

Durum wheat (Triticum 
durum) 

0.18 0.18 

Wheat germ 0.2 0.2 
Rice, quinoa, wheat bran and 
wheat gluten 

0.15 0.15 

Maize 0.1 0.1 
Barley and rye 0.05 0.05 
Oat 0.1 0.1 
Citrus fruits, pome fruits, 
stone fruits, table olives, 
kiwi fruits, bananas, 
mangoes, papayas and 
pineapples 

0.02 0.02 

Berries and small fruits, 0.03 0.03 
Raspberries 0.04 0.04 
Root and tuber vegetables 0.1 0.1 
Pine nuts 0.3 0.3 
Radishes 0.02 0.02 
Tropical roots and tubers, 
parsley roots, turnips 

0.05 0.05 

Onions 0.03 0.03 
Garlic 0.05 0.05 
Fruiting vegetables 0.02 0.02 
Brassica vegetables 0.04 0.04 
Spinaches and similar leaves, 
mustard seedlings and fresh 
herbs 

0.2 0.2 

Legume vegetables 0.02 0.02 
Proteins from pulses 0.1 0.1 
Rape seeds 0.15 0.15 
Peanuts and soybeans 0.2 0.2 
Linseeds and sunflower seeds 0.5 0.5 

10. Wheat Bread-Making 

10.1 Bread-Making Quality 

Wheat is primarily consumed as bread, which is a major source of food and nutrition including 

protein, starch, dietary fibres, phytochemicals, amino acid composition, minerals and vitamins 

in many households (Chikpah et al., 2021). For bread-making, wheat flour is utilized due to its 

gluten-network, which imparts dough extensibility, strength, viscoelasticity and gas retention 

properties (Marchetti et al., 2012; Bashir et al., 2023). The compositional balance between 
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gliadin and glutenin, the two main protein fractions in gluten, plays a crucial role in determining 

the texture, structure, and appearance of bread (Barak et al., 2013; Shewry, 2019). The HMW-

GS subunit is critical for bread-making quality, with its concentration influencing bread 

volumes positively or negatively (Johansson and Svensson, 1995). In addition to gluten 

proteins, grain physical, chemical and nutritional characteristics, rheological properties of 

dough, falling number, and Zeleny sedimentation volume also influence bread-making quality 

(Poblaciones et al., 2009; Al-Saleh and Brennan, 2012; Barak et al., 2013). However, these 

characteristics vary depending on wheat genotypes and the environment in which wheat is 

cultivated (Carcea et al., 2006; Shewry et al., 2010; Hussain et al., 2012; Bashir et al., 2023).  

10.2 Bread-Making Quality Testing 

There are various methods for testing bread-making quality, but the most common are the 

Chopin alveograph, Mixograph, Amylograph, Farinograph, Consistograph, Mixolab, Texture 

Analysis, Falling Number Test and Extensograph (Song and Zheng, 2007; Marchetti et al., 

2012; Guzmán et al., 2015; Cappelli et al., 2020; Best et al., 2023). These methods assist bakers 

and researchers in understanding the characteristics of flour and dough, enabling them to 

optimize formulations and processes for desired bread and baked product qualities. Each 

method provides specific insights into different aspects of dough rheology and behaviour. 

11. Other Quality Test 

11.2 Sensory Evaluation 

Consumers seek both nutritional and energy benefits from food and derive pleasure based on 

sensory attributes during its consumption. The assessment of food quality relies significantly 

on sensory analysis, and its scientific underpinning is continually reinforced by growing 

understanding of human behaviour, together with advancements in sensory analytical methods 

(Haglund et al., 1998). Nutritional qualities such as protein, starch, fiber content, minerals and 

biochemical compounds have been shown to affect different sensory attributes of wheat (Bustos 

et al., 2011; Irakli et al., 2015; Torbica et al., 2019), with important attributes such as taste, 

colour, appearance, texture, and odour being crucial for evaluating the end-use quality of wheat 

flour, complementing its functionality and baking characteristics (Haglund et al., 1998). Since 

both genotype and growing environment are known to influence the nutritional quality of wheat 

(Haglund et al., 1998; Carcea et al., 2006; Hussain et al., 2012b, 2013; Johansson et al., 2020a), 

exploring the impact of these factors on the sensory characteristics of wheat products is a 
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compelling area of study. For food to be accepted and incorporated into the diet, it should not 

only be sustainable and nutritious but also possess attractive and appealing qualities to 

consumers. Assessment of sensory attributes is carried out through the use of human senses 

with a particular objective in mind.  

11.2.2 Sensory Evaluation Techniques 

There are different methods for analyzing sensory attributes (Gillette, 1990), but the commonly 

used ones are Difference Testing (Ennis et al., 2014), Affective Testing (Gillette, 1990) and 

Descriptive analysis (Murray et al., 2001; Lawless and Heymann, 2010b) with the choice of 

techniques depending on the objective of the study. While Difference Testing is used to 

determine if significant sensory differences exist between samples (Amerine et al., 2013), 

Affective Testing assesses consumers’ liking or acceptance of one sample over another 

(Lawless and Heymann, 2010a). In contrast, Descriptive Analysis is among the most 

comprehensive techniques, involving the identification and description of sensory attributes 

both qualitatively (taste, colour, appearance, texture, aroma) and quantitatively (level of 

intensity in each qualitative components using line scale) by specially selected and trained panel 

of assessors (Meilgaard et al., 1999; Murray et al., 2001).   

11.2.3 Descriptive Analytical Analysis Assessment 

For this technique, a minimum of six assessors are selected based on their sensory skills and 

awareness. Using a line scale from 1 to 100, and following ISO standard, the assessor panel is 

trained on a selection of the samples to reach a consensus on the sensory attributes to be used 

for evaluation (Guld et al., 2020).  The quantitatively analysed sensory attributes can be further 

subjected to statistical analysis to identify significant differences between the samples.   

12. Molecular Markers  

Molecular markers are DNA fragments with genetic linkage to a target gene and are inherited 

from one generation to another (Nadeem et al., 2018). Molecular markers serve as landmarks 

to the gene of interest and, like genes, occupy a particular region on the chromosome (Kumar 

et al., 2009). Markers can be found abundantly throughout the genome, have wide applications 

in science, and have been used to improve several crops (Kumar, 2009). Genetic markers are 

used to track variations in DNA segments within and between species and enable the creation 

of novel sources of genetic variations by introducing traits of interest from wild relatives into 

modern cultivars (Rahmatov et al., 2016b). Due to technological advancements, molecular 
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markers have been developed from non-PCR based to PCR-based methods (Bhagyawant, 

2016), with newer techniques overcoming the limitation of the previous one. Restriction 

Fragment Length Polymorphism (RFLP) marker is a DNA-based technique used in genetic 

linkage map construction, but it has limitations including complex hybridization, exposure to 

radioactive compounds, high cost, labour intensive, and a limited number of hybridization 

probes (Bernatzky and Tanksley, 1986; Liu, 2007). However, PCR-based markers, including 

Random Amplification of Polymorphic DNA (RAPD) (Williams et al., 1990), Amplified 

Fragment Length Polymorphisms (AFLP) (Vos et al., 1995), Cleaved Amplified Polymorphic 

Sequences (CAPS) (Shavrukov, 2016), Sequence Characterized Amplified Region (SCAR) 

(Liu et al., 1999); Simple Sequence Repeats (SSR) (Song et al., 2001); Direct Amplification of 

Length Polymorphisms (DALPs) (Langar et al., 2003) and Single Nucleotide Polymorphism 

(SNP) (Shavrukov, 2016) all have a relative advantages over non-PCR based molecular markers 

(Akbari et al., 2006; Bhatia and Bajwa, 2022). An ideal molecular marker should meet 

requirements such as high polymorphism, codominance in expression, even genome-wide 

distribution, distinct allelic features, no pleiotropic effect, multiplex capability, cost-

effectiveness in use and analysis, easy detection, high availability, high reproducibility, 

genome-specific and no negative impact on phenotype (Kumar et al., 2009; Andersen, 2013). 

12.1 High-throughput genotyping in wheat  

DNA-based molecular markers are essential for identifying genome sequence differences 

between organisms, and their early development has greatly advanced plant breeding by 

providing improved tools and techniques that enable breeders to select traits more effectively 

for better crop varieties (Kondić-Špika et al., 2023). The evolution of SNP chips has marked a 

transformative shift in genetic research, beginning with the 9k chip, which provided initial 

genetic insights. This progressed to the 35k, 90k, 660k and 820k chips in wheat, which offer 

much higher resolution and a broader range of genetic markers, enhancing the ability to conduct 

detailed genetic analyses and facilitate targeted breeding MAS (Rasheed et al., 2017; Thudi et 

al., 2021). Genotyping by sequencing (GBS is a high multiplexed method to obtain genome-

wide variability information for a population (Crossa et al., 2013; Morris et al., 2013; Spindel 

et al., 2015). It involves determining the nucleic acid sequence within a DNA molecule. The 

sequence of nucleotides (A, T, C, and G) encodes the biological information cells use to develop 

and perform their functions. Unraveling the DNA sequence is essential to understanding the 

role of genes and the overall genome. GBS is a low-cost, time-saving, and labor-effective way 

of capturing SNPs for genetic analysis and genotyping using the next generation sequencing 
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(NGS) platforms (Beissinger et al., 2013; Bhatia et al., 2018). It has advantages over regular 

markers such as RFLP, RAPD, AFLP, and SSR (He et al., 2014). GBS is utilized in various 

applications, including quantitative trait locus (QTL) mapping, molecular diversity, Genome-

wide-association study (GWAS), construction of high-density genome maps, haplotypes map, 

phylogenetics, identification of candidate genes, genetic linkage analysis, molecular marker 

discovery, and genomic selection/prediction (Romay et al., 2013; He et al., 2014; Spindel et 

al., 2015). The GBS procedure includes DNA isolation, quantification, and normalization from 

samples, followed by digestion with methylation-sensitive restriction enzymes, such as ApeKI 

(a rare cutter PSTl and frequent cutter Mspl) for wheat, with enzyme choices varying for other 

plant species to reduce genome complexity (Poland et al., 2012; Yazdani et al., 2023). ApeKI 

cuts DNA at specific 5-base pair sequences, targeting gene-rich regions to reduce genome 

complexity in GBS, which simplifies sequencing and variant identification (Elshire et al., 

2011). This is followed by the litigation of adaptors (ADP) with barcodes to allow multiplex 

sequencing, forming a library panel (Elshire et al., 2011). Sequence analysis is conducted using 

an appropriate NGS platforms such as Illumina platforms, Ion Torrent, Beijing Genomic 

Institute-SEQ, MGI-SEQ and Oxford Nanopore (Poland et al., 2012; Pérez-De-Castro and 

Cañizares, 2017; Scheben and Edwards, 2018 and Meyer and Kirkness, 2019). These platforms 

generate high-throughput sequence data, which are then processed through bioinformatics 

pipelines to identify genetic variations by aligning sequence reads to a reference genome. The 

development and availability of reference genomes have been pivotal for such bioinformatics 

analysis, allowing for the accurate detection and identification of single nucleotide 

polymorphisms (SNPs) for marker-assisted selection in breeding programs (Bentley et al., 

2008).  One of the most significant milestones in wheat genetics was sequencing the 'Chinese 

Spring' wheat genome, which provided a comprehensive reference genome and laid the 

foundation for more advanced genetic studies (Han et al., 2015; Hao et al., 2020). This 

advancement enabled the use of Whole Genome Sequencing (WGS) and Whole Genome 

Resequencing (WGR) techniques, which have expanded our understanding of wheat genetics 

and facilitated the identification of genomic regions associated with important traits (Can et al., 

2019; Sahu et al., 2020). Building on this foundation, several studies have employed GBS to 

investigate various research objectives in wheat, such as adaptability and yield traits (Akram et 

al., 2021), generating a dense linkage map and mapping the high-density three-pistil gene (Pis1) 

(Yang et al., 2017), and creating a high-density genetic map for milling and the homologous 

transformation sterility gene (hts) (Yang et al., 2018). Additional research includes identifying 

GBS tags associated with milling performance and end-use quality traits (Boehm et al., 2017) 
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and searching for genetic variants underlying baking quality in 462 hard winter wheat lines 

(Zhang-Biehn et al., 2021). These examples demonstrate how GBS, combined with advanced 

sequencing technologies and bioinformatics tools, has become essential for understanding 

wheat genetic architecture and accelerating marker-assisted breeding. Thus, it improves wheat 

breeding efficiency and facilitates the development of high-quality wheat varieties. 

12.2 Genome-Wide Association Studies (GWAS) 

In recent years, GWAS have become a powerful tool for detecting and mapping- genomic loci 

control traits of interest in crops (Yoosefzadeh-Najafabadi et al., 2022). This method has broad 

applications across many crop species, including wheat (Rathan et al., 2022; Mulugeta et al., 

2023), sorghum (Enyew et al., 2022) rice (Spindel et al., 2016), oat (Newell et al., 2012), barley 

(Jabbari et al., 2018), millet (Jaiswal et al., 2019) and maize (Wu et al., 2022). GWAS involves 

several key steps: assembling and phenotyping of an association panel (Belzile and 

Torkamaneh, 2022), genotyping the population (Wang et al., 2014; Kang et al., 2020), 

conducting association analysis (Zhou et al., 2020), and identifying candidate genes (Rathan et 

al., 2022). This approach has successfully identified genomic regions associated with essential 

traits in wheat, such as yield (Li et al., 2019), disease resistance (Mihalyov et al., 2017), climate 

resilience (Mérida-García et al., 2020; Phuke et al., 2022), and quality attributes (Liu et al., 

2017). The development of SNP arrays through high-throughput genotyping technologies have 

facilitated the way for widespread use of GWAS. Unlike bi-parental QTL mapping, GWAS 

requires significant marker coverage across the genome of interest and allows for the 

identification of multi-allelic variants associated with the traits of interest (Uffelmann et al., 

2021). GWAS can significantly enhance our understanding of the genetic basis of heritable 

traits, enabling marker-assisted selection to improve traits in breeding programs (Spindel et al., 

2016). Several powerful tools are available for conducting GWAS, such as PLINK for fast 

statistical analysis, BOLT-LMM and SAIGE for mixed models and addressing population 

structure, FaST-LMM for efficient mixed model analysis, and GEMMA for mixed-model 

association with both quantitative and binary traits (Purcell et al., 2007; Lippert et al., 2011; 

Zhou et al., 2012 and Bi et al., 2021). Additionally, R statistical tool has gained popularity for 

GWAS, particularly with the GAPIT (Genomic Association and Prediction Integrated Tool) 

package (Wang et al., 2022). Common GWAS models implemented in R include the General 

Linear Model (GLM), Mixed Linear Model (MLM), Compressed Mixed Linear Model 

(CMLM) and Multi Locus Mixed Model Approach (MLMM) (Pritchard et al., 2001; Yu et al., 

2006 and Segura et al., 2012). Advanced models such as SUPER (Settlement of Mixed Linear 
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Models Under Progressively Exclusive Relationship), FARMCPU (Fixed and Random Model 

Circulating Probability Unification), and BLINK (Bayesian-information and Linkage-

disequilibrium Iteratively Nested Keyway) improve computational speed and statistical power, 

making them highly effective for large datasets (Huang et al., 2019; Wang et al., 2014 and Liu 

et al., 2016). 

12.3 Kompetitive Allele Specific PCR (KASP) 
 
Two cost-effective methods for converting flanking SNP markers from array-based genotyping 

(GenFlexTM, GeneChipTM, Infinitum, BeadXpressTM, GoldenGateTM) and GBS into more 

specific assays are Semi-Thermal Asymmetric Reverse PCR (STARP) and KASP markers 

(Long et al., 2017; Semagn et al., 2014). KASP markers are generally preferred due to their 

higher throughput, enhanced accuracy, and robustness across diverse samples. Their cost-

effectiveness and compatibility with standard real-time PCR machines make them a practical 

choice for many genotyping projects (Long et al., 2017; Jagtap et al., 2020). KASP markers 

have become popular among cereal researchers and breeders, especially for validation and 

marker-assisted selection (Rasheed et al., 2016). This popularity is attributed to their ability to 

produce reliable and reproducible results across different genetic backgrounds, which is critical 

in breeding programs. KASP assays depend heavily on the quality and quantity of the DNA 

template, as these markers function through allele-specific oligo extension and fluorescence 

resonance energy transfer (FRET) for signal generation. DNA can be extracted efficiently from 

leaves or seeds, making KASP markers versatile at various stages of plant development. Using 

KASP with other genotyping methods allows researchers to validate SNPs identified in high-

throughput sequencing or array-based approaches, thus ensuring marker-assisted selection 

accuracy and reliability in crop breeding programs (Roncallo et al., 2019). This integration 

helps bridge the gap between high-throughput discovery platforms and practical breeding 

applications, providing a comprehensive and cost-effective approach to genetic analysis. 
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