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Abstract
Aim: To evaluate the performance of species distribution models in predicting ob-
served colonisations, persistences and extirpations in response to changes in climate 
and land use over a multi- decadal period.
Location: Sweden.
Methods: We use historical (early 20th century) land use and climate data to build 
species distribution models for 84 plant species across three provinces of Sweden. 
Model	performance	was	then	evaluated	internally	using	a	subset	of	the	historical	data	
for cross- validation, as well as by using the models to project occurrences to the mod-
ern day and validating them with observed occurrences from 1990 to 2020. We then 
analysed predicted and observed occurrences in the modern period in terms of per-
sistence, extirpation (local extinction) and colonisation in relation to species' habitat 
and climate associations.
Results: We found overall high agreement between evaluation methods, although in-
ternal evaluation gave consistently higher values for model performance (using true skill 
statistic, TSS). Overall, extirpations were worst predicted, with on average fewer than 
one- third of each species' extirpations being foreseen by the models. Colonisations 
were better predicted, while persistences were relatively well- predicted. Predictive 
accuracy of colonisations was higher for species with relatively warmer temperature 
associations (climate- driven expansion), while extirpations were better predicted in 
cool- related species (retractions at cool edges). Colonisations of forest- associated 
species were more common than predicted (underpredicted), despite widespread 
patterns	of	afforestation.	Assessing	grid-	cell	level	turnover,	we	found	that	in	grid	cells	
that experienced the largest changes in terms of climate and land use, predicted extir-
pations were less likely to have happened.
Main Conclusions: We found that commonly applied modelling approaches have lim-
ited ability to predict observed changes in species occurrences, especially extirpa-
tions. This suggests that we should take predictions of future biodiversity loss very 
seriously. However, the ability for species to (at least temporarily) persist in unsuitable 
conditions could be an opportunity for biodiversity conservation.
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1  |  INTRODUC TION

Anthropogenic	pressures	on	 the	environment	have	caused	whole-
sale changes in species occurrences across the world (IPBES, 2019). 
Ongoing and future environmental change, particularly habitat 
destruction and climate warming, are predicted to result in signifi-
cant losses of biodiversity worldwide unless serious action is taken 
(Leclère et al., 2020; Urban, 2015). However, several analyses of 
biodiversity change in response to the environmental perturbations 
that have already happened have identified no strong negative pat-
tern	in	species	richness	over	time	at	local	scales	(Antão	et	al.,	2020; 
Vellend et al., 2017). Understanding discrepancies in expected and 
observed biodiversity change in response to changes in the environ-
ment is vital, because accurate predictions of ecological responses 
to future change are needed to inform the conservation strategies 
that	are	designed	to	protect	nature	(Asamoah	et	al.,	2021; Leclère 
et al., 2020).

Species distribution models, which in their various forms re-
late environmental conditions to species occurrences and use 
them to predict occurrences in other regions or time periods, are a 
common tool in global change ecology. Perhaps most visibly, they 
have been used to predict widespread extinctions and biodiversity 
loss in future climates (Thomas et al., 2004; Warren et al., 2018). 
Although	 communicating	 the	general	 risk	of	 future	environmen-
tal change for biodiversity is important, it is usually not possi-
ble	 to	 independently	 verify	 the	 predictions	 being	made	 (Araújo	
et al., 2005). Traditionally, species distribution models are inter-
nally cross- validated, using data from the majority of the study 
region to create the model, and then evaluating the accuracy of 
predictions made by the model in the remaining area. However, 
internal cross- validation practices are prone to error, as shown 
by models built using nonsense variables receiving validation 
scores higher than those built using true environmental variables 
(Fourcade	et	al.,	2018). One recommended way to evaluate model 
performance is to instead predict occurrences in the same region 
at a different time period, and then evaluate prediction accuracy 
in	 this	 independent	 test	 data	 (Araújo	 et	 al.,	 2019). Evaluations 
using such forecasting (building a model based on historical and 
predicting later occurrences) or hindcasting (building a model 
based on modern and predicting historical occurrences) tech-
niques have shown general agreement between predicted and ob-
served changes in species' ranges and abundances, but with large 
variation across species (Illán et al., 2014; Rapacciuolo et al., 2012; 
Soultan et al., 2022).

Understanding the climate and habitat associations of the species 
for which predicted occurrences are more or less accurate can give 
valuable insights for species distribution modelling. In plants, longer- 
lived, woody species and those that are effective seed dispersers 

generally appear to produce more accurate models (Dobrowski 
et al., 2011;	 McCune	 et	 al.,	 2020;	 Syphard	 &	 Franklin,	 2010). 
However, in an era of environmental change, it can also be of interest 
to compare species' associations with the environmental changes 
being	studied.	For	example,	as	the	climate	warms,	we	might	expect	
expanding, warm- adapted species to be better predicted by species 
distribution models (Talluto et al., 2016). When considering multiple 
species, it may also be informative to understand if the amount of 
environmental change that has taken place in a particular location 
affects the rate of correct or incorrect predictions of occurrence.

Although	climate	change	 is	 likely	 the	most	common	context	 in	
which predictive species distribution models are created, it is only 
one of a number of serious threats to biodiversity worldwide. In 
particular, habitat destruction through land- use change is generally 
considered to be the most significant driver of biodiversity change 
today (IPBES, 2019;	Newbold	et	al.,	2016). Habitat availability is also 
an	important	mediator	of	climate-	driven	distribution	changes	(Mair	
et al., 2014; Platts et al., 2019), and so consideration of both of these 
main drivers of global change is preferable. This is true both for pre-
dicting	 future	 changes	 in	 biodiversity	 (Asamoah	 et	 al.,	2021), and 
also for model evaluation, as loss of a particular habitat might affect 
predictability of specific species responding to climate change.

In this study, we use historical (mid- 1900s) climate, landscape 
and species occurrence data to fit species distribution models for 
84 plant species in three regions of southern Sweden. We then use 
these models to predict modern- day occurrences based on current 
environmental data, using observation data from 1990 to 2020 
data to evaluate predictive accuracy. The study area has undergone 
large- scale loss (largely abandonment) of grassland habitat and ex-
perienced significant climate warming, which has been reflected in 
changes	in	plant	community	composition	(Auffret	et	al.,	2018;	Auffret	
& Thomas, 2019a). It is not our intention to build the most perfect 
models for distribution forecasting, but rather we aim to identify 
sources of prediction biases in a common modelling approach, based 
on relevant environmental variables that are available in our study 
region	for	both	time	periods.	After	building	our	models	based	on	the	
historical data, we use both traditional internal cross- validation eval-
uation measures within the same time period and validation using 
modern- day observed occurrence data to investigate the accuracy 
of the models in predicting change (Figure 1). To identify sources of 
uncertainty and error, we then look into how species' occurrence 
predictions relate to their climatic niches (the average and range of 
temperatures experienced by each species over its range) and their 
habitat associations (proportions of each species' national popula-
tions	restricted	to	grassland	and	forest	habitat).	Finally,	we	evaluate	
how prediction accuracy of extirpation, colonisation and persistence 
across all species is affected by the amount of environmental change 
that has occurred within each grid- cell landscape over time.

K E Y W O R D S
biodiversity, climate change, extinction debt, habitat destruction, land- use change, plants, 
SDMs
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2  |  MATERIAL S AND METHODS

2.1  |  Data sources

2.1.1  |  Species	occurrence	data

We used plant species occurrence data from the Swedish prov-
inces of Bohuslän, Öland and Uppland (Figure 1). Historical data 
were extracted from plant atlases that were largely based on 
inventories	 from	 the	 early-	mid	 20th	 century	 (Almquist,	 1929; 
Fries,	1945; Sterner, 1938), but exact dates for each observation 
are	not	known.	Modern	atlas	data	were	based	on	inventories	car-
ried	 out	 since	 1990	 (Andersson	&	Gunnarsson,	2024; Blomgren 
et al., 2011; Jonsell, 2010).	 For	 the	historical	 atlases,	Öland	 and	
Uppland's observations were extracted from the 286 (Öland) 
and	438	 (Uppland)	 species	distribution	maps	using	GIS	software	
(Auffret	&	Thomas,	2019a;	Maad	et	al.,	2009).	For	Bohuslän,	data	
were extracted from the database used to create the modern flora 
(Blomgren et al., 2011), containing georeferenced historical obser-
vations	of	1460	 species.	All	 observations	were	 then	assigned	 to	
the	5 × 5 km	Swedish	national	grid	cell	in	which	they	were	located,	
this being the same grid used for the historical maps and the in-
ventory	 unit	 used	 for	 the	 modern	 inventories.	 After	 taxonomic	
harmonisation to the species level according to the nomenclature 
of the Swedish taxonomic database (https:// namno chsla ktskap. 
artfa kta. se), using in the first hand Swedish names and in the sec-
ond hand scientific names, 84 species were retained for analysis 
that	were	recorded	in	all	three	provinces	in	both	time	periods.	For	
each species, we recorded both presences and ‘absences’ at the 
grid cell level, with absences defined where a species was not re-
corded	in	a	grid	cell	in	the	plant	atlas	in	a	time	period.	Atlases	from	

both periods were created to document the distributions of spe-
cies within the provinces. Historical atlases had a lower recorder 
effort (often being the work of a single person), but we consider 
the presence data to be at least of a comparable quality to those 
used for species distribution modelling, with absences broadly 
likely	 to	 be	 true	 absences	 rather	 than	 non-	detections.	 Modern	
atlas inventories are characterised by a high recording effort, with 
the	aim	of	documenting	each	species	within	each	5 × 5	(and	often	
each	2.5 × 2.5 km)	grid	square.	Nonetheless,	the	number	of	unique	
species- grid- cell observations did not increase dramatically, with 
26,409	recorded	presences	in	1055	grid	squares	in	the	historical	
period and 29,301 presences in 1074 grid squares in the modern 
period.	Median	change	in	frequency	in	the	raw	data	was	+30 grid 
cells,	and	ranged	between	−169	and	+371 across all species.

2.1.2  |  Environmental	data

For	environmental	data,	we	took	daily	4 × 4 km	gridded	climate	data	
from 1961 to 2011 from the Swedish Institute for Hydrology and 
Meteorology's	database	pthbv, which we then aggregated to monthly 
values	and	resampled	the	grid	to	match	the	5 × 5 km	Swedish	national	
grid used for the species occurrence data, and extracted a number 
of climatic variables (Table 1).	For	the	historical	period,	we	averaged	
values across the first available decade in the database 1961–1970, 
and for the modern period we used 2001–2010. Cover of four broad 
land- use categories (grassland, forest, arable fields and surface 
water) was derived for the historical period from maps created dur-
ing	1940s	to	1960s.	Modern	land-	use	data	were	taken	from	the	2018	
national land- cover map Nationellamarktäckedata (Table 1). The his-
torical environmental data represent a time towards the end of the 

F I G U R E  1 Illustration	of	study	design,	showing	the	location	of	the	three	provinces	along	Sweden's	temperature	gradient	(mean	annual	
temperature 1961–1990) and data for an example species Neottia nidus- avis. Ensemble species distribution models were built using species 
observations (black points) and environmental data from the historical period (early 20th century, mean annual temperature 1961–1970) and 
used to predict occurrences in the modern period (1990–2020, mean annual temperature 2001–2010; translucent grey squares) based on 
current environmental conditions. These were then compared to observations in the modern period.

 14724642, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.13834 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [18/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://namnochslaktskap.artfakta.se
https://namnochslaktskap.artfakta.se


4 of 13  |     AUFFRET et al.

historical inventory periods, potentially several decades after some 
species observations. This temporal mismatch could affect the per-
formance of our models. However, the rapid increase in mean annual 
temperature occurred in Sweden post- 1970 (Schimanke et al., 2022), 
while the widespread abandonment and afforestation of grasslands 
in Sweden has been observed subsequent to the publications of the 
historical maps used here (Cousins, 2001; Johansson et al., 2008). 
Therefore, we consider the broad climatic and land use conditions of 
the grid cell to represent the time of the species observations.

In addition to climate and land- use data, we collected two addi-
tional	sets	of	data	to	help	build	the	species	distribution	models.	First,	
we calculated distance to coast as the distance between the centroid 
of each grid cell and the nearest section of coastline, because there 
are a number of species that are associated with coastal habitats. 
Second,	we	used	the	Swedish	Geological	Survey's	collection	of	soil	
maps that cover Sweden to create a national map of continuous cov-
erage using the highest- resolution data available for each location, 
before we calculated the fraction cover of broad soil type within 
each	5 × 5 km	grid	cell	(Table 1).

2.1.3  |  Species'	climate	and	habitat	associations

Associations	of	all	84	species	to	habitat	and	climate	were	taken	from	
Tyler et al. (2021)	and	Auffret	and	Thomas	(2019b), respectively. We 
calculated broad grassland specialisation on a scale from 0 to 10, ac-
cording to the total proportion of the Swedish population estimated 
by the authors to reside in heath, meadow and fen habitats, with 
forest specialisation calculated on the same scale across different 
forest habitats. That is, a species with a grassland specialisation of 
10	is	considered	to	only	be	present	in	grassland	habitats.	For	climate	
associations, species mean temperature index is the average tem-
perature experienced by a species across its Swedish range (higher 
values indicating warmer- associated, southerly distributed species), 
while species temperature range index is the difference between 
the warmest and coolest observation across its range (higher values 
indicating more climatically widespread species). These values are 

based on the time and location of all observations of each species 
from modern regional plant atlas inventories across the majority of 
Sweden	that	have	been	carried	out	since	1975	(i.e.	not	only	the	three	
study	provinces;	Auffret	&	Thomas,	2019a).

2.2  |  Species distribution models (SDM)

Species distribution models allow us to correlate environmental con-
ditions hypothesised to influence the presence of a certain species 
in a given area to estimate where it is more likely to occur (envi-
ronmental	 suitability).	We	 fitted	 SDMs	 for	 each	 species	 based	 on	
historical data (species observations and environmental variables in 
their	original	units)	using	the	BIOMOD2	package	in	the	R	software	
(R Core Team, 2021; Thuiller et al., 2009),	 including	 5	 commonly	
used algorithms that have been shown to have good performance 
(Polaina et al., 2021; Valavi et al., 2022; Wisz et al., 2008): general-
ised	 linear	model,	GLM;	generalised	additive	model,	GAM;	flexible	
discriminant	analysis,	FDA;	generalised	boosting	model,	GBM;	and	
maximum	entropy,	MAXENT.	Algorithms	were	run	using	default	set-
tings,	apart	from	GAM,	where	we	specified	a	smoothing	term	(k)	of	
3 – a relatively low value to limit overfitting (so- called ‘wiggliness’). 
We applied four runs per algorithm, to allow cross validation (each 
run selects a different subset of 70% of data to fit the model). Only 
non-	correlated	environmental	predictors	(VIF ≤ 4)	were	kept	for	the	
modelling, including maximum monthly temperature and precipita-
tion, fractions of arable, open and forest land (all from the historical 
period), as well as distance to the coast, and proportions of peat, 
sand/gravel, rock and silt/clay soil types.

A	total	of	20	individual	candidate	models	were	fitted	per	species	
(4	 runs × 5	 algorithms),	 providing	 continuous	 predictions	 of	 occur-
rence (in the historical period) between zero and one. These were 
converted into a binary classification using a threshold value (spe-
cific for that species and model) that was automatically selected to 
maximise the model's TSS score, based on the 30% subset of ob-
servations not used to build each candidate model (Liu et al., 2013). 
TSS is the sum of a model's sensitivity (proportion of presences 

TA B L E  1 Environmental	variables	used	for	building	and	evaluating	species	distribution	models	of	84	plant	species	across	three	provinces	
of	Sweden,	based	on	observations	at	5 × 5 km	grid	cells.

Climate Variables:	Temperature	(°C):	Mean	annual	temperature;	mean	of	monthly	maximum	temperatures;	mean	of	monthly	
minimum temperatures. Precipitation (mm): Total annual precipitation; mean of monthly minimum precipitation, mean 
of monthly maximum precipitation

Source:	Swedish	Meteorological	and	Hydrological	Institute	database	of	gridded	daily	values	(4 km	resolution,	resampled	to	
5 × 5 km	grid).	Historical	period	1961–1970;	modern	period	2001–2010

Land use Variables:	Fraction	cover	of	grassland,	forest,	arable	fields	and	surface	water
Source:	Historical	data	from	Economic	maps	published	1940s–1960s	(1 m	resolution,	aggregated	and	resampled	to	10 m;	
Auffret	et	al.,	2017a).	Grassland	category	mainly	consists	of	grasslands,	but	also	includes	other	open	land	cover,	
including wetlands. Because of difficulties in separating water and forest in the digitisation process, lakes and rivers 
were	added	to	the	digitisations	using	a	modern	map	layer.	Modern	data	from	2018	Swedish	land-	cover	map	(10 m	
resolution),	with	25	categories	re-	classified	to	match	the	broad	categories	of	the	historical	data

Soil Variables:	Fraction	of	peat,	sand	&	gravel,	bedrock,	silt	&	clay,	till	and	other	soils
Source:	National	soil	maps.	Original	data	in	vector	format	at	1:25000	to	1:1000000	scales	were	harmonised	to	create	a	
50 m	resolution	layer	(noting	that	the	smallest	features	on	the	coarsest	map	are	approximately	500 m	across)

Distance to coast Variable: Euclidean distance between the grid cell centroid and the Swedish coast
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in the 30% subset of observations withheld from model build-
ing that were correctly predicted by the model) and its specificity 
(proportion	 of	 correctly-	predicted	 absences),	minus	 one	 (Allouche	
et al., 2006; Peirce, 1884). We then used a committee averaging pro-
cess to choose the candidate models of high predictive performance 
that would be included in the single ensemble model per species. 
Candidate models were included in the ensemble if they had a TSS 
score	of	≥0.7.	When	fewer	than	10	candidate	models	matched	this	
criterion, the models with a TSS score above the median for that 
species were included. The ensemble model prediction is then the 
average of the binary predictions of the candidate models, which is 
then automatically converted into binary values to maximise TSS.

In addition to carrying out traditional internal cross- validation by 
calculating TSS of modelled and observed occurrences within the 
historical	 time	period	 (Araújo	&	New,	2007; Hirzel et al., 2006), we 
also implemented an independent, temporal validation. The ensem-
ble models above were used to forecast occurrence probability in the 
modern period (again subsequently converted into a binary prediction) 
according to modern environmental data. Then, to validate how well 
these models were able to predict observed changes in species distri-
butions, these predictions were then compared with modern occur-
rences (instead of the 30% subset of past occurrences) and both TSS 
scores	and	AUC	(area	under	curve)	values	were	calculated.	For	a	more	
specific analysis of predictive accuracy at the species level, we also cal-
culated the fraction of grid squares in which persistences (observed as 
present in historical and modern), extirpations (observed as present in 
grid cell in historical, not recorded in modern observations) and colo-
nisations (not recorded in historical, present in modern) were correctly 
predicted. This approach allows us to look more carefully at the predic-
tion accuracy of turnover over time, because high TSS values can occur 
largely due to correctly- predicted continued absence in a grid square. 
At	the	grid-	square	level,	we	calculated	the	fraction	of	persistences,	ex-
tirpations and colonisations that occurred in the grid square that were 
correctly predicted by the species distribution models.

2.3  |  Model performance in relation to species 
associations and environmental change

First,	to	assess	the	agreement	between	validation	methods,	we	re-
gressed TSS scores for each species' ensemble model against each 
other using a linear model, with TSS scores from the traditional 
cross- validation as the response variable and TSS scores from the 
independent temporal validation as the predictor variable. To ana-
lyse	whether	 accurate	prediction	of	 turnover	using	SDMs	was	 re-
lated to species' associations to climate and habitat, we built a suite 
of binomial general linear models, using a quasi- binomial correction 
due to overdispersion. The response variables were the fraction of 
grid cells in which each species was observed to persist, be extir-
pated	from	or	colonise,	that	were	correctly	predicted	by	the	SDMs.	
Predictor variables were grassland specialisation, forest speciali-
sation, species mean temperature index and species temperature 
range index. Because of the high correlation (>0.7) between species 

mean temperature index and species temperature range index, sep-
arate models were created, each containing habitat specialisation 
and	one	of	the	temperature	indices	(total	6	models:	3	responses × 2	
temperature indices). Because the responses were fractions, models 
contained weights corresponding to the total number of observed 
extirpations, persistences, colonisations for each species.

We then built three additional binomial generalised linear mod-
els analysing turnover at the grid- cell level in relation to observed 
environmental change. The fraction of persistences, extirpations 
and colonisations that were observed in each grid cell and that were 
correctly	predicted	by	the	SDMs	were	response	variables,	while	the	
change in mean annual temperature that had occurred in the grid 
square, grassland abandonment (fraction of pixels in each grid cell 
that were classified as grassland in the historical period and forest in 
the modern period) were predictor variables. We also included three 
‘control’ predictors: [1] microclimatic variation, in terms of the stan-
dard	deviation	of	the	50 m	resolution	mean	annual	temperature	data	
within	the	grid	cell	 (Meineri	&	Hylander,	2017), which is known to 
affect responses to environmental change (Suggitt et al., 2018) and 
predictive	accuracy	of	SDMs	 (Maclean	&	Early,	2023); [2] latitude, 
which incorporates a number of environmental variables relevant 
to	global	environmental	change	(De	Frenne	et	al.,	2013) was added 
following a sequential regression approach (Dormann et al., 2013), 
to include the effect of latitude that does not relate to mean an-
nual temperature (which was one of our focal predictors); [3] spatial 
autocorrelation, which was controlled for by including as predictors 
the first two eigenvectors of an analysis of the principal coordi-
nates of neighbour matrices, based on the centroids of each grid cell 
(Borcard & Legendre, 2002). Weights were included corresponding 
to the total number of persistences, extirpations and colonisations 
observed within each grid cell.

2.4  |  Potential sources of SDM uncertainty

2.4.1  |  Sensitivity	analysis	of	presence-	absence	 
thresholds

Choice of threshold value for converting probability of occurrence 
to a binary measure is a source of variation in predictions of turnover 
at	 the	 grid-	cell	 level	 (Nenzén	&	Araújo,	2011). Therefore, we per-
formed a sensitivity analysis in which we re- ran the above analyses 
of prediction accuracy at both the species level and grid- cell level, 
but with a lower (TSS- chosen threshold minus 0.1 on the 0–1 scale) 
and higher (TSS- chosen threshold plus 0.1) threshold for converting 
probability of occurrence into predicted presence from the ensem-
ble forecasts.

2.4.2  |  Extrapolation	into	novel	environments

An	additional	source	of	potential	error	in	SDM	predictions	is	that	
models are expected to perform badly when predicting species 
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occurrences in environments that do not exist in the data used 
for fitting the model (Elith et al., 2010).	As	such,	we	conducted	a	
multivariate	 similarity	 surface	 (MESS)	 analysis	 to	 identify	 where	
novel environments exist in the modern data, and which predictor 
variables	 are	 responsible.	We	used	 the	MESS	 implementation	of	
the ecospat package (Di Cola et al., 2017), on the variables that 
changed	over	time	and	that	were	included	in	the	SDMs:	maximum	
monthly temperature and precipitation, fractions of arable, open 
and forest land.

2.4.3  |  Niche	overlap	with	changing	distributions

It is possible that it is not (only) species' habitat and climate as-
sociations	 that	 affect	 the	 predictive	 ability	 of	 SDMs,	 but	 that	
species can occupy different niches over time. To investigate this 
possibility, we calculated Schoener's D for each species, accord-
ing to Broennimann et al. (2012) and using the R packages ade4 
and ecospat (Di Cola et al., 2017; Dray & Dufour, 2007).	Niches	
were characterised using all climate, land use and soil variables 
described in Table 1. Values range between zero and one, where 
zero indicates random overlap while one indicates complete over-
lap. Significant differences from random overlap were determined 
using 999 replications. Values of Schoener's D were then added to 
the	models	evaluating	SDM	performance	 (TSS-	chosen	presence-	
absence thresholds only) in relation to species climate and habitat 
associations to examine whether extent of niche overlap over time 
affected	the	ability	of	our	SDMs	to	predict	colonisations,	extirpa-
tions and persistences.

3  |  RESULTS

3.1  |  SDM performance

Performance	of	SDMs	among	 species	was	highly	 variable.	Using	
the traditional (70:30) cross- validation method, TSS varied be-
tween	 0.42	 and	 0.87,	with	 a	mean	 value	 of	 0.65.	 This	 indicates	
that all models can be judged as reasonable; TSS values of 0.2–0.6 
can be considered fair to moderate (de Luis et al., 2020),	while	0.5	
has	also	been	stated	as	acceptable.	Model	performance	according	
to the independent temporal (using past to predict present) valida-
tion method was much poorer, with TSS values of between 0 and 
0.72,	with	an	average	value	of	0.28.	Equivalent	AUC	values	ranged	
from	 0.54	 to	 0.91,	 and	 had	 a	mean	 value	 of	 0.75.	 Nonetheless,	
performance was still reasonable for many species, especially 
considering that above TSS values for what constitutes a fair or 
moderate model are generally applied to models evaluated using 
traditional internal cross- validation methods. There was also a 
generally good agreement between TSS values between valida-
tion	methods	for	each	species	(Parameter	estimate:	0.75,	Standard	
error: 0.23, t- value: 3.12, p:	.02,	Model	R2 = .11;	Figure 2; Table S1 
in the Data S1).

3.2  |  Prediction accuracy of species turnover

Across	 all	 species,	 extirpation	 was	 most	 under-	predicted,	 with	 a	
mean of 27% observed extirpations of each species being predicted 
as	such	by	the	SDMs,	the	remainder	being	incorrectly	predicted	as	
persistences (median: 13%; interquartile range: 0%–48%). Prediction 
accuracy was better for colonisations (mean: 67%; median: 78%; in-
terquartile	range:	35%–99%),	and	best	for	persistences	(mean:	82%;	
median:	93%;	interquartile	range	71%–100%).	The	accuracy	of	SDMs	
in predicting turnover was related to the characteristics of the spe-
cies being predicted. Persistence and colonisation were better pre-
dicted in species that were less- associated with forest habitats (low 
forest specialisation), and in species with warmer (high species mean 
temperature index) and relatively more restricted Swedish ranges 
(low species temperature range index). On the other hand, such spe-
cies were less well predicted in terms of extirpations, which were 
more accurately predicted for forest specialists, species with overall 
cooler and wider climatic ranges (Figure 3; Table S2). In other words, 
for a species that was associated with (for example) forest habitat, 
many of the grid cells that were observed presences in the modern 

F I G U R E  2 Modelled	relationship	between	Species	Distribution	
Models'	(SDM)	True	Skill	Statistic	(TSS:	fraction	correctly	predicted	
absences plus correctly predicted presences minus one) calculated 
using traditional cross- validation validation method within the 
same time period, by which models are built using 70% of the 
study area and validated in the remaining 30%, and an independent 
temporal validation method, by which models from a historical time 
period are used to predict modern observations based on modern 
environmental conditions. Points correspond to 84 Swedish plant 
species, the line indicates the modelled relationship, surrounded 
by	95%	confidence	bands.	Note	differences	in	axis	extent.	Model	
R2 = .11.	Figure	created	using	the	visreg	package	(Breheny	&	
Burchett, 2017).
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    |  7 of 13AUFFRET et al.

period (either as persistences or colonisations), were predicted as 
absences using the models parameterised using the historical envi-
ronmental data (Figure 3a,d). On the other hand, species with wide 
climatic ranges in Sweden were more likely to be correctly- predicted 
to be extirpated from a grid square than species with narrow climatic 
ranges. That is, such narrow- ranged species were more likely than 

wide-	ranged	species	to	persist	when	the	SDMs	predicted	them	to	
disappear (Figure 3h).

Despite these clear associations between species characteristics 
and	SDM	prediction	accuracy,	model	ability	to	predict	species'	per-
sistences, extirpations and colonisations was in many cases still poor. 
For	 example,	 for	 even	 the	most	 forest-	specialised	 and	 climatically	

F I G U R E  3 Modelled	relationships	between	species'	habitat	specialisation	(a,	d,	g;	where	0	indicates	that	the	species	is	never,	and	10	that	
it is only found in that habitat type) and climate associations (b, c, e, f, h, i) and predictive accuracy of species distribution models in terms 
of fraction of grid cells that were colonised (top row), persisted in (middle row) or were extirpated from (bottom row), that were correctly 
predicted	by	SDMs.	Points	correspond	to	84	Swedish	plant	species,	coloured	lines	indicate	the	modelled	relationships,	surrounded	by	95%	
confidence bands. Collinearity between species temperature range index and species mean temperature index means that each response 
variable	was	modelled	separately,	containing	one	of	the	species'	temperature	indices.	Models	containing	species	temperature	range	index	
as a covariate performed better (higher R2:	colonisation	0.21	compared	to	0.2;	persistence	0.35	and	0.35;	extirpation	0.26	and	0.17),	and	
therefore figure panels showing habitat specialisation are derived from those models (Table S2).
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8 of 13  |     AUFFRET et al.

cool and widespread species, extirpation prediction accuracy was 
only	around	0.5	on	average	(Figure 3g–i), meaning that around half 
of	all	SDM-	predicted	persistences	(species	observed	in	grid	cells	in	
the historical period and predicted to be present in the modern pe-
riod) actually ended up being extirpations (no observation in the grid 
cell in the modern period).

Niche	overlap	between	species'	historical	and	modern	observed	
ranges was generally quite high, but variable, ranging from 0.1 to 
0.56	(Figure S1). Sixty percent of all species showed a niche overlap 
significantly different from zero. Values of Schoener's D were not 
shown	 to	 affect	 the	 ability	of	 SDMs	 to	predict	 colonisations,	 per-
sistences or extirpations (Table S3).

3.3  |  Prediction accuracy of grid- square turnover

Broad underprediction of extirpations was also evident at the grid- 
cell	level,	where	predictive	accuracy	of	the	SDMs	was	again	highly	
variable.	 Specifically,	 in	many	grid	 cells,	 around	75%	of	 all	 species	
that were not recorded in the modern period despite being present 
in the historical period were incorrectly predicted to be present (i.e. 
were predicted persistences). The fraction of observed colonisations 
was generally better predicted than extirpations, while observed 
persistences were better predicted still (Figure 4; non- overlapping 
confidence intervals). Our models identified no clear correlates 
of predictive accuracy of extirpations or colonisations in terms of 
the climate and land- use change that had occurred in a grid cell 
(Table S4). However, observed persistences were more likely to have 
been	predicted	by	the	SDMs	in	grid	cells	that	experienced	less	en-
vironmental change in terms of temperature warming and grassland 
abandonment (Figure 5). In other words, grid cells that experienced 
a higher magnitude of land use and climate change contained rela-
tively more species that were predicted to have gone locally extinct, 
but still persisted, compared to grid cells where more moderate en-
vironmental change had occurred.

3.4  |  Sensitivity and MESS analyses

Using higher or lower threshold values for predicted presences in 
the modern period had no marked effect on the direction and clarity 
of predictor variables relating to species' climate and habitat associa-
tions, nor grid- cell level environmental change (Tables S5–S8). This 
indicates that any effect that a change in threshold value might have 
on predictive accuracy was not biased towards any particular species 
or locations. Interestingly, using the stricter threshold for predicted 
presences resulted in lower model R2 values, further indicating that 
the TSS- based threshold choices are ecologically meaningful. The 

F I G U R E  4 Predictions	of	persistences,	extirpations	and	
colonisations	at	the	5 × 5 km	grid-	cell	level.	For	colonisations	
(n = 1032	grid	cells),	persistences	(n = 1022)	and	extirpations	
(n = 969).	Points	represent	the	fraction	of	the	different	elements	
of species turnover that were observed within a grid cell that 
were correctly predicted by species distribution models. Boxes 
show median and interquartile range, and whiskers indicate range 
(excluding	outliers).	Notches	represent	95%	confidence	intervals	
around the median.

F I G U R E  5 Modelled	relationships	between	the	fraction	of	persistences	that	were	correctly	predicted	by	species	distribution	models,	and	
levels of environmental change: (a) fraction of grid cell containing abandoned grassland, (b) change in grid cell's mean annual temperature 
between 1961–1970 and 2001–2010. Points correspond to 84 Swedish plant species, coloured lines indicate the modelled relationships, 
surrounded	by	95%	confidence	bands.	High	values	of	predicted	persistence	indicate	that	the	majority	of	a	grid	cell's	observed	persistences	
were	correctly	predicted,	while	low	values	show	that	species	were	incorrectly	predicted	to	have	been	extirpated.	Model	R2 = 0.19.
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    |  9 of 13AUFFRET et al.

MESS	analyses	 showed	 that	extrapolation	occurred	within	all	 grid	
cells. In 98% of cases this was due solely to the temperature vari-
able (mean of monthly maximum temperatures), which showed no 
overlap between 1961–1970 and 2001–2010 (Figure S2). That is, the 
highest value in the lowest period was lower than the lowest value 
in the highest period.

4  |  DISCUSSION

Our study used long- term species observation data together with 
information regarding recorded changes in climate and land use to 
examine the predictive accuracy and temporal transferability of spe-
cies distribution models. Our results indicate that in many cases, tra-
ditional cross- validation methods of model evaluation that use the 
same data for calibration as validation are likely overestimating the 
accuracy of models that are then used to predict future responses 
to potential climate- change scenarios. Such limitations in species 
distribution models are well known, with validating using independ-
ent data having previously found to result in lower- accuracy predic-
tions	compared	to	cross-	validation	(Araújo	et	al.,	2005; Rapacciuolo 
et al., 2012; Santini et al., 2021). Our analyses go a step further, re-
vealing also the types of species and landscapes that may specifi-
cally be better or worse predicted.

4.1  |  Prediction of species- level turnover

Ideally, predictions of turnover from species distribution models 
would be equally good, regardless of species' habitat and climate 
associations. We found that models predicting occurrences of 
relatively warm- associated species performed better in terms 
of presence (colonisation and persistence), than cool- associated 
species. Warm- adapted species are expected to, and have been 
observed to, expand their distributions with warming climate 
(Auffret	&	Svenning,	2022; Lenoir et al., 2008).	As	such,	our	 re-
sults do not support previous warnings of difficulties in predict-
ing expansions of successful species in future climates based on 
observed climatic niche shifts in between species' native and non- 
native	ranges	(Atwater	et	al.,	2018; Early & Sax, 2014). Some of our 
species did exhibit apparent niche shifts (low niche overlap over 
time), but overall we found high niche overlap between historical 
and modern ranges, while niche overlap did not explain predic-
tive	 ability	 of	 our	 SDMs	 at	 the	 species	 level.	 Instead,	we	 found	
that it was species that could have benefitted from non- climatic 
anthropogenic change that were less well- predicted. Species with 
larger geographic ranges, that are in many cases associated with 
ruderal life- histories, have increased throughout Europe at the 
expense	of	more	 range-	restricted	 species	 (Geppert	et	al.,	2020; 
Staude et al., 2022), while the ongoing trend of grazing abandon-
ment has led to secondary succession and woody regrowth and 
an	increase	in	shade-	tolerant	species	(Auffret	&	Svenning,	2022; 
Buitenwerf et al., 2018).	For	these	species,	whose	expansions	are	

less- directly related to climate warming, and more related to op-
portunistic range- filling due to land use and other changes, many 
modern- day observed occurrences were not predicted by the spe-
cies distribution models. Therefore, while model predictions of 
species- level shifts at cool, expanding range edges might in many 
cases be reasonably accurate, species distribution models may 
be less accurate at predicting observed local increases in plant 
species richness and biotic homogenization (Keith et al., 2009; 
Vellend et al., 2017).

Extirpations were in general poorly predicted compared to per-
sistences and colonisations at the species level (Figure 3d–f). This 
means that in many cases, species that were predicted to persist 
are likely to have gone locally extinct. Particularly concerning is that 
extirpation accuracy was very low in all species with any level of 
grassland association, because it is these species that have been 
most threatened by land- use change in the 20th century in Europe 
(Auffret	 et	 al.,	2018;	Gerstner	 et	 al.,	2014). Range- restricted spe-
cies, which are another threatened group, were also poorly pre-
dicted in terms of extirpations. This is probably because species 
that have small geographic ranges (with the exception of alpine spe-
cies) are restricted by other environmental factors than climate. On 
the other hand, it appears that in terms of species' average ther-
mal associations, predictions of turnover were relatively accurate. 
Like with colonisations of warm- associated species, extirpations of 
cool- associated species – which might be expected to suffer from 
warming temperatures (Lynn et al., 2021; Wiens, 2016) – were 
better- predicted. However, extirpations of warm- associated species 
were poorly predicted. While increases in these species have been 
observed following climate warming, local losses are likely to have 
been driven by non- climatic factors, and factors other than changes 
in our broad land use classification.

4.2  |  Prediction of assemblage- level turnover

The underprediction of extirpations at the species level also trans-
lated to generally poor performance at the grid- cell level (Figure 4). 
Persistences were generally better predicted, but we nonetheless 
found that in grid cells undergoing the highest magnitude of climate 
and land use changes, there was a larger fraction of cases where 
the fraction of prediction of persistence within a grid square was 
lower, because models predicted higher levels of extirpation within 
a grid square than were observed to occur. This result shows how 
extirpations	can	also	be	overpredicted	by	SDMs,	although	it	should	
not distract from the large proportion of extirpation events that 
were incorrectly predicted as persistences in the majority of grid 
cells (Figure 4). The poor performance of our models in predicting 
extirpations is in contrast to results reported by Illán et al. (2014), 
whose	hindcasting	study	 in	North	American	birds	found	that	 local	
extinctions were better predicted than colonisations. We do not 
know whether this is due to differences in taxa, system or modelling 
approach.	Nonetheless,	 it	 is	a	potential	worry	that	our	forecasting	
study has severely underestimated observed local species losses, as 
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10 of 13  |     AUFFRET et al.

it suggests that the many studies that predict dire ecological futures 
with continuing environmental change (Thomas et al., 2004; Thuiller 
et al., 2005; Warren et al., 2018) might even be representing con-
servative scenarios.

The occasional overprediction of extirpations, as well as the 
underprediction of colonisation events at both the species and 
grid- cell level, could be related to the spatial scale of the study, be-
cause plant populations respond to environmental factors at scales 
smaller	 than	 the	 grid	 cells	 used	 in	most	 SDM	 exercises	 (Chauvier	
et al., 2022). Populations can persist in small remnant habitats and 
in microclimatic refugia despite broad- scale changes at the grid- cell 
level (Eriksson, 1996; Suggitt et al., 2018), while a single individual 
can establish despite the grid cell as a whole being judged as unsuit-
able by the model. However, the larger proportion of overpredicted 
extirpations in grid cells that have experienced the largest changes 
temperature and land use (compared to those where changes were 
more moderate) may indicate time- lagged extinctions, whereby the 
unexpected persistences are only temporary due to the generally 
slow responses that plants can exhibit to environmental change, for 
example due to the long life- histories and persistence in soil seed 
banks (Honnay & Bossuyt, 2005; Plue et al., 2021).

4.3  |  Sources of uncertainty

Should we trust the predictions made by species distribution mod-
els? Our results showed that some species are better predicted 
than others. While the broadly expected (and observed) increases 
in warm- associated species and declines in cool- associated species 
were predicted to a reasonable extent, changes in other groups of 
species such as habitat specialists that have exhibited quite con-
siderable distribution changes over time (both in terms of expan-
sions and retractions) were largely underestimated. Therefore, our 
findings warn against placing too much faith in models based on 
common indices of climate and land use that might not always cap-
ture the breadth and spatial scale of species' niche requirements. 
Nonetheless,	models	can	always	be	improved.

Our goal was to follow general rules of good practice when 
building	our	SDMs,	 rather	 than	create	 the	perfect	models.	We	 in-
cluded	several	aspects	of	fine	tuning	and	high	standards	for	SDMs,	
for example including only one occurrence per grid cell, including 
only non- correlated predictors, using committee averaging and to 
create binary predictions and then applying sensitivity analysis on 
these	 results,	 and	 calculating	 multiple	 evaluation	 metrics	 (Araújo	
et al., 2019;	Araújo	&	New,	2007;	Fourcade,	2021). Our species data 
also included what we describe as true absences, which should re-
sult in more robust model predictions than presence- only datasets. 
However, long- term data do often suffer from spatially and tempo-
rally variable and unknown observer effort (Isaac & Pocock, 2015), 
while our historical species and environmental data are also less- 
well temporally matched compared to our modern data. Because 
sampling effort is usually higher in modern datasets, it is the un-
derprediction of colonisations in our results that are likely to be 

most affected, whereby present species may have been missed in 
historical	surveys.	Additional	uncertainty	exists	in	our	results	due	to	
extrapolation	into	novel	environments.	The	MESS	analysis	revealed	
that	novel	climates	existed	across	the	entirety	of	our	study	area.	As	
well as serving as a reminder of the rapidity of global climate warm-
ing, it may help to explain some of the overall poor prediction of 
extirpations in our study. Species – regardless of their temperature 
associations – may have gone locally extinct in part due to a warm-
ing climate, but the models would not have known how such novel 
climates might affect their occurrences. This highlights difficulties of 
predicting biodiversity responses in the future, especially at higher 
emission scenarios.

Further	 to	 identifying	 and	 trying	 to	 reduce	 bias	 in	 commonly	
used modelling techniques such as ours, work is taking place to 
improve	and	refine	SDMs	 in	other	ways.	 Individual	models	can	 in-
corporate factors such as biotic interactions (Kissling et al., 2012), 
dispersal (Shipley et al., 2022),	 ecological	 assembly	 rules	 (D'Amen	
et al., 2015), physiology (Kearney & Porter, 2009; Talluto et al., 2016) 
and	 detection	 probability	 (Guillera-	Arroita,	 2017), while the en-
semble process can also be improved to optimise predictive ability 
(Valavi et al., 2022). Where more detailed time series of occurrences 
are available, colonisation- extinction modelling (also known as dy-
namic occupancy models) can offer a more powerful way of mod-
elling and predicting species dynamics under environmental change 
(Briscoe et al., 2021;	Nordén	et	al.,	2020).

4.4  |  Concluding remarks

While predictive models can always be improved, the largely dire 
ecological futures that have been predicted are in line with obser-
vations that anthropogenic environmental change is negatively af-
fecting	many	plant	species	across	Europe	(Auffret	&	Svenning,	2022; 
Eichenberg et al., 2021; Stroh et al., 2023). On the other hand, local 
plant richness can increase (Vellend et al., 2017), probably due to 
the success of a subset of already widespread generalists, as well 
as new species to a region, whose temporal trends are therefore 
not tracked. We think that on balance, despite an underprediction 
of colonisation of successful species, our broad findings of strong 
underprediction of extirpation at the species and grid cell level mean 
that we should take warnings of future biodiversity loss from spe-
cies distribution models very seriously. However, some unexpected 
persistences following large environmental changes gives hope that 
targeted conservation actions could still be effective at reducing 
biodiversity loss at landscape scales.
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have spent their time recording plant species, mostly in their free 
time. Such research would not be possible without them.
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