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A B S T R A C T

Seagrass meadows are one of the most productive and valuable ecosystems on the planet. Monitoring seagrass 
meadows is essential to understand how these habitats change, and to develop better management and con-
servation practices. This study integrated satellite imagery from Sentinel-2 and Unmanned Aerial Vehicles (UAV) 
using machine learning to provide a consistent classification approach for monitoring seagrass in Maputo Bay, 
southern Mozambique. Sentinel-2 imagery was used to map seagrass extent and changes in Maputo Bay. The 
UAV systems were used to map seagrass at species level and biomass. All three algorithms tested in the ArcGIS 
environment could detect seagrass with high producer accuracy and Kappa coefficient. The area of seagrass in 
Maputo Bay decreased by 33.4 % between 1991 and 2023, with a decreasing trend of 0.48 km2/yr. A zonation 
pattern was observed for Oceana serrulata and Zostera capensis from the UAV imagery. The small and narrow 
leaved species (Z. capensis) occurred in the intertidal zone replaced by the broadleaved species (O. serrulata) in 
the subtidal. The total average aboveground biomass was 33.2 kg dry weight for the mapped area. The results of 
this study will guide implementation of combined satellite and UAV imagery with machine learning techniques 
for seagrass monitoring and restoration in Mozambique.

1. Introduction

Seagrass ecosystems provide a range of provisioning, regulating and 
cultural ecosystem services (Nordlund and Gullström, 2013, 
Amone-Mabuto et al., 2023) that contribute to human welfare and other 
goods and services (Findlay et al., 2011). The Mozambique coastline 
stretching over 2700 km, hosts one of the highest diversities of seagrass 
of the Western Indian Ocean region (Green and Short, 2003; Gullström 
et al., 2021). They are economically critical for coastal communities 
where fish, clams and crustaceans are collected, with 90 % of the na-
tional Gross Domestic Product (GDP) coming from artisanal fisheries 
(Poursanidis et al., 2021). However, they undergo changes in biomass 
and productivity continuously. The impact of natural disasters such as 
cyclones, floods (Amone-Mabuto et al., 2017; Bandeira et al., 2021), and 
the effects of higher sea-surface temperatures as well as sea level fluc-
tuations (Solana et al., 2020; Asante et al., 2023) on seagrass ecosystems 
have been documented in the Maputo and Inhambane bays. Further-
more, destructive fishing practices including both semi-industrial 

shrimp trawlers and artisanal beach seine netting are damaging sea-
grass habitats (Gullström et al., 2021). For example, in the Bazaruto 
Archipelago, despite being incorporated in an established Marine Pro-
tected Area (with both permanent and seasonal closures), seagrass 
meadows are heavily fished using beach-seine netting (D’Agata, 2016; 
Gullström et al., 2021). In the northwest region of Maputo Bay, large 
areas of Zostera capensis have disappeared where a previous seagrass 
cover of 60 % in 1991 decreased to just 10 % within a ten-year period 
(Bandeira et al., 2014). The main factors leading to this reduction 
included sedimentation from flooding around the 2000’s and anthro-
pogenic impacts due to digging for clam collection.

Seagrasses have varied morphologies (Duarte, 1991) and can 
respond differently to changes in the environment (Roca et al., 2016), 
therefore mapping their extent, composition and aboveground biomass 
(AGB) at species level is necessary to obtain accurate information to 
inform monitoring and restoration programmes. AGB is one of the key 
indicators of seagrass health (Vieira et al., 2018). It determines diversity 
and abundance of macroinvertebrates as well as the contribution of 
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seagrass to carbon cycling which helps in the mitigation of climate 
change. For these reasons cover and AGB were investigated in this study.

Seagrass habitats can be mapped using different approaches, from in 
situ observations to remote sensing. Traditionally, in situ measurements 
such as boundary-tracking, transect or random-quadrat surveys have 
been used for direct seagrass mapping. These methods can provide ac-
curate and precise results on seagrass species and percentage cover at a 
series of points. However, interpolation to calculate total area coverage 
can result in an overestimate for irregular meadows. In addition, these 
methods are time-consuming, and sometimes cannot be applied in 
remote areas. Remote sensing techniques have since been established as 
a facilitating and supporting method to gather information about eco-
systems (Rommel et al., 2022). Several authors have effectively mapped 
seagrass meadow dynamics in shallow waters using remote sensing data 
such as Quickbird-2 (2.4×2.4 m), together with advanced image pro-
cessing techniques, driven by machine learning algorithms (Pu et al., 
2012; Calleja et al., 2017; Duffy et al., 2018; Astuty and Wicakson, 2019, 
Ivajnšič et al., 2022, Lugendo et al., 2024). In Mozambique, only a few 
seagrass mapping efforts has been conducted, using mid-resolution 
satellite imagery such as Landsat 8, Sentinel-2 and Spot 5 (Ferreira 
et al., 2009; Ferreira et al., 2012; Ferreira and Bandeira, 2014; Bandeira 
et al., 2014; Amone-Mabuto et al., 2017; Poursanidis et al., 2021; 
Traganos et al., 2022). Such application is useful in large-scale mapping, 
but it is limited in terms of accuracy in capturing the very dynamic 
habitat features of seagrass meadows (Kutser et al., 2020; Lønborg et al., 
2021; Hamad et al., 2022).

Unmanned aerial vehicle (UAV) techniques, are becoming popular 
platforms for spatial assessment of ecological phenomena (Anderson and 
Gaston, 2013; Klemas, 2015; Manfreda et al., 2018; Nahirnick et al., 
2019; Singh and Frazier, 2018; Malerba et al., 2023). They are suitable 
to obtain images of very fine spatial resolution (0.01– 5 cm) to detect 
changes in small patch and landscape features that would not be possible 
with satellite or aerial photography (Duffy et al., 2018; Yang et al., 
2023) and generally have lower operational costs when mapping at such 
high spatial resolutions. UAVs have proven to be a suitable tool to map 
seagrass species based on machine learning algorithms (Román et al., 
2021), to characterize the habitat conditions of shallow-water sea-
grass-dominated areas (Hamad et al., 2022), to estimate seagrass wrack 
carbon (Chen et al., 2023), or to quantify seagrass responses to disease 
and thermal stress (Aoki et al., 2023). Studies on applications of the UAV 
imagery to map seagrass to species biomass level are still scarce and 
have not yet been documented in Mozambique. Given the high 
ecosystem value of seagrass meadows and the usefulness of these habi-
tats for marine ecosystem health (Roca et al., 2016; Purvaja et al., 2018) 
establishing a reliable, rapid, and cost-effective mapping approach to aid 
seagrass monitoring programs is indispensable (Duffy et al., 2018; 
Hamad et al., 2022).

Some studies have shown that object-based image analysis (OBIA) 
approaches outperform pixel-based approaches when classifications are 
based on very high-resolution data (Dronova, 2015; Mahdavi et al., 
2017), and machine learning algorithms provide different ways of 
classifying these objects (Rommel et al., 2022). Random Trees (RT), 
Support Vector Machine (SVM) and Maximum Likelihood (ML) are some 
algorithms that have been used to map seagrass habitats with good re-
sults (Villoslada et al., 2020; Ivajnšič et al., 2022; Hamad et al., 2022; 
Benmokhtar et al., 2023). The performance of the algorithms depends 
on the classes being mapped, the training data and the predictor vari-
ables provided, thereafter, multiple classifiers should be tested to 
identify the best option (Maxwell et al., 2018). The aim of this study was 
to compare the classification results of Random Tree (RT), Support 
Vector Machine (SVM), and Maximum Likelihood methods using 
Sentinel-2 and UAV images to map seagrass extent and species biomass, 
and evaluate changes in seagrass extent in Maputo Bay, southern 
Mozambique. These data will inform seagrass monitoring and restora-
tion in Mozambique. As seagrasses are increasingly recognised for their 
potential carbon stocks and sequestration (Poursanidis et al., 2021), 

they have been included in the Nationally Determined Contributions to 
strengthen the country’s action plans to mitigate climate change. 
Therefore, measuring the health and distribution of seagrasses is critical 
to understanding their role in carbon sequestration and monitoring 
climate change targets.

2. Materials and Methods

2.1. Study site

Maputo Bay (Fig. 1A) is in southern Mozambique between 25◦72′- 
26◦28′S, 32◦40′- 32◦85′E and has a water surface area of approximately 
1100 km2 (Guissamulo and Cockcroft, 2004). The Bay has an average 
depth of 10 m, except for the northern part near the entrance to the 
Indian Ocean, where depths can reach up to 18–23 m (Amone-Mabuto 
et al., 2023). The tide is semi-diurnal, with an average spring and neap 
tidal range between 3.0 and 1.0 m respectively. Nine seagrass species 
have been identified in Maputo Bay including Thalassia hemprichii 
(Ehrenberg) Ascherson, Halodule uninervis (Forskål) Ascherson, Tha-
lassodendron ciliatum (Forskål) den Hart, Oceana serrulata (R. Brown) 
Byng & Christenhusz, Cymodocea rotundata Ehrenberg & Hempr. Ex 
Ascherson, Halophila ovalis (R.Br.) Hooker f., Syringodium isoetifolium 
(Ascherson) Dandy, Zostera capensis Setchell and Thalassodendron lep-
tocaule Maria C. Duarte, Bandeira & Romeiras (Bandeira et al., 2014). 
These species occur in a range of community types, from monospecific 
stands to mixed communities with one or two dominant seagrass species 
(Bandeira et al., 2014; Gullström et al., 2021; Amone-Mabuto et al., 
2022) occurring mainly in shallow inlets bordering Inhaca Island 
(Ferreira and Bandeira, 2014). In Bairro dos Pescadores, north of 
Maputo City, only four species occur and Z. capensis is dominant. 
Frequent disturbance from clam collection has reduced the seagrass 
extent. A large bay is situated in the southern part of Inhaca Island 
(Fig. 1B), that has a range of habitats including mangrove forest in Saco, 
coral reef in Ponta Torres and mudflats and seagrass beds in the Banco 
area, in the middle of the bay. The Banco area (Fig. 1C) is an important 
fishing ground for the local community, where fish, shellfish and crabs 
are caught in considerable quantities (de Boer, 2000).

2.2. Seagrass mapping and change detection

2.2.1. Maps of seagrass cover - 2023
To create the seagrass cover maps for 2023 a Sentinel-2 (Level 1 C) 

image of Maputo Bay captured on July 4, 2023, was selected for its 
minimal cloud cover (Cloud cover percentage: 1.2 % and Cloud shadow 
percentage: 0.03 %) and downloaded from the Copernicus Open Access 
H (https://scihub.copernicus.eu/dhus/#/home) (Table 1). Only the 
visible range Bands 2 (blue), 3 (green) and 4 (red), were used to build 
the RGB composite image, since they penetrate the water column more 
deeply and thus provide sensitive quantitative data on bottom reflec-
tance (Ivajnšič et al., 2022). The image was clipped of the areas of in-
terest separately (Inhaca Island and Bairro dos Pescadores) to focus only 
on the shallow coastal part of the bay, where seagrass meadows are 
commonly present. A satellite image mask was used to remove any cloud 
shadow thus enhancing the coastal water features. Water column 
correction was not applied on the single image, since it is known to have 
limited effectiveness in shallow waters (up to depth of 3 m) (Uhrin and 
Townsend, 2016) and it has been demonstrated that Sentinel-2 data can 
achieve benthic substrate differentiation through atmospheric correc-
tion only (Kuhwald et al., 2021; Li et al., 2023). Several points were 
drawn to represent sand and shallows water (classified as others) using 
the Sentinel image and ArcGIS Pro (version 2.8) world imagery layer 
sourced from Maxar data at 1.0 m resolution (from 3 May 2023).

2.2.2. Image classification
The RGB composite image was the source for supervised image 

classification techniques in ArcGIS 10.50. The classification was 
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supported by several training polygons (representing 69.1 % of the data 
set) determined on object-based image analysis (OBIA) (Table 2). Two 
different categories were distinguished including seagrasses, with sand 
banks, rocks, coral, shallow waters, mangrove, considered as others. To 
assure the best possible estimate of seagrass cover in 2023, three algo-
rithms in the ArcGIS environment (ESRI, 2020) were applied: (1) the 
Random Trees (RT), (2) the Support Vector Machine (SVM) and (3) the 
Maximum Likelihood (ML) (Fig. 2). A detailed explanation of these 
classification algorithm is given in Otukei and Blaschke (2010). The 
classification algorithms were trained using a subset of those training 
data to obtain a model to be applied. Afterwards, the recognition of 
different categories was carried out by applying each model to the whole 
image window (Medina and Atehortúa, 2019). Finally, the validation 
phase of the obtained results was performed.

2.2.3. Accuracy assessment
Quantifying the amount of error in a classified image is crucial to 

reach the best link between image and reality (Ivajnšič et al., 2022). 
Thus, the results were used for accuracy assessment based on the 
confusion matrix for each image classification algorithm. A separate 
data set not used for training was used for accuracy assessment (30.9 %) 
with a total of 651 validation points for both classes (seagrass and others) 
at Inhaca and Bairro dos Pescadores. The data set was produced based on 
the knowledge and experience from manual image interpretation and 
several seagrass image pixels (Li et al., 2023). We validated the accuracy 
of the seagrass ecosystem cover using the following statistical metrics: 
producer accuracy (PA), overall accuracy (OA), user accuracy (UA) and 
Kappa coefficient (Kc). OA shows the proportion of validation data that 
were classified correctly. PA indicates how often real objects of a class on 
the ground are correctly shown on the resulting classification map, 

Fig. 1. The study area of Maputo Bay, with a) the spatial distribution of reference data points across Inhaca Island and Bairro dos Pescadores b) RGB UAV image from 
the Banco area of the southern bay of Inhaca Island and c) pink and blue pins depict location of field data points.

Table 1 
Spectral characteristics of the Sentinel-2 satellite image used in the study.

Band 
No.

Spectral Band Central Wavelength 
（（nm））

Spatial Resolution 
(m））

1 Coastal aerosol 442 60
2 Blue 495 10
3 Green 582 10
4 Red 664 10
5 Vegetation red edge 703 20
6 Vegetation red edge 739 20
7 Vegetation red edge 779 20
8 Near Infra-Red (NIR) 883 10
8 A Narrow NIR 864 20
9 Water vapor 943 60
10 Cloud cirrus 1377 60
11 Short Wave Infra-Red 

(SWIR)
1610 20

12 Short Wave Infra-Red 
(SWIR)

2186 20

Table 2 
Dataset used in the machine learning for object-based image analysis.

Inhaca Island Bairro dos Pescadores

Training data ​ ​ 
Seagrass 386 243
Others 521 306
Validation data ​ ​ 
Seagrass 156 100
Others 239 156
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while UA indicates how often a class on the resulting classification map 
will be present on the ground. Kc compares classification results to 
values assigned by chance (Congalton and Green, 2019).

2.2.4. Change analysis
The remote sensing part of this study was performed with the pur-

pose of updating the seagrass distribution map of Maputo Bay. This 
update aimed to evaluate the temporal dynamics of seagrass meadows 
along the bay compared to the historical seagrass distribution maps from 
1991 and 2003 (Bandeira et al., 2014). To achieve this, the historical 
maps were scanned and georectified as a prerequisite to digitizing 
polygons (Knowles and Hillier, 2008; Novak and Ostash, 2022) in Arc-
GIS software. The seagrass cover status in 1991 and 2003 were based on 
satellite images and extensive ground truthing. We test the assumption 
that seagrass habitats have been losing extent in recent years mainly in 
Bairro dos Pescadores, northwest Maputo Bay. The historical maps were 
compared against the remote sensing product from 2023. The change 
analysis should be considered as an estimation with a certain level of 
certainty; 93 % and 85 % for Inhaca Island and Bairro dos Pescadores 
respectively for the SVM algorithm.

2.3. Aboveground biomass estimation

2.3.1. UAV data collection
We deployed two Phantom 4 Pro multirotor drones with onboard 

GPS for georeferencing in the Banco area of the southern bay of Inhaca 
Island (an area dominated by Z. capensis) with the prior flight missions 
planned on Pix4Dcapture app. The front- and side-image overlaps were 
set to 80 % in all the flights to increase the alignment accuracy. The 
drones were flown at a 65-m altitude in 15 flights (Table 3), which 
resulted in the ground image spatial resolution of 1.64 cm and with 
flight speed not exceeding 15 m.s− 1. The mapping was performed during 
low tide, where both parallel and perpendicular orientations to the 
coastline were applied, primarily based on the orientation of the dis-
tribution of the seagrasses. All images were taken with the camera facing 

down, to ensure camera position was associated with the centre of the 
image (Price et al., 2022).

2.3.2. UAV image processing and classification
Pix4DMapper (Version 1.6.6) was used to create mosaics of the drone 

imagery, using a scale-invariant feature transformation algorithm to 
detect features for matching images. High quality alignment was chosen 
to utilise the full image resolution. We chose one orthomosaic derived 
from 334 images to process the classification. The remaining data were 
stored for further analysis. The orthomosaic was exported in GeoTIFF 
format into ArcGIS for subsequent OBIA processing. A supervised clas-
sification scheme was employed to categorize image pixels into different 
classes. We manually selected a set of image objects as training samples 
to train the three algorithms (SVM, RT and ML). The confusion matrix 
for each image classification algorithm were also computed in the Arc-
GIS environment (ESRI, 2020). The matrices were built using in situ data 
points collected and visually inspected on the original true colour 
orthomosaic (Fig. 3). Due to the ultra-high spatial resolution, visual 
photo interpretation could be considered very reliable for assessing the 
accuracy of thematic maps (Lechner et al., 2012; Ventura et al., 2023). 
The accuracy assessment was measured using four indicators: producer 
accuracy, overall accuracy, Kappa coefficient and user accuracy. The 
best performing seagrass species classification algorithm was selected 
for total AGB estimation.

Fig. 2. Schematic overview of the methodological framework applied to map seagrass distribution and biomass.

Table 3 
Details of UAV flights for the study area.

Location Date Number of 
flights

Number of 
images

Flight 
altitude (m)

Southern 
Inhaca

17/02/ 
2022–28/02/ 
2022

15 7928 65
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2.3.3. In situ measurements
In situ measurements were randomly carried out at 77 points (Fig. 3, 

Table 4) to determine the different benthic classes and seagrass species. 
In the surveyed area we found four of the nine seagrass species reported 
for Inhaca Island, namely Halodule uninervis, Thalassia hemprichii, 
Oceana serrulata and Zostera capensis, the last two being the dominant 
species in terms of abundance. Percentage cover of the dominant species 
was assessed in 12 quadrats of 50 ×50 cm following McKenzie et al., 
(2001). In addition, 12 small quadrats (25 ×25 cm) were used for the 
measurement of AGB (Gokulakrishnan and Ravikumar, 2016). Seagrass 
biomass was collected with a spade to the depth of root penetration, 
cleaned from sediment with seawater, put in an ice box and taken to the 
laboratory. Subsequently, the samples were washed with fresh water 
and any epiphytes attached to the seagrass was removed. The samples 
were separated into aboveground (leaves) and belowground biomass 
(roots and rhizomes) and dried in an oven at a fixed temperature of 80 ◦C 
for 48 hours, then weighed to measure the dry weight (only AGB data 
were used in this study). The values of dry weight were converted to an 
area of a square meter (Table 5) by dividing the dry weight of each 

sample by the quadrat size. The total AGB (measured in dry weight 
(DW)) for each species was obtained following Chayhard and Bur-
anapratheprat (2018), by multiplying the average AGB of the species by 
the area covered by the species. Regression linear analysis between AGB 
and UAV RGB bands and between percentage cover and UAV RGB bands 
were performed to understand how the bands are correlated to the in situ 
measurements. Regression analysis was also determined between AGB 
and percentage cover.

Fig. 3. UAV orthomosaic used for seagrass species map and aboveground biomass estimation (a) Seagrass Z. capensis (b) and O. serrulata (c) sampled in the 
study area.

Table 4 
In situ benthic classes sampling points.

Class Points %

Oceana serrulata 18 23.4
Zostera capensis 16 20.8
Bare sand 33 42.8
Water 10 13.0
Total 77 100

Table 5 
Seagrass aboveground biomass in each quadrat and aboveground biomass 
converted to square meters (m2).

Quadrat Species Substrate 
type

Cover (%) 
50 cm2

AGB (g. 
DW)

AGB

(g.DW/ 
m2)

1 O. serrulata Sand 85 18.13 290.06
2 O. serrulata Sand 95 19.98 319.70
3 O. serrulata Sand 100 20.94 335.07
4 O. serrulata Sand 95 20.77 332.38
5 O. serrulata Sand 90 18.32 293.13
6 O. serrulata Sand 95 20.11 321.81
7 Z. capensis Sand and 

Mud
70 12.41 198.61

8 Z. capensis Sand and 
Mud

60 11.82 189.19

9 Z. capensis Mud 85 13.37 213.86
10 Z. capensis Mud 95 13.87 221.88
11 Z. capensis Mud 95 13.77 220.32
12 Z. capensis Sand and 

Mud
45 11.78 188.48
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3. Results

3.1. Seagrass mapping and change detection

The 2023 mapping produced from the RGB composite classification 
revealed that seagrasses cover 30.63 km2 along the Maputo Bay with 
30.07 km2 at Inhaca Island (Fig. 4C) and 0.56 km2 at Bairro dos Pes-
cadores (Fig. 4F). The seagrass distribution maps obtained by classifi-
cation using the OBIA method were effective in providing an overview of 
the main extent. Accuracy measures using different algorithms are 
presented in Table 6. The results showed that the assessment values 
were different for each image, but all presented a good OA and Kc value. 
The SVM algorithm presented the highest classification performance for 
Inhaca Island (the OA = 97 % and Kc = 0.93), compared with an OA =
93 % and Kc = 0.85 for Bairro dos Pescadores (OA =user accuracy and 
Kc = Kappa coefficient).

The seagrass meadow area decreased by 12.8 % (from 46.06 km2 to 
40.16 km2) between 1991 and 2003, followed by another decline of 

23.7 % (from 40.16 km2 to 30.63 km2) between 2003 and 2023 (Fig. 4
and Table 7). Overall, the area of seagrasses in the Maputo Bay 
decreased by 33.4 % between 1991 and 2023, with a decreasing trend of 
0.48 km 2/yr. Bairro dos Pescadores had the greatest decrease (86.3 %) 
in extent between 1991 and 2003 (Table 7). The distribution pattern of 
seagrass also appears to have changed over time at Inhaca Island. In 
1991, the meadows were similarly abundant in the northern and 
southern bays. Declines up until 2023 mostly reflected losses from the 
southern meadows in the Zostera capensis dominated meadows (Fig. 4C).

3.2. Aboveground biomass mapping

Two classes of dominant species (Oceana serrulata and Zostera 
capensis) were classified using SVM, RT and ML algorithms. The total 
seagrass area mapped was 0.000126 km2 and the percentage of seagrass 
cover ranged from 0 % to 100 %. Oceana serrulata commonly grew in 
subtidal areas where it is constantly submerged at low tide. Its wide 
leaves created different reflectance compared with the thin Z. capensis 

Fig. 4. Change detection in seagrass cover along Inhaca Island (a) in 1991, (b) 2003 and (c) 2023 and Bairro dos Pescadores with a focus on the Zostera capensis 
community (d) in 1991, (e) 2003, and (f) 2023.
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leaves occurring in intertidal areas which are exposed at low tides. The 
accuracy assessment showed that all algorithms were capable of dis-
tinguishing seagrass species (Fig. 5). SVM yielded a slightly higher mean 
overall accuracy of 89 % (Table 8).

The mean AGB of O. serrulata and Z. capensis were 315 g DW.m− 2 and 
213 g DW.m− 2 respectively (Fig. 6) and the average AGB of the seagrass 
zone was 9.1 kg DW for O. serrulata and 20.7 kg DW for Z. capensis. The 
total average AGB for this area was 33.2 kg DW. The correlation 

between total AGB, percentage cover and UAV RGB bands is shown in 
Fig. 7. The correlation between AGB and percentage cover of all species 
and of the two dominant species, O. serrulata and Z. capensis is shown in 
Fig. 8. The results indicated a low correlation between the AGB and the 
RGB band (R2 = 0.35–0.49) and between the percentage cover and the 
RGB bands (R2 = 0.13–0.21). Overall, RGB bands showed a linear 
relationship with AGB and percentage cover. The higher the RGB value, 
the closer the AGB or percent cover is to zero (absence of seagrass). In 
contrast, the results showed a moderate relationship (R2 = 0.51) be-
tween AGB and percentage cover and a good relationship (R2 =

0.85–0.94) when species were analysed separately.

4. Discussion

4.1. Advantages and disadvantages of classification algorithms

In this study, we have demonstrated the use of machine-learning 
approaches to successfully classify seagrass from Sentinel-2 images of 
Maputo Bay with the results then used to detect change in seagrass cover 
over a period of 32 years. The SVM, RT and ML algorithms were all 

Table 6 
Confusion matrices for seagrass mapping in Maputo Bay.

Inhaca Island Bairro do Pescadores

SVM Seagrass Other Total UA Seagrass Other Total UA

Seagrass 147 9 156 0.94 96 4 100 0.96
Other 4 235 239 0.98 14 142 156 0.91
Total 151 244 395 ​ 110 146 256 ​
PA 0.97 0.96 ​ ​ 0.87 0.97 ​ ​
OA 0.97 ​ ​ ​ 0.93 ​ ​ ​
Kc 0.93 ​ ​ ​ 0.85 ​ ​ ​
RT Seagrass Other Total UA Seagrass Other Total UA
Seagrass 122 34 156 0.78 97 3 100 0.97
Other 4 235 239 0.98 25 131 156 0.84
Total 126 269 395 ​ 122 134 256 ​
PA 0.97 0.87 ​ ​ 0.80 0.98 ​ ​
OA 0.90 ​ ​ ​ 0.89 ​ ​ ​
Kc 0.79 ​ ​ ​ 0.78 ​ ​ ​
ML Seagrass Other Total UA Seagrass Other Total UA
Seagrass 140 16 156 0.90 88 11 99 0.89
Other 6 233 239 0.98 11 145 156 0.93
Total 146 249 395 ​ 99 156 255 ​
PA 0.96 0.94 ​ ​ 0.89 0.93 ​ ​
OA 0.94 ​ ​ ​ 0.91 ​ ​ ​
Kc 0.88 ​ ​ ​ 0.82 ​ ​ ​

Table 7 
Seagrass cover and percentage loss at Inhaca Island and Bairro dos Pescadores 
between 1991 – 2023.

Site Inhaca Island Bairro dos Pescadores

Years 1991 2003 2023 1991 2003 2023

Seagrass area 
(km2)

40.74 39.43 30.07 5.32 0.73 0.56

Seagrass cover 
lost (%)

1991–2003 2003–2023 1991–2003 2003–2023

3.2 % 23 % 86.3 % 23.3 %

Fig. 5. UAV classification maps from SVM (a), RT (b) and ML (c).
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capable of detecting seagrass with high producer accuracy and Kappa 
coefficient. A previous study (Ivajnšič et al., 2022), tested these three 
algorithms for seagrass classification using Sentinel-2 imagery in the 
Adriatic Sea, with overall accuracies of 56–60 %. Koedsin et al., (2016), 
also tested the ML using higher resolution Worldview-2 (WV-2) imagery 
to map seagrass species cover and biomass in Southern Thailand with an 
overall accuracy of 90.7 %. However, both studies showed lower 

accuracies than presented in this study. Although our study presented 
higher accuracy than previous studies of seagrass beds, it is difficult to 
compare the accuracy with other studies due to the environmental dif-
ferences, variation in seagrass depth occurrence as well as the sensors 
used. Among the machine learning ensemble approaches used, RT and 
ML algorithms performed less well than SVM in both satellite and UAV 
imagery. These results are in line with that of Traganos and Reinartz 
(2018), who also compared the performance of SVM and RT in satellite 
imagery for Posidonia oceanica mapping and contradicts the superior 
performance of RT in other studies (Bakirman and Gumusay, 2020). In 
fact, SVM has high accuracy in handling complex and high-dimensional 
data, which makes it well suited for distinguishing seagrass from other 
types of classes, however this may not be suitable for large datasets with 
many features. Overall, the advantage of using machine learning algo-
rithms is that they can process geospatial data more accurately than 
traditional methods. Machine learning algorithms can identify patterns 
and trends in data that may be difficult for humans to detect, resulting in 
more accurate analysis and predictions.

4.2. Current status and changes in seagrass area

In 1991, there were extensive seagrass meadows in Maputo Bay 
(Bandeira, 2002; Bandeira et al., 2014). However, between 1991 and 
2003, the meadows suffered a severe decrease in size mainly at Bairro 
dos Pescadores (northwest of the Maputo Bay). The main factors leading 
to this reduction included sedimentation from flooding around the 
2000s and anthropogenic impacts due to digging for clam collection 
(Bandeira et al., 2014). From 2003–2023, the decline (about 23 %) was 
similar for Inhaca Island and Bairro dos Pescadores, with the meadows 
at Bairro dos Pescadores very sparse and patchy due to continuous 
digging for clam collection. Although Inhaca Island is located within the 
Maputo National Park, it is experiencing an increase in the number of 
tourists, especially during the peak season. The rapid urbanization for 
socio-economic development and the disturbance caused by boat traffic 
are leading to the destruction of seagrass ecosystems. This fact high-
lights that at the local scale, anthropogenic disturbance plays a major 
role in the survival of seagrass meadows.

4.3. Seagrass biomass mapping

Monitoring seagrass AGB is crucial as it serves as a fundamental in-
dicator of the productivity, biodiversity, and carbon storage of seagrass 
ecosystems. UAV imagery is suitable for detecting seagrass species in 
monospecific beds that occur in shallow waters. The images in this study 
were taken at an altitude of 65 m at low tide, providing a good spatial 
resolution of 1.64 cm/pixel and allowing different seagrass species to be 
clearly observed. From the UAV imagery we observed that different 
species grow in different locations. The zonation followed a pattern of 
small and narrow-leaved species in the intertidal zone (e.g. Z. capensis) 
being replaced by broad-leaved species in the subtidal zone 
(O. serrulata). In the intertidal flats this is an adaptation to tolerate 
prolonged exposure to high temperatures and desiccation. As a group, 
seagrasses span a wide range of morphological traits, growth patterns, 
physiology, and other life history traits (Short et al., 2007; Kilminster 
et al., 2015), making them differentially able to cope with environ-
mental stress and competition (Rao et al., 2023).

The study showed that seagrass AGB was directly proportional to the 
seagrass percentage cover, which means the healthier the seagrass, the 
higher the AGB. Seagrass biomass also varied according to sediment 
type. Seagrass growing on muddy-sandy substrate had lower AGB, while 
seagrass growing on sandy substrate had higher AGB. Mallombasi et al., 
(2020) also found similar results investigating the relationship between 
seagrass Thalassia hemprichii percentage cover and their biomass.

The RGB bands from the UAVs showed high variability, despite the 
linear relationship with AGB and percent cover. This demonstrated the 
sensitivity to noise of environmental parameters such as reflectance. The 

Table 8 
Error matrices summary for the UAV image classification.

SVM O. serrulata Z. capensis Other Total UA

O. serrulata 18 1 2 21 0.86
Z. capensis 0 16 6 22 0.73
Other 0 1 44 45 0.97
Total 18 18 52 88 ​
PA 1.00 0.89 0.85 ​ ​
OA 0.89 ​ ​ ​ ​
Kc 0.81 ​ ​ ​ ​
RT O. serrulata Z. capensis Other Total UA
O. serrulata 18 3 6 27 0.67
Z. capensis 0 14 2 16 0.88
Other 0 1 44 45 0.98
Total 18 18 52 88 ​
PA 1.00 0.78 0.86 ​ ​
OA 0.86 ​ ​ ​ ​
Kc 0.77 ​ ​ ​ ​
ML O. serrulata Z. capensis Other Total UA
O. serrulata 17 1 6 24 0.71
Z. capensis 1 16 4 21 0.76
Other 0 1 42 43 0.98
Total 18 18 52 88 ​
P 

A
0.94 0.89 0.81 ​ ​

OA 0.85 ​ ​ ​ ​
Kc 0.76 ​ ​ ​ ​

Fig. 6. Aboveground seagrass biomass estimated from the UAV image.
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colour of the benthic classes can be disturbed by sea surface reflections 
and shadows, creating noise in the classification process. In fact, an 
automatic classifier requires an extensive a posteriori filtering process, 
which does not always define the class boundaries correctly (Apicella 
et al., 2023). We therefore propose the use of RGB imagery as validation 
data in satellite imagery for mapping seagrass AGB with manual digi-
tization of the different classes using visual recognition of the benthic 
classes. Visual interpretation is more accurate as the human eye can 
detect a pattern and texture better than supervised classification. The 

approach of our study can be used to retrieve information about the 
ecological status of seagrass to support management and restoration 
actions.

5. Conclusion

Seagrass meadows can be mapped successfully using Sentinel-2 and 
UAV imagery with high spatial resolution. In this study we proposed the 
combination of an object-based image analysis of UAV imagery with 

Fig. 7. RGB/in situ measurement plots showing the relationship between the value of the three UAV RGB bands and the seagrass aboveground biomass and per-
centage cover.

Fig. 8. Plots showing the relationship between seagrass aboveground biomass and percentage cover.
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satellite data and machine learning techniques for seagrass monitoring. 
The high spatial resolution and the flexible timing of image acquisition 
of UAVs can provide accurate training data, serving as a cost-effective 
supplement to ground truth data collected through field surveying. 
UAV surveys are constrained by flight duration and area coverage, 
limiting the areas to be monitored, thus, the combination of UAV and 
satellite data, set a promising path towards remote sensing-based 
monitoring. By combining the Sentinel-2 satellite images with UAV 
data, the extent and AGB of seagrass meadows can be monitored and 
accurately assessed balancing the different characteristics of the input 
images.
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