
Hartop et al. BMC Biology  (2024) 22:215 
https://doi.org/10.1186/s12915-024-02010-z

RESEARCH Open Access

© The Author(s) 2024, corrected publication 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

BMC Biology

Resolving biology’s dark matter: species 
richness, spatiotemporal distribution, 
and community composition of a dark taxon
Emily Hartop1,2*, Leshon Lee3,4, Amrita Srivathsan3,5, Mirkka Jones6,7, Pablo Peña‑Aguilera8, Otso Ovaskainen6,9, 
Tomas Roslin6,8 and Rudolf Meier5,10* 

Abstract 

Background Zoology’s dark matter comprises hyperdiverse, poorly known taxa that are numerically dominant 
but largely unstudied, even in temperate regions where charismatic taxa are well understood. Dark taxa are every‑
where, but high diversity, abundance, and small size have historically stymied their study. We demonstrate how ento‑
mological dark matter can be elucidated using high‑throughput DNA barcoding (“megabarcoding”). We reveal 
the high abundance and diversity of scuttle flies (Diptera: Phoridae) in Sweden using 31,800 specimens from 37 sites 
across four seasonal periods. We investigate the number of scuttle fly species in Sweden and the environmental fac‑
tors driving community changes across time and space.

Results Swedish scuttle fly diversity is much higher than previously known, with 549 putative species detected, com‑
pared to 374 previously recorded species. Hierarchical Modelling of Species Communities reveals that scuttle fly com‑
munities are highly structured by latitude and strongly driven by climatic factors. Large dissimilarities between sites 
and seasons are driven by turnover rather than nestedness. Climate change is predicted to significantly affect the 47% 
of species that show significant responses to mean annual temperature. Results were robust regardless of whether 
haplotype diversity or species‑proxies were used as response variables. Additionally, species‑level models of common 
taxa adequately predict overall species richness.

Conclusions Understanding the bulk of the diversity around us is imperative during an era of biodiversity change. 
We show that dark insect taxa can be efficiently characterised and surveyed with megabarcoding. Undersam‑
pling of rare taxa and choice of operational taxonomic units do not alter the main ecological inferences, making it 
an opportune time to tackle zoology’s dark matter.
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Background

If we go on the way we have, the fault is our greed 
and if we are not willing to change, we will disap-
pear from the face of the globe, to be replaced by the 
insect. Jacques Yves Cousteau.

Biodiversity loss in the Anthropocene is driven by 
changes in climate, land use, but also species introduc-
tions [14, 19]. Such loss can result in the concomitant 
decline in ecosystem services vital to society [47, 49] 
and may ultimately disrupt global supply chains and 
food security [81]. Accurate monitoring of biodiversity is 
therefore a global priority [54].

A crucial first step to monitoring biodiversity is obtain-
ing robust quantitative baseline data. Most biologists 
would consider this to be data on species diversity, abun-
dance, and biomass for those taxa that contribute sub-
stantially to these quantitative metrics. However, most 
biodiversity studies cover only a few well-studied groups 
that are relatively easily identified and quantified (e.g. 
birds, mammals, amphibians, bees, and butterflies). Such 
charismatic taxa are then used as proxies for all taxa in a 
region [7, 8, 33, 56, 57, 61, 70, 79] instead of basing our 
understanding of global biodiversity on a broad and unbi-
ased representation of biodiversity covering a wide range 
of traits and responses to environmental change [2, 21, 
37].

A key component of global biodiversity are “dark taxa”, 
i.e. taxonomic groups for which less than 10% of the 
diversity is described and the species diversity is esti-
mated to be upwards of 1000 [40]. Such poorly known 
groups do not just inhabit inaccessible realms like the 
deep sea [60] but also the terrestrial habitats in which we 
live. A recent study [66] revealed that 20 insect families 
(of which 10 belong to Diptera) account for > 50% of local 
species diversity. Alarmingly, the very same families suf-
fer from extreme taxonomic neglect and are therefore 
poorly represented in biodiversity surveys. Identifying 
and tackling the diversity of these dark taxa with scalable 
techniques thus emerges as an urgent priority for biodi-
versity science.

Large-scale studies of dark taxa have only become fea-
sible in recent years due to advancements in sequencing 
technologies coupled with efficient single-specimen DNA 
barcoding workflows [16, 40, 51, 68, 69, 82] : “megabar-
coding”). Such workflows allow large numbers of speci-
mens to be processed and sorted to putative species 
(mOTUs), while providing exact specimen counts, and 
vouchers for subsequent morphological, taxonomic, and 
biological work.

Scuttle flies in the family Phoridae (Diptera) have 
been considered the seventh most speciose and abun-
dant insect family globally [66]. However, to date only 

ca. 4000 species have been described, although their 
actual diversity may be two orders of magnitude larger 
[68]. In addition to their extreme species richness, 
scuttle flies occupy a wide range of ecological niches, 
containing species that are  herbivores and predators 
to scavengers, parasitoids, and parasites (reviewed by 
[20]). Nonetheless, previous ecological studies focus-
ing on scuttle flies [23–30] have been of limited scope 
due to time-consuming morphological identification 
methods. It is essential that we assess taxa like these 
to ensure that ecological analyses reflect the bulk of 
biodiversity and represent a broad range of ecological 
niches.

In this study, we use sorting with megabarcoding to 
generate the data for answering fundamental questions 
about this dark taxon. We ask how many species of 
scuttle flies occur in Sweden, how are they distributed 
across time and space, and what environmental varia-
bles drive their distribution. To test whether the choice 
of species and species delimitation method will affect 
the results, we carry out the same analyses using both 
mOTUs as species-proxies and haplotype diversity, and 
test whether rare species influence the overall infer-
ences. We show how “dark taxon zoology” can quickly 
yield the answers urgently needed in the Anthropocene.

Results
Diversity
We obtained a total of 31,739 COI barcodes belong-
ing to 2697 haplotypes from scuttle fly samples from 37 
sites (Fig. 1, Additional file 1: Fig. S1) and four seasonal 
time periods (Additional file  1: Fig. S2) across Sweden 
(Additional file  1: Table  S1). At the species threshold 
(1.7%) [40], we detected 549 mOTUs. Species accumu-
lation curves revealed that scuttle fly species diversity 
was incompletely sampled overall and across sites, hor-
ticultural zones, and time periods (Additional file  1: 
Figs. S3, S4). Between 38 and 145 species were observed 
per site, with Chao1 richness estimates per site ranging 
from 83 to 244 species (Fig. 2b, c). Regional richness esti-
mates varied between nearly 400 species estimated in the 
southernmost coastal zone (zone 1), to fewer than 200 
estimated for the alpine zone (Additional file 1: Fig. S3). 
Midsummer and late-summer time periods were both 
characterised by richness estimates of around 450 spe-
cies, while the late spring and offseason time periods 
showed lower species richness estimates of around 300 
species (Additional file 1: Fig. S4). Total species richness 
in Sweden was estimated at between 652 species (for 
Chao1, Fig.  2a) and 713 species (combined non-para-
metric estimator (CNE) in [63]), suggesting that 100–160 
species of scuttle flies remain to be sampled.
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Ordinations of community composition
NMDS plots revealed a clear distinction between scuttle 
fly communities in the southern (zones 1–3) and north-
ern (zones 4–alpine) plant hardiness zones (Fig. 1, Addi-
tional file  1: Fig. S5). ANOSIM supported significant 
differences between southern and northern zones at this 
threshold (R = 0.58, p = 0.001), and SIMPER revealed that 
north–south similarity was just 13.2%, as compared to 
similarities of 24.6% and 23.2%, respectively, among sam-
ples within the northern and southern zones (Additional 
file 1: Tables S2–S3).

The separation between zones was consistent across 
clustering thresholds ranging from haplotypes-as-such to 

a threshold of 1.7% sequence similarity, with stress values 
around 0.21 (Additional file 1: Fig. S5 top row). Above a 
threshold of 3%, however, the patterns were increasingly 
blurred and the stress values were higher (0.25–0.27) 
(Additional file  1: Fig. S5 bottom row). These patterns 
were also evident in ANOSIM analyses, where the sample 
statistic decreased from 0.54 for haplotypes to 0.27 for 
5% mOTUs, indicating a decreasing relationship between 
scuttle fly community composition and plant hardiness 
zones at higher clustering thresholds (Additional file  1: 
Table S2). Similarly, in SIMPER analyses, average similar-
ity between zones increased from 20.2% for haplotypes 
to 41.4% for 5% mOTUs (Additional file 1: Table S3). For 

Fig. 1 The location of the 37 study sites of the Swedish Insect Inventory Project colour‑coded according to the plant hardiness zones (odlingszoner, 
1–8 and alpine) of the Swedish Horticultural Society (Riksförbundet Svensk Trädgård) (map used with permission) next to an NMDS plot of study 
samples colour‑coded with the same zones
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species, scuttle fly communities were found to be distinct 
across most zones (R = 0.51, p = 0.001), with higher (aver-
age = 28.5%) similarity within zones than between (aver-
age = 19.2%) zones (Additional file 1: Tables S2, 3).

Samples from the late spring, midsummer, and late-
summer time periods showed a clear progression 
along the ranked plant hardiness zones, while off-
season samples appeared more randomly distributed 

(Additional file  1: Fig. S6). Northern sites (IV–alpine) 
showed higher distinctness across seasons (R = 0.59) 
than when considering all sites (R = 0.27) (Additional 
file  1: Table  S4). The between-season similarity of all 
sites averaged 16.9% and within time period similar-
ity averaged 23.7% (Additional file  1: Table  S5, top). 
However, for northern sites only (IV–alpine), between 
time period similarity was 21.3% and within time 

Fig. 2 a Species accumulation and Chao1 estimate curves for the scuttle fly dataset across Sweden. Notably, current sampling is far 
from exhaustive, and numbers of singletons and doubletons in our dataset are high regardless of sample size, b species accumulation curves 
by sampling sites, colour‑coded by zone, and c Chao1 estimate curves by sampling sites, colour‑coded by zone. For a map of the zones using 
the same colour codes, see Fig. 1
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period similarity was 37.2% (Additional file 1: Table S5, 
bottom).

Hierarchical Modelling of Species Communities (HMSC)
Models of the four response matrices (species-occurrence, 
haplotypes-occurrence, species-abundance, haplotypes-
abundance) showed relatively good MCMC convergence 
with potential scale reduction factors of the models’ beta 
and omega parameters close to one (Additional file 1: Fig. 
S7).

Explained variance averaged c. 30% for the occur-
rences and c. 60% for the abundances of both species and 
haplotypes, but there were large differences in model fit 
among taxa (Additional file 1: Fig. S8), haplotype occur-
rence mean ± sd Tjur R2 = 0.30 ± 0.15 (range 0.05–0.82); 
haplotype abundance R2 = 0.61 ± 0.26 (range 0.00–1.00); 
species presence-absence Tjur R2 = 0.30 ± 0.14 (range 
0.05–0.72); and species abundance R2 = 0.59 ± 0.26 (range 
0.02–1.00).

Sampling time period explained the largest fraction of 
variance, on average, in all four HMSC models (mean 
10–11% in the occurrence models; mean 15–16% in 
the abundance models; Fig. 3, Additional file 1: Fig. S8). 
Mean annual temperature explained almost as much var-
iance as sampling time period in the occurrence models 
(mean 7% and 8% in the species vs haplotype models), 
but clearly less than sampling season in the abundance 
models (mean 6% in the species models and 5% in the 
haplotype models) (Fig. 3, Additional file 1: Fig. S8). All 
response variables showed strong climatic (including 
temporal) community structure and there was also strong 
spatial structure in species and haplotype occurrences 
linked with the latitudinal temperature gradient across 
Sweden. Tree cover explained more variance in the abun-
dance models (mean 6% for both species and haplotypes) 
than in the occurrence models (mean 1% for both species 
and haplotypes). Trapping effort also explained more var-
iance on average in the abundance models (mean 7% and 
8%) than in the occurrence models (mean 1.5% for both), 
as did the effect of having (vs not having) sequenced the 
full trap sample (2% mean for occurrence, 6% mean for 
abundance).

While the occurrences of taxa and haplotypes showed 
statistically supported responses to all model covariates, 
their abundances showed responses less frequently, and 
responses with strong support were primarily with sea-
sonal covariates (Fig. 4).

Most species and haplotypes with a statistically sup-
ported seasonal abundance trend peaked in the late 
spring. Compared to late spring, the midsummer fauna 
showed a reduction of 28% in species counts and 16% 
in haplotype counts, respectively, with a further reduc-
tion of 24% in both species counts and haplotype counts 

towards the late summer. Taxa and haplotypes were also 
usually more prevalent in late spring than in mid- or 
especially late summer. However, a minority of species 
and haplotypes (9% and 7%, respectively) showed the 
reverse pattern, being more prevalent in late summer 
than in the spring. Offseason captures in the late fall to 
early winter were consistently low, and the number of off-
season samples included in the models was the smallest 
(n = 20 samples). Nonetheless, 33% of the species mod-
elled and 29% of the haplotypes modelled were occasion-
ally detected in offseason samples.

Taxon occurrences showed a mixture of positive (29% 
vs 30% for species and haplotypes, respectively) and 
negative (18% vs 23%) responses to the annual tempera-
ture gradient (“bio1”) across Sweden (Fig.  4), reflecting 
the broad-scale compositional changes from southern 
towards northern Sweden seen in the NMDS ordina-
tions. Where detected, the occurrence responses of taxa 
to forest or woodland cover were more often positive 
than negative (10% positive vs 4% negative for species; 
8% vs 2% for haplotypes; Fig. 4). Longer trapping periods 
did not consistently result in higher detection probabili-
ties of taxa, presumably due to seasonal differences in 
trapping duration (4% positive vs 5% negative responses 
for species; 8% positive vs 4% negative for haplotypes; 
Fig. 4). As expected, most taxa (81–82% in both the spe-
cies and haplotype models) showed a negative occur-
rence response to the binary variable indicating whether 
all specimens in a sample were sequenced or not (“Full-
Sample”) (Fig. 4). The mean annual temperature gradient 
across Sweden was predicted to affect the prevalence of 
38% of species, but does not appear to be a main driver 
of species abundance (Fig. 4). The predicted effect of the 
temperature gradient on species prevalence during late 
summer was positive in 22% of taxa and negative in 16% 
of taxa (Additional file 1: Fig. S9). Beyond spatial patterns 
explained by these climatic predictors, there was evi-
dence of localised spatial autocorrelation in species and 
haplotype site occupancies at scales of less than 40  km. 
Neither species nor haplotype abundances were spatially 
autocorrelated, nor did we detect statistical support for 
temporal autocorrelation in any model.

Residual correlations in the distributions of taxa were 
detected among sites and samples in both the species and 
especially the haplotype occurrence models (Additional 
file  1: Fig. S10). Residual associations of taxa over time 
were also evident, but less frequently (Additional file  1: 
Fig. S10). Residual associations between taxon/haplotype 
occurrences likely indicate that our models either lack or 
imperfectly represent some of the variables that structure 
the occurrences of scuttle fly taxa and haplotypes in space 
and time. No residual associations among taxa were evi-
dent among sites or over time in the species or haplotype 
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abundance models, and very few were detected among 
samples (Additional file 1: Fig. S10). Hence, covariance in 
the abundances of taxa and haplotypes across occupied 
samples was well modelled by the environmental and 
other covariates in these models.

The observed richness of the excluded rare vs modelled 
common species and haplotypes was strongly positively 
correlated (R = 0.59 for species and R = 0.80 for haplo-
types). Compositional differences between samples in 
terms of the rare vs common species and haplotypes were 

Fig. 3 Summary of explained variance in the occurrences and abundances of scuttle fly haplotypes and species across samples (fractions 
within bars represent the average percentage of variance explained by each fixed or random effect in the models). All four models show strong 
climatic structure (in shades of brown) on scuttle fly communities, as captured by fixed variables describing sampling season and mean annual 
temperature and a random effect based on median sampling date. The spatial fraction of explained variance (lime green) reflects community 
structural differences among sites that were not captured by the fixed effect covariates. Differences in sampling effort, i.e. whether or not trapped 
flies were all sequenced or not and the number of field trapping days per sample, also affect the predictability of community structure (shades 
of orange). The abundance of species and haplotypes, and to a lesser extent their occurrence, was also strongly structured by habitat type 
as described by forest and woodland cover (blue). Finally, we included a categorical random effect representing sample identity (purple)
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also positively correlated (for taxon presence-absence 
Mantel R = 0.31 for species and Mantel R = 0.64 for hap-
lotypes; for taxon abundance Mantel R = 0.30 for species 
and Mantel R = 0.60 for haplotypes).

Community dissimilarity
Turnover accounted for the bulk of spatial, temporal, 
and spatiotemporal variation in community dissimilarity 
(Fig. 5). In the spatial analyses, the mean turnover of spe-
cies and haplotypes between sample pairs was 0.75 and 
0.87, respectively, while the corresponding mean values 
of nestedness were 0.07 and 0.03. In temporal analyses, 
similarly, the mean values of turnover were 0.45 and 0.74 
for species and haplotypes, respectively, and the corre-
sponding means of nestedness were 0.13 vs 0.07. Finally, 
mean turnover values for the spatiotemporal analyses 
were 0.75 and 0.84 vs a mean nestedness of 0.07 and 0.04 
for species and haplotypes, respectively.

Regardless of the time period and operational taxo-
nomic units used, we found a significant positive cor-
relation between turnover and geographical distances, 
meaning that communities in closer proximity to each 
other are more similar in composition (Additional 
file  1: Fig. S11). The mean spatial turnover of species 
communities was highest in the summer time periods 

(midsummer: 0.82, late summer: 0.84) and lower in late 
spring and offseason (0.78 and 0.72, respectively). How-
ever, we did not find any significant correlation between 
temporal distances (difference in mean week) and turn-
over (see Table  S6). Patterns of nestedness showed no 
detectable correlation with any of the distances explored 
(except for the grouped temporal distance) (Additional 
file 1: Table S6). Within each time period, scuttle fly com-
munities become more distinct from neighbouring com-
munities from late spring to late summer (Additional 
file 1: Table S6 and Figs. S11–13).

Discussion
Our study marks the first country-wide examination 
of a dark taxon’s diversity and distribution. It revealed 
more than 500 species of scuttle flies  based on pro-
cessing ca. 31,800 specimens. The ecological analyses 
suggest that climate change will have profound (and 
quickly apparent) effects on communities of scut-
tle flies that could serve as early indicators of future 
shifts in the environment. We demonstrate that armed 
with recent advancements in sequencing technologies, 
bioinformatics pipelines, and molecular barcoding 
workflows [40, 52, 68, 69, 75, 82], we are now able to 
resolve patterns of alpha diversity, spatial and temporal 

Fig. 4 Predicted occurrence and abundance responses of 193 scuttle fly haplotypes and 162 species to HMSC model covariates. Positive 
(red) and negative (blue) estimated responses with a posterior probability of 0.95 are illustrated. The three rows below the intercept illustrate 
the estimated effects of three levels of a categorical variable representing sampling time period (midsummer, late summer, offseason) relative 
to the baseline (late spring). The subsequent three rows represent responses to % forest or woodland cover and mean annual temperature (“bio1”) 
at sampling sites. The final two rows represent the effects of two sampling‑related differences among samples: the number of trapping days 
and whether all specimens in the trap sample were sequenced, and hence available for HMSC analysis, or not
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turnover, and species communities of challenging dark 
taxa. We show that for the scuttle flies in Sweden, many 
species remain undiscovered, that local communities 
show major turnover in space and time, and that eco-
logical patterns are largely robust to the finer details 
of species delimitation. Below, we will discuss each of 
these findings in further detail—and the importance 
of these patterns in dark taxon biology to biodiversity 
science.

Diversity
Our sample only scratched the surface of the scuttle 
fly fauna of Sweden (Fig. 2, Additional file 1: Figs. S3, 
S4). While the true Swedish fauna of scuttle flies is still 
hard to estimate, the 549 putative species found (and 
652–713 predicted based on current sampling) greatly 
exceed the 374 previously documented from the coun-
try. Previous estimates for the scuttle fly fauna have 
ranged from 1100 to nearly 2000 species, suggesting 

Fig. 5 Pairwise community dissimilarity among scuttle fly species and haplotype samples. Following Baselga and Orme [5], we partitioned overall 
dissimilarity into its turnover and nestedness components and illustrate these as well as overall dissimilarity as a function of distance (standardised 
Euclidean distance calculated from sample site coordinates)
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that the true numbers may be even higher [63]. This 
would not be surprising, given that our study included 
samples from just 37 traps in a country of over 450,000 
 km2; i.e. many habitats remained unsampled. However, 
the available data confirm that for dark taxa the basic 
pattern in ecology holds that most species are rare and 
that finding all species would require massive sam-
pling [13].

Where the remaining species will be lurking is 
unknown. While Malaise traps are remarkably effec-
tive at capturing flies [42, 64], other trapping meth-
ods would certainly reveal additional species. An “All 
Diptera Biodiversity Inventory” conducted in Costa 
Rica utilised a wide variety of methods [9], revealing 
that 59% of fly species were unique to a specific collec-
tion method [10]. Intriguingly, species‐rich taxa with 
particularly interesting and often impactful biologies 
(e.g. parasitoids) may be underrepresented in Malaise 
trap samples. For example, Brown [12] reported that 
nearly half of the species of ant-parasitising scut-
tle flies were caught exclusively over army ant raids. 
Similar results were obtained by Disney et al. [22], who 
found some species of scuttle flies were uniquely or 
primarily collected in water traps rather than Malaise 
traps. Another possible frontier is the canopy. Ongo-
ing research in upper levels of the canopy in the Ama-
zon suggests that it contains many scuttle fly species 
not found in lower sampling elevations [36], contrast-
ing with previous data showing scuttle flies as a taxon 
primarily collected at ground level [44]. Based on a 
limited sample (159 specimens) from canopy trap pro-
totypes run concurrently with the Malaise trap sam-
pling for this study, we found a single unique mOTU 
not seen in the 31,794 scuttle flies from ground level, 
indicating that even in a temperate environment we 
may have more to find in the canopy.

Thus, no single sampling method will suffice to reveal 
all taxa and additional trapping sites that target regions 
or habitats un- or under-represented in the current 
study will also be needed for an exhaustive inventory of 
scuttle flies. Some of this complementary sampling may 
have already been carried out by the Swedish Malaise 
Trap Project years ago [42]. An excellent follow-up 
to this study would be sequencing scuttle fly samples 
from that sampling campaign, or from another more 
recent  insect campaign in Sweden—the Insect Biome 
Atlas project (www. insec tbiom eatlas. org).

In addition to focusing future efforts on revealing 
more species, the analysis of other life stages may offer 
a more nuanced understanding of scuttle fly communi-
ties. Our study is based on adult flies. Patterns for the 
longer-living larval stages are at this point unknown, as 
they are not easily collected.

Lessons from ecological analyses
Our ordinations of community composition suggested 
strong structuring of scuttle fly communities by Swedish 
horticultural zones (Fig. 1) and season (Additional file 1: 
Fig. S6). Clear north–south structuring of the Swedish 
insect fauna has also been observed in damselflies, mos-
quitos, and caddisflies [38, 48, 77], and strong pheno-
logical patterning is a hallmark of any high-latitude fauna 
[80]. Our ordinations also indicated that spatial structur-
ing was largely independent of mOTU clustering thresh-
old at or below the species proxy level (Additional file 1: 
Fig. S5).

To address these findings more rigorously and with-
out the constraints of pre-determined zones, we 
implemented HMSC. This confirmed that scuttle fly 
community variation is both highly seasonal and strongly 
tied to the latitudinal temperature gradient over Sweden, 
with all models strongly predicted by climatic covari-
ates (Fig.  3, Additional file  1: Fig. S8). The presence of 
significant spatial autocorrelation in the HMSC occur-
rence models reflects the gradation of scuttle fly distribu-
tions across space. Scuttle fly communities also showed 
clear compositional changes over time during the warm 
season, from late spring through mid- and late summer, 
while offseason sampling was too inconsistent to reveal 
any patterns (Additional file  1: Figs. S2, S6). Consistent 
with our findings that scuttle fly communities are driven 
by climatic covariates, we found more rapid spatial turn-
over in taxa at the species than at the haplotype level 
(Fig.  5). Recent work has predicted that when dispersal 
limitation is the dominant driver of species distribu-
tions, the rate of spatial turnover of biological commu-
nities will be similar at both the haplotype and species 
levels [4]. Conversely, when environmental conditions 
strongly constrain species ranges, community similarity 
is predicted to decay at different rates across genealogical 
scales.

Our results have several implications in the face of cli-
mate change. Individual taxa show a mixture of positive 
and negative responses to mean annual temperature, and 
to a lesser extent to seasonality. This implies that we may 
see a substantial number of both climate change “winners 
and losers” in the future, as species ranges and phenology 
expand, contract, or shift (Fig.  4, Additional file  1: Fig. 
S9). Adult scuttle flies are ephemeral—with short lifes-
pans and high turnover and mobility—they may respond 
rapidly and serve as indicators for future shifts of other 
taxa and in the environment more broadly. Our obser-
vation of steeply declining abundance from late spring 
through the summer into the offseason may partially 
reflect the extreme temperatures and drought in Europe 
in summer 2018 [1, 6]. While this suggests that our sea-
sonal results may be atypical, they are perhaps also a sign 

http://www.insectbiomeatlas.org
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of summers to come, as climate change increases the fre-
quency and severity of these events [39].

With our initial results confirmed by HMSC, the pre-
dictive value of the simple plant hardiness map for scut-
tle fly distributions offers excellent news. It suggests that 
even such a relatively coarse-grained tool can be used 
as a reliable indicator of the regional compositions of 
scuttle flies. That this is the case is only intuitive: Many 
scuttle flies exist close to ground level and therefore, 
like plants, their distributions may be closely tied to soil 
temperature, acidity, moisture, or composition (all of 
which would be interesting covariates to explore in future 
modelling). Additionally, some species are known to 
have direct interactions with plants, fungi, and ground-
dwelling insects—factors which may again tie them to the 
microclimate at ground level. Future studies might focus 
on these microenvironmental variables, to address the 
unexplained variance in scuttle fly communities from this 
study.

Dark taxon zoology
Dark taxa have historically been largely ignored due to 
the complexities involved in studying groups of highly 
diverse and abundant organisms of small size. How, then, 
do we make the study of dark taxa efficient and start 
“dark taxon zoology” to respond to the need for quantita-
tive data on biodiversity?

To address this, we assessed whether the taxa analysed 
need to exactly match taxonomically validated species for 
ecological hypotheses to be valid. If not, we may avoid 
endless discussions about species delimitation and pro-
ceed with ecological analyses. Promisingly, our current 
results suggest that ecological patterns are largely robust 
to the molecular  clustering thresholds used. Overall 
biodiversity patterns, patterns of community turnover, 
and drivers of distribution were virtually identical using 
thresholds from 0% (haplotype data) to 1.7% (Figs.  3, 4, 
5, Additional file  1: Figs. S5, 8, 11–13), which was the 
best  threshold for obtaining congruence between bar-
code clusters and morphospecies in a previous study [40]. 
It is important for researchers to calculate the appropri-
ate species proxy threshold specific to their own taxa, as 
this value may vary depending on the group being ana-
lysed. Exceeding an appropriate species proxy threshold 
can obscure patterns by lumping species together (Addi-
tional file 1: Fig. S5, bottom row). The promising results 
using haplotype data are convenient because they do not 
require any taxonomic decisions, which may be appeal-
ing to molecular ecologists.

A second potential stumbling block in the study of dark 
taxa is the large numbers of rare species. If understand-
ing basic ecological patterns is dependent on these rare 
species, dark taxon zoology will be difficult. Our results 

indicate that both richness and compositional differences 
between samples of rare versus common species and 
haplotypes were both positively correlated. This suggests 
that more common and rarer species respond similarly 
to the same drivers. Again, this is excellent news, since it 
suggests that ecological inferences regarding the drivers 
of species distribution and community composition can 
be based on the more common species—which are much 
easier to detect.

Conclusions
We here argue for a dark taxon zoology and illustrate that 
it is not a hopeless undertaking by targeting scuttle flies 
as a typical dark taxon in Sweden. We sample across the 
entire country; we estimate the species richness, resolve 
patterns of distribution across time and space, and pin-
point environmental features that drive these distribu-
tions. Our results suggest that such assessments will 
be insensitive to specific taxonomic cut-offs and robust 
to undersampling of rare taxa. Overall, the study hopes 
to contribute to a more quantitative approach to biodi-
versity. In the future, advances in molecular workflows, 
bioinformatics, robotics, and automation will make these 
groups increasingly efficient to study [51]. We hope that 
our case study will serve to propel forward dark taxon 
zoology, bringing the main part of diversity into the 
realm of biodiversity science.

Methods
Target taxon: the scuttle flies of Sweden
Sweden has one of the best-known animal faunas in the 
world due to efforts dating from Carl Linnaeus to the 
Swedish Taxonomy Initiative and Malaise Trap Project 
[42, 46, 53], but see [63]. While 374 species of scuttle 
flies have been documented in the country [65], this is an 
underestimate. For comparison, a single suburban garden 
in Cambridge, UK, yielded nearly 100 species of scuttle 
flies [11], while backyards in Los Angeles, CA, can sup-
port up to 82 species [11]. Previous estimates of scuttle 
fly diversity in Sweden have proposed that the true fauna 
may approach 2000 species (CNE estimate in [63]), but 
this may be an overestimate based on an error-prone 
process of morphological identification [63].

Sampling
To start resolving the species richness, spatiotemporal 
distribution, and community composition of Swedish 
scuttle flies, we sampled communities of flying insects 
at 37 locations across Sweden (Fig.  1, Additional file  1: 
Fig. S1, Table  S1). These samples were collected by the 
Swedish Insect Inventory Project (https:// www. stati onlin 
ne. se/ sv/ forsk ning- resea rch/ the- swedi sh- insect- inven 

https://www.stationlinne.se/sv/forskning-research/the-swedish-insect-inventory-project-siip/
https://www.stationlinne.se/sv/forskning-research/the-swedish-insect-inventory-project-siip/
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tory- proje ct- siip/) [42] in ~ 80% ethanol using Townes-
style Malaise traps [73]. Scuttle flies were sorted from the 
trap samples and preserved in ~ 80% ethanol at − 20 °C.

Sampling started in May 2018 and continued into the 
following year. Although trapping was continuous, the 
sample periods varied across sites due to their extensive 
distribution across Sweden. Three distinct time periods 
that aligned with the warm season phenology, along with 
one offseason period, were established sequentially for 
each site. These periods corresponded as closely as pos-
sible to late spring (sampled in May), midsummer (sam-
pled in late June/over the summer solstice), late summer 
(sample in late July and early August), and the offseason 
(sampled from September onward) (for specifics and 
exceptions see Additional file 1: Fig. S2, Table S1). Some 
offseason samples could not be retrieved in late 2018 and 
were collected in 2019. To ensure uniformity in the num-
ber of weeks per sampling period and avoid introducing 
biases, we attributed the latest sampling date for the off-
season traps in 2018 to those samples collected in 2019. 
Additionally, late spring samples were only obtained 
from 25 sites, as 12 sites were not installed until later in 
the season (see Additional file  1: Table  S1 for sampling 
details). To compare richness estimates across seasons, 
we plotted accumulation curves for each time period 
excluding the 12 traps that were not yet installed in late 
spring.

Sequencing and bioinformatics
A total of 136 samples were selected for analysis. Most 
samples (94) contained thousands of scuttle fly specimens 
and subsampling was needed. Individuals were randomly 
selected with a minimum of two 96-well microplates of 
scuttle flies processed per sample. This resulted in a total 
of at least 190 specimens extracted per site and time 
period for most samples. Thirty-one samples containing 
fewer than 190 specimens and were thus processed com-
pletely, and two samples were found to contain no scuttle 
flies. Additional plates of specimens from nine samples 
that had been processed in an earlier study [40] were also 
included (Additional file 1: Table S1). All sample informa-
tion, including numbers of barcodes obtained per sample 
and whether a sample was fully processed, is found in 
Additional file 1: Table S1.

DNA were obtained from the specimens using 10  μl 
of HotSHOT lysis buffer [74]. The extraction was car-
ried out in a thermocycler at 65  °C for 18 min, then for 
2 min at 98 °C. Amplification was carried out on a 313-bp 
fragment of cytochrome oxidase 1 (COI) using primers 
m1COlintF: 5′-GGW ACW GGW TGA ACW GTW TAY 
CCY CC-3′ [45] and modified jgHCO2198: 5′-TANA-
CYTCNGGRTGNCCR AAR AAYCA-3′ [34]. For a 
small subset of samples, COI was amplified using the 

primer pair jgHCO2198 and LCO1490 [32, 34]. Ampli-
fications were conducted with tagged primers following 
Wang et  al. [75] for Illumina and Srivathsan et  al. [68, 
69] for MinION. PCR reactions contained 4  μl Master-
mix from CWBio, 1  μl of 1  mg/ml BSA, 1  μl of 10  μM 
of each primer, and 1 μl of DNA. PCR conditions were a 
5 min initial denaturation at 94 °C followed by 35 cycles 
of denaturation/annealing/extension (94 °C (1 min)/47 °C 
(2  min)/72  °C (1  min)), and a final extension at 72  °C 
(5  min). A subset of wells (N = 8–12 with negative con-
trol) from each PCR plate was run on an agarose gel to 
check for plate-wide failure, before products were pooled 
and then purified using AMPure XP beads (Beckman 
Coulter Life Sciences, IN, USA). DNA concentration was 
quantified with a Qubit™ dsDNA HS Assay Kit (Invitro-
gen, CA, USA).

Illumina and MinION sequencing were used to 
sequence the amplicons for this study. Illumina librar-
ies were prepared using a TruSeq DNA PCR-free kit to 
obtain 250-bp PE sequences using Illumina HiSeq 2500; 
the sequencing was outsourced. Nanopore sequenc-
ing using MinION was conducted in house follow-
ing Srivathsan et  al. [68]. Library preparation was 
conducted using either SQK-LSK109 or SQK-LSK110 
ligation sequencing kits (Oxford Nanopore Technolo-
gies, Oxford, UK) with 200-ng pooled and purified PCR 
products. The manufacturer’s instructions were followed 
except for use of 1 × AMPure beads instead of 0.4 × as 
suggested in the instructions because the minibarcode 
amplicons in our experiments were short (~ 391 bp with 
primers and tags), and a modified protocol for end-repair 
as described in Srivathsan et al. [69]. The sequencing was 
carried out using a MinION sequencer with either R9.4.1 
or R10.3 flow cells for a maximum of 72  h. Basecalling 
was conducted using Guppy versions 2.3.5 + 53a111f 
and 4.2.3 + f90bd04. FastQ files were demultiplexed to 
obtain individual COI sequences identifiable back to indi-
vidual specimens with unique specimen codes. This was 
done following Srivathsan et al. [67–69] for MinION and 
Wang et al. [75] for Illumina.

To exclude contaminants and potential mis-sorts, COI 
sequences were matched using BLAST to NCBI Gen-
Bank’s nucleotide database and sequences with > 97% 
similarity to non-scuttle fly taxa were removed. 
Sequences were then aligned using MAFFT v7 [43] and 
clustered into molecular operational taxonomic units 
(mOTUs) using objective clustering (part of “TaxonDNA”, 
see [52]), a distance-based method that groups sequences 
based on a user-defined threshold for minimum interspe-
cific uncorrected p-distance.

A species-proxy clustering threshold of 1.7% was 
used for the primary analyses as this was the distance 
that maximised cluster congruence to species-level 

https://www.stationlinne.se/sv/forskning-research/the-swedish-insect-inventory-project-siip/
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morphology for a subset of 18,000 scuttle flies from this 
dataset [40]. References to “species” are to mOTUs at this 
threshold. To assess the impact of the selected threshold 
on distribution patterns, we examined other thresholds 
ranging from 0 to 5% and ran models using both species 
and haplotype data.

Diversity
To characterise local and national species richness, we 
used accumulation curves and Chao1 richness, as imple-
mented in EstimateS [18] and R (R Development Core 
Team) package iNEXT [15] for total diversity, diversity 
per zone, and diversity per site. Following the approach 
of Ronquist et  al. (2020), a combined non-parametric 
estimator (CNE) was used to obtain an alternative esti-
mate of total species richness.

Characterisation of community variation
To visualise scuttle fly community composition in the 
context of geographic and climatic variation, we used 
non-metric multi-dimensional scaling (NMDS) plot-
ted with R packages ggplot2 [78] and Vegan v2.5–4 [55] 
using both abundance-based (Bray–Curtis) and inci-
dence-based (Jaccard) dissimilarity indices. Since both 
metrics yielded nearly identical results, the results in the 
paper are based on Bray–Curtis indices. Sites were clas-
sified according to the nine plant hardiness zones of the 
Swedish Horticultural Society that synthesise climatic 
variables of particular importance to horticultural plants 
into horticultural zones: strong and rapid temperature 
changes, very low temperatures sustained for long peri-
ods, evaporation occurring when the sun is shining but 
the ground is still frozen, and temporal considerations of 
climatic and environmental conditions (Fig. 1, [62], used 
with permission). As these zones have proven useful in 
identifying the survival and growth of horticultural plants 
across Sweden, we hypothesised that they may offer a rel-
evant description of the environment for any organism 
sensitive to similar climatic variables—including scuttle 
flies. They also offer a more regional approach than the 
broad biogeographic classification previously used for 
spatial analysis of scuttle flies in Sweden [63]. We there-
fore tested whether the zones could predict scuttle fly 
richness and distributions [20, 44, 50].

To quantify differences in scuttle fly community com-
position between plant hardiness zones and to assess 
the significance of those differences, we used analysis of 
similarities (ANOSIM) and similarity percentage analysis 
(SIMPER). These tests were run with PRIMER v7 [17].

We excluded samples that contained fewer than 100 
specimens from the ordination analyses, as small sample 
sizes can artificially generate large distances in the NMDS 

plots, thus obscuring structured variation in community 
composition arising from responses to the environment.

Hierarchical Modelling of Species Communities
To relate variation in community composition to con-
tinuous environmental drivers without the assumptions 
of zones used in our NMDS visualisations, we used Hier-
archical Modelling of Species Communities (HMSC [58, 
59], a type of joint species distribution model [76]). Due 
to the zero-inflated nature of the data, we fitted hurdle 
models, i.e. one model for the occurrence of taxa across 
samples (probit regression), and a second model for their 
abundance conditional on presence (linear regression for 
log-transformed count data, with zeros masked as miss-
ing data), henceforth referred to simply as an “abundance 
model”.

To evaluate the impact of the criterion used in species 
delimitation, we used four different response variables: 
species presence-absence, species abundance (where pre-
sent), haplotype occurrence, and haplotype abundance 
(where present), thus resulting in four HMSC models 
being fit. As these analyses are uninformative for taxa 
with very sparse data, we included only haplotypes or 
species with at least five occurrences (n = 391 haplotypes 
and 273 species, out of the 2697 haplotypes and 549 spe-
cies observed; see “  Results”). To be able to relate each 
sample to specific climatic conditions, we also excluded 
15 samples for which the trapping duration exceeded 
approximately a month (> 34 days).

We included five predictor variables, coded as fixed 
effects, in our HMSC models. To test for seasonal changes 
in scuttle fly communities among the sampling time peri-
ods, we included the four-category variable “Time.Period”. 
To assess the effect of the spatial gradient in mean cli-
matic conditions across Sweden on scuttle fly communi-
ties, we included the continuous variable mean annual 
temperature (“bio1” from the Worldclim database, [31]). 
The importance of tree cover for scuttle fly distributions 
was assessed by including a continuous variable describ-
ing the percentage of forest or woodland cover within a 
50-m buffer (“ForestWood”) derived from the Swedish 
National Land Cover Database (https:// www. natur vards 
verket. se/ en/ servi ces- and- permi ts/ maps- and- map- servi 
ces/ natio nal- land- cover- datab ase/). Site values for “bio1” 
and “ForestWood” were extracted using the R package 
raster [41]. To account for the effect of sampling effort 
on taxon detection, we further included a continuous 
variable quantifying the total number of trapping days 
per sample (“TrapDays”) and a binary variable indicating 
whether all specimens in a sample were sequenced or not 
(“FullSample”). The latter defines whether the sample was 
fully sequenced or not, and was included to account for 
the higher likelihood of encountering taxa in samples that 

https://www.naturvardsverket.se/en/services-and-permits/maps-and-map-services/national-land-cover-database/
https://www.naturvardsverket.se/en/services-and-permits/maps-and-map-services/national-land-cover-database/
https://www.naturvardsverket.se/en/services-and-permits/maps-and-map-services/national-land-cover-database/
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had very high individual abundances (i.e. samples that 
could not be fully sequenced). We moreover included a 
spatially explicit random effect based on sample site coor-
dinates (“Random: site”) and a temporally explicit random 
effect based on median sampling date (“Random: time”) 
to model any spatial or temporal autocorrelation in the 
scuttle fly dataset, and a categorical random effect repre-
senting sample identity (“Random: sample”).

We fitted the model with the R package HMSC [71] 
assuming the default prior distributions. We sampled 
the posterior distribution of four MCMC chains, each 
of which was run for 37,500 iterations, of which the first 
12,500 were removed as burn-in. The iterations were 
thinned by 100 to yield 250 posterior samples per chain, 
and thus 1000 posterior samples in total. To explore the 
rate of Markov chain Monte Carlo (MCMC) convergence, 
we also fitted otherwise identical models but with 375 
iterations (burn-in 125, thin 1) and 3750 iterations (burn-
in 1250, thin 10). Convergence was assessed by examining 
the potential scale reduction factor (PSRF) distribution 
over the fixed effect (β) and random effect (Ω) parame-
ters, equivalent to the Gelman–Rubin statistic [35].

We examined the explanatory power of the models 
through species-specific coefficients of discrimination 
(Tjur R2) for the occurrence models, which measure how 
well the model discriminates those samples in which 
a taxon occurs from those in which it does not occur, 
and R2 for the abundance models. Tjur R2 is defined as 
the difference in average model‐predicted probability of 
occurrence for samples in which the species is present vs 
absent [72].

To assess whether the distributions of rare taxa are 
likely to be driven by similar factors to the common ones, 
we calculated Pearson and Mantel correlations, respec-
tively, between the observed species richness and com-
munity composition (Bray–Curtis dissimilarity) of the 
modelled more common taxa and the excluded rare taxa 
(those with < 5 occurrences).

Community dissimilarity
To further partition variation in scuttle fly community 
composition in time (between seasons) and space (across 
Sweden), we dissected overall community dissimilarity 
(β-diversity) into its turnover (i.e. species replacement) 
and nestedness (differences of species richness between 
sites) components [3].

Our analyses encompassed three aspects: (1) spatial dif-
ferences: differences in community composition between 
each sampling site considering their geographical dis-
tance, (2) temporal differences: differences in community 
composition between each sampling period, accounting 
for their temporal distance in weeks, and (3) spatiotem-
poral differences: community differences between each 

sampling site and sampling period including their joint 
effect. We computed pairwise Jaccard community dis-
similarity values using both the species and haplotypes 
datasets for comparison. Given the observed geographi-
cal distance between sampling sites, these distances were 
rescaled to a mean of zero and a standard deviation of 
one before analyses. To characterise the temporal differ-
ence between samples in each sample pair, we used the 
difference in the mean week of sampling (for sample-
specific details, see Additional file  1: Table  S1). Values 
of total β-diversity, turnover, and nestedness were cal-
culated for each pairwise comparison of sampling sites, 
sampling period, and sample pairs. We excluded self-
pairs and included data for each pair only once. To test 
the correlation between each beta diversity component 
and the distances in space and time, we used Mantel tests 
based on Pearson moment correlations. All calculations 
were implemented in R package “betapart” [5].

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12915‑ 024‑ 02010‑z.

Supplementary Material 1: Additional file 1: Figures S1–S13, Tables S1–S6. 
Fig. S1 Map of study sites. Fig. S2 Timeline of analysed samples. Fig. S3 
Chao1 estimates of scuttle fly species richness per zone. Fig. S4 Species 
accumulation curve of scuttle flies by season. Fig. S5 Consistency in com‑
munity patterning, as based on different clustering thresholds for species 
delimitation. Fig. S6 NMDS plot of all samples (species, threshold of 100 
specimens) with samples colour‑coded according to time period. Fig. S7 
Violin plots showing potential scale reduction factors (PSRF) for the beta 
and omega parameters of four HMSC models: species occurrence (1), spe‑
cies abundance (2), haplotype occurrence (3), and haplotype abundance 
(4). Fig. S8 Variance explained by fixed and random effects in HMSC mod‑
els of the presence/absence or abundance of either haplotypes or species 
proxies. Fig. S9 Predicted mean prevalence and log(abundance) of species 
proxies as a function of forest or woodland cover (%) and mean annual 
temperature (°C) during late summer in HMSC models. Fig. S10 Pairwise 
residual associations among haplotypes and species proxies in space 
and time as detected in HMSC models. Fig. S11 Pairwise compositional 
turnover as a function of intervening geographic distance for each time 
period in the species and haplotype datasets. Fig. S12 Nestedness values 
scored along geographic distance gradients for each time period among 
the species and haplotype datasets. Fig. S13 Total beta‑diversity values 
scored along geographic distance gradients for each time period among 
the species and haplotype datasets. Table S1 Sample information. Table S2 
Distinctness of scuttle fly communities across zones, as based on different 
clustering thresholds for species delimitation. Table S3 Similarity of scuttle 
fly communities across zones, as based on different clustering thresholds 
for species delimitation. Table S4 Distinctness of scuttle fly communities 
across time periods. Table S5 Similarity of scuttle fly communities across 
time periods. Table S6 Mantel tests relating pairwise community dissimilar‑
ity to pairwise differences in space, time, or both.

Acknowledgements
We thank the Scuttle Fly Sorting Party crew at Station Linné – Carina Romero 
Ugarph, Harald Havnås, Johan Ennerfelt, Marianne "Mia" Blomqvist, Nino 
Pettersson, Robert Ennerfelt, and especially Dave Karlsson. We thank the mem‑
bers of the Evolutionary Biology Lab at the National University of Singapore for 
help with the many hours of wetlab work. We thank Darren Yeo for assisting 
us with visualisations. We thank Inger Ekrem at Riksförbundet Svensk Trädgård 
for helping with the plant hardiness zone map, Tomas Lagerström for further 
information on the map, and Eva Ronquist for first bringing our attention to 

https://doi.org/10.1186/s12915-024-02010-z
https://doi.org/10.1186/s12915-024-02010-z


Page 14 of 16Hartop et al. BMC Biology  (2024) 22:215

the map. We thank the Swedish Taxonomy Initiative for the support to inves‑
tigate the scuttle flies of Sweden, this study brings us one step closer to the 
ultimate goal of describing all of these species.

Authors’ contributions
EH and RM designed the study. EH and LL generated the data. EH, LL, AM, MJ, 
and PPA analysed the data. EH, LL, and RM wrote the initial draft of the manu‑
script. All authors contributed to manuscript revision, read and approved the 
submitted version.

Funding
Open access funding provided by NTNU Norwegian University of Science 
and Technology (incl St. Olavs Hospital ‑ Trondheim University Hospital) EH 
was funded by Swedish Taxonomy Initiative grant 2016–203 4.3. TR and OO 
were funded by the European Research Council (ERC) under the European 
Union’s Horizon 2020 research and innovation programme (ERC‑synergy grant 
856506—LIFEPLAN). OO was funded by Academy of Finland (grant no. 336212 
and 345110). MJ was supported by the Academy of Finland’s “Thriving Nature” 
research profiling action.

Availability of data and materials
Data and scripts are available on the project GitHub page at https:// github. 
com/ lesho nlee/ Docum entin gPhor ids. General HMSC pipeline scripts are avail‑
able at https:// www2. helsi nki. fi/ en/ resea rchgr oups/ stati stical‑ ecolo gy/ hmsc.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Natural History, NTNU University Museum, Norwegian 
University of Science and Technology, Trondheim NO‑7491, Norway. 2 Zoology 
Department, Stockholm University, Stockholm 106 91, Sweden. 3 Department 
of Biological Sciences, National University of Singapore, Science Drive 4, Sin‑
gapore 117558, Singapore. 4 National University of Singapore, Lee Kong Chian 
Natural History Museum, 2 Conservatory Dr, Singapore 117377, Singapore. 
5 Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolu‑
tion and Biodiversity Science, Museum Für Naturkunde, Invalidenstraße 43, 
Berlin 10115, Germany. 6 Faculty of Biological and Environmental Sciences, 
University of Helsinki, P.O. Box 65, Helsinki 00014, Finland. 7 Institute of Bio‑
technology, HILIFE Helsinki Institute of Life Science, University of Helsinki, P.O. 
Box 65, Helsinki 00014, Finland. 8 Department of Ecology, Swedish University 
of Agricultural Sciences (SLU), Ulls Väg 18B, Uppsala 75651, Sweden. 9 Depart‑
ment of Biological and Environmental Science, University of Jyväskylä, P.O. 
Box 35, Jyväskylä 40014, Finland. 10 Institute for Biology, Humboldt University 
of Berlin, Unter Den Linden 6, Berlin 10117, Germany. 

Received: 28 May 2024   Accepted: 5 September 2024
Published: 27 September 2024

References
 1. Bakke SJ, Ionita M, Tallaksen LM. The 2018 northern European hydrologi‑

cal drought and its drivers in a historical perspective. Hydrol Earth Syst 
Sci. 2020;24(11):5621–53. https:// doi. org/ 10. 5194/ hess‑ 24‑ 5621‑ 2020.

 2. Bar‑On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl 
Acad Sci. 2018;115(25):6506–11. https:// doi. org/ 10. 1073/ pnas. 17118 
42115.

 3. Baselga A. Partitioning the turnover and nestedness components of beta 
diversity. Glob Ecol Biogeogr. 2010;19(1):134–43.

 4. Baselga A, Gómez‑Rodríguez C, Araújo MB, Castro‑Insua A, Arenas 
M, Posada D, et al. Joint analysis of species and genetic variation to 

quantify the role of dispersal and environmental constraints in com‑
munity turnover. Ecography. 2022;2022(5):e05808. https:// doi. org/ 10. 
1111/ ecog. 05808.

 5. Baselga A, Orme CDL. betapart: an R package for the study of beta 
diversity. Methods Ecol Evol. 2012;3(5):808–12.

 6. Bastos A, Ciais P, Friedlingstein P, Sitch S, Pongratz J, Fan L, et al. Direct 
and seasonal legacy effects of the 2018 heat wave and drought on 
European ecosystem productivity. Sci Adv. 2020;6(24):eaba2724. 
https:// doi. org/ 10. 1126/ sciadv. aba27 24.

 7. Bell JR, Botham MS, Henrys PA, Leech DI, Pearce‑Higgins JW, Shortall 
CR, et al. Spatial and habitat variation in aphid, butterfly, moth 
and bird phenologies over the last half century. Glob Change Biol. 
2019;25:1982–94.

 8. Bogoni JA, Peres CA, Ferraz KMPMB. Extent, intensity and drivers of mam‑
mal defaunation: a continental‑scale analysis across the Neotropics. Sci 
Rep. 2020;10:14750.

 9. Borkent A, Brown BV. How to inventory tropical flies (Diptera)‑one of the 
megadiverse orders of insects. Zootaxa. 2015;3949:301–22.

 10. Borkent ART, Brown BV, Adler PH, Amorim DDS, Barber K, Bickel D, et al. 
Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: 
why inventory is a vital science. Zootaxa. 2018;4402:53.

 11. Brown BV, Hartop EA. Big data from tiny flies: patterns revealed from over 
42,000 phorid flies (Insecta: Diptera: Phoridae) collected over one year in 
Los Angeles, California, USA. Urban Ecosyst. 2017;20:521–34.

 12. Brown BV. Phorid newsletter 5 [Internet]. 1996. Available from: https:// 
phorid. net/ newsl etters/ pnews5. pdf.

 13. Callaghan CT, Borda‑de‑Água L, van Klink R, Rozzi R, Pereira HM. Unveiling 
global species abundance distributions. Nat Ecol Evol. 2023;7:1600–9. 
https:// doi. org/ 10. 1038/ s41559‑ 023‑ 02173‑y.

 14. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al. 
Biodiversity loss and its impact on humanity. Nature. 2012;486:59–67.

 15. Chao A, Ellison AM, Colwell RK, Gotelli NJ, Sander EL, Hsieh TC, et al. Rar‑
efaction and extrapolation with Hill numbers: a framework for sampling 
and estimation in species diversity studies. Ecol Monogr. 2014;84:45–67.

 16. Chua PYS, Bourlat SJ, Ferguson C, Korlevic P, Zhao L, Ekrem T, et al. Future 
of DNA‑based insect monitoring. Trends Genet. 2023;39(7):531–44. 
https:// doi. org/ 10. 1016/j. tig. 2023. 02. 012. Epub 2023 Mar 10 PMID: 
36907721.

 17. Clarke K, Gorley RN. PRIMER v6: user manual/tutorial. PRIMER‑E, Plymouth. 
2006;29:1060–5.

 18. Colwell RK. Estimates: Statistical Estimation of Species Richness and 
Shared Species from Samples. Version 9. User’s Guide and Application 
[Internet]. 2013. Available from: http:// purl. oclc. org/ estim ates.

 19. Díaz S, Fargione J, Chapin FS, Tilman D. Biodiversity loss threatens human 
well‑being. PLoS Biol. 2006;4:1300–5.

 20. Disney RHL. Scuttle flies: the Phoridae. London: Chapman and Hall; 1994.
 21. Disney RHL, Durska E. Conservation evaluation and the choice of faunal 

taxa to sample. Biodivers Conserv. 2008;17:449–51.
 22. Disney RHL, Erzinclioglu YZ, de C Henshaw DJ, Unwin DM, Withers P, 

Woods A. Collecting methods and the adequacy of attempted fauna 
surveys, with reference to the Diptera. Field Stud. 1982;5:607–621.

 23. Durska E. The species composition and structure of scuttle fly communi‑
ties (Diptera: Phoridae) in mature tree stands in pine forests at different 
stages of habitat degradation. Fragm Faun. 1996;39:267–85.

 24. Durska E. Secondary succession of scuttle fly communities (Dip‑
tera: Phoridae) in moist pine forest in Bialowieza Forest. Fragm Faun. 
2001;44:79–128.

 25. Durska E. The phenology of dominant scuttle‑fly (Diptera: Phoridae) spe‑
cies in the Bialowieza Forest. Entomol Fenn. 2002;13:123–7.

 26. Durska E. The phenology of Triphleba Rondani species (Diptera: 
Phoridae) in moist pine forests in the Bialowieza Forest. Entomol Fenn. 
2003;14:177–82.

 27. Durska E. Diversity of scuttle fly (Diptera: Phoridae) communities in the 
plantations of moist pine forests of the Bialowieza Primeval Forest and 
the Tuchola Forest (Poland). Biodivers Conserv. 2006;15:385–93.

 28. Durska E. Effects of disturbances on scuttle flies (Diptera: Phoridae) in 
pine forests. Biodivers Conserv. 2013;22:1991–2021.

 29. Durska E. Preliminary data of the scuttle flies (Diptera: Phoridae) in the 
linden‑oak‑hornbeam forest of the Wigry National Park. North East 
Poland Fragm Faun. 2020;63:89–98.

https://github.com/leshonlee/DocumentingPhorids
https://github.com/leshonlee/DocumentingPhorids
https://www2.helsinki.fi/en/researchgroups/statistical-ecology/hmsc
https://doi.org/10.5194/hess-24-5621-2020
https://doi.org/10.1073/pnas.1711842115
https://doi.org/10.1073/pnas.1711842115
https://doi.org/10.1111/ecog.05808
https://doi.org/10.1111/ecog.05808
https://doi.org/10.1126/sciadv.aba2724
https://phorid.net/newsletters/pnews5.pdf
https://phorid.net/newsletters/pnews5.pdf
https://doi.org/10.1038/s41559-023-02173-y
https://doi.org/10.1016/j.tig.2023.02.012
http://purl.oclc.org/estimates


Page 15 of 16Hartop et al. BMC Biology  (2024) 22:215 

 30. Durska E, Kaczorowska E, Disney RHL. Scuttle flies (Diptera: Phoridae) of 
saline habitats of the Gulf of Gdansk. Poland Entomol Fenn. 2005;16:159–64.

 31. Fick SE, Hijmans RJ. Worldclim 2: new 1‑km spatial resolution climate sur‑
faces for global land areas. Int J Climatol. 2017;37:4302–15.

 32. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplifica‑
tion of mitochondrial cytochrome c oxidase subunit I from diverse meta‑
zoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.

 33. Garda AA, Stein MG, Machado RB, Lion MB, Juncá FA, Napoli MF. Ecology, 
biogeography, and conservation of amphibians of the Caatinga. In: Silva 
JMC, Leal IR, Tabarelli M, editors. Caatinga. Cham: Springer; 2017. p. 133‑149. 
Available from: https:// doi. org/ 10. 1007/ 978‑3‑ 319‑ 68339‑3_5.

 34. Geller J, Meyer C, Parker M, Hawk H. Redesign of PCR primers for mitochon‑
drial cytochrome c oxidase subunit I for marine invertebrates and applica‑
tion in all‑taxa biotic surveys. Mol Ecol Resour. 2013;13:851–61.

 35. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data 
analysis. 3rd ed. London: CRC Press; 2014.

 36. Gilliland HC. Hundreds of new and unusual insects discovered in the 
Amazon’s canopy. Available from: https:// www. natio nalge ograp hic. com/ 
magaz ine/ artic le/ hundr eds‑ of‑ new‑ and‑ unusu al‑ insec ts‑ disco vered‑ in‑ the‑ 
amazon‑ canopy‑ featu re. 2021.

 37. Goodsell R, Tack A, Ronquist F, van Dijk L, Iwaszkiewicz‑Eggebrecht E, 
Miraldo A, et al. The rarity of Invertebrates prevents reliable application of 
IUCN Red‑List criteria. EcoEvoRxiv. 2024. Available from: https:// doi. org/ 10. 
32942/ X23G71.

 38. Gullefors B. Limes norrlandicus ‑ a natural biogeographical border for cad‑
disflies (Trichoptera) in Sweden. Ferrantia. 2008;55:61–5.

 39. Hari V, Rakovec O, Markonis Y, Hanel M, Kumar R. Increased future 
occurrences of the exceptional 2018–2019 Central European drought 
under global warming. Sci Rep. 2020;10:12207. https:// doi. org/ 10. 1038/ 
s41598‑ 020‑ 68872‑9.

 40. Hartop E, Srivathsan A, Ronquist F, Meier R. Towards large‑scale integrative 
taxonomy (LIT): resolving the data conundrum for dark taxa. Syst Biol. 2022. 
https:// doi. org/ 10. 1093/ sysbio/ syac0 33.

 41. Hijmans R. raster: geographic data analysis and modeling. R package ver‑
sion 3.6–27, Available from: https:// rspat ial. org/ raster. 2024.

 42. Karlsson D, Hartop E, Forshage M, Jaschhof M, Ronquist F. The Swedish 
Malaise Trap Project: A 15 Year Retrospective on a Countrywide Insect Inven‑
tory. Biodivers Data J. 2020;8:e47255. https:// doi. org/ 10. 3897/ BDJ.8. e47255.

 43. Katoh K, Standley DM. MAFFT multiple sequence alignment software 
version 7: improvements in performance and usability. Mol Biol Evol. 
2013;30:772–80.

 44. Kitching RL, Bickel DJ, Boulter S. The evolutionary biology of flies. In: Guild 
analyses of dipteran assemblages: a rationale and investigation of seasonal‑
ity and stratification in selected rainforest faunas. New York: Columbia 
University Press; 2005. p. 388–415.

 45. Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, et al. A new versa‑
tile primer set targeting a short fragment of the mitochondrial COI region 
for metabarcoding metazoan diversity: application for characterizing coral 
reef fish gut contents. Front Zool. 2013;10:34.

 46. Linnaeus C. Systema naturæ, sive regna tria naturæ systematice proposita 
per classes, ordines, genera, & species. 10th ed. Leiden: Lugduni Batavorum; 
1758.

 47. Lu Y, Yang Y, Sun B, Yuan J, Yu M, Stenseth NC, Bullock JM, Obersteiner M. Spa‑
tial variation in biodiversity loss across China under multiple environmental 
stressors. Sci Adv. 2020;6(47). https:// doi. org/ 10. 1126/ sciadv. abd09 52.

 48. Lundström J, Schäfer M, Hesson J, Blomgren E, Lindström A, Wahlqvist P, 
Halling A, Hagelin A, Ahlm C, Evander M, Broman T, Forsman M, Persson 
Vinnersten T. The geographic distribution of mosquito species in Sweden. J 
Eur Mosq Control Assoc. 2013;31:35.

 49. Mace GM, Barrett M, Burgess ND, Cornell SE, Freeman R, Grooten M, 
et al. Aiming higher to bend the curve of biodiversity loss. Nat Sustain. 
2018;1:448–51.

 50. McGlynn TP, Meineke EK, Bahlai CA, Li E, Hartop EA, Adams BJ, et al. Tem‑
perature accounts for the biodiversity of a hyperdiverse group of insects in 
urban Los Angeles. Proc R Soc B. 2019;286:20191020.

 51. Meier R, Hartop E, Pylatiuk C, Srivathsan A. Towards holistic insect monitor‑
ing: species discovery, description, identification, and traits for all insects. 
Phil Trans R Soc B. 2024;379:20230120. https:// doi. org/ 10. 1098/ rstb. 
2023‑ 0120.

 52. Meier R, Shiyang K, Vaidya G, Ng PK. DNA barcoding and taxonomy in 
Diptera: a tale of high intraspecific variability and low identification success. 
Syst Biol. 2006;55:715–28.

 53. Miller G. Linnaeus’s legacy carries on. Science. 2005;307:1038–9.
 54. Naeem S, Chazdon R, Duffy JE, Prager C, Worm B. Biodiversity and human 

well‑being: an essential link for sustainable development. Proc R Soc B Biol 
Sci. 2016;283:20162091.

 55. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. 
vegan. Community ecology package. 2019;2:5–6.

 56. Ollerton J. Pollinator diversity: distribution, ecological function, and conser‑
vation. Annu Rev Ecol Evol Syst. 2017;48:353–76.

 57. Orr MC, Hughes AC, Chesters D, Pickering J, Zhu CD, Ascher JS. Global pat‑
terns and drivers of bee distribution. Curr Biol. 2020;30:843–8.

 58. Ovaskainen O, Abrego N. Joint species distribution modelling. Cambridge: 
Cambridge University Press; 2020. p. 372. (Ecology, Biodiversity and Conser‑
vation). ISBN: 978‑1‑108‑71678‑9. eISBN: 9781108591720.

 59. Ovaskainen O, Tikhonov G, Norberg A, Guillaume Blanchet F, Duan L, 
Dunson D, et al. How to make more out of community data? A conceptual 
framework and its implementation as models and software. Ecol Lett. 
2017;20:561–76.

 60. Rabone M, Wiethase JH, Simon‑Lledó E, Emery AM, Jones DOB, Dahlgren 
TG, Bribiesca‑Contreras G, Wiklund H, Horton T, Glover AG. How many 
metazoan species live in the world’s largest mineral exploration region? Curr 
Biol. 2023;33(12):2383–2396.e5. https:// doi. org/ 10. 1016/j. cub. 2023. 04. 052.

 61. Ricklefs RE. Evolutionary diversification and the origin of the diversity–envi‑
ronment relationship. Ecology. 2006;87(S3–S13). https:// doi. org/ 10. 1890/ 
0012‑ 9658(2006) 87[3: EDATOO] 2.0. CO;2.

 62. Riksförbundet Svensk Trädgård. Zonkartan. 2018. Available from: http:// 
www. tradg ard. org/ svensk_ tradg ard/ zonka rtan. html. Cited 2024 May 28.

 63. Ronquist F, Forshage M, Häggqvist S, Karlsson D, Hovmöller R, Bergsten J, 
et al. Completing Linnaeus’s inventory of the Swedish insect fauna: only 
5,000 species left? PLOS One. 2020;15:e0228561.

 64. Skvarla M, Larson J, Fisher R, Dowling A. A review of terrestrial and canopy 
Malaise traps. Ann Entomol Soc Am. 2020;114. https:// doi. org/ 10. 1093/ aesa/ 
saaa0 44.

 65. SLU Artdatabanken. Famij: Phoridae ‑ puckelflugor. 2021. Available from: 
https:// www. dynta xa. se/ Taxon/ Info/ 20013 26. Cited 2024 May 28.

 66. Srivathsan A, Ang Y, Heraty JM, Hwang WS, Jusoh WFA, Kutty SN, et al. Con‑
vergence of dominance and neglect in flying insect diversity. Nat Ecol Evol. 
2023;7(7):1012–21.

 67. Srivathsan A, Baloğlu B, Wang W, et al. A MinION™‑based pipeline for fast 
and cost‑effective DNA barcoding. Mol Ecol Resour. 2018;18:1035–49. 
https:// doi. org/ 10. 1111/ 1755‑ 0998. 12890.

 68. Srivathsan A, Hartop E, Puniamoorthy J, Lee WT, Kutty SN, Kurina O, et al. 
Rapid, large‑scale species discovery in hyperdiverse taxa using 1D MinION 
sequencing. BMC Biol. 2019;17:96.

 69. Srivathsan A, Hartop EA, Puniamoorthy J, Lee WT, Kutty SN, Kurina O, et al. 
MinION barcodes: biodiversity discovery and identification by everyone, for 
everyone. BMC Biol. 2021;19:217.

 70. Svenning JC, Borchsenius F, Bjorholm S, Balslev H. High tropical net diver‑
sification drives the New World latitudinal gradient in palm (Arecaceae) 
species richness. J Biogeogr. 2008;35:394–406.

 71. Tikhonov G, Opedal ØH, Abrego N, Lehikoinen A, Jonge MMJ, Oksanen J, 
et al. Joint species distribution modelling with the R‑package HMSC. Meth‑
ods Ecol Evol. 2020;11:442–7.

 72. Tjur T. Coefficients of determination in logistic regression models ‑ a new 
proposal: the coefficient of discrimination. Am Stat. 2009;63:366–72.

 73. Townes H. A light‑weight Malaise trap. Entomol News. 1972;83:239–47.
 74. Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML. Prepara‑

tion of PCR‑quality mouse genomic DNA with hot sodium hydroxide and 
tris (HotSHOT). Biotechniques. 2000;29:52–4.

 75. Wang WY, Srivathsan A, Foo M, Yamane S, Meier R. Sorting specimen‑rich 
invertebrate samples with cost‑effective NGS barcodes: validating a reverse 
workflow for specimen processing. Mol Ecol Resour. 2018;18:490.

 76. Warton DI, Blanchet FG, O’Hara RB, Ovaskainen O, Taskinen S, Walker SC, 
et al. So many variables: joint modeling in community ecology. Trends Ecol 
Evol. 2015;30:766–79.

 77. Wellenreuther M, Larson KW, Svensson EI. Climatic niche divergence or 
conservatism? Environmental niches and range limits in ecologically similar 
damselflies. Ecology. 2012;93:1353–66.

https://doi.org/10.1007/978-3-319-68339-3_5
https://www.nationalgeographic.com/magazine/article/hundreds-of-new-and-unusual-insects-discovered-in-the-amazon-canopy-feature
https://www.nationalgeographic.com/magazine/article/hundreds-of-new-and-unusual-insects-discovered-in-the-amazon-canopy-feature
https://www.nationalgeographic.com/magazine/article/hundreds-of-new-and-unusual-insects-discovered-in-the-amazon-canopy-feature
https://doi.org/10.32942/X23G71
https://doi.org/10.32942/X23G71
https://doi.org/10.1038/s41598-020-68872-9
https://doi.org/10.1038/s41598-020-68872-9
https://doi.org/10.1093/sysbio/syac033
https://rspatial.org/raster
https://doi.org/10.3897/BDJ.8.e47255
https://doi.org/10.1126/sciadv.abd0952
https://doi.org/10.1098/rstb.2023-0120
https://doi.org/10.1098/rstb.2023-0120
https://doi.org/10.1016/j.cub.2023.04.052
https://doi.org/10.1890/0012-9658(2006)87[3:EDATOO]2.0.CO;2
https://doi.org/10.1890/0012-9658(2006)87[3:EDATOO]2.0.CO;2
http://www.tradgard.org/svensk_tradgard/zonkartan.html
http://www.tradgard.org/svensk_tradgard/zonkartan.html
https://doi.org/10.1093/aesa/saaa044
https://doi.org/10.1093/aesa/saaa044
https://www.dyntaxa.se/Taxon/Info/2001326
https://doi.org/10.1111/1755-0998.12890


Page 16 of 16Hartop et al. BMC Biology  (2024) 22:215

 78. Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. New 
York: Springer‑Verlag; 2016. Available from: https:// ggplo t2. tidyv erse. org.

 79. Wiens JJ. Global patterns of diversification and species richness in amphib‑
ians. Am Nat. 2007;170:S86–106.

 80. Wolda H. Insect seasonality: why? Annu Rev Ecol Syst. 1988;19(1):1–18.
 81. World Economic Forum. The Global Risks Report 2020 [Internet]. 15th 

ed. Geneva: World Economic Forum; 2020. [cited 2024 Sep 17]. Available 
from: https:// www. wefor um. org/ repor ts/ the‑ global‑ risks‑ report‑ 2020.

 82. Yeo D, Srivathsan A, Meier R. Longer is not always better: optimizing 
barcode length for large‑scale species discovery and identification. Syst 
Biol. 2020;0:1–16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://ggplot2.tidyverse.org
https://www.weforum.org/reports/the-global-risks-report-2020

	Resolving biology’s dark matter: species richness, spatiotemporal distribution, and community composition of a dark taxon
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Results
	Diversity
	Ordinations of community composition
	Hierarchical Modelling of Species Communities (HMSC)
	Community dissimilarity

	Discussion
	Diversity
	Lessons from ecological analyses
	Dark taxon zoology

	Conclusions
	Methods
	Target taxon: the scuttle flies of Sweden
	Sampling
	Sequencing and bioinformatics
	Diversity
	Characterisation of community variation
	Hierarchical Modelling of Species Communities
	Community dissimilarity

	Acknowledgements
	References


