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Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted
measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global
scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment.
Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000
data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations
in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and
marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for
continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg)
availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around
the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend
data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue
concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally,
regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a
global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing
biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized
approach that builds on an evidence-based evaluation to assess the Minamata Convention’s progress to reduce the impact of
global Hg pollution on people and the environment.
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Introduction

Global recognition of mercury (Hg) as an environmental
contaminant with effects on humans and wildlife has
resulted in the global establishment of a multilateral envir-
onmental agreement - the Minamata Convention on Mer-
cury (Bank 2020). To date over 145 countries have ratified
the Convention, agreeing to reduce anthropogenic sources
of Hg to the environment and to evaluate if the established

provisions are effective in meeting its goals. One important
provision of the Convention is to monitor and evaluate the
effectiveness of its implementation (Articles 1 and 22). This
will require having standardized measurements of envir-
onmental concentrations of Hg in abiotic and biotic com-
partments over time (Evers et al. 2016). The establishment
of “baseline” levels is critical for determining whether Hg
levels have declined in response to source reductions
mandated by the Convention, a monitoring principle that is
required in other disciplines (e.g., Verra 2021). In order to
track Hg concentrations over time, it will be necessary to
select the environmental abiotic matrices (e.g., air, pre-
cipitation, water, soil, sediments) and various biotic tissue
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matrices (e.g., muscle, keratin materials such as feather or
fur, blood, and eggs) from relevant bioindicators (e.g., fish,
sea turtles, birds and marine mammals) that can provide
reliable and repeatable measures both temporally and spa-
tially. Ideally the tissue concentrations should also provide
information on whether the indicator species are negatively
affected by their Hg exposure by linking their Hg body
burdens to effect levels determined for related species.

To date, there have been many spatial studies of Hg at
the regional scale and temporal studies over timescales of
decades in some locations; often these studies focus on
locations or areas with known Hg contamination. However,
to evaluate the effectiveness of the Convention, a global
monitoring system that promotes standardized spatial and
temporal coverage is needed. Given that establishing
appropriate and effective monitoring frameworks has been a
persistent challenge for wildlife conservation (e.g., Tear
et al. 2005), increased efforts are needed to embrace more
evidence-based approaches for assessing the effectiveness
of actions (e.g., Salafsky et al. 2019). The overall goal of
this paper is to describe the currently available repositories
of peer-reviewed published biotic Hg data and existing
monitoring programs to set the stage for developing a global
Hg biomonitoring network that can provide accurate
information for the assessment of the overall effectiveness
of global efforts to reduce the adverse impacts of Hg pol-
lution on people and the environment.

Globally, Hg enters ecosystems through the air (e.g.,
emissions from coal-fired power plants, incinerators, and
volcanic activity), water (e.g., both inactive and active chlor-
alkali facilities and artisanal small-scale gold mining), and
land (e.g., natural geological formations, mine tailings,
landfills, and other contaminated sites) (UNEP 2013; Pacyna
et al. 2016; Kocman et al. 2017; Streets et al. 2017, Hsu-Kim
et al. 2018; Obrist et al. 2018; Keane et al. 2023). Mercury
emitted to the air and released into landscapes, where it can
be transported across great distances, remains available for
days to years, where its fate is complex as it moves through
both terrestrial and aquatic ecosystems into biota (Driscoll
et al. 2013; Gustin et al. 2016; Eagles-Smith et al. 2018).

Inorganic Hg emitted from natural or anthropogenic
sources becomes more toxic and bioavailable in the envir-
onment when it is converted to methylmercury (MeHg), by
a wide range of microbial communities (Fleming et al.
2006; Gilmour et al. 2013; Hsu-Kim et al. 2013; Yu et al.
2013). Certain ecosystem conditions (primarily those with
an aquatic component, especially wetlands) can encourage
the production and bioavailability of MeHg in the envir-
onment. Bacteria often produce more MeHg when moderate
amounts of sulfate and low oxygen (hypoxic or anoxic)
conditions are present to provide optimal conditions for the
metabolic processes of the microorganisms (Hsu-Kim et al.
2013, 2018; Hu et al. 2020).

Environmental factors such as water pH, dissolved
organic carbon, sulfur concentrations, and land use are
important in influencing both inorganic Hg input and
methylation potential (Gorski et al. 2008; Wyn et al. 2009;
Gabriel et al. 2014; Schartup et al. 2015b; Chaves-Ulloa
et al. 2016; Chételat et al. 2018; Rudd et al. 2018; Braaten
et al. 2018, 2020). Ecological processes at the base of the
food webs such as primary productivity and biomass dilu-
tion are also important in the trophic transfer of MeHg from
algae to primary and secondary consumers (Pickhardt et al.
2002; Chen et al. 2005; Wu et al. 2019). The complex of
redox and biological processes involved in Hg cycling make
it particularly challenging to predict levels of potential
concern in upper tropic level fish and wildlife from con-
centrations in air, water, and sediment (Gustin et al. 2016;
Sunderland et al. 2016; Eagles-Smith et al. 2018). Ecolo-
gical and biogeochemical factors play a large role in altering
MeHg bioavailability to biota, although Hg concentrations
in water and sediment are often not generally correlated
with MeHg concentrations in biota (Tsui et al. 2023).
Therefore, in sites where Hg deposition or Hg sources are
low, levels and effects on biota may still be dis-
proportionately high if the ecological conditions are con-
ducive to MeHg production, bioaccumulation, and
biomagnification. For example, MeHg concentrations in
fish across freshwater ecosystems in western North America
and in estuaries are poorly correlated with either total Hg or
MeHg concentrations in aquatic sediments (Eagles-Smith
et al. 2016a; Chen et al. 2014; Buckman et al. 2019). The
difference between relatively high fish Hg levels in Sweden
with low environmental levels of Hg (Braaten et al. 2020)
and the low levels of Hg in many fish from waterbodies in
China where levels of Hg in sediment, water and even the
base of the food web are relatively high, is another example
of the importance of understanding relationships between
ecological conditions and the levels of biotic Hg. (Wu et al.
2023). The decoupling of inorganic Hg sources from MeHg
production and bioavailability is evident at local (Evers
et al. 2007) and landscape levels (Eagles-Smith et al.
2016b, 2018; Wang et al. 2023a, 2023b).

Mercury, in its methyl form, is a neurotoxicant and can
impair physiological and neurological functions, behavior,
reproduction, and survival in fish and wildlife (Scheu-
hammer et al. 2011; Ackerman et al. 2016; Evers 2018;
Whitney and Cristol 2017), as well as humans (Tan et al.
2009; Karagas et al. 2012; Ha et al. 2017; Eagles-Smith
et al. 2018; Basu et al. 2023). It readily biomagnifies
through foodwebs, resulting in increasing MeHg con-
centrations as it moves from water and sediment to phyto-
plankton and plants, zooplankton, aquatic and terrestrial
invertebrates, fish, wildlife, and humans. As MeHg moves
through the base of the foodwebs, it can efficiently bio-
magnify in both aquatic and terrestrial organisms. As a
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result, top predators in foodwebs, including specific species
of fish, amphibians, reptiles, birds, and mammals, may have
MeHg concentrations in their tissues that are orders of
magnitude higher than the concentrations found in water
(often >106 to 107 higher). Generally, each trophic increase
in the food web accounts for roughly an order of magnitude
increase in MeHg concentrations, with the largest enrich-
ment step occurring between water and phyto and zoo-
plankton in aquatic systems (Lee and Fisher 2016; Wu et al.
2019).

Exposure to MeHg has been well documented in fish and
wildlife around the world. Contamination can arise directly
from inorganic Hg point sources, such as those along rivers
(Jackson et al. 2011a; Kinghorn et al. 2007; Nguetseng et al.
2015; Santschi et al. 2017; Geyer and Ralston 2018),
around lakes (Anderson et al. 2008; Suchanek et al. 2008;
Kumari and Maiti 2019; Chen et al. 2021), and in estuaries
(Eagles-Smith and Ackerman 2009; Chen et al. 2014;
Buckman et al. 2015; Sullivan and Kopec 2018). Owing to
atmospheric transport, inorganic Hg sources may not be
local (i.e., <100 km) and subsequent impacts to biota are
well described in most continents, including North America
(Evers and Clair 2005; Evers et al. 2011a; Ackerman et al.
2016; Eagles-Smith et al. 2016a, b; Evers et al. 2020;
AMAP 2021), South America (Sebastiano et al. 2016; May
Junior et al. 2017; Manhães et al. 2022), Europe (Åkerblom
et al. 2014; Nguetseng et al. 2015; Pacyna et al. 2017), Asia
(Kim et al. 2012; Watanuki et al. 2016; Abeysinghe et al.
2017; Noh et al. 2017), Africa (Hanna et al. 2015; van
Rooyen et al. 2023), and multiple ocean basins (Carravieri
et al. 2014, 2016; Peterson et al. 2015; Drevnick et al. 2015;
Lee et al. 2016; Bodin et al. 2017; Drevnick and Brooks
2017; Chastel et al. 2022).

Numerous studies document adverse impacts across many
fish and wildlife species. In fish, adverse impacts of MeHg
exposure include immunological, reproductive, and beha-
vioral impairment (Hammerschmidt et al. 2002; Depew et al.
2012a; Carvan et al. 2017) as well as reduced capacity for
predator avoidance (Webber and Haines 2003). In birds,
numerous studies have documented reduced reproductive
success, behavioral change (e.g., reduced time incubating),
and neurological problems (e.g., ataxia) (Depew et al.
2012a, b; Basu 2015; Ackerman et al. 2016; Evers 2018;
Whitney and Cristol 2017; Cristol and Evers 2020). How-
ever, many species vary in their sensitivity to MeHg toxicity
- potentially based on foraging guilds and phylogeny as
identified and discussed by Heinz et al. 2009). For example,
embryo survival and hatching success in Passeriforms (i.e.,
songbirds), appears to be more sensitive to MeHg toxicity
than in other orders of birds that have been more extensively
studied, such as Anseriformes ducks. In mammals, elevated
MeHg concentrations can result in biochemical changes in
the brain, ataxia, and reduced reproductive output (Basu et al.

2007; Dietz et al. 2013, 2019, 2021, 2022; Evers 2018;
Manhães et al. 2021). Based on these and other in situ studies
collectively, the evidence is clear that biomagnification and
bioaccumulation of MeHg is shown to adversely affect the
reproductive success of many fish and wildlife populations.
These biota represent multiple foraging guilds across many
habitats and geographic areas of the world.

Understanding exposure pathways of MeHg in terrestrial
and aquatic foodwebs and how MeHg adversely affects
upper trophic level wildlife is important for developing
meaningful assessments and monitoring efforts. Ultimately,
identifying the proper fish and wildlife bioindicators for
MeHg biomonitoring is complex, because their suitability
differs according to geographic area, timescale of interest,
conservation concern, and whether the overall goal is for
ecological or human health or simply to track changes over
time in a consistent and representative species. Herein, we
describe some of the regional and global spatial and tem-
poral patterns of MeHg exposure in fish and wildlife based
on peer-reviewed literature with an emphasis on relevant
bioindicators.

The objectives of this paper are to provide an overview
of global, peer-reviewed biotic Hg data to: 1) spatially
describe selected global human exposure and ecological
bioindicators 2) assess existing biomonitoring data and
programs in select regions around the world, and 3) develop
strategies for establishing a global Hg biomonitoring fra-
mework that can respond to the global strategy defined by
the Minamata Convention that calls for establishing an
evidence-based monitoring approach to improve our
understanding of linkages with Hg sources, spatial gradients
and temporal trends.

Methods

Data within the primary or peer-reviewed literature repre-
sent numerous studies that include Hg concentrations in
taxa identified in Article 19 of the Minamata Convention on
Mercury. Between 2013 and 2023, the Center for Mercury
Studies of Biodiversity Research Institute created and
maintained a database of Hg concentrations in biotic tissue
called the Global Biotic Mercury Synthesis (GBMS). The
published data compiled in the GBMS database are sum-
marized here with an emphasis on organisms identified to
be of interest for monitoring within the Minamata Con-
vention, which include fish (both teleosts and elasmo-
branchs), sea turtles, birds, and marine mammals (see
Supplementary Information for a listing of the 1701 refer-
ences used). In some cases, these peer-reviewed sources
incorporate data from national monitoring studies, and in
other cases are individual scientific studies conducted by
governmental agencies, academic researchers, and others.
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Many Hg concentration measurements in biota, especially
fish, have been generated by government agencies around
the world. Many of these associated data are not represented
here because they are not published in the peer-reviewed
literature. However, these unpublished data are significant
sources of information that should be collected in a stan-
dardized way for evaluating the effectiveness of the Mina-
mata Convention.

Lastly, data for Hg concentrations in tissues that were
collected from the published literature include individual
(30.4%), composited (4.3%), and averaged (65.2%) data.
Mercury concentrations in fish and wildlife are typically
log-normally distributed, including the pooled GBMS
dataset, and therefore using geometric means are preferable
to using arithmetic means. However, the published data
were often presented as arithmetic means. Therefore, the
composited and averaged data were typically extracted as
arithmetic means from the published literature. For con-
sistency, all Hg concentration data presented here are
arthimetic means with assoicated standard deviations unless
otherwise noted.

For this initial assessment, we did not standardize Hg
concentrations. For evaluating the effectiveness of the
Minamata Convention, the primary goal will be to evaluate
long-term trends in Hg concentrations in fish and wildlife.
Because sampling effort and specifics vary among sites and
years, it will be important in future trend analyses to
account for ecological covariates that are known to influ-
ence Hg concentrations in animals. Ecological covariates
can be accounted for either in the experimental design (by
using a specified subset of the data and excluding any
samples that do not meet strict criteria) or during statistical
analysis (if sample sizes are sufficient, by including these
covariates in the statistical model). For example, in fish, Hg
concentrations generally increase substantially with length
(Eikenberry et al. 2015), and therefore fish Hg concentra-
tions are generally size-standardized for statistical compar-
isons (Eagles-Smith et al. 2016a; Drevnick and Brooks
2017). In birds, Hg concentrations generally are higher in
males than females (Evers et al. 1998, 2005; Ackerman
et al. 2008) and can change with age (Evers et al. 2005;
Ackerman et al. 2011). In most wildlife, Hg concentrations
vary substantially among sites and day of the year (Ack-
erman et al. 2019; Chételat et al. 2020). Thus, for effec-
tiveness evaluation of the Minamata Convention, these
additional metadata will be important for standardizing Hg
concentrations. Several examples of large-scale statistical
evaluations of wildlife Hg concentrations are available as a
guide (Ackerman et al. 2016; Eagles-Smith et al. 2016a;
Drevnick and Brooks 2017; Schoch et al. 2020).

All biotic samples were assigned a Taxonomic Serial
Number (TSN) based on the identification provided in the
published literature using the Integrated Taxonomic

Information System (ITIS) to allow for standardization
(ITIS 2023). Species level assignments were made where
possible and the lowest taxonomic level that could be reli-
ably assigned was used where species level data was not
available.

Fish trophic levels were assigned by species using
‘Fishbase’ and the mean trophic level for the genus or
family used, respectively, when presented (Boettiger et al.
2012). The widespread occurrence of ‘fishing down’ is the
reason why, in 2004, the Convention on Biological Diver-
sity (CBD) chose the mean trophic level of fisheries catches
as an index of the biodiversity of large fishes (defined as fish
with trophic levels >3.5), called the Marine Trophic Index
or MTI (Pauly and Watson 2005). As a result, a threshold of
trophic level 3.5 was used for visualization for some graphs.

Selection of bioindicators

A key initial step in bioindicator selection is to decide
whether an organism is linked to a human exposure or
ecological health endpoint – which can often be combined
for both purposes if carefully considered. Biota that have
been identified to best fit these two categories are well
described and are categorized within their respective biomes
and associated aquatic ecosystems (Table 1). Where
applicable, utilization of Indigenous Knowledge is impor-
tant to incorporate (Houde et al. 2022). Additionally,
bioindicators should be reflective of changes in the avail-
ability of MeHg in the environment. One of the challenges
of using multiple bioindicators is that their Hg concentra-
tions are also affected by food web processes, physical
movement, and physiology in addition to changes in the
availability of MeHg in the environment (Chételat et al.
2020). Therefore, a key aspect of bioindicator selection for
evaluating the effectiveness of reductions in environmental
loads of Hg driven by the Minamata Convention is that their
concentrations are less sensitive to variability caused by
these other factors.

The extensive datasets of Hg concentrations in biota
found in the published literature provide a basis for choices
of species for potential monitoring (Fig. 1; Evers et al.
2016). Careful selection can ensure comparability at
regional and global scales. A systematic literature search
(range of years covered was 1972 to 2023) emphasized Hg
data from: (1) biota identified in Article 19 of the Minamata
Convention (fish, sea turtles, birds, and marine mammals),
(2) species for human consumption, (3) taxonomic groups at
high risk of MeHg exposure, (4) potential bioindicators for
MeHg monitoring purposes, and (5) species from areas of
concern due to current significant Hg sources (e.g., coal-
fired power plants and artisanal small-scale gold mining
[ASGM]). The taxonomic presentation structure follows
phylogenetic order.
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Because the selection of the taxa recommended for
bioindicator species emphasizes the animal groups identi-
fied in the Minamata Convention’s Article 19, and their
ability to represent MeHg exposure in a particular system,
invertebrates are not considered. Therefore, organisms such
as phyto and zooplankton are not included for biomoni-
toring given their high temporal and spatial variability
within waterbodies and that they require maximizing
within-date replication and higher frequency sampling
during a season (Ward et al. 2012; Chen et al. 2012). In
addition, the percent MeHg concentrations (generally less
than 75%) are not as high as those in higher trophic level
fish (>95%; Driscoll et al. 2007).

Lastly, published studies included here are those for which
there is reasonable confidence about their validity, including
those with: (1) sufficient description of the characteristics of
the organism sampled (i.e., species, date, location, size/age,
and tissue analyzed); (2) an appropriate method of sample
collection; and (3) detailed information on sampling location
(i.e., market-based fish Hg concentrations are excluded). For
North America, extensive biotic Hg datasets published in
response to three regional, one state, and one National Park
synthesis efforts are included for the: (1) northeastern United
States and eastern Canada (Evers and Clair 2005), (2) Great
Lakes Region of the United States and Canada (Evers et al.
2011a), (3) western United States and Canada (Eagles-Smith

et al. 2016b), (4) New York State (Evers et al. 2020), and (5)
Acadia National Park, Maine, United States (Burton et al.
2024); although, all of the data are not mapped (Fig. 1 and
see qualifiers “a” and “b”).

The data collected and incorporated into GBMS repre-
sent the arithmetic mean, or individual sample concentra-
tions (when available), standard deviation (SD), minimum
and maximum values, total number of individuals for each
species, and tissue type that could be georeferenced within a
peer-reviewed publication. These data were then joined by
taxa and tissue type to generate a global average and var-
iation. The raw data underlying the averaged statistics used
herein were not always available and therefore, individual
metadata of biota were not included (e.g., no adjustments or
normalization for age, sex and size were conducted). Each
of the published studies’ Hg concentrations was mapped by
major taxonomic group (i.e., cartilaginous and bony fish,
sea turtles, birds and marine mammals) and tissue type and
were placed in three risk categories based on human
exposure or ecological health thresholds (i.e., low, medium
and high).

Risk categories

The health-related risk categories based on human exposure
are developed from a combination of benchmarks pertaining

Fig. 1 Distribution of five major taxa and their total Hg concentrations
in three risk categories based on mean data derived from a survey of
the available peer-reviewed English literature. Risk categories by
major taxa and tissue type are: (1) cartilaginous fish (sharks and allies)
and (2) bony fish muscle (µg/g, ww): <0.23= low,
0.23–0.46=moderate, >0.46= high; (3) sea turtle muscle and egg
(µg/g, ww): <0.22= low, 0.22–0.46=moderate, >0.46= high; (4)
bird body feathers (adult; µg/g, fw): <10.0= low,
10.0–20.0=moderate, >20.0= high; bird blood (adult; µg/g, ww):
<1.0= low, 1.0–3.0=moderate, >3.0= high; eggs (µg/g, ww):
<0.5= low, 0.5–1.0=moderate, >1.0= high; (5) marine mammal

muscle (µg/g, ww): <0.22= low, 0.22–0.46=moderate,
>0.46= high. Letters indicate additional available fish Hg samples that
were not mapped: a >330,000 additional fish Hg concentrations within
the Canadian Fish Mercury Database (Depew et al. 2013); b an esti-
mated >500,000 additional fish Hg concentrations available within
state databases in the United States, and; c >54,000 additional fish Hg
concentrations within Fennoscandia (Braaten et al. 2019). Data for
migratory species are plotted according to the reported location of
sampling, which in some cases may not reflect the region where Hg
exposure occurs
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to animal tissues consumed by humans and generated from
standards used in the United States (USFDA 2022), for Arctic
communities (AMAP 2015), and by the World Health
Organization that generally relate to MeHg exposure levels of
concern recognized for humans (Višnjevec et al. 2014; Basu
et al. 2018). For human populations, those most at risk of
MeHg exposure include: (1) sensitive individuals (e.g.,
women of childbearing age, pregnant women, and children);
(2) communities dependent on a diet of aquatic organisms
(e.g., Indigenous and subsistence fish consumers); and (3)
diets regularly including high trophic-level fish (e.g., recrea-
tional anglers). The greatest risks to humans from dietary
uptake of MeHg are observed with high consumption of
upper trophic level species. For example, primary consumers
(e.g., shellfish such as mussels) at trophic level 2 generally
have relatively low MeHg concentrations and are usually
considered safe for consumption (Chase et al. 2001). Sec-
ondary consumers (e.g., salmon, herring) are at trophic level
3, but are usually considered to be healthy choices.

For tertiary or higher consumers, which are carnivorous
fish that generally consume vertebrate prey, MeHg con-
centrations can be elevated to levels that trigger human
health concerns. The variability of concentrations in fish
with a trophic level of 3.5 or more can be related to size,
species, and location (Keppeler et al. 2020). Therefore, fish
exceeding a trophic level of 3.5 that are commonly har-
vested are important bioindicators to assess potential
exposure risk of Hg to humans. Large marine predatory fish
such as tuna, swordfish and shark can have elevated MeHg
concentrations, frequently exceeding the no consumption
limits (or choices to avoid) identified by the USEPA and
U.S. Food and Drug Administrations (USFDA [i.e.,
0.46 µg/g, ww; Table 2]). While the European Union (EU)
identifies the maximum level for total Hg in fish muscle for
human consumption is 0.5 μg/g ww, they also include an
exception for ‘large predators’ for which the maximum
level is 1.0 μg/g ww (EU 2023). The USEPA - USFDA
consumption limits are used herein.

The impacts of MeHg on fish health and reproductive
welfare are not well established, but have been summar-
ized previously (Depew et al. 2012a, b; Table 3a) and
include threshold limits identified by Sandheinrich et al.
(2011). While fish Hg concentrations are commonly
examined for their impacts on humans (i.e., muscle tis-
sue) or for wildlife exposure (e.g., whole body), the
MeHg concentrations in fish tissues also can be assessed
for their impact on behavior, reproductive abilities, and
overall health.

Fish may exhibit impaired reproductive success at rela-
tively low dietary MeHg concentrations as low as 0.04 µg/g,
ww (Depew et al. 2012a) and may have adverse visible
behavioral impacts at dietary MeHg concentrations of
0.50 µg/g, ww or higher (Depew et al. 2012a) (Table 3a). A
recent synthesis of the effects of Hg on freshwater fish
further summarizes adverse effects at physiologic, histolo-
gic, biochemical, enzymatic, and genetic levels; and that
some fish species demonstrate greater sensitivity to MeHg
than others (Morcillo et al. 2017). Ultimately, lower
reproductive success reduces the size and sustainability of
healthy fish populations, which could have adverse impacts
on associated populations of piscivores and human recrea-
tional and commercial interests. Unlike freshwater fish,
there have been few rigorous published studies evaluating
toxicity of MeHg to marine fish (Scheuhammer et al. 2015;
Morcillo et al. 2017).

For understanding risk to the health of birds, known
risk categories for diet (Table 3a) and various tissue types
(e.g., eggs, blood, and feathers) are well-established for
some piscivores and invertivores (Table 3b). The science
behind characterizing risk benchmarks that are based on
both laboratory and wildlife populations has improved
significantly from the initial study of lab-based lowest-
observed adverse effect levels on a single species – the
mallard (Anas platyrhynchos) (Heinz 1979) to more recent
efforts. Current research documents effect concentrations
related to different levels of breeding success in

Table 2 Fish Hg concentrations and meal frequency ingestion for people, based on U.S. guidelinesa

Guideline or criterion by agency Mercury in fish (µg/g, ww)c Fish consumption guideline

U.S. Environmental Protection Agency (USEPA) – U.S. Food and
Drug Administration (USFDA) fish adviceb

<0.15 Best choices; 2–3 meals per week

<0.23 Good choices; 2 meals per week

<0.46 Good choices; 1 meal per week

>0.46 Choices to avoid; 0 meals per week

aMercury concentrations are interpreted in the context of the number of fish meals that could be consumed to stay within the USEPA health-based
reference dose for MeHg adopted in 2001 (Stern 2005)
bUSFDA (2022); https://fda.gov/food/environmental-contaminants-food/technical-information-development-fdaepa-advice-about-eating-fish-
those-who-might-become-or-are
cNote that only U.S. guidelines are used as thresholds for this paper; other guidelines are available through other entities, including the European
Union (EU), which has guidelines based on Hg concentrations in the water (EEB 2021) for ecological health and there are EU and World Health
Organization human health guidelines, which are higher than those identified by the USEPA and USFDA
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invertivore songbirds (Carolina wren, Thryothorus ludo-
vicianus) and piscivorous waterbirds (common loons,
Gavia immer) and is well supported by data collected in
both laboratory and wild bird populations (Ackerman
et al. 2016; Evers 2018; Whitney and Cristol 2017).

Adverse effect thresholds are not as well established for
marine mammals, primarily because of field study and
ethical challenges (Dietz et al. 2022). Brain Hg concentra-
tions were found to have a significant positive correlation
with liver concentrations, and brain Hg concentrations
reported in cetaceans were one order of magnitude higher
than pinnipeds and generally exceeded neurotoxicity
thresholds (López-Berenguer et al. 2020).

Preferred tissue types and important metadata

Understanding the pharmacodynamics of Hg species con-
centrations in organisms is important because MeHg bio-
magnifies through foodwebs in polar (Ruus et al. 2015; Seco
et al. 2021; Matias et al. 2022), temperate (Arcagni et al.
2018), and tropical (Bisi et al. 2012; Seixas et al. 2014)
ecosystems, and bioaccumulates over time in individual fish
(Drevnick and Brooks 2017), birds (Evers et al. 1998), and
marine mammals (Lailson-Brito et al. 2002, 2012; Krey et al.
2015). The cycling, speciation, and toxicology of Hg can
vary substantially among different tissues, which can have
important implications for interpreting Hg concentrations
(Manhães et al. 2021). Understanding how the selection of
tissue types dictate interpretative power in the bioaccumula-
tion and biomagnification of MeHg and subsequent potential
health impacts is a critical aspect for developing monitoring
designs (Eagles-Smith et al. 2016b; Chételat et al. 2020).
Additionally, to establish relevant species, tissues, and timing
of sampling of importance for human Hg exposure in Indi-
genous Populations, Indigenous Knowledge can provide
crucial information (AMAP 2021; Houde et al. 2022).

This review focuses on tissues with well-established
methods of measurement and interpretation and for which
there is a large body of data and are regularly used for
monitoring purposes (Table 4). There are many available
matrices and tissue choices dependon monitoring objec-
tives, interests, and outcomes. Often the most useful tissues
can be non-lethally collected in the field. Samples that can
be analyzed to assess total Hg or MeHg exposure are often
from tissue types for targeted biotic groups (Table 4).
Composite samples are sometimes used to estimate popu-
lation Hg concentrations at a decreased cost (Gandhi et al.
2016) and are especially useful for cost-effective long-term
trend assessments (Gandhi et al. 2016). Because most of the
Hg in tissues that are commonly tested for biomonitoring
purposes is in the MeHg form (i.e., generally >95%), ana-
lyses of total Hg (which is less expensive to analyze) is also
more cost effective. The development of direct analyzers

that couple thermal decomposition with Hg amalgamation
and atomic absorption detection has simplified Hg deter-
mination and made analysis more accessible to those
without advanced and costly laboratory facilities (Wind-
möller et al. 2017).

Other metadata that are important to improve interpretive
power include physiological, demographic, and ecological
factors (Chételat et al. 2020). For example, accounting for the
health and fitness of indicator organisms is important for
standardized comparisons, as is the identification of species,
size, age, and sex. Covariation between Hg concentration and
fish size (length and weight) and age requires a standardization
to allow for investigation of temporal trends of Hg con-
centrations. However, for most of this data compilation, biotic
Hg concentrations were not indexed or standardized according
to size, age, or sex. This is a weakness of the dataset and is an
important reason for designing a standardized sampling fra-
mework to strengthen the ability to interpret the data.

In general, larger and older individuals have higher
MeHg concentrations than smaller and younger individuals,
and males that are larger in body size than females tend to
have higher concentrations in fish and birds (Evers et al.
2005; Robinson et al. 2012; Ackerman et al.
2008, 2015, 2016; Hartman et al. 2017), with a few
exceptions related to foraging segregation between sexes
like in albatrosses (Carravieri et al. 2014). An exception
from the evaluation of fish Hg concentrations without data
on age and/or size are fish Hg databases in Scandinavia
(Braaten et al. 2019) and across North America (Kamman
et al. 2005; Monson et al. 2011; Eagles-Smith et al. 2016a).
Braaten et al. (2019) used the individual fish weight and Hg
concentration in combination with fish species information
and sampling year to find the modeled (i.e., expected) Hg
concentration for fish at a standard weight; there are similar
findings in tuna species as well (Médieu et al. 2021, 2022).

Changes in an animal’s physiology, health status, or
ecological life history events can also have a substantial
effect on MeHg concentrations, regardless of an animal’s
actual environmental MeHg exposure. For example, the
maternal transfer of MeHg to offspring during reproduction
can reduce the female’s tissue concentrations of MeHg but
increases risk to offspring, and the amount of MeHg
transferred from females to their offspring differs among
species (Ackerman et al. 2020). Weight change can also
influence the interpretation of MeHg concentrations in
animals. For instance, rapid growth of juvenile birds can
cause mass dilution of contaminants and substantially
reduce MeHg concentrations as juvenile birds age (Acker-
man et al. 2011). Rapid growth in fish can also result in
“growth dilution” and has been measured in freshwater and
marine fish (Ward et al. 2010; Baumann et al. 2017). In
contrast, annual life changes in adult body mass, such as
fasting- and breeding-associated declines in body mass
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during periods of haul-out on land for marine mammals, can
substantially increase MeHg concentrations (Peterson et al.
2018). In the same way, infections can cause MeHg
remobilization and changes its body distribution (Manhães
et al. 2021).

Seasonality can have large implications for biotic Hg
monitoring programs (Eagles-Smith and Ackerman 2009;
Braaten et al. 2014). Seasonal changes in MeHg exposure may
be related to changing methylation rates and bioavailability in
estuaries (e.g., saltmarsh sparrows, Ammodramus caudacutus,
increase in blood Hg concentrations from early to late summer;
Lane et al. 2011), molt strategies (Condon and Cristol 2009),
migratory patterns for birds (Ackerman et al. 2019) and arrival
to over-wintering areas (Eagles-Smith et al. 2009a), or lake-
specific variation in Hg dynamics (e.g., Clark’s and western
grebes, Aechmophorus clarkia and A. occidentalis, decrease in
blood Hg from spring to autumn; Hartman et al. 2017). Lower
food availability in winter can also result in losses in body
condition factor and increases in Hg concentrations in fish
tissue (Martyniuk et al. 2020; Piro et al. 2023).

Lastly, as outlined in AMAP (2021), and summarized by
Houde et al. (2022), Indigenous Knowledge provides
invaluable information for the interpretation of tissue Hg
concentrations in the Arctic environment and should be
appropriately utilized together with scientific evidence for a
holistic and comprehensive analysis. Examples include
explaining Hg concentrations in whitefish in Nunavut,
Canada, that were lower than expected. Indigenous
Knowledge explained that whitefish migrated out to sea to
feed after the ice went out, which was not known to sci-
entists, and explained the lower Hg levels that were found
in these fish. Similarly, research in Nunavik found elevated
levels of selenoneine in the blood of women. Selenoneine is
a protective compound against negative impacts of Hg.
Knowledge holders explained that this could be connected
to only women eating the tail of the beluga, and analysis
confirmed that selenoneine concentrations in the skin of the
beluga tail are nearly twice as high compared to the skin
from other areas of the whale (AMAP 2021; Houde et al.
2022). Other research on beluga whales in Nunavik inves-
tigated Indigenous Knowledge including on migration,
body condition, foraging ecology, predation, breeding,
calving and behavior of animals - all of which can help
understand beluga exposure to Hg and other contaminants
(Breton-Honeyman et al. 2016). Indigenous Peoples have
lived on their lands for hundreds or even thousands of
years, in an intricate relationship with their environment,
with knowledge being passed on through many genera-
tions and ensuring their survival. Consequently, they have
the most intimate understanding of their ecosystems and
their complex connections, as well as any changes that
occurred over time – be it in the Arctic, the Amazon, or
other biomes.

Results

Biotic Hg concentrations for targeted taxa (based on Article
19 of the Minamata Convention) were collected from over
1700 peer-reviewed (See Supplementary Materials) scien-
tific publications that represent >588,000 individuals at over
4100 unique locations in 139 countries (Fig. 1). The cov-
erage of biotic Hg tissues concentrations in the GBMS data
repository is global and comprises every continent and
ocean basin (Table 5). When considering the geographical
patterns in ‘risk levels’ it should be noted that the data
shown in Fig. 1 represent samples collected over several
decades and include many studies specifically focussing on
areas with known Hg contamination, which can bias the
resulting picture.

Furthermore, the density of datapoints in each region
varies greatly and reveals the areas that are less studied than
others. The GBMS dataset demonstrates the extent of the
global dataset (Table 6) and shows the greatest availability
of data at the continental level from North America, Europe,

Table 5 Summary of biotic Hg data from the GBMS database (i.e.,
number of individuals) by priority taxonomic group identified by the
Minamata Convention across oceanic and continental geographies

Fish Sea
turtles

Birds Marine
mammals

Subtotal

Continentalb

Africa 6126 n/a 192 n/a 6318

Antarctica 0 n/a 0 n/a 0

Asia 14,093 n/a 3794 567a 18,454

Australia 323 n/a 3 n/a 326

Europe 62,321 n/a 7712 220a 70,253

North America 191,346 n/a 50,449 n/a 241,795

South America 38,126 n/a 356 95a 38,577

Subtotal 312,335 n/a 62,506 882 375,723

Oceanic

Antarctic 1228 n/a 6305 1738 9271

Arctic 1808 n/a 7498 8730 18,036

Gulf of Mexico-
Caribbean

8480 557 467 818 10,322

Indian 9662 397 1851 487 12,397

Mediterranean 13,720 773 2054 2600 19,147

North Atlantic 26,504 1,438 13,951 6698 48,591

North Pacific 24,049 1,077 33,933 6996 66,055

South Atlantic 12,428 714 2808 1398 17,348

South Pacific 8152 51 3054 351 11,608

Subtotal 106,031 5007 71,921 29,816 212,775

Total 418,366 5007 134,427 30,698 588,498

aThe marine mammal category also includes seals and dolphins that
inhabit freshwater systems
bMercury concentrations in sea turtles and marine mammals are shown
within their representative ocean basin instead of continent
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and South America whereas there is less availability from
Africa, Antarctica, Asia, and Australia. For ocean basins,
the greatest availability of data comes from the Arctic
Ocean and Mediterranean Sea, with lesser availability from
the Caribbean Sea, Indian Ocean, and North Atlantic and
Pacific Oceans and minimal data from the South Atlantic
and Pacific Oceans.

The most well-represented species group in the GBMS
database are teleosts; bony, ray-finned fishes that are
extremely diverse, as they contain over 95% of all fish
species and are ubiquitous around the world in freshwater
and marine ecosystems. In the GBMS database, marine
teleosts were represented in 30 Orders by 92,426 indivi-
duals at 826 distinct locations, while freshwater teleosts
included 26 Orders with 312,335 individuals at 973 distinct
locations. By comparison, cartilaginous fish (elasmo-
branchs) comprised of sharks, skates, and rays, were
represented in 13 Orders by 13,605 individuals at 212 dis-
tinct locations. Birds were the second most abundant spe-
cies group, represented in 26 Orders by 134,427 individuals
at 1296 distinct locations. Marine mammals were divided

into four groups (i.e., toothed and baleen cetaceans, pinni-
peds, and polar bears) and represented by 30,698 indivi-
duals at 601 locations. Finally, sea turtles were represented
by 5007 individuals from a total of 82 distinct locations.

Many of the data collected reflect the various monitoring
programs that exist at local (e.g., New York State, USA),
national (e.g., Northern Contaminants Program in Canada),
and regional scales (e.g., the Caribbean Regional Mercury
Monitoring Network), and even multi-hemispheric scales
(e.g., the Arctic Monitoring and Assessment Programme
[AMAP]). A summary of these programs is provided based
on a review by UNEP (UNEP 2016). In the interest of
developing a Hg monitoring network that uses existing Hg
data and biomonitoring programs, a framework has been
developed for oceans and continents that can draw on the
existing Hg data and potentially meet the biomonitoring
interests of the Minamata Convention if key geographic and
taxonomic data gaps can be filled. These three broad ele-
ments are herein covered: (1) biotic data Hg exposure
profiles from GBMS, (2) existing Hg monitoring programs,
and (3) a path forward for new Hg monitoring frameworks.

Table 6 Summary of sampling strength of available biotic Hg data (i.e., [number of individuals/sq. km) × 1000]) by priority taxonomic group
identified by the Minamata Convention across oceanic and continental geographies

Global averages are used to categorize relative sampling intensity as very high (>4× above global average in blue), high (2× above global average
in green), medium (global average in gray), low (2× below global average in orange) and very low (>4× below global average in red)
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To provide sustainable and long-term biomonitoring
capacity in key regions around the world where Hg inputs
are likely having adverse impacts to human communities
and ecological health (e.g., Arctic, tropical areas associated
with artisanal small-scale gold mining, and oceanic islands),
the focus should be placed on expanding and stabilizing
existing national initiatives that use relevant sample sizes
that can meet statistical power for confidence in under-
standing spatial gradients (e.g., ecosystem sensitivity spots;
Evers et al. 2011b; Evers et al. 2023) and temporal trends
(Bignert et al. 2004; Rigét et al. 2011; Braaten et al. 2019;
Morris et al. 2022a). Moreover, it is crucial to foster
international collaboration and coordination among national
or local projects to create harmonized regional approaches,
and to strive, where possible, to integrate biomonitoring
activities into a standardized framework to properly assess
regional and global spatiotemporal patterns of risk to human
and environmental health.

The GBMS database and associated peer-reviewed
publications provide a platform to assess broad spatial
scales of Hg tissue concentrations in key food items related
to human health for general (e.g., tuna, swordfish) and
regional fish populations (e.g., sharks, freshwater fish),
Indigenous Peoples (marine and freshwater fish, toothed
whales, pinnipeds) and subsistence communities (which can
include all the major taxa of concern). The health of eco-
systems can also be viewed through bioindicators that are
not necessarily key food items but are representative of taxa
where the literature is robust (e.g., sea turtles, seabirds,
loons, raptors, freshwater birds, landbirds, and marine
mammals). We begin each section with a brief rationale for
why each taxonomic group is important for Hg biomoni-
toring and then discuss associated caveats. We include data
from the GBMS database, which summarizes Hg data from
over 1700 peer-reviewed publications, to demonstrate the
breadth of biotic tissue Hg data availability (spatially and
temporally) and to better understand local, regional, and
global patterns that can be used as a beginning point for
identifying data and knowledge gaps for effectiveness
evaluation purposes of the Minamata Convention.

Below, biotic data are organized by 1) Human exposure
bioindicators - those organisms which are consumed by
humans and may potentially pose a risk to human health; and
2) Ecological health bioindicators – those organisms that best
represent Hg impacts to ecological health (Table 1).

Human exposure bioindicators

Many Indigenous Peoples in remote places depend on their
local ecosystems for sustenance. For example, Arctic Indi-
genous Peoples rely on access to their traditional country
foods for food security, for their general health and well-
being, and as part of their spiritual and cultural identity,

among many other things (AMAP 2021; Basu et al. 2022).
However, due to exposure through the diet, Arctic Indi-
genous Peoples can experience some of the highest Hg
levels globally (Basu et al. 2018, 2023). In such situations,
good risk communication is essential to ensure that the
proper messages are conveyed in balancing the risks asso-
ciated with Hg exposure against the nutritional and cultural
benefits of traditional diets.

In many other parts of the world, communities depend in
part, and sometimes completely, on wild animals for sub-
sistence. The following section describes known Hg con-
centrations for a broad range of biota and geographic areas.
Specifically highlighted with data summaries are: (1) high
trophic level marine fish that are widespread across the
world’s oceans: tuna, billfish, and sharks; (2) the Caribbean
and Mediterranean Seas; (3) freshwater fish within six
continents; (4) seabirds and waterfowl in subarctic marine
systems; and (5) marine mammals (e.g., toothed whales in
the northern oceans). Due to the importance of dietary Hg
exposure and the global impact on human health, patterns
depicting the interaction of dietary MeHg uptake in humans
are herein described for all the world’s major biomes from
the Arctic and subarctic to temperate and tropical aquatic
ecosystems. Ingesting elevated fish muscle Hg concentra-
tions, such as in sharks, can exceed commonly suggested
reference concentrations in less than two weeks (Baek et al.
2023). Often, biotic Hg concentrations can be linked to
anthropogenic Hg point sources, such as ASGM activities,
which have been connected to elevated Hg levels in nearby
communities (Gibb and O’Leary 2014; Basu et al. 2023).

While other environmental (e.g., contaminant mixes;
Alves et al. 2022), micronutrient (e.g., selenium; Lailson-
Brito et al. 2012; Gochfeld and Burger 2021; Storelli et al.
2022; Sabino et al. 2022), and nutritional factors (e.g.,
omega-3s; Sardenne et al. 2020) clearly can confound
assessments of Hg on human health those costs and benefits
are not evaluated herein. The following biotic groups
illustrate how biotic Hg exposure can be linked to human
exposure concerns in several key ecosystems in the world
using select bioindicators.

Marine fish - tuna

Rationale and caveats for Hg biomonitoring Tuna species
are one of the most important global sources of seafood and
inhabit broad areas the Atlantic, Pacific, and Indian Oceans.
Commercial harvests tracked by the Food and Agriculture
Organization (FAO) for the seven most commercially
available species totaled 5.2 million metric tons in 2018,
worth an estimated value of $41 billion; this does not
include substantial value associated with subsistence and
artisanal fisheries and sport fisheries (McKinney et al.
2020). Projections indicate that the global market may reach
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over $50 billion by 2028. However, sustainably managing
tuna fisheries to allow depleted stocks to recover has been
challenging and generally does not account for the adverse
impacts of MeHg tissue concentrations that may reduce
reproductive output and growth rates. Excessive fishing
pressure continues to threaten tuna stocks of eastern Pacific
yellowfin, Pacific bluefin, Atlantic bigeye, Indian Ocean
yellowfin, and southern bluefin. Mercury biomonitoring
deliberations should consider tracking Hg concentrations in
all nine of the tuna species that average or range above the
0.22 µg/g, ww threshold of “a two-meal limit/week” (see
Table 2 for human meal frequency and Fig. 2 for the Hg
profile) and biomonitoring considerations should account
for species differences, size classes, changes in stock
abundance from overfishing, differences in foodweb struc-
ture, and size of home range (Schartup et al. 2019).
The GBMS database includes 10,722 Hg concentrations of

9 species representing 120 publications. Muscle Hg con-
centrations and commercial harvest vary widely by species.
The smallest tuna species (e.g., skipjack tuna, Katsuwonus
pelamis) has average Hg concentrations under the USEPA-
USFDA advisory level of 0.23 µg/g, ww while the largest
(e.g., Pacific and Atlantic bluefin tunas, Thunnus orientalis
and T. thynnus, respectively) have the highest average Hg
concentrations and often exceed advisory levels (Fig. 2).
These patterns vary by size class within species and ocean

basin origin. For example, whereas yellowfin tuna (Thunnus
albacares) tends to have lower average muscle Hg
concentrations than seven of the nine tuna species with data
(Fig. 2) larger individuals (e.g., weighing over 70 kg)

typically have Hg concentrations that are of human health
concerns (Bosch et al. 2016a). Yellowfin, bigeye tuna
(Thunnus obesus), and albacore tuna (Thunnus alalunga)
Hg concentrations grouped by major ocean basin indicates
that the eastern and northern areas of the Pacific Ocean have
significantly higher Hg concentrations than other ocean basins
(Ferriss and Essington 2011; Nicklisch et al. 2017; Houssard
et al. 2019; Médieu et al. 2021). This area of the Pacific
Ocean is where increasing tuna Hg concentrations have been
recorded over the past decade (Drevnick et al. 2015; Drevnick
and Brooks 2017) and modeled for several decades into the
future (Sunderland et al. 2009). Tuna Hg concentrations in
other ocean basins are known to be decreasing (North Atlantic
Ocean; Lee et al. 2016) or remaining stable (southwestern
Pacific Ocean; Médieu et al. 2021). As well as size and origin,
other interpretive factors to consider include whether the tuna
is canned or fresh (for the same species; canned tuna tend to
have lower Hg concentrations; García et al. 2016) and farmed
vs. wild. Although farmed tuna tend to have lower Hg
concentrations (Balshaw et al. 2008; Annibaldi et al. 2019),
the amount of Hg bioaccumulation in muscle tissue in wild-
caught, pen-raised tuna depends on time spent in rearing pens
(Srebocan et al. 2007).

Marine fish - billfish

Rationale and caveats for biomonitoring Large and rela-
tively long-lived pelagic species such as billfishes can be
used as bioindicators for understanding expansive spatial
gradients of MeHg contamination in the world’s oceans

Fig. 2 Mercury concentrations in nine species of tuna and their asso-
ciated global harvest. Light gray bars represent the arithmetic
mean ± SD of total Hg concentrations (µg/g, ww) in muscle tissue.
Dark gray bars show FAO harvests estimates (in tonnes). Tuna with
harvests of <15,000 tonnes are depicted with “**” while tuna with

harvest of <5000 tonnes are depicted with “*”. Data are not normal-
ized by size. Canned tuna Hg data are not included here. USEPA-
USFDA human health thresholds for Hg consumption (µg/g, ww) are
shown as dotted (0.15) dashed (0.23) and solid (0.46) lines (see Table 2
for consumption guidelines)

Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework 339



using current commercial resources. Mercury concentra-
tions in billfish, such as marlin (multiple genera; Drevnick
and Brooks 2017, Vega-Sánchez et al. 2017, Bille et al.
2020, Rudershausen et al. 2023) and swordfish (Xiphias
gladius, Mendez et al. 2001, Branco et al. 2007), are some
of the highest known for marine teleost fish (Rodrigues and
Amorim 2016) and adverse impacts to their physiology and
body condition may be of concern for some populations
(Biton-Porsmoguer et al. 2022). Swordfish are the most
widespread of the billfish and northern hemisphere stocks
are generally managed sustainability (western, central, and
eastern North Pacific and North Atlantic stocks) (National
Oceanic Atmospheric Administration, Department of
Commerce unpubl. data) and provide a long-term oppor-
tunity for broad geographic and robust sampling options.
Southern hemisphere swordfish stocks are less understood
and in the case within the Indian Ocean are declining.
Mercury biomonitoring deliberations should consider
tracking Hg concentrations in swordfish, which average
above the 0.46 µg/g, ww threshold of “choices to avoid”
(see Table 2 for human meal frequency and Fig. 3a for the
Hg profile) and biomonitoring considerations should
account for differences among billfish species, size classes,
changes in stock abundance from overfishing, differences in
foodweb structure, and size of home range.
The GBMS database includes over 3778 Hg concentra-

tions of seven billfish species representing 54 publications.
Of the billfish, the highest average Hg concentrations are in
blue marlin (Makaira nigricans), nearly 4× global averages
of the swordfish (Fig. 3a). In swordfish, Hg tissue
concentrations vary according to major ocean basin with a
tendency for a doubling of Hg concentrations in the
Northern Hemisphere compared to the Southern Hemi-
sphere (Fig. 3b; 0.79 ± 0.52 µg/g, ww and 0.54 ± 0.42 µg/g,
ww, respectively). Elevated Hg levels in swordfish are to be
expected because of their high trophic level and relatively
long lifespan (>10 years). As these data illustrate, swordfish

often exceed human health thresholds (see Fig. 3b vertical
lines – only the South Atlantic population has mean levels
below the “do not eat” threshold), making their consump-
tion a human health concern. However, swordfish have
important commercial value and are an important source of
income for many oceanic island communities.
The Indian Ocean is a good case study where approxi-

mately 30,000 tonnes of swordfish are harvested annually
(i.e., 25% of annual global catch during 2016–2018), half of
it being caught by fleets of Indian Ocean coastal countries
(FAO 2018; IOTC 2020). Sri Lanka, India, and Seychelles
fisheries are the main contributors accounting for 24%, 10%
and 8% of the annual total catch of swordfish in the Indian
Ocean, respectively, contributing mostly to the global
export market. Exports/imports of fish products are however
strictly monitored when it comes to fish Hg content
particularly for Europe, which is the top importing market
for swordfish (FAO 2018). Indeed, the EU requires
predatory pelagic fish (e.g., tuna and swordfish) imports
to have <1.0 µg/g, ww of Hg for human consumption (EU
Commission 2006). Total Hg concentrations in swordfish
have been well investigated since the 2000s in the Indian
Ocean, highlighting variable Hg concentrations depending
on the swordfish size/age (largest and oldest swordfish
having the highest Hg levels), and the area where it was
caught. Overall, higher Hg concentrations were recorded in
swordfish from the Western Indian Ocean compared to the
Eastern Indian Ocean (Hg: 0.9 ± 0.1 and 0.6 ± 0.1 µg/g, ww,
respectively) (Esposito et al. 2018), and from the southern
Indian Ocean compared to the central-northern Indian
Ocean (Hg: 2.0 ± 0.1 and 0.9 ± 0.1 µg/g, ww, respectively)
(Sabino et al. 2022).
Approximately 13%, 13% and 43% of swordfish caught

from the Sri Lanka, Seychelles and Reunion waters,
respectively, were found to exceed the EU advisory level
(Hollanda et al. 2017; Jinadasa and Fowler 2019;
Kojadinovic et al. 2006). Swordfish with concentrations

Fig. 3 a Mercury concentration in seven species of billfish. Gray bars
illustrate the arithmetic mean ± SD of total Hg concentrations (µg/g,
ww) in dorsal muscle tissue. USEPA-USFDA human health thresholds
for Hg consumption (µg/g, ww) are shown as dotted (0.15) dashed
(0.23) and solid (0.46) lines (see Table 2 for consumption guidelines).
b Mercury concentrations in swordfish. Gray bars illustrate the

arithmetic mean ± SD of global total Hg concentrations (µg/g, ww) in
dorsal muscle tissue of swordfish from six ocean basins. USEPA-
USFDA human health thresholds for Hg consumption (µg/g, ww) are
shown as dotted (0.15) dashed (0.23) and solid (0.46) lines
(see Table 2 for consumption guidelines)
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over this EU advisory level are not permitted for export to
the EU. These large, high commercial value specimens
therefore must either remain within island communities or
are exported to other countries for less value. Thus, high Hg
concentrations in fish can result in significant adverse
economic, ecological and human health impacts, especially
in the case of Small Island Developing States that rely
highly on their fisheries such as the Seychelles (Bistoquet
et al. 2018). Indeed, the last EU ban on Seychelles
swordfish exports (2014) led the Seychelles longline fleet
to favor exports of large tropical tunas over swordfish, as
Hg concentrations in the tuna species within the central-
western Indian Ocean are generally below 0.5 µg/g, ww
(Bodin et al. 2017). However, this may not be a long-term
solution due to the declining status of tuna populations in
the Indian Ocean (e.g., yellowfin tuna: overfished and
subject to overfishing) (IOTC 2018).

Marine fish – sharks

Rationale and caveats for biomonitoring Sharks are a
diverse and important group of marine species, as there are
over 470 species of sharks that are defined within eight
Orders in the subclass Elasmobrachii (i.e., elasmobranchs,
which include sharks, skates, and rays), containing several
top predators that are known to have cascading impacts on
ecosystems they inhabit (Hammerschlag et al.
2019, 2022). Sharks are an important source of food in
many cultures, and have been severely overexploited, with
many species facing high extinction risk (Gallagher et al.
2012; Pacoureau et al. 2021; Sherman et al. 2023; Worm
et al. 2024). Most shark species are known to contain

elevated muscle Hg concentrations and their use as top
trophic level bioindicators for marine ecosystems is well
established. Mercury biomonitoring deliberations should
consider tracking Hg concentrations in the 21 of 24 (88%)
shark genera that average or range above the 0.46 µg/g,
ww threshold of ”choices to avoid” (see Table 2 for human
meal frequency and Fig. 4 for the Hg profile) and bio-
monitoring considerations should account for species dif-
ferences, size classes, knowledge of prey availability,
foraging depth (that can be measured with stable isotopes),
and size of home range. Shark fins can be used as an
indicator of Hg exposure (Kim et al. 2016; Vélez et al.
2021).
The GBMS database shows that species within two of the

eight Orders, the mackerel (Order Lamniformes) and
ground (Order Carcharhiniformes) sharks generally have
tissue Hg concentrations well above the human health
advisory levels of no consumption set by the USEPA
(0.46 µg/g, ww) and World Health Organization (1.0 µg/g,
ww; Fig. 4). Implications of these elevated Hg tissue
concentrations are also of concern for overall shark health,
which adds to population stresses due to overfishing. Many
species are on the IUCN Red List of Threatened Species
and are overfished for their fins and meat.
The GBMS database includes 10,578 Hg concentrations

of 24 genera of sharks. Many of the measurements are from
blue (Prionace glauca), mako (Isurus spp.), great white
(Carcharodon carcharias), hammerhead (Sphyrna spp.),
silky (Carcharhinus falciformis), bull (Carcharhinus leu-
cas), lemon (Negaprion brevirostris), and porbeagle
(Lamna nasus) sharks, where large individuals well exceed
human health advisory standards (Branco et al. 2004, 2007;

Fig. 4 Mercury concentrations
in sharks. Gray bars illustrate the
arithmetic mean ± SD of global
total Hg concentrations (µg/g,
ww) in muscle tissue of sharks
by genus (24 genera) from the
Orders of Mackerel and Ground
Sharks from the GBMS
database. USEPA-USFDA
human health thresholds for
mercury consumption (µg/g,
ww) are shown as dotted (0.15)
dashed (0.23) and solid (0.46)
lines (see Table 2 for
consumption guidelines)
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Escobar-Sánchez et al. 2011; Maz-Courrau et al. 2012; de
Carvalho et al. 2014; McKinney et al. 2016; Nicolaus et al.
2016; Matulik et al. 2017; Biton-Porsmoguer et al. 2018;
Terrazas-López et al. 2019; Rodriguez-Gutiérrez et al.
2020; Maurice et al. 2021; Erasmus et al. 2022a, 2022b;
Riesgo et al. 2023). Pelagic foraging piscivorous species
tend to have higher Hg tissue concentrations compared to
those foraging in benthic habitats and on invertebrates (de
Pinho et al. 2002; Matulik et al. 2017). Further, the
mesopelagic zone may be an important entry point for
MeHg into the foodweb (Choy et al. 2009) – a zone that
provides over 70% of the prey for larger species, such as the
great white sharks (Carcharodon carcharias) in the north-
eastern Pacific Ocean (Le Croizier et al. 2020). Ultimately,
trophic level of prey dictates muscle MeHg concentrations
in sharks (Le Croizier et al. 2022b), but distribution of prey
species in the ocean water column may also be an important
factor (Choy et al. 2009; Furtado et al. 2021).
Of the 24 shark genera with published muscle Hg

concentrations, the GBMS data shows that average levels
exceed the USEPA human health standards of 0.46 µg/g,
ww for 83% of genera and the WHO and EU standard of
1.0 µg/g, ww in 50% of genera (Fig. 4). Mercury
concentrations are similar in all muscle tissue including
fins (O’Bryhim et al. 2017; Kim et al. 2016), which are
often also used as a basis for soup (Barcia et al. 2020). This
is noteworthy given the practice of shark fin soup
consumption in Asia (Worm et al. 2024).
Despite having among the highest levels of Hg recorded

in any vertebrate, the physiological and behavioral effects
of Hg concentrations on elasmobranchs remains largely
unknown (Wosnick et al. 2023). Although chronic dietary
MeHg uptake of 0.2 µg/g, ww in freshwater fish have been
found to affect reproduction and other subclinical endpoints
(Depew et al. 2012a), studies on the effects of MeHg in the
shark brain indicate abilities to demethylate (Ehnert-Russo
and Gelsleichter 2020) and potentially use detoxifying
mechanisms through selenium-Hg liaisons (Branco et al.
2007; Dutton and Venuti 2019; Medina-Morales et al.
2020) or other physiological abilities (Le Croizier et al.
2020). For example, while Merly et al. (2019) found that
blood concentrations of Hg in white shark (Carcharodon
carcharias) exceeded levels that are known to be toxic to
humans, no negative effects on shark health parameters
were detected, including body condition, total leukocytes,
or granulocyte to lymphocyte ratios. The authors speculated
that sharks may have protective mechanisms that mitigate
harmful effects of heavy metal exposure. However, only
circulating blood Hg concentrations were measured, which
may be more transient and less likely to impact shark health.
Conversely, Wosnick et al. (2021) found that Hg concen-
trations in hepatic and gill tissues of sharks were associated
with increased activity of alkaline phosphatase and

deregulation of urea and lactate markers, respectively. The
former relationship suggests possible alterations in liver-
kidney functioning from Hg toxicity, while the later
association suggests potential compromised gill functioning
in osmoregulation. Clearly, there is a need to better
understand the effects of Hg exposure on elasmobranch
fitness and survival.
In addition to high Hg concentrations, as long-lived and

high trophic level generalist species, sharks are prone to
bioaccumulation and biomagnification of various heavy
metals and other toxins (e.g., Hammerschlag et al. 2016;
Shipley et al. 2021), which may additively or synergistically
impact shark health and survival.

Marine fish – Mediterranean Sea

Rationale and caveats for biomonitoring The Mediterra-
nean Sea is a semi-enclosed area characterized by strong
North-South and West-East gradients of environmental
conditions with a residence time of waters of approximately
a century (Millot and Taupier-Letage 2005). It covers an
area of about 2,500,000 km2 (970,000 mi2) and has an
average depth of 1500 m (4900 ft) with the deepest point at
5267 m (17,280 ft) in the Ionian Sea. Total captured fish-
eries production in the Mediterranean and Black Seas
peaked in 1988 at approximately 1.8 million tonnes and
although this has since fallen to around 1.2 million tonnes/
yr for the period 2018–2022 (FAO 2020, 2022) fish stocks
are still an important food source for local communities.
Herrings, sardines, and anchovies accounted for 56% of the
total landings with a mean annual amount over 665,000
tonnes, followed by miscellaneous coastal fishes (10%,
117,300 tonnes), and miscellaneous pelagic fish such as
cods, hakes, and haddocks (10%, 123,500 tonnes). Catches
of small pelagic species presented large fluctuations during
this period linked to the variability of environmental factors,
while decreasing landings were observed for some demersal
species (European hake, whiting, turbot and sole) and
increasing landings for a few other ones (red mullet, sur-
mullet and blackspot seabream) (FAO 2022).
In the Mediterranean Sea, the Western Mediterranean

continues to be the most productive area, accounting for
20% of the total landings, followed by the Eastern
Mediterranean (15%), the Adriatic (14%) and the central
Mediterranean (14%), while the Black Sea provided 38% of
the total catch with 446,067 tonnes during the 2018–2020
period. Mercury biomonitoring deliberations should con-
sider tracking fish Hg concentrations in the 24 of 36 (67%)
fish families that average or range above the 0.46 µg/g, ww
threshold of “choices to avoid” (see Table 2 for human meal
frequency and Fig. 5 for the Hg profile) and account for
differences in species distributions and abundance, as well
as location within the Mediterranean Sea.
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The GBMS dataset for the Mediterranean Sea includes
13,720 Hg concentrations for 111 fish species in 58 families
– including 36 focal families– based on 59 publications
(Fig. 5). These findings indicate several families of sharks –
including Bonnethead/Hammerhead sharks (Sphyrnidae;
x= 13.4 ± 3.5; n= 5), Gulper sharks (Centrophoridae;
x= 9.66 µg/g; n= 25), Chimaeras (Chimaeridae;
x= 3.14 µg/g; n= 160), Spiny dogfishes (Squalidae;
x= 2.2 ± 2.4 µg/g; n= 123) - have the highest Hg concen-
trations for this region. Swordfish and tunas (Thunnus and
Katsuwonus) have some of the highest Hg concentrations in
bony fishes and average well above the USEPA safety
threshold level for human exposure in sensitive populations
(0.15 µg/g, ww). While, Indigenous Peoples from the
Amazon and the Arctic have been found to have the
highest Hg levels globally (Basu et al. 2018, 2023), non-
indigenous people living in the Mediterranean region have
the second highest Hg levels (Petrova et al. 2020). Most
marine fish from the Mediterranean Sea have average Hg
concentrations that are restrictive for safe human consump-
tion (Cinnirella et al. 2019).
However, the lowest trophic level fish species (e.g., those

that depend on zooplankton as primary prey) including
herring, sardines, anchovies, and picarels, that accounted for
more than half the total landings, have the lowest average
Hg concentrations and are generally safe for human
consumption (Fig. 5). Higher Hg concentrations of
Mediterranean fish are generally recorded in larger/older

individuals than in smaller/younger ones, in high trophic
level predators than in low trophic level herbivores and
zooplanktivores, in benthic than in pelagic species, in
deeper than shallower environments, and in oligotrophic
than mesotrophic waters (Cresson et al. 2014, 2015;
Maulvault et al. 2016; Chouvelon et al. 2018; Sánchez-
Muros et al. 2018). This explains why the short-lived
pelagic zooplanktivores (Engraulidae and Clupeidae)
exhibited Hg concentrations lower than the minimum
USEPA threshold (<0.16 µg/g, ww), while deep demersal
families (Scorpaenidae) and large, long-live pelagic pre-
dators (Xiphiidae and Scombridae) presented much higher
Hg concentrations (>0.60 µg/g, ww) (Biton-Porsmoguer
et al. 2022), that are restrictive for human health (Fig. 5).
Demersal and deep sharks and rays also presented very high
Hg concentrations in the Mediterranean Sea (Storelli et al.
2002).
Several studies have shown that Mediterranean fish

species have higher concentrations of Hg in their tissues
than the same species from the Atlantic Ocean (e.g.,
Renzoni et al. 1998; Cossa et al. 2012; Cransveld et al.
2017; Cammilleri et al. 2018; Chouvelon et al. 2018; Di
Bella et al. 2018; Mauffret et al. 2023). More generally,
high concentrations of Hg have been observed in Medi-
terranean predatory organisms, likely because the Mediter-
ranean is one of the places in the World Ocean where Hg
methylation potential is the highest (Cossa and Coquery
2005). The high Hg-enrichment in Mediterranean fish

Fig. 5 Mercury concentrations
in Mediterranean Sea fish
(including estuarine species).
Gray bars illustrate the
arithmetic mean ± SD of global
total Hg concentrations (µg/g,
ww) in muscle tissue of 36 fish
families from the GBMS
database representing the
Mediterranean Sea. USEPA-
USFDA human health
thresholds for Hg consumption
(µg/g, ww) are shown as dotted
(0.15) dashed (0.23) and solid
(0.46) lines (see Table 2 for
consumption guidelines). The
double line is a break in the
x-axis to better depict and view
lower Hg concentrations
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compared to other regions at the same latitudes results
from the synergy of several factors: (1) the shallower
location of the MeHg maximal concentration in the water
column that induces a higher MeHg transfer into the biota,
(2) the slower growth rates of fishes resulting in a higher
age-at-length that induces a longer exposure to Hg at a
given length, (3) higher concentrations in zooplankton,
and (4) longer food webs linked to oligotrophic conditions
and small sizes of phytoplankton cells (Buckman et al.
2018; Cossa et al. 2022).
The synergy of environmental and biological factors

induces a high spatial variability in Hg concentrations of
Mediterranean fishes (Cinnirella et al. 2019), exemplified
here by the high standards deviations on Hg concentration
means in Fig. 5. At the basin level, fishes from the
Western Mediterranean appear more contaminated than
those from the Eastern Mediterranean, in relation to
higher MeHg concentrations in the Western basin waters
(Cossa et al. 2022). At a regional scale, the areas of
particular concern are the North of the Western basin
(Cresson et al. 2014), the Adriatic Sea (Storelli et al.
2005; Grgec et al. 2020), the Tyrrhenian Sea (Buckman
et al. 2018), some places in the Ionian Sea (Signa et al.
2017) and the Sea of Marmara (Keskin et al. 2007), while
lower concentrations are reported from fishes from the
Aegean Sea (Kucuksezgin et al. 2001), the Black Sea
(Harmelin-Vivien et al. 2009) and the coast of Tunisia
(Joiris et al. 1999).

Marine fish – Caribbean Sea

Rationale and caveats for biomonitoring The Caribbean
Sea includes numerous islands of the West Indies, and
adjacent coasts of North and South America and has an area
of about 2,754,000 km2 (1,063,000 mi2). The Sea’s deepest
place is the Cayman Trough, between the Cayman Islands
and Jamaica, at 7686 m (25,217 ft) below sea level. The
Caribbean Sea has the world’s second largest barrier reef,
the Mesoamerican Barrier Reef. It extends over 1000 km
along the coasts of Mexico, Belize, Guatemala, and Hon-
duras. The area generates a relatively robust fishing indus-
try, accounting for 500,000 tonnes of fish a year (FAO
2018). Mercury biomonitoring deliberations should con-
sider tracking fish Hg concentrations in 25 of 39 (64%) fish
families that average or range above the 0.46 µg/g, ww
threshold of “choices to avoid” (see Table 2 for human meal
frequency and Fig. 6 for the Hg profile) and account for
differences in species distributions and abundance, as well
as location within the Caribbean Sea.
A new monitoring effort, the Caribbean Region Mercury

Monitoring Network, is now established with the laboratory
hub in Antigua and Barbuda. The Network has selected key
bioindicators of Hg for purposes that meet economic,
human health safety, and logistical reasons for long-term
Hg monitoring. The focal species include three that have
average Hg concentrations below 0.22 µg/g, ww and have
important local and commercial importance: yellowfin tuna

Fig. 6 Mercury concentrations
in Caribbean Sea fish (including
estuarine species). Gray bars
illustrate the arithmetic
mean ± SD of total Hg
concentrations (µg/g, ww) in
muscle tissue of 39 fish families
from the GBMS database that
represent the Caribbean Sea.
USEPA-USFDA human health
thresholds for Hg consumption
(µg/g, ww) are shown as dotted
(0.15) dashed (0.23) and solid
(0.46) lines (see Table 2 for
consumption guidelines). The
double line is a break in the
x-axis to better depict and view
lower Hg concentrations
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(Thunnus albacares), red snapper (Lutjanus campechanus)
and mahi-mahi (Coryphaena hippurus). Other species such
as the great barracuda (Sphyraena barracuda) routinely
have elevated Hg concentrations but are not as regularly
consumed because of ciguatera fish poisoning concerns
(Chinain et al. 2021). There are also multiple grouper
species that are of local economic interests and should have
regular monitoring of their Hg concentrations – species, size
class and location are important factors for interpretation
(Sinkus et al. 2021; Christian et al. 2024). For teleost fish,
large pelagic species are generally of greater concern to
human health than small pelagic and reef species
(Shrestha et al. 1988; Ricketts et al. 2016). All shark
species have mean Hg concentrations that are well above
human health standards (Fig. 6) and especially for some
areas such as in Trinidad and Tobago (Mohammed and
Mohammed 2017).
The GBMS dataset for fish (elasmobranchs and teleosts)

for the Caribbean Sea includes 8,480 Hg concentrations for
193 species in 67 families – including 39 families of
greatest interest from 26 publications (Fig. 6). The findings
indicate that mackerel sharks/Porbeagles/white sharks
(Lamnidae; 4.3 ± 0.95 µg/g, ww; n= 4), thresher sharks
(Alopiidae; x= 3.68 ± 1.29 µg/g, ww; n= 3), requiem
sharks (Carcharhinidae; x= 1.81 ± 1.25 µg/g, ww;
n= 866), billfish (x= 1.35 ± 2.42 µg/g, ww; n= 191) and
swordfish (x= 1.14 ± 1.39 µg/g, ww; n= 3) have the high-
est Hg concentrations for this region. Species that have the
lowest risk of Hg contamination to people include mahi-
mahi, herring, sardines, lionfish (in the family Scorpaeni-
dae), and mullets (Fig. 6: Adams 2009; Ahmed et al. 2020;
Acosta-Coley et al. 2023). As part of the now established
Caribbean Region Mercury Monitoring Network, a more
recent analyses of over 1600 fish muscle samples for total

Hg found a lower ratio of 26% of species exceeding the
0.46 µg /g, ww guideline (although few sharks and billfish
were included) (Christian et al. 2024).
Areas of particular concern, which often times are related

to Hg sources in the watersheds that flow into Caribbean
Sea, include deltas, mangroves, and nearshore marine
waters from ASGM activities in Suriname (Mol et al.
2001), from chlor-alkali facilities in Colombia (Alonso et al.
2000; Olivero-Verbel et al. 2008; Gallego Ríos et al. 2018)
or other less defined sources such as long-distance transport
(Guzmán and Garcıá 2002). Based on Hg concentrations in
barred grunt (Conodon nobilis) from Trinidad and Tobago,
levels are generally highly elevated in the Gulf of Paria and
the Colombus Channel and could be related to river runoff
with Hg from ASGM activities in countries of northern
South America and carried towards Trinidad by the Guiana
Current (Christian et al. 2024).

Freshwater fish - Africa

Rationale and caveats for biomonitoring The major river
basins of Africa include the Nile (~6700 km or 4160 miles),
the Congo (~4670 km or 2900 miles), the Niger (~4170 km
or 2590 miles), and the Zambesi (~2740k or 1700 miles),
while the largest lakes include Lakes Victoria, Tanganyika,
and Malawi. These and other areas have nearly four million
people engaged in fishing-related activities (Heck et al.
2007) and for some countries provide up to 70% of their
animal protein (FAO 2012; Hanna et al. 2015). Whereas
industrial Hg releases are relatively small in Africa (with the
exception of coal-fired power plants in South Africa),
approximately 70% of the estimated total Hg emissions and
releases are associated with artisanal and small-scale gold
mining (ASGM; UNEP 2019a).

Fig. 7 Mercury concentrations
in freshwater fish in Africa
(including estuarine species).
Gray bars show the arithmetic
mean ± SD of total Hg
concentrations (µg/g, ww) in
muscle tissue of 16 teleost fish
families selected from the
GBMS database that represent
Africa. USEPA-USFDA human
health thresholds for Hg
consumption (µg/g, ww) are
shown as dotted (0.15) dashed
(0.23) and solid (0.46) lines (see
Table 2 for consumption
guidelines). The double line is a
break in the x-axis to better
depict and view lower Hg
concentrations
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Because of uncertainty of Hg in African fish, Hg
biomonitoring deliberations should consider tracking fish
Hg concentrations in seven of the 16 (44%) fish families
that average or range above the 0.22 µg/g, ww threshold of
(see Table 2 for human meal frequency and Fig. 7 for the
Hg profile) and account for differences in species, size class,
type of freshwater system (e.g., lake vs. river), association
with small-scale gold mining activities and subsistence
communities, as well as seasonality (wet versus dry season;
Kouame et al. 2020).
Studies documenting Hg concentrations in fish from lakes

contaminated through atmospheric deposition (vs. releases
of Hg into the water from ASGM activities) reveal
relatively low concentrations for fish communities as
illustrated in the Okavengo Delta in Botswana (Black et
al. 2011), Lake Tanganyika in Tanzania (Campbell et al.
2008), Aiba Reservoir in Nigeria (Atobatele and Olutona
2015), and in rift valley lakes (Campbell et al. 2003a)
including Lake Tana (Habiba et al. 2017), Lake Victoria
(Campbell et al. 2003b; Drouillard et al. 2024), and Lake
Malawi (Kidd et al. 2003); although only 4% of inland
water bodies have been sampled for Hg concentrations in
fish (Hanna et al. 2015). Importantly, Hg concentrations in
Nile perch (Lates niloticus) and tilapia (representing
multiple genera), the two most important commercial
species, tend to be <0.5 µg/g, ww (Hanna et al. 2016;
Drouillard et al. 2024). Conversely, snakeheads (Channi-
dae) and African pike (Hepsetidae) are generally elevated
and may be important for Hg biomonitoring for human
health purposes.
However, local studies within ecosystems that are

sensitive to Hg input indicate aquatic ecosystems in Africa
can have elevated Hg levels of concern in fish and other
aquatic food items used by humans, especially when
associated with ASGM activities. Concentrations in high
trophic level fish from lakes and rivers in Burkina Faso,
Egypt, Ghana, Kenya, Senegal, South Africa, Tanzania,
Zimbabwe as well as estuaries in Cote d’Ivoire have
documented Hg levels of concern for human consumption
(Ouédraogo and Amyot 2013; Hanna et al. 2015; Niane
et al. 2015; Rajaee et al. 2015; Gbogbo et al. 2017; Walters
et al. 2017; Elawady et al. 2019; Mason et al. 2019, 2022;
Debrah et al. 2020; Makaure et al. 2023; van Rooyen et al.
2023).
A review of fish Hg concentrations in the GBMS database

(6,126 individuals in 41 families from 183 species) from
171 locations in 21 African countries in 66 papers found
mean Hg concentrations were relatively low (i.e., below the
0.22 µg/g, ww human health threshold commonly used).
Sixteen families with ≥15 individuals are depicted (Fig. 7).
Hanna et al. (2015) reviewed 30 studies in Africa that
documented fish Hg concentrations and found that only
locations near ASGM operations had mean Hg levels above

recommended human health guidelines. A similar pattern
was found in Ghana (n= 1305 measures in 65 species)
where only sampling sites associated with ASGM had fish
Hg levels that exceeded human health thresholds, especially
for those species at high trophic levels (Rajaee et al. 2015;
Kortei et al. 2020).
Piscivore fish species that have been identified in the

GBMS database to have muscle tissue over 0.22 µg/g, ww
include the saddled bichir (Polypterus endlicherii), African
pike (Hepsetus spp.), African tigerfish (Hydrocynus vitta-
tus), snakeheads, and multiple catfish species within the
order Siluriformes, including species within the families of
Bagridae, Clariidae, Claroteidae, Mochokidae, and
Schilbeidae.

Freshwater fish - South America

Rationale and caveats for biomonitoring The major river
basins of South America, including the Magdalena, Ori-
noco, Amazon, and La Plata, support a large freshwater
fishery, providing livelihoods for small-scale artisanal
fishers as well as major commercial enterprises (Barletta
et al. 2010). In the remote interior areas of South America,
indigenous communities are highly dependent on fresh-
water resources for subsistence, and for communities with
high fish consumption (FAO 2018), the risk of MeHg
exposure can be high (Uryu et al. 2001; Passos et al. 2008;
Oliveira et al. 2010; Olivero-Verbel et al. 2015; Hacon et al.
2020; Montaña et al. 2021). Research over several decades
in the Amazon Basin has repeatedly identified a link
between a diet high in fish, especially piscivorous and
omnivorous species, and elevated Hg concentrations in
human biomarkers such as hair (Bidone et al. 1997; Lebel
et al. 1997; Castilhos et al. 1998; Boischio and Henshel
2000; Bastos et al. 2006; Faial et al. 2015; Ouboter et al.
2018; Feingold et al. 2020).
Mercury biomonitoring deliberations should consider

tracking fish Hg concentrations in 17 of the 36 (47%) fish
families that average or range above the 0.46 µg/g, ww
threshold of ”choices to avoid” (see Table 2 for human
meal frequency and Fig. 8 for the Hg profile) and
accounting for differences in species, size class, type of
freshwater system (e.g., lake vs. reservoir vs. river), and
association with small-scale gold mining activities and
Indigenous and subsistence communities. Seasonality of
sample collection is also important as low water time
periods result in higher fish Hg concentrations than
otherwise (Nyholt et al. 2022).
Four hotspots in the Amazon Region have been identified

as areas of particular concern because of the magnitude of
ASGM activities since 2002 (Alvarez-Berríos and
Mitchell Aide 2015): (1) the Madre de Dios region, Peru
(Asner and Tupayachi 2017; Caballero Espejo et al. 2018;
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Diringer et al. 2020; Barocas et al. 2023); (2) the Guiana
Shield region that includes French Guiana, Guyana, and
Suriname; (3) the Tapajós–Xingú region (Malm et al. 1995;
dos Santos et al. 2000; Nevado et al. 2010; Lino et al. 2019;
Passos et al. 2008) that includes Central Amazon (Kasper
et al. 2014) and the Madeira River (Bastos et al. 2006, 2015;
Mussy et al. 2022; da Silva Montes et al. 2022) in Brazil;
and (4) the Magdalena–Urabá region of Colombia (Ashe
2012; Hacon et al. 2014; Martinez et al. 2018; Gonzalez
et al. 2019; Hacon et al. 2020). These and other Hg point
sources (e.g., petroleum extraction; Webb et al. 2015) that
are connected with river floodplain habitats, where daily
and seasonal water level fluctuations can be extensive,
appear to be sensitive to elevated methylation rates - during
both droughts (Azevedo et al. 2018) and flood periods (da
Silva et al. 2019).
The GBMS database for South America contains over

144 peer-reviewed publications on fish Hg concentrations
from more than 319 different locations; 38,126 Hg
concentrations from 350 species in 62 families are
represented. The Hg dataset for fish in South America is
taxonomically diverse with a description of Hg concentra-
tions shown for 36 families with a sample size ≥15 (Fig. 8).
Of the 63 fish families with representative data, 49% have

mean Hg concentrations over 0.22 µg/g, ww. Fifteen fish
families exceed the USEPA human safety threshold
(0.46 µg/g, ww on average) for avoiding consumption.

The family Trichomycteridae (pencil or parasitic catfish)
demonstrates the highest muscle Hg concentrations; this
family is diverse with over 40 genera reflecting nearly
300 species. The most sampled taxa include high trophic-
level species within the genus Hoplias (tigerfishes),
Serrasalmus (piranhas), Pseudoplatystoma (sorubim cat-
fishes), Cichla (neotropical cichlids), Salminus (dorado),
and Hoplias (wolf fish). The GBMS dataset highlights areas
of broad freshwater fish sampling on the continent,
specifically in Brazil (Malm 1998; Ferreira da et al.
2019), and with some additional coverage in Colombia
(Olivero et al. 1998; Salazar-Camacho et al. 2020), Ecuador
(Webb et al. 2004), French Guiana (Richard et al. 2000;
Gentès et al. 2019), Peru (Gammons et al. 2006; Diringer
et al. 2015; Martinez et al. 2018), and Suriname (Ouboter
et al. 2012; Vreedzaam et al. 2023); as well as in estuaries in
Argentina (Marcovecchio et al. 2001) and Suriname (Mol
et al. 2001).
From these data, it is also possible to identify ecologically

sensitive hotspots of concern for ecological and human health
(see Fig. 1). Much of the research on Hg to document
ecological and human Hg exposure has been conducted in
downstream areas potentially impacted by ASGM activities
(Olivero-Verbel et al. 2015; Diringer et al. 2015;
Moreno-Brush et al. 2016; Salazar-Camacho et al. 2017;
Ouboter et al. 2018; Watson et al. 2020), especially when
contaminated rivers flow into lakes (Lake Titicaca in Peru;

Fig. 8 Mercury concentrations
in freshwater fish in South
America (including estuarine
species). Gray bars illustrate the
arithmetic mean ± SD of total
Hg concentrations (µg/g, ww) in
muscle tissue of 36 teleost fish
families selected from the
GBMS database that represents
South America. USEPA-
USFDA human health
thresholds for Hg consumption
(µg/g, ww) are shown as dotted
(0.15) dashed (0.23) and solid
(0.46) lines (see Table 2 for
consumption guidelines). The
double line is a break in the
x-axis to better depict and view
lower Hg concentrations
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Gammons et al. 2006) or reservoirs (Brokopondo Reservoir,
Suriname; Ouboter et al. 2012; Tucurui Reservoir, Arrifano
et al. 2018; and other reservoirs; Pestana et al. 2019).
Watersheds that are downwind from ASGM activities also may
have elevated biotic Hg concentrations (Gerson et al. 2022).

Freshwater fish – Asia

Rationale and caveats for biomonitoring Mercury emis-
sions in Asia represent some of the highest in the world, and
reductions are now being attempted by countries, such as
China and India, in part due to the provisions of the Min-
amata Convention (Sharma et al. 2019; Feng et al. 2022).
While freshwater ecosystems in the vast Asian landscape
are dominated by rivers in the south (e.g., Ganges, Indus,
Mekong, Yangtze, and Yellow rivers) and the north (Lena
and Ob Rivers) and numerous oligotrophic lakes in the
north – relatively few studies have documented biotic Hg
concentrations in this most water-stressed continent of the
world. Mercury biomonitoring deliberations should con-
sider tracking fish Hg concentrations in 12 of the 31 (39%)
fish families that average or range above the 0.46 µg/g, ww
threshold of “choices to avoid” (see Table 2 for human meal
frequency and Fig. 9 for the Hg profile) and account for
differences in species, size class, type of freshwater system
(e.g., lake vs. reservoir vs. river), overfishing, and associa-
tion with ASGM areas and rice fields.
The knowledge of Hg in freshwater fish for Asia is sparse

for the size and diversity of the landscape. China is the
largest nation for the consumption and export of fish and
fish products; however reported Hg concentrations in fish
are generally low (Wang and Wang 2019; Feng et al. 2022;
Souza-Araujo et al. 2022), even in relatively new reservoirs,

such as in the Guizhou Province (Yan et al. 2010a, 2010b)
and in the Three Gorges Reservoir (Xu et al. 2018; Wang
et al. 2019b), and when there are point sources such as
abandoned Hg mines (Qiu et al. 2009) and others (Zhu et al.
2012). A comprehensive review over the past 10 years did
document significant geographical differences from the
north to the south: Fish in north China rivers had more Hg
than those in south China (Zhang and Wong 2007);
Additionally, the Tibetan Plateau exhibited the highest total
Hg levels (up to 0.87 µg/g, ww) (Wang and Wang 2019).
Fish Hg concentrations are generally low across China
because of fast-growing farmed and stocked fish species
dominance, coupling with declining wild fish populations in
freshwaters where trophic level enrichment of MeHg is
generally dampened by eutrophication, and water chemistry
parameters (e.g., alkaline pH and low dissolved organic
carbon) that are not conducive to high methylation rates
(Cheng and Hu 2012; Liu et al. 2012). Minimal shoreline
wetland area due to anthropogenic activities, lower trophic
biomagnification factor in temperate freshwater food webs
compared to boreal ones, and the general lack of trophic
level 4 fish in eutrophic waters also contribute to patterns of
lower fish Hg concentrations (Chen et al. 2008; Liu et al.
2012; Xu et al. 2018; Wang and Wang 2019; Wu et al.
2019; Jing et al. 2020).
Exceptions have been reported by Razavi et al. (2014) in

the mesotrophic Qiandao Lake, where the food web in this
remote 50-year-old reservoir of East China demonstrated a
high degree of omnivory and a long food web with trophic
level up to 4.9 including wild fish species. Consequently,
wild fish in this reservoir had generally higher Hg
concentrations (up to 1.78 µg/g, ww in the Mandarin fish
(Siniperca chuatsi) than stocked fish (up to 0.58 µg/g, ww

Fig. 9 Mercury concentrations
in freshwater fish in Asia
(including estuarine species).
Gray bars illustrate the
arithmetic mean ± SD of global
total Hg concentrations (µg/g,
ww) in muscle tissue of 31
teleost fish families selected
from the GBMS database that
represents Asia. USEPA-
USFDA human health
thresholds for Hg consumption
(µg/g, ww) are shown as dotted
(0.15) dashed (0.23) and solid
(0.46) lines (see Table 2 for
consumption guidelines). The
double line is a break in the
x-axis to better depict and view
lower Hg concentrations
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in herbivorous fish species, such as the goldfish [Carassius
auratus]). Although average fish Hg concentrations from
Qiandao Lake was well under 0.5 µg/g, ww, it was still
significantly higher than fish from Taihu Lake and
reservoirs in Guizhou. Nevertheless, a further meta-
analysis of both freshwater and marine consumer fish in
China over the last three decades from 1980 presented that
fish Hg concentrations were decreasing despite increased
Hg emission over time, a phenomenon likely due to
overfishing and aquaculture (Zhang et al. 2022).
The GBMS database includes 14,093 fish Hg concentra-

tions from 75 families representing 304 species based on 93
publications. Of those families, 31 are featured here that
have sufficient sample sizes (≥12) or are otherwise of
interest (e.g., high Hg concentrations) (Fig. 9). The highest
Hg concentrations were in spiny eels (Mastacembelidae)
with mean Hg concentrations over 2.0 µg/g, ww. Milkfish,
needlefish, true minnows, and knifefish families had
particularly elevated Hg concentrations, averaging over
0.5 µg/g, ww. Several families have wide variation in Hg
concentration that indicate other factors such as species, size
class, freshwater type, and location are important to
understand prior to identifying best bioindicators.
Representation of Asian freshwater fish Hg concentra-

tions outside of China are relatively sparse. In Russia, a
summary of 21 fish species from the Oka, Moskva, Osetr,
Volga, and Akhtuba Rivers found relatively low Hg
concentrations with average concentrations at or under
0.26 µg/g, ww (Gorbunov et al. 2016). However, lakes
sampled in Russia contained fish with relatively elevated
Hg concentrations (Buck et al. 2019; Dudarev et al. 2019).
Investigation of selected Korean reservoirs from 2016 to

2020 showed low fish Hg concentrations well under 0.5 µg/
g, ww in barbel steed (Hemibarbus labeo), largemouth bass,
and bluegill (Jung et al. 2022). Whereas in Japan, Watanabe
et al. (2021) presented 95% of salmon and trout samples
contained MeHg at less than 0.05 µg/g, ww, extracted from
the Japanese National Health and Nutrition Survey.
Otherwise, there is no recent publicized freshwater fish
Hg data in Japan since Matsunago (1975), who reported
average fish Hg concentrations of 0.72 µg/g, ww in three
different fish species (dace, crucian carp, and Zacco spp.)
sampled in two rivers that received Hg mining waste at
the time.
Freshwater fish Hg concentrations in certain South East

Asia countries remain safe despite rapid urban development
activities: Low fish Hg concentrations (0.051 ± 0.04 µg/g,
ww) in Mekong River confirmed its pristine state of the
ecosystem of Vientiane area, Laos (Guédron et al. 2014);
Lobus and Komov (2016) validated that 76% of freshwater
fish contained less than 0.10 µg/g, ww of total Hg in muscle
tissue sampled from rivers, lakes, and reservoirs of Central
and South Vietnam. Freshwater fish in Cambodia are

generally low and do not exceed 0.12 µg/g, ww in striped
snake-head fish (Channa striata), common climbing perch
(Anabas testudineus) and peacock eel (Macrognathus
siamensis), as demonstrated by Agusa et al.
(2005a, 2005b). Fish Hg remain well below 0.46 µg/g,
ww as seen in indicator species collected from West Bay
area of Laguna Lake, in the Philippines (Cuvin-Aralar
1990).
High levels of Hg in fish stocks have been found mainly

in coastal areas in Thailand, Indonesia, and India. With
increasing inland industrial activities in these regions,
increased freshwater fish Hg concentrations have been
reported in industrial sites in Thailand: Sampled striped
snakehead from Tha Tum industrial complex contained
elevated fish Hg concentrations up to 0.52 µg/g, ww
(Tremlová et al. 2017). Surprisingly, fish Hg was even
higher up to 0.56 µg/g, ww in the same species sampled
from Thap Lan National Park neighboring Prachinburi
industrial park. In another scenario of adverse anthropo-
genic impact on fish Hg and human health, Castilhos et al.
(2006) reported elevated fish Hg concentrations of
0.58 ± 0.44 µg/g, ww with more than 45% of fish having
Hg levels above 0.46 µg/g, ww across 154 specimens of 10
freshwater species from gold mining areas in Tatelu,
Indonesia. Fish from the Ganges River at West Bengal in
India was investigated showing that wallago catfish
(Wallago attu) possessed high Hg content at
0.93 ± 0.61 µg/g, ww, while small-sized fishes from the
same sampling site showed low fish Hg concentrations
below DL (Pal et al. 2011).

Freshwater, estuarine, and marine fish – Australia

Rationale and caveats for biomonitoring Australia,
including Tasmania and numerous islands, has rich and
varied ecosystems, from desert to tropical rainforest and
straddles the Indian and Pacific Oceans. Australia’s coastal
seas include the world’s largest barrier reef, the Great
Barrier Reef, encompassing almost 350,000 km2 off the
northeast coast, and is a biodiversity hotspot. Mercury
biomonitoring deliberations should consider tracking fish
Hg concentrations in 7 of 18 (38%) fish families that
average or range above the 0.46 µg/g, ww threshold of
“choices to avoid” (see Table 2 for human meal frequency
and Fig. 10 for the Hg profile) and account for differences
in species distributions and abundance, as well as location
across the continent.
The GBMS dataset for fish (elasmobranchs and teleosts)

from Australia extending to the continental shelf (including
estuarine and freshwater samples) includes 2646 Hg
concentrations for 100 species in 48 families – including
18 families of greatest interest – from 16 publications
(Fig. 10). The findings indicate that the five families with
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the highest Hg concentration are elasmobranchs, including
mackerel sharks/Porbeagles/white sharks (Lamnidae;
2.82 ± 1.56 µg/g; n= 87), sleeper sharks (Somniosidae;
x= 1.90 ± 1.15 µg/g; n= 106), Bonnethead and Hammer-
head sharks (Sphyrnidae; 1.37 ± 0.23 µg/g; n= 212). The
highest teleost families include swordfishes (Xiphiidae;
0.56 ± 0.02; n= 13), jacks (Carangidae; 0.28 ± 0.38;
n= 16) and tunas, mackerels, bonitos (Scombridae;
0.24 ± 0.13; n= 146). Species that have the lowest risk of
Hg contamination to people include gobies, herrings/
sardines, and mojarras (Fig. 10).
Several independent research studies have been con-

ducted to evaluate Hg concentrations in fish collected from
Australian estuaries and nearshore coastal ecosystems with
the focus on understanding health implications, environ-
mental processes, and anthropogenic impacts (Gagnon et al.
2016; Maher et al. 2020; Butler et al. 2022). Mercury
contamination of fish in nearshore Australian marine
environments is not evident except at several locations
with historical Hg contamination (Maher et al. 2020). In
Australia, as in other regions like the Caribbean Sea, areas
that of particular concern for elevated Hg concentrations in
fish include wetland (particularly mangroves) and estuarine
habitats. Butler et al. (2022) found that barramundi (Lates
calcarifer) in floodplain wetlands concentrated Hg at almost
twice the level of those that remained in saline habitats.
The Australian Government’s scientific research organi-

zation, the Commonwealth Scientific and Industrial
Research Organization (CSIRO), has recently conducted
an extensive review of published data on contaminants
(including Hg) in sea turtles, birds, and marine mammals.

Most samples were collected opportunistically in Australia
between the 1970s and 2022 (Jarolimek et al. 2023). While
long-term datasets are not available for the same species, the
review provides baseline information on Hg levels in
Australian marine fauna. Lastly, the Food Standards
Australia and New Zealand (FSANZ) conducts the
Australian Total Diet Study (ATDS) and evaluates Hg
levels in a wide range of Australian foods (including
seafood) with the aim to estimate the dietary exposure of the
Australian population to Hg, identify risks and risk
management options, and provides recommendations on
the safe consumption of fish (note that Fig. 10 uses the
standards set by the USEPA and USFDA (Table 2).

Freshwater fish – North America and Europe

Rationale and caveats for biomonitoring The freshwaters
of North America and Europe are extensive, and the lakes
and rivers have a diverse fish community from temperate to
Arctic waters. While the Great Lakes Basin in the U.S. and
Canada provide a dominant recreational fishery for the
region, riverine and lake fisheries across this extensive area
are important contributors to local economies (Evers et al.
2011a; Wiener et al. 2012b) and for some areas, subsistence
purposes such as in Arctic Inuit communities (AMAP
2021). Mercury biomonitoring deliberations should con-
sider tracking fish Hg concentrations in 12 of the 25 (48%)
fish families that average or range above the 0.46 µg/g, ww
threshold of ”choices to avoid” (see Table 2 for human meal
frequency and Fig. 11 for the Hg profile) and account for
differences in species, size class, type of freshwater system

Fig. 10 Mercury concentrations in freshwater, estuarine and coastal
fish sampled from the continental shelf in Australia. Gray bars illus-
trate the arithmetic mean ± SD of global total Hg concentrations (µg/g,
ww) in muscle tissue of 18 teleost and elasmobranchs families of
interest selected from the GBMS database that represents Australia.

Centropomidae (Snooks) includes barramundi. USEPA-USFDA
human health thresholds for Hg consumption (µg/g, ww) are shown
as dotted (0.15) dashed (0.23) and solid (0.46) lines (see Table 2 for
consumption guidelines). The double line is a break in the x-axis to
better depict and view lower Hg concentrations
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(e.g., lake vs. reservoir vs. river), and association with
Indigenous and subsistence communities.
Both continents have or have had well established Hg

monitoring programs that generally revolve around game
fish, though there has been an absence of harmonized,
national monitoring programs that span decades of time.
However, monitoring efforts have generated hundreds of
thousands of fish analyzed for Hg over the past 4–5
decades. In the U.S., such programs have focused on the
Great Lakes, interior lakes, rivers, and streams including in
the Great Lakes Fish Monitoring and Surveillance Program
(Monson et al. 2011; Zhou et al. 2017) and the National
Rivers and Streams Assessment (Wathen et al.
2015a, 2015b). Mercury data have also been summarized
for lakes and rivers for the Northeast (Kamman et al. 2005;
Millard et al. 2020), Midwest (Monson et al. 2011), and the
West (Eagles-Smith et al. 2016a). In Canada, massive
datasets (>300,000 Hg concentrations in the Canadian Fish
Mercury database; Depew et al. 2013) describing spatial
and temporal game fish Hg trends have been summarized as
well (Gandhi et al. 2014; Eagles-Smith et al. 2016a).
Similar efforts in Europe, especially in Scandinavia –

spanning 55°–70°N, also provide definitive baseline
information that can be used for temporal comparison
purposes (Braaten et al. 2019).
To evaluate spatial and temporal variation of Hg in fish,

the game fish Hg data are generally normalized with regard
to size using well-established standard units (e.g., 55 cm
and 1 kg for northern pike; Sorensen et al. 1990). Such
standards have been applied to robust Hg datasets (i.e.,
>50,000 data points) in the U.S., Canada, and northern

Europe for pike, bass, and walleye (Johnels et al. 1967;
Kamman et al. 2005; Monson 2009; Monson et al. 2011;
Gandhi et al. 2015; Eagles-Smith et al. 2016a) for human
health assessments and using perch (Perca spp.) (Scheu-
hammer et al. 2016) for evaluating concerns for ecological
health purposes. Other normalizing techniques include
using individual fish weight and Hg concentration in
combination with fish species information and sampling
year to find expected Hg concentration for fish at a standard
weight. In Braaten et al. (2019), multiple linear regression
models were applied to describe Hg concentrations, where
potential explanatory variables included fish weight, fish
species, sampling year, and the interaction terms year ×
species and weight × species, to evaluate changes in fish Hg
concentrations with weight and species over time.
Records of Hg in freshwater fish across Fennoscandia

(Norway, Sweden, Finland, Kola Peninsula in Russian
Federation) have been collected for over 50 years (since
1965) in almost 3000 lakes and rivers and collated into a
single database by the International Cooperative Pro-
gramme for assessment and monitoring of the effects of
air pollution on rivers and lakes (or ICP Waters), under the
UNECE Air Convention (Braaten et al. 2017) – only the
peer-reviewed published data are in the GBMS database.
Fish Hg concentrations vary widely among lakes in
Fennoscandia owing partly to differences in local and
regional Hg pollution in the lakes, but particularly factors
controlling net methylation, trophic structures, and subse-
quent biomagnification (Braaten et al. 2019).
Measured Hg concentrations in the south (55°N–60°N) of

Fennoscandia are generally higher than in the north

Fig. 11 Representative Hg
concentrations in selected game
fish species from North America
and Europe. Gray bars illustrate
the arithmetic mean ± SD of
global total Hg concentrations
(µg/g, ww) in muscle tissue of
25 teleost game fish species
selected from the GBMS
database that represent North
America and Europe. USEPA-
USFDA human health
thresholds for Hg consumption
(µg/g, ww) are shown as dotted
(0.15) dashed (0.23) and solid
(0.46) lines (see Table 2 for
consumption guidelines)
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(60°N–70°N), with over 40% of all lakes containing fish
muscle Hg concentrations exceeding the WHO/FAO limit of
0.5 µg/g, ww widely used as a trigger for human consumption
safety in Europe. The dataset includes important species for
recreational fishing such as northern pike (Esox lucius) (South:
0.63 ± 0.01 µg/g,ww [n= 24,849], North: 0.60 ± 0.01 µg/
g,ww [n= 3360]), Arctic char (Salvelinus alpinus) (South:
0.45 ± 0.18 µg/g,ww [n= 284], North: 0.11 ± 0.10 µg/g,ww
[n= 514]), European perch (Perca fluviatilis) (South:
0.26 ± 0.02 µg/g,ww [n= 20,276], North: 0.20 ± 0.01 µg/
g,ww [n= 2326]), and brown trout (Salmo trutta) (South:
0.14 ± 0.03 µg/g,ww [n= 1816], North: 0.16 ± 0.40 µg/g,ww
[n= 230]). Half a century of fish Hg concentrations in
Fennoscandian lakes have shown a clear decline (Åkerblom
et al. 2014; Braaten et al. 2017, 2019). However, there is no
consistent decline in lakes for which Hg originates from
atmospheric sources only (e.g., Rask et al. 2024). Closing of
local industrial pollution sources over the past 50 years is
likely to have led to a reduction in fish Hg concentrations.
The GBMS database for North America and Europe

contains over 170 peer-reviewed publications on fish Hg
concentrations from more than 240 sites across 100 different
waterbodies (e.g., lakes, rivers, estuaries, and bays); more than
253,667 individual fish from more than 240 genera are
represented. The Hg dataset for fish is robust, especially for
game fish, of which 25 species of 8 families are featured here
as key bioindicators for human health purposes, including
walleye (Sander vitreus), largemouth bass (Micropterus
salmoides), and northern pike (Fig. 11). Of these species,
48% have a mean Hg concentration over the USEPA human
health benchmark of 0.46 µg/g, ww.

Seabirds – human consumption assessment

Rationale and caveats of biomonitoring Although hunting
of seabirds is not as common globally as it once was, in some
areas of the world, marine birds (waterfowl, shorebirds, and
seabirds) and their eggs can still be a regular and necessary
food source for remote subsistence communities. This is
especially true across the circumpolar Arctic and Subarctic
(e.g., Naves 2018; Otsuki et al. 2024), and in a scattering of
small island nations, like Grenada (Smart et al. 2020), where
alternative sources of protein may be limited at times, driving
both legal and illegal consumptive harvests of seabirds.
In North America and Europe, there are several examples of

both indigenous and non-indigenous harvests of seabirds and/
or their eggs, some with significant cultural relevance. For
example, Baffin Island in the eastern Canadian Arctic is an
ecologically significant area, supporting many species of
seabirds and marine mammals. Inuit communities across the
Canadian Arctic, such as those on Baffin Island, rely heavily
on a variety of marine resources, including seabirds (Chan
et al. 1995; Mallory et al. 2004). The presence of elevated Hg

in seabirds throughout the Canadian Arctic is well established
(Muir et al. 1999; Mallory et al. 2004; Campbell et al. 2005;
Mallory and Braune 2012; Burnham et al. 2021), with either
stable or increasing Hg trends observed in seabirds in recent
decades (Braune et al. 2015, 2016).
Indigenous People and subsistence hunters in Alaska also

have a long history of harvesting and consuming marine
resources, including seabirds and their eggs (Burger et al.
2007; Naves 2009). Mercury accumulation in seabirds from
the Aleutian Islands has also been well documented (Burger
et al. 2007, 2008, 2009; Burger and Gochfeld 2009; Savoy
et al. 2017). According to Burger et al. (2007), 90% of
households from an Aleutian village consumed birds to
some degree each year. Previous studies have shown that
some seabird species from the Aleutian Islands contain
edible parts (e.g., breast meat, eggs) with Hg levels that
approach or exceed human consumption advisory levels
(0.22 µg/g, ww; Burger et al. 2007, 2009). Although
estimates of subsistence harvests of seabirds may have
declined somewhat across the state in recent decades, birds
and their eggs remain a necessary source of nutrition in
some particularly isolated Alaskan communities (e.g., the
St. Lawrence–Diomede Islands; Naves 2018), as well as
remaining culturally important across the region. Abun-
dance and ease of collection mean the eggs of the glaucous-
winged gull (Larus glaucescens) are highly sought after,
and the number collected each year can exceed 6000 (Naves
2009). Larger gull species regularly exhibit elevated Hg
concentrations within a seabird colony. The eggs of murres
and gulls represent the majority of egg harvests, but the
eggs of many smaller seabird species, such as auklets and
terns, are also widely harvested in Alaska (Naves 2018).
The GBMS database includes 3943 individual eggs from

20 species of marine bird of interest in the Arctic and subarctic
were included from 32 publications. Generally, Hg concentra-
tions in seabirds in the Canadian Arctic are below levels
associated with health effects in wildlife. Whereas edible parts
for human consumption (breast muscle, eggs) (Fig. 12) may
approach or exceed the action level (0.22 µg/g, ww) (Table 2).
For example, a recent review of Hg concentrations in Arctic
seabirds found that 50% of individuals sampled (n > 5000)
showed tissue Hg concentrations exceeding 0.20 µg/g, ww
(Chastel et al. 2022).
Using kittiwakes (Rissa spp.), fulmars (Fulmarus spp.)

and murres (Urias spp.) as bioindicators, Hg concentra-
tions in seabird eggs from the Canadian Arctic have
increased significantly over recent decades (Braune 2007;
Braune et al. 2016; Burnham et al. 2021). In the Aleutian
Islands of Alaska, there has been an effort to quantify
MeHg uptake by local North Pacific fisheries and wildlife
due to potential cumulative inputs of Hg from historic
military activity (Burger and Gochfeld 2006; Anthony
et al. 2007; Ricca et al. 2008), emissions from local
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volcanic activity (Ricca et al. 2008), and atmospheric and
oceanic transport of Hg from Asia (Rocque and Winker
2004; Anthony et al. 2007; Driscoll et al. 2013) and
Russia (Fisher et al. 2012).
Mercury biomonitoring deliberations could consider

tracking bird egg Hg concentrations in the six seabird
species that average or range above the 0.46 µg/g, ww
threshold of restricted consumption (see Table 2 for human
meal frequency and Fig. 12 for the Hg profile) and
incorporate differences in species, interpretation of tissue
type that incorporates species’ ecology, and association
with Indigenous and subsistence communities.

Marine mammals – toothed whales

Rationale and caveats for biomonitoring Toothed whales
are the marine mammal taxa of greatest concern for human
and ecological health because their Hg concentrations reg-
ularly exceed levels of concern for many species (Fig. 13).
Although the effect levels in marine mammals are not well
defined (Desforges et al. 2016), brain tissue levels are
associated with neurotoxic effects (Dietz et al. 2013; Krey
et al. 2015) and a study on bottlenose dolphins found
lesions in the liver at 61 µg/g, ww and is being used by
scientists as a benchmark for assessing ecological concern
in marine mammals (Dietz et al. 2013). However, more
recently groupings of marine mammals including toothed
whales has been divided into groups such as “No risk, Low
risk, Moderate risk, High risk and Severe risk” based on
controlled experiments of harp seals (Pagophilus groen-
landicus) (Dietz et al. 2022). Because liver tissue has lim-
itations for assessing risk (e.g., levels of MeHg vary and are

generally a small percentage of total Hg) and is not often
consumed as a major part of the human diet, a more useful
tissue to use for assessing the potential exposure of MeHg
to humans is muscle tissue (AMAP 2021). Mercury bio-
monitoring deliberations should consider tracking muscle
Hg concentrations in four of the toothed whale species that
are regularly consumed and average above the 0.46 µg/g,
ww threshold of ”choices to avoid” (see Table 2 for human
meal frequency and Fig. 13 for the Hg profile and target
species) and incorporate differences in species, home range,
interpretation of tissue type that incorporates species’
ecology, and association with Indigenous and subsistence
communities.
Many Indigenous Peoples and subsistence communities,

mostly in the Arctic, depend on the harvest of marine
mammals such as beluga (Delphinapterus leucas), narwhal
(Monodon monoceros), and pilot whale (Globicephala
spp.). Elevated tissue concentrations of Hg in these species
are of high human health concern. Pilot whale harvesting by
some subsistence-oriented countries, such as the Faroe
Islands (Dam and Bloch 2000; Weihe and Debes Joensen
2012) have now ended (Krümmel and Gilman 2016; AMAP
2021), while in other countries whaling remains a concern
such as in St. Vincent and the Grenadines (Fielding and
Evans 2014; McCormack et al. 2020).Various species of
porpoises and dolphins (Aubail et al. 2013; Correa et al.
2013), as well as beaked whales (which specialize in
foraging on deep water cephalopods) also generally have
elevated Hg tissue concentrations (Fig. 13; Bustamante
et al. 2003; Garrigue et al. 2016, 2024). Other marine
mammals, such as elephant seals (Mirounga angustirostris)
foraging in the mesopelagic zone, also have elevated Hg

Fig. 12 Mercury concentrations
from Arctic and subarctic birds.
Gray bars illustrate the
arithmetic mean ± SD of global
total Hg concentrations (µg/g,
ww) in eggs of 20 species
selected from the GBMS
database. USEPA-USFDA
human health thresholds for Hg
consumption (µg/g, ww) are
shown as dotted (0.15) dashed
(0.23) and solid (0.46) lines (see
Table 2 for consumption
guidelines)
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concentrations (Peterson et al. 2015) and are especially
vulnerable when concentrations can increase during haul-
out periods when body mass declines as they fast and breed
on land (Peterson et al. 2018).
The GBMS database includes 29,816 individuals of

79 species representing 199 publications. Based on the
GBMS database, over 25 species of toothed whales have
average muscle tissue Hg concentrations above 1.0 µg/g,
ww. Therefore, toothed whales appear to be one of the more
Hg contaminated groups of marine mammals. Toothed
whales have global mean Hg concentrations in muscle
tissue (3.2 µg/g, ww) that are well above general recognized
consumption advisory levels recognized by most national
standards (most relevant for beluga and pilot whales)
because of the dependence of certain Arctic human
communities on them) (Fig. 13).
Canadian Inuit regions published health advice outlining

the importance of traditional country foods for Inuit health
and well-being (AMAP 2015). However, Hg exposure
through parts of the traditional diet has been found to be of
concern in two Inuit regions. For example, health officials
in Nunavik found that the main source of Hg exposure in
their region is beluga meat and recommend that pregnant
women and those of childbearing age should decrease their
consumption of beluga meat. In Nunavut, Inuit women who
are or may become pregnant are advised to avoid ringed

seal (Pusa hispida) liver, while ringed seal meat is
recommended as a healthy alternative.
Other marine mammals are also important bioindicators

for human or ecological health and should be monitored.
Ringed seals are a good candidate as they are common,
widely distributed, and regularly harvested (Braune et al.
2015; see marine mammal section under “Ecological Health
Bioindicators” for further information about ringed seals
and other pinnipeds).

Ecological health bioindicators

There are many species of fish and wildlife that are
impacted by the adverse effects of elevated Hg on their
physiology, behavior, and reproductive success (see sum-
maries: Crump and Trudeau 2009; Dietz et al. 2013;
Scheuhammer et al. 2015; Ackerman et al. 2016; Evers
2018; Whitney and Cristol 2017; AMAP 2021). Some are
considered high profile species and are included by the
IUCN on their Red List of Threatened Species, or formally
listed by the United States Endangered Species Act of 1972.

The selection of the organism or suite of bioindicators
depends on the objective. Taxa suitability may vary according
to ecosystem interests (e.g., at habitat or biome levels of
relevance), spatial gradient resolution (e.g., local, regional or
global), temporal trends (e.g., short- or long-term), human

Fig. 13 Muscle Hg
concentrations in toothed
whales. Bars illustrate the
arithmetic mean ± SD of global
total Hg concentrations (µg/g,
ww) in muscle tissue of 38
toothed whale species. Dark
gray bars are for species most
regularly consumed by humans.
All species exceed the USEPA-
USFDA human health threshold
for Hg consumption of 0.46 µg/
g, ww level of “choices to
avoid” (see Table 2 for
consumption guidelines)
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or ecological health interests, endpoints of importance (e.g.,
reproductive impairment), known adverse toxicity thresholds
(e.g., by tissue and taxa using endpoints of interest), sample
availability (e.g., simple or challenging), and sampling out-
come (e.g., non-lethal or lethal). A provisional list of some
potential bioindicators for evaluating and monitoring envir-
onmental Hg loads for ecological health purposes can be
grouped into four target biomes and their associated water-
bodies and by major taxa of interest (Table 2; Evers et al.
2016). Some of these major taxa of interest for use as bioin-
dicators are summarized below for sea turtles, birds, and
marine mammals (the use of fish as indicators for Hg bio-
monitoring is covered under the “Human Health Bioindica-
tors” section).

Sea turtles

Rationale and caveats for biomonitoring Sea turtles have a
wide distribution in tropical and subtropical regions, their
dietary habits vary according to the species (e.g., herbi-
vores, omnivores, and carnivores), and their lifespan is
compatible with the residence time of Hg in the surface
layer of the oceans (approximately 30 years) (Aguirre and
Lutz 2004; Barbieri 2009; UNEP 2013; Evers 2018). These
characteristics enable a spectrum of Hg concentrations
through different trophic levels and facilitate the compar-
ison among regions (Anan et al. 2001; Rodriguez et al.
2022). For instance, when examining the Hg levels in liver
samples from juvenile green turtles (Chelonia mydas) from
two distinct environments – one highly influenced by
human activities (Bahia, Brazil) and another with less
anthropogenic impact (Ceará, Brazil), the comparison
revealed elevated concentrations of Hg in both the green sea
turtles and their food items (algae and mollusks) from the
highly affected location (Bezerra et al. 2015). Although
comparisons were made with other tissues (e.g., muscle,
kidney, and scutes), the liver was the only one that showed
a significant relationship with the environmental con-
centrations, which can be explained by the role it plays in
the storage and redistribution of recently ingested Hg
(Schneider et al. 2013). Thus, the characteristics and func-
tion of each tissue are essential to understanding the
metabolism of Hg and other metals in sea turtles.
Most Hg monitoring studies using sea turtles involved the

utilization of internal organs (e.g., liver, kidney, and
muscle), proving effective as estimators of environmental
Hg concentrations (Bezerra et al. 2015; Rodriguez et al.
2022). However, due to their status as endangered species,
this type of sampling is not viable for monitoring programs,
while the use of non-invasive methods such as blood and
keratinized matrices (e.g., scutes and nails) allows periodic
monitoring (Sakai et al. 2000; Day et al. 2005; Bezerra et al.
2012; Rodríguez-Gutiérrez et al. 2020). Both tissue types

can show more recent (e.g., blood) and longer term (e.g.,
scutes and nails) exposure (Day et al. 2005; Benjamin et al.
2018), characterizing bioaccumulation, patterns of temporal
exposure to Hg and other trace metals (Bezerra et al. 2012;
Schneider et al. 2015; Barraza et al. 2019; Villa et al. 2019).
The study conducted by Day et al. (2005), found in the
loggerhead sea turtle (Caretta caretta) along the south-
eastern coast of the United States a relationship between Hg
concentrations in blood and scute samples and the foraging
areas with greater contamination. Proximity to sources of
contamination allows us to understand the differences
between Hg concentrations in species of sea turtles, not
only at the regional level but also at the global level.
According to Rodriguez et al. (2022), the high concentra-

tions of Hg found for loggerhead sea turtles in the
Mediterranean Sea compared to the Atlantic and Pacific
Oceans, can be explained by the high density of submarine
volcanoes and regional anthropogenic contamination (Selin
2009; Cinnirella et al. 2019; Tseng et al. 2021). Robust
findings for Hg concentrations in fish and marine mammals
supports the trend of elevated levels in sea turtles and the
tendency to be higher than other areas within the Atlantic
Ocean (Gworek et al. 2016; Kershaw and Hall 2019;
Rodriguez et al. 2022).
Regions used as foraging areas by different species of sea

turtles are especially important in Hg monitoring (Rodrí-
guez-Gutiérrez et al. 2020) since diet is considered the main
route of MeHg exposure (Gray 2002). Comprehending how
the diet influences Hg concentrations in sea turtles allows
for an understanding of the possible risks of consuming
their meat and eggs (Green et al. 2010; Ross et al. 2016);
generalized dietary groupings include vegetation (green sea
turtles), jellyfish (leatherback sea turtles, Dermochelys
coriacea), sponges (hawksbill sea turtles, Eretmochelys
imbricata), and crustaceans (loggerhead sea turtle).
The GBMS database revealed that of the six species of

sea turtles with tissue Hg concentrations (egg or blood),
loggerhead sea turtles have the highest average egg Hg
concentrations (Fig. 14). This finding holds significant
implications for local communities that rely on this species’
eggs as supplemental protein (Ross et al. 2016; Guzmán
et al. 2020; Tapilatu et al. 2020). Regions, where sea turtles
may need to be monitored more intensively for elevated
levels of Hg, include the Caribbean Sea, the Arabian Sea,
and especially the Mediterranean Sea (Rodriguez et al.
2022). Areas with knowledge gaps in Hg exposure
information are across the South Pacific (Rodriguez et al.
2022).
The lack of a standardized sampling methodology poses

challenges in utilizing these data for global-scale environ-
mental monitoring programs. The establishment of a
standardized sampling methodology is imperative for future
studies. Furthermore, using the carapace, as documented by
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Barrios-Rodríguez et al. (2023), is essential to standardize
the collection point of scute samples due to differences
among the vertebral, costal, and marginal scutes. The
application of these guidelines together with a thorough
assessment of characteristics such as diet, distribution area,
contamination sources near foraging areas, and the age
range of the individuals under study would allow a distinct
comprehension of the origin of Hg in sea turtles. This
approach would also aid in delineating species’ disparities
and investigating worldwide Hg contamination.

Seabirds – ecological health assessment

Rationale and caveats for biomonitoring Seabirds occupy
a broad range of trophic levels, but most seabirds occur high
in the food web and therefore biomagnify elevated con-
centrations of Hg and are therefore important bioindicators
(Monteiro and Furness 1995; Mallory and Braune 2012;
Elliott and Elliott 2013; Provencher et al. 2014; Gilmour
et al. 2019a, b; Albert et al. 2021). Seabirds permit Hg
monitoring across large geographical scales and variations
within the same species or family over longitudinal (e.g.,
brown noddy, Anous stolidus, for the intertropical zone, and
Adélie penguin, Pygoscelis adeliae, for the circumantarctic
area (Cusset et al. 2023) or latitudinal scales (e.g., skuas and
jaegers for both southern and northern hemispheres; Albert
et al. 2022; Carravieri et al. 2017; Fleishman et al. 2019).
The use of different tissues with different integration time
(e.g., generally blood reflects short-term exposure and adult
feathers reflect long-term exposure) constitute relevant
approaches to provide integrated values of Hg contamina-
tion over different time scales. The variation in Hg con-
tamination in seabird tissues can thus reveal differences in
the degree of contamination between major ocean basins, as
well as latitudinal gradients of contamination within basins,
and trends at a series of spatial and temporal scales.

Mercury concentrations in adult body feathers generally
reflect the bird’s exposure since the last molt. The
significant remobilization of Hg stored in internal tissues
during molting leads to depuration of up to 90% of the Hg
stored since the last molt (Agusa et al. 2005a, 2005b;
Braune 1987; Honda et al. 1986). Interpretation of feather
Hg concentrations can be challenging as levels can relate to
MeHg dietary uptake from different foraging sites from
where the bird has been (breeding, migratory, or wintering)
and prey items, level of stress, and age. Mercury
biomonitoring deliberations could consider tracking adult
feather, blood and egg Hg concentrations in Procellariforms
or other seabirds (Fig. 15) and incorporate differences in
ocean basins, proper interpretation of tissue types as
associated with species’ ecology, movements, and diet.
Tracking selenium body burdens is also important when
interpreting toxicity of MeHg to seabirds (Cruz-Flores et al.
2024).
Use of feather Hg concentrations from chicks is difficult

as they are challenging to interpret without accounting for
age because rapid chick growth rates disassociate Hg in
feathers with internal tissues (Peterson et al. 2019) as well
as carryover from adult body burdens (Carravieri et al.
2023). However, it provides the advantage to reflect local
contamination from the food brought by the adults to feed
their chicks (Blévin et al. 2013). Mercury from multiple
tissue types can be converted into a standard unit such as
blood equivalencies to assess changes over time in seabirds
(Pollet et al. 2022).
Due to their foraging strategies, behavioral ecologies, and

life-history traits (e.g., breeding sequence, molting strate-
gies, foraging ranges, migration patterns), seabirds gener-
ally have elevated body burdens of Hg that can ultimately
impact their fitness, reduce their reproductive capacity and
affect their population sizes over time (Braune et al. 2006;
Tartu et al. 2013; Goutte et al. 2014a, b; Bond et al. 2015;

Fig. 14 Mercury concentrations
in sea turtles. Gray bars illustrate
the arithmetic mean ± SD of
global total Hg concentrations
(µg/g, ww) in egg (light gray)
and blood (dark gray) tissues of
six sea turtle species
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Bauch et al. 2022; Chastel et al. 2022). For instance,
particular concerns arise for adverse Hg effects on the
increasingly rare ivory gull (Pagophila eburnea, Braune
et al. 2006; Bond et al. 2015) and there is evidence of
physiological harm to the near-threatened, black-vented
shearwater (Puffinus opisthomelas; Soldatini et al. 2020)
and sublethal effects on immunity, liver function and
breeding parameters in an Antarctic seabird – the brown
skua (Stercorarius antarcticus) (Ibañez et al. 2024). Many
studies have focused on seabird Hg tissue concentrations
from tropical to polar regions and from coastal to oceanic
zones, covering most of the world’s oceans. Nevertheless,
the South Pacific and other areas of the Southern Hemi-
sphere appear to be less documented while the Arctic has
received special attention, partly because seabirds are a food
resource for human populations (AMAP 2011; Albert et al.
2021; Schneider et al. 2023).
The GBMS database shows that seabirds exhibit a wide

range of Hg concentrations across tissue types (e.g.,
feathers, blood, eggs), driven by spatial differences, trophic
ecology as well as phylogeny. For example, penguins
generally have the lowest Hg concentrations in feathers,
blood, and eggs, whereas Procellariiforms (e.g., petrels,
shearwaters, storm-petrels, and albatrosses) generally have
the highest Hg body burdens (Fig. 15). Because of their
large diversity, the Procellariiforms are a well-studied group
and display a wide range of tissue Hg concentrations that
reflect phylogenetic and physiological differences with
albatrosses exhibiting the highest Hg concentrations (Muir-
head and Furness 1988; Stewart et al. 1999; Anderson et al.
2010; Tavares et al. 2013; Bustamante et al. 2016; Cherel
et al. 2018; Mills et al. 2020).
The most important factor for predicting seabird Hg

exposure is their foraging ecology (e.g., Carravieri et al.
2014). Because seabirds use a wide range of habitats, from
the coastal margins to the open ocean, species or individuals
with differing foraging behaviors can reflect Hg contamina-
tion from different parts of the ecosystems both horizontally

(e.g., coastal and oceanic food webs) and vertically (i.e.,
benthic, epipelagic, and mesopelagic food webs). Therefore,
the study of a group of seabirds with contrasting ecology
from the same region allows determination of MeHg
availability for multiple marine zones and thus provides a
more holistic view (Ochoa-Acuña et al. 2002; Bond and
Diamond 2009; Stenhouse et al. 2018; Pollet et al. 2023).
For example, crustacean-feeding seabirds have lower Hg
exposure than cephalopod- and fish-feeders (Carravieri et al.
2014) and epipelagic seabirds have lower Hg exposure than
those relying on mesopelagic prey (Ochoa-Acuña et al.
2002; Furtado et al. 2021). Seabirds of the highest trophic
levels (e.g., albatrosses or skuas) are therefore at risk to the
effects of MeHg toxicity that are associated with potential
long-term population declines and potentially can be
impacted by co-occurring contaminants such as persistent
organic pollutants (Goutte et al. 2014a, b) or by deficiency
in selenium, which protects against Hg toxic effects
(Manceau et al. 2021b).
Based on the GBMS database, storm-petrels breeding in

the Northern Hemisphere have feather Hg concentrations
that are ten-fold higher (13.8 ± 3.7 µg/g) than populations
breeding in the Southern Hemisphere (2.1 ± 1.8 µg/g). Such
a difference is not found for the Procellariidae (8.4 ± 7.4 vs
11.1 ± 12.5 µg/g, respectively). Differences between hemi-
spheres could be explored further using seabirds with
similar trophic ecology as well as close phylogeny.

Loons/Divers

Rationale and caveats for biomonitoring Species within
the Order Gaviiformes (loons or divers) are piscivores that
breed on freshwater ponds and lakes in temperate and
Arctic ecosystems of the Northern Hemisphere. In the
winter, all loon species migrate to marine ecosystems (with
parts of some populations overwintering on freshwater
lakes). The two largest loon species (common loon and
yellow-billed loon, Gavia adamsii) are obligate piscivores

Fig. 15 Global Hg
concentrations in seabirds.
Stacked bars illustrate the
arithmetic mean ± SD of global
total Hg concentrations (µg/g,
ww) in three tissues: light gray
(fw in feathers; n= 5314), gray
(ww in blood; n= 2872) and
dark gray (ww in eggs;
n= 1051) of four seabird
families within the Order
Procellariformes
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and accordingly have some of the highest average Hg body
burdens of birds in the world. Mercury biomonitoring
deliberations could consider tracking adult and egg Hg
concentrations in all loon/diver species, with an emphasis
on the two largest species (Fig. 16) and account for dif-
ferences in body size, age, sex, prey availability and
waterbody type (e.g., lake or reservoir).
Loons have been used as bioindicators of MeHg

availability in both their breeding and wintering areas for
several decades for the common loon (Meyer et al. 1998;
Scheuhammer et al. 1998; Evers et al.
1998, 2003, 2008, 2011a; Burgess et al. 2005; Jackson
et al. 2016; Schoch et al. 2020) and more recently for the
yellow-billed loon (Evers et al. 2014) and red-throated loon
(Gavia stellata; Eriksson et al. 1992; Schmutz et al. 2009).
The effects of Hg on loon reproductive success are well
established (Burgess and Meyer 2008; Evers et al.
2008, 2011b; Depew et al. 2012b) and are used as
benchmarks for evaluating ecological concern in
piscivorous birds.
In Canada, the common loon and its prey are being

monitored to evaluate the success of national regulatory
standards to reduce Hg emissions (Scheuhammer et al.
2016); and recent findings indicate continued adverse
reproductive impacts from Hg across Canada (Tozer et al.
2013), including an annual loss of 0.01 fledged chicks per
territorial pair over the past 40 years in Ontario due to
MeHg burden in prey (Bianchini et al. 2020). Loons are
being used as a standard bioindicator across the United
States as well (Evers et al. 1998, 2003). Based on original
research (Evers et al. 1998), and supported by other
datasets over the past two decades, the GBMS data was
used to demonstrate a west to east increasing gradient of
MeHg availability in lakes within temperate and boreal

forest ecosystems, with Alaskan breeding populations
having the lowest Hg concentrations and eastern North
American populations the highest (Fig. 16). The smaller
loon/diver species, while less piscivorous and having
lower Hg concentrations (Jackson et al. 2016), remain
potential bioindicators for MeHg availability across their
ranges, especially in Scandinavia (Eriksson et al. 1992;
Eriksson 2015).

Raptors

Rationale and caveats for biomonitoring Birds of prey, or
raptors, comprise a large and varied group of birds generally
characterized as predators. Several raptors at the species
(e.g., osprey, Pandion haliaetus) or genus (Haliaeetus
eagles) levels have near global distribution and so are
commonly used in spatial and temporal contaminant mon-
itoring efforts (Bowerman et al. 2002; Hollamby et al. 2004;
Weech et al. 2006; Grove et al. 2009; Henny et al. 2009;
DeSorbo et al. 2018; Sun et al. 2019; Bjedov et al. 2023). In
breeding areas, developing nestlings of many raptor species
are often more efficiently captured for tissue sampling than
resident adults – even though chick feather Hg concentra-
tions are challenging to interpret. Nestlings can be effective
for spatial and temporal Hg monitoring since they reflect
exposure over a well-defined period of nesting development
(e.g., six weeks), while adult exposure is more easily linked
to risk (Ackerman et al. 2016; Evers 2018).
Adult raptors consistently exhibit higher Hg concentra-

tions than nestlings, largely due to nestlings’ ability to
depurate MeHg into growing feathers (Ackerman et al.
2011) and the bioaccumulation that outpaces depuration and
demethylation, especially for older individuals. In both age
groups, individuals sampled in association with nesting

Fig. 16 Mercury concentrations
in loons (n= 4797). Gray bars
illustrate the arithmetic
mean ± SD of global total Hg
concentrations (µg/g, ww) in
common and yellow-billed loon
indexed blood across parts of the
northern hemisphere (from
10–180° W) from the GBMS
database. Environmental
concentrations that have a 10%
or more reduction in
reproductive success (e.g.,
EC10) are based on Table 3b
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territories generally reflect MeHg exposure in the food web
from that territory (Bowerman et al. 1994; DeSorbo et al.
2018). Greater MeHg availability associated with increasing
elevational gradients (DeSorbo et al. 2020) or varying
across subpopulations (Sun et al. 2019) have also been
shown for Haliaeetus eagles. Mercury biomonitoring
deliberations could consider tracking adult, nestling, and
egg Hg concentrations in piscivorous raptors (e.g., Pandion
and Haliaeetus species) and some terrestrial raptors (e.g.,
Accipiter and Falco species) (Fig. 17) as long as an
accounting of differences in body size, dietary habits, and
habitat type use among species is considered.
Piscivorous raptors, namely osprey and Haliaeetus

eagles, are well-suited for Hg biomonitoring within and
across multiple habitat types (marine, estuarine, river, lake)
(Jackson et al. 2016; Rumbold et al. 2017; DeSorbo et al.
2018; Sun et al. 2019). Haliaeetus eagles are key sentinels
in environmental programs used to monitor spatial and
temporal Hg exposure patterns in North America, particu-
larly in the U.S. Great Lakes ecosystem (Bowerman et al.
2002) and in Fennoscandia (Sun et al. 2019; Gómez-
Ramírez et al. 2023). A study of bald eagles (Haliaeetus
leucocephalus) in the Great Lakes of the United States
found evidence that Hg adversely affects a proportion of
this population (Rutkiewicz et al. 2011); in that study,
14–27% of individuals sampled were exposed to Hg at
concentrations associated with subclinical neurological
damage.
The GBMS database reveals that piscivorous raptors such

as osprey and Haliaeetus eagles tend to exhibit the highest
adult blood Hg concentrations among raptors (Fig. 17).
Raptor species specializing in bird prey (e.g., many
Accipiter and Falco spp.) generally have higher average
Hg concentrations (Keyel et al. 2020) than those predomi-
nantly targeting small mammals (e.g., Buteo and Circus

spp.) (Bourbour et al. 2019), while obligate scavengers are
generally exposed to low levels of Hg (Herring et al. 2018).
While piscivorous raptors were predominantly empha-

sized in past Hg biomonitoring, recent studies show that
MeHg is also prevalent in terrestrial-based food webs, and
that invertivorous birds (Passeriformes) can have elevated
MeHg concentrations (Jackson et al. 2011a, 2015; Evers
2018) that can result in levels of concern in raptors such as
Accipiters and falcons that feed on those birds (Newton
et al. 1999; Barnes and Gerstenberger 2015, 2019;
Bourbour et al. 2019; Keyel et al. 2020). Studies that
documented sublethal dietary MeHg exposure in captive
American kestrels (Falco sparverius) demonstrated neuro-
toxic impacts (Bennett et al. 2009) and reproductive harm
(Albers et al. 2007) and provide threshold benchmarks for
wild populations. Other foodwebs of raptors should also be
considered and mindfully assessed – for example, the
trophic transfer in a novel foodweb of some striated
caracara populations (Phalcoboenus australis), which
focused on southern rockhopper penguins (Eudyptes
chrysocome) for parts of the year, resulted in highly
elevated Hg concentrations (Balza et al. 2021).

Freshwater birds

Rationale and caveats for biomonitoring As conferred,
freshwater habitats are often conducive to MeHg production
and bioaccumulation, and freshwater birds are among the
most numerous non-marine birds exposed to naturally ele-
vated levels of MeHg contamination. There are numerous
freshwater bird species that are appropriate for long-term
sampling for environmental Hg biomonitoring (Fig. 18).
Among these, Forster’s terns (Sterna forsteri), Caspian terns
(Hydroprogne caspia), and Clark’s grebes (Aechmophorus
clarkii) are the most Hg contaminated bird species in

Fig. 17 Global Hg
concentrations in raptors
(n= 3130). Stacked bars
represent the global arithmetic
mean ± SD of total Hg
concentrations in blood (µg/g,
ww) of adult (light gray) and
juvenile (dark gray) age classes
of six selected Genera of raptors
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western North America (Ackerman et al. 2016). Shorebirds
can also be highly exposed to Hg contamination in breeding
(Ackerman et al. 2007; Eagles-Smith et al. 2009a; Har-
greaves et al. 2010; Perkins et al. 2016; Chastel et al. 2022;
Perkins et al. 2023) and wintering areas (Lucia et al. 2014;
Burger et al. 2018; Correia et al. 2023), and small differ-
ences in foraging strategies can result in large differences in
Hg concentrations among species (Ackerman et al. 2007).
Other freshwater and estuarine birds of interest for Hg

biomonitoring include kingfishers (Evers et al. 2005;
Zamani-Ahmadmahmoodi et al. 2009; Hurtado et al.
2023; Oliveira et al. 2023; Pisconte et al. 2024), rails
(Cumbee et al. 2008; Tsao et al. 2009; Ackerman et al.
2012; Casazza et al. 2014), and wading birds such as herons
(Goutner et al. 2001), night-herons (Henny et al.
2002, 2007), ibis (Mullié et al. 1992; Klekowski et al.
1999; Heath and Frederick 2005), and egrets (Frederick
et al. 1999, 2002; Sepúlveda et al. 1999a, 1999b; Rumbold
et al. 2001; Zamani-Ahmadmahmoodi et al. 2010).
Documented adverse effects of Hg are known for

shorebirds (Ackerman et al. 2008; Eagles-Smith et al.
2009a; Lucia et al. 2012), terns (Hoffman et al. 2011;
Herring et al. 2010; Braune et al. 2012), rails (Heinz et al.
2009; Ackerman et al. 2012), and wading birds (Heinz et al.
2009; Sepúlveda et al. 1999a, 1999b; Frederick and
Jayasena 2011) and therefore provide baseline information
that can support the interpretation of meaningful Hg trends.
As with other bird species, monitoring programs for
freshwater birds could include tracking adult Hg concentra-
tions in blood and eggs and should account for differences
in sexes, sampling dates, locations, and habitats.

Landbirds

Rationale and caveats for biomonitoring Many species of
invertebrate-eating birds (herein called landbirds) are also at
elevated risk to Hg exposure. Remarkably, landbirds can

exhibit higher tissue Hg concentrations than fish-eating
birds within the same ecosystem (Evers et al. 2005; Kopec
et al. 2018; Sayers et al. 2023). They may also be more
sensitive to MeHg, resulting in a higher likelihood of
adverse impacts on reproductive success (Heinz et al. 2009;
Jackson et al. 2011b; Whitney and Cristol 2017). An
increasing number of studies characterizing Hg exposure in
songbirds (Passeriformes) are demonstrating that certain
clades are at higher risk than others, based largely on
foraging behavior, and breeding habitats (Cristol and Evers
2020). Generally, gleaning, flycatching, and “predatory”
songbirds that breed in wetland habitats (Edmonds et al.
2010; Jackson et al. 2011a, 2015, 2020; Hartman et al.
2013; Ackerman et al. 2016; Pacyna et al. 2017; Ackerman
et al. 2019), including estuaries (Lane et al. 2011; Kopec
et al. 2018; Sayers et al. 2021), rice fields (Abeysinghe et al.
2017; Xu et al. 2024) and tropical evergreen forest flood-
plains (Sayers et al. 2023) are at highest risk of Hg expo-
sure, especially species that forage on predaceous
arthropods such as spiders (Cristol et al. 2008; Janssen et al.
2023). The availability of MeHg to tropical resident song-
birds (and other landbird groups) is increasingly becoming
more evident and are more elevated for certain foraging
guilds and habitat types (Lane et al. 2013; Townsend et al.
2013). Sayers et al. (2023) analyzed over 1800 individual
neotropical Passeriformes and found warblers, woodcree-
pers, antbirds, and wrens to have the most elevated body
burdens of Hg.
Mercury biomonitoring deliberations could consider

tracking adult Hg concentrations in blood or feathers of
landbirds, with an emphasis on families known to exceed
thresholds of interest (0.7 µg/g blood Hg), including 8 of 21
(38%) passerine families (see Table 3b for thresholds and
Fig. 19 for Hg profiles) and incorporate differences in body
size, prey availability and habitat type. A similar analyses of
passerine blood Hg data collected within the new initiative
called Tropical Research for Avian Conservation and

Fig. 18 Mercury concentrations
in four general freshwater bird
groups (i.e., rails, grebes, terns,
and shorebirds; n= 19,862).
Bars illustrate the arithmetic
mean ± SD of total Hg
concentrations (µg/g) in body
feathers (fw), blood (ww), and
eggs (ww) from the GBMS
database
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Ecotoxicology (TRACE) Initiative found 23 of 51 (45%)
Neotropical families with individuals exceeding thresholds
of interest (Sayers et al. 2023).
Songbird species that spend most of their annual life cycle

within wetland-oriented ecosystems and that migrate long-
distances (e.g., neotropical migrants or Palearctic migrants)
may also be at great risk of chronic Hg exposure adversely
impacting migratory and reproductive success (Jackson et
al. 2011b; Varian-Ramos et al. 2014; Ma et al. 2018a). New
findings on elevated Hg exposure and migration physiol-
ogy/behavior indicate significant adverse impacts are
possible, especially for long-distance migrants that may
experience decreased flight endurance (Seewagen et al.
2016, Seewagen 2020; Ma et al. 2018b; Branco et al. 2022)
that could also be related to increasing flight feather
asymmetry in high Hg individuals (Herring et al. 2017).
Models including ones predicting Hg exposure to neotro-
pical migrants now demonstrate that warblers (Paruilidae)
are a particularly vulnerable group (Sayers et al. 2023). The
GBMS data can be used for quantifying broad trends in
different taxa – such as the higher Hg burdens in some

songbird families (e.g., Troglodytidae, Emberizidae, and
Icteridae)) versus those that likely forage more on seeds and
berries from upland habitats (e.g., Cardinalidae, Calcariidae
and Fringillidae).

Marine mammals – toothed and baleen whales, pinnipeds,
and polar bears

Rationale and caveats for biomonitoring Recent studies
suggest that Hg concentrations in marine mammals have
increased approximately 20 times relative to pre-industrial
concentrations (Dietz et al. 2009; AMAP 2011). Of the four
broad groups of marine mammals (toothed and baleen
whales, seals and other pinnipeds, and polar bears, Ursus
maritimus), toothed whales (Odontoceti) generally have the
highest Hg body burdens (Fig. 20). Toothed whales include
about 88 species of whales, dolphins, and porpoises and
prey on higher trophic level organisms than baleen whales.
Seals and other pinnipeds, such as walruses (Odobenus
rosmarus) and Stellar’s sea lions (Eumetopias jubatus), are
distributed around the world’s oceans and can also serve as

Fig. 19 Mercury concentrations
in in 21 families of songbirds in
the United States (n= 11,606).
Gray bars illustrate the
arithmetic mean ± SD of total
Hg concentrations in blood (µg/
g, ww) from the GBMS
database. For EC level
definitions see Table 3b

Fig. 20 Global Hg
concentrations from the GBMS
database for marine mammals
(n= 11,796). Gray bars
illustrate the arithmetic
mean ± SD of muscle total Hg
concentrations (µg/g, ww) in
four groups of marine mammals
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biomonitoring options. Mercury biomonitoring delibera-
tions should consider tracking muscle Hg concentrations in
toothed whale and various pinniped species (Fig. 20) and
account for differences in species, home range, ecology, and
interpretation of tissue types. Lastly, Hg biomonitoring in
polar bears has been used to provide insight into temporal
changes in MeHg availability in Arctic ecosystems and
should also be included in Arctic biomonitoring programs.
Compared to baleen whales, toothed whales generally

forage higher on the food web and as a result average 47
times higher Hg concentrations (Fig. 20). Average Hg
concentrations in many species of toothed whales are highly
elevated — and potentially high enough to cause physio-
logical, behavioral, or reproductive harm (Wagemann et al.
1998; Wagemann and Kozlowska 2005; Dietz et al.
2013, 2022).
The species of greatest concern from Hg contamination,

based on existing GBMS data, include the false killer
whale, killer whale, short-finned pilot whale, pygmy killer
whale, striped dolphin, Risso’s dolphin, bottlenose dolphin,
and various species of beaked whales (all with average Hg
concentrations greater than 5.0 µg/g, ww in the muscle;
Fig. 13). One reason for these elevated concentrations, in
addition to their high trophic position, is that cetaceans
cannot depurate MeHg through hair formation such as in
polar bears and seals or through feathers by birds (Dietz
et al. 2013). In general, Hg concentrations observed in small
toothed whales (e.g., the Franciscana and Guiana dolphins)
are considered low, and less relevant, when compared to
those found in larger odontoceti, especially delphinids.
However, it is important to note that these small dolphins
weigh almost half, or less, than the weight of most
delphinids (e.g., bottlenose dolphin) and therefore, because
of increased metabolism in smaller species, the doses of Hg
can be similar when accounting for individual size. Elevated
concentrations of muscular Hg have been observed in
endangered species of odontoceti, representing yet another
risk factor impacting their populations (Manhães et al.
2022).
Some pinnipeds, such as the ringed seal are considered

medium-trophic level predators and rely on large zooplank-
ton, epibenthic and under-ice crustaceans, and pelagic and
demersal fishes including Arctic cod and polar cod
(Boreogadus saida and Arctogadus glacialis, respectively)
for their diet (e.g., Lowry et al. 1980; Weslawski et al.
1994; Wathne et al. 2000). Other species, including bearded
seals (Erignathus barbatus) and walrus, are more omnivor-
ous, with diets that include benthic invertebrates (Born et al.
1981). This variation in diet influences the level of Hg
exposure. Spatial variation in Hg concentrations in ringed
seals suggests that the central and western Canadian Arctic
is higher in Hg than other Arctic regions including Alaska,
Greenland, Norway, and Russia (Rigét et al. 2005; Brown

et al. 2016). Mercury in seals has also been shown to vary
seasonally and is linked to variations in sea ice cover.
Periods of greater sea ice are related to higher Hg
concentrations, in part because seals are more reliant on
fish. During warmer seasons when sea ice is reduced, seals
can forage on a broader range of prey items, effectively
reducing their exposure to Hg (Houde et al. 2020).
Polar bears live most of their lives on sea ice, hunting

pinnipeds and other marine mammals. Seasonal variation in
polar bear Hg exposure is related to sea ice fluctuations and
availability of prey (Morris et al. 2022b). Higher Hg
concentrations have been observed in spring and autumn,
whereas low Hg concentrations have been observed during
winter months when prey are more difficult to locate
(AMAP 2011). Research has shown sex-specific differences
in Hg levels but also Hg sensitivity (Bechshoft et al. 2016).
While adult female polar bears have been found to have
higher Hg concentrations in hair than adult males, adult
males appear to be more sensitive with regards to Hg-
related health responses. Also, in polar bear offspring,
males were found to have higher Hg levels (Bechshoft et al.
2016). The different Hg concentrations in adult polar bears
may be due to sex-specific variability in the diet. It has been
suggested that female bears generally target smaller prey
items, such as ringed seals (mostly fish-eaters) that are
higher in Hg while males prey upon larger pinnipeds, such
as bearded seals and walruses, that primarily forage on
mollusks (Bechshoft et al. 2016). Males may also have
reduced Hg exposure because of greater consumption of
blubber, which is low in MeHg. Elevated Hg concentrations
in female polar bears and the transfer of MeHg to the polar
bear fetus represent a potential long-term conservation
concern that could affect future populations of polar bears
(Bechshoft et al. 2016). Like persistent organic pollutants,
MeHg is transferred from mother to fetus in polar bears and
the potential impacts require attention and further research
(Cardona-Marek et al. 2009; Knott et al. 2012; Bechshoft
et al. 2016).
As observed in ringed seals, spatial variation in Hg

concentrations in polar bears indicates hotspot areas in the
Canadian Arctic Archipelago and northwestern Greenland
(e.g., AMAP 1998; Brown et al. 2016; Dietz et al.
1998, 2000, 2013; Routti et al. 2011, 2012; AMAP 2021,
Dietz et al. 2022). These hotspots have recently been linked
to the presence of elevated MeHg in the upper 400 m of the
water column (AMAP 2021, Dietz et al. 2022).

Discussion

The GBMS database compiles relevant data at multiple
geographic levels that can be useful platforms for
understanding the breadth of existing biotic Hg data around
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the world. As illustrated above, the existence of a standar-
dized, queryable database allows for data to be analyzed
according to a variety of relevant factors. Geographically,
the world’s ocean basins and continents are suitable regio-
nal scales, although further reduction in area would likely
be more manageable and insightful. Taxonomically, bioin-
dicators of human exposure and/or ecological health that are
important for policy decisions within the Minamata Con-
vention are now identified, although their selection depends
on many factors identified in this paper.

The relationships among past and ongoing biomonitoring
programs and databases (that exist at multiple spatial and
jurisdictional levels), and how they can support the flow of
data that are both comparable and sufficient to meet spe-
cified requirements are the core of international policy-
related assessments. In this synthesis, the analyses have
focused on assembling information currently available in
the public domain into relevant categories that help inform
the overarching monitoring-related interests within the
Minamata Convention. This analysis provides insight into
gaps in spatial coverage of data around the world, which in
turn can facilitate the prioritization of cost-efficient and
strategic global biomonitoring frameworks. An example
would be a global monitoring framework distributed across
continents and ocean basins that ultimately can reflect
changes in environmental Hg loads directly related to
human health and the environment (Fig. 21).

Existing biomonitoring programs

Biomonitoring programs exist worldwide, particularly in
developed countries in the northern hemisphere (e.g., U.S.,
Canada, across several European countries, South Korea,
and Japan). However, only a few programs track long-term
patterns of both environmental inorganic Hg (e.g., air) and
the bioavailability of MeHg (e.g., fish). Existing biomoni-
toring programs were identified in a United Nations
Environment Programme review (UNEP 2016). For the

UNEP compilation, Hg biomonitoring programs were
identified following a formal global request. Responses
were compiled and provide the most up-to-date record of
existing local, regional, and global abiotic and biotic Hg
monitoring programs. These include programs underway
within many national networks, including initiatives in
Brazil, Canada, Colombia, Japan, Norway, Poland, South
Korea, Spain, Sweden, United Kingdom, and the United
States as well as a few regional and global networks (UNEP
2016). Data from these monitoring programs are in the
GBMS database if they were published in peer-reviewed
journals.

Some parts of the world are covered by long-established
regional monitoring programmes. Examples include the
Arctic, through the Arctic Monitoring and Assessment
Programme (AMAP 2021) which is largely based on
national programs such as Canada’s Northern Contaminants
Program (NCP) (Chételat et al. 2015) and comparable
programmes in other Arctic countries. The AMAP assess-
ments also utilize data from other relevant monitoring
initiatives such as the ARCTOX program for tracking Hg in
seabirds (Albert et al. 2019). Other established international
monitoring programmes exist for the European regional
seas: the Northeast Atlantic (OSPAR Convention), Baltic
Sea (HELCOM Convention) and Mediterranean Sea (Bar-
celona Convention).

There are several programs in the temperate regions of
the United States (e.g., the U.S. Environmental Protection
Agency’s seafood Hg monitoring program), European
national programs (e.g., ROCCH, Réseau d’Observation de
la Contamination Chimique), and Japan (e.g., Japanese
National Institute for Environmental Studies). However, in
developing countries and countries in economic transition
there are fewer national or regional long-term initiatives.
There are very few long-term Hg biomonitoring efforts in
tropical biomes that include global development priorities
such as Small Island Developing States or Least Developed
Countries.

Fig. 21 Conceptual diagram of
the relationships and process for
integrating existing data from
biomonitoring programs (e.g.,
Arctic Monitoring and
Assessment Program [AMAP],
Asia Pacific Mercury
Monitoring Network
[APMMN], and the Caribbean
Region Mercury Monitoring
Network [CRMMN]) to design
appropriate biomonitoring
frameworks to inform global
policy objectives of the
Minamata Convention
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A review of the geographical coverage of Hg biomoni-
toring networks reveals a general lack of regional initiatives
around the world, especially in Africa and Australia (UNEP
2016), which is notably similar to coverage of Hg con-
centrations in humans as well (Basu et al. 2018, 2023).
Most Asian countries are minimally involved with national
initiatives to monitor Hg levels in biota, notable exceptions
being Japan and South Korea where more extensive pro-
grams exist and may be expanded by the Asia Pacific
Mercury Monitoring Network (APMMN; www.apmmn.
org). Conversely, Hg biomonitoring is ongoing in many
countries within Europe, Oceana and across the Western
Hemisphere. Also, Environmental Specimen Banks can be
used as monitoring tools to provide long-term trends for
contaminants in the environment, including Hg (Day et al.
2014; Paulus et al. 2015; Qiu et al. 2015; García-Seoane
et al. 2017). Data that were generated from these monitoring
programs and were published in peer-reviewed journals are
now housed in the GBMS database.

To provide sustainable and long-term biomonitoring
capacity in key regions (e.g., Arctic, tropical areas asso-
ciated with ASGM, and Small Island Developing States), it
could be valuable to focus on stabilizing and expanding
existing local and national initiatives that use sample sizes
with sufficient statistical power for understanding spatial
gradients (such as biological MeHg hotspots; Evers et al.
2011b) and temporal trends (Bignert et al. 2004; Rigét et al.
2011; Morris et al. 2022a). Moreover, international colla-
boration and coordination among national programs could
help create harmonized regional approaches and integrate
biomonitoring activities into an interdisciplinary framework
to assess environmental and human health risk. This creates
an efficient, hierarchical framework whereby regional
efforts can then be amalgamated to represent global spatio-
temporal patterns. Mercury scientists from around the
world, comprising the Open-Ended Science Group (OESG)
and Technical Experts, are currently collaborating to com-
pile global data to support the first effectiveness evaluation
required by the Minamata Convention (UNEP
2019b, 2022).

A recent example of robust Hg monitoring efforts hap-
pening at a local level that are linked to local and regional
policy regulations to lower Hg emissions and releases from
anthropogenic sources is within New York State in the
United States. Here, over 47,000 Hg concentrations have
been collected in biota over nearly a 50-year period
alongside detailed measurements in atmospheric deposition
(both wet and dry) across the state (Evers et al. 2020).
However, it was not until this information was collected
into a standardized database designed to answer specific,
policy-related questions that it was possible to adequately
assess the status and trends of Hg contamination and risk,
and to design more cost-effective monitoring programs in

the future. By assembling long-term tracking using standard
tissues and species of fish and birds, it was possible to
identify important declines in environmental Hg loads
(Adams et al. 2023). Several similar efforts have assembled
vast amounts of Hg data into U.S. regional databases and
serve to demonstrate the value of such synthesis for the
northeastern United States and eastern Canada (Evers and
Clair 2005), Great Lakes Region of the United States and
Canada (Evers et al. 2011a), and western United States and
Canada (Eagles-Smith et al. 2016b).

Although not included in the original Article 19 list of
bioindicators, some invertebrate taxa are emerging as
effective tools for tracing temporal and spatial trends in Hg
risk to ecosystems. In particular, the interagency (US
Geological Survey, National Park Service, US Fish and
Wildlife Service) Dragonfly Mercury Project (Eagles-
Smith et al. 2020) is the largest ongoing (2011-present) Hg
monitoring network in the United States. Mercury in dra-
gonfly larvae have been shown to be strongly correlated
with those in paired fish and amphibians from the same
water body (Eagles-Smith et al. 2020), as well as bio-
geochemical factors associated with Hg cycling (Willacker
et al. 2023). As such, these bioindicators can also be used
to better understand the factors and mechanisms influen-
cing MeHg bioavilability to food webs. Additionally, an
Integrated Impairment Index has been developed for dra-
gonfly larvae that equates their Hg concentrations to var-
ious ecosystem health risk benchmarks (Eagles-Smith
et al. 2020).

Linking existing biota Hg data and biomonitoring
programs with objectives of the Minamata
Convention

Biomonitoring programs and summarized biotic Hg data
can provide information to respond to three of the four
identified policy questions under the Effectiveness Evalua-
tion process established in Article 22 of the Minamata
Convention (UNEP 2019b):

i. Have the actions taken by Parties of the Minamata
Convention resulted in changes in mercury supply, use,
emissions, and releases into the environment?

ii. Have those changes resulted in changes in levels of
mercury in the environment, biotic media and vulnerable
populations that can be attributed to the Minamata
Convention?

iii. To what extent are existing measures under the
Minamata Convention meeting the objective of protecting
human health and the environment from mercury?

To answer these questions, biomonitoring will help with:
(1) establishing linkages between Hg source types and
biota, (2) describing spatial gradients, and (3) tracking
temporal trends.
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Establishing linkages between Hg source types and biota

A promising new method for linking major Hg source types
and Hg found in biota is the use of variations in stable Hg
isotope ratios (e.g., Blum et al. 2014; Kwon et al.
2014, 2020; Li et al. 2016, 2022; Renedo et al. 2020;
Manceau et al. 2021c). Mercury has seven stable isotopes
and undergoes mass fractionation following many different
patterns of isotope ratio variation during chemical reactions.
The most widely used isotopic ‘signals’ of sources and
chemical processes are: mass dependent fractionation
(MDF), odd isotope mass independent fractionation (odd-
MIF), and even isotope mass independent fractionation
(even-MIF). The magnitude of the three ‘signals’ as well as
the ratios between them can be combined to distinguish Hg
sources and chemical processes in the environment (Blum
and Johnson 2017).

By measuring the isotopic ratios of Hg in environmental
samples, certain linkages can be established, and others can
be eliminated in investigations of Hg sources (Le Croizier
et al. 2020). Conclusive source receptor-relationships are
challenging for Hg, even when using isotopes, in part due to
the extensive re-emission from the earth surface back to the
atmosphere after initial deposition (Outridge et al. 2018).
So, while the method is often not definitive by itself, by
combining isotopic data with other information based on Hg
concentrations and chemical speciation, the evidence con-
sidered together can be conclusive. There are many exam-
ples in the literature where Hg isotopes have been used to
separate the origin of Hg from global gaseous Hg back-
ground, global precipitation, coal burning facilities, chlor-
alkali facilities, gold mining, and other industrial sources –
particularly at local scales (Obrist et al. 2018).

Several studies have shown that local atmospheric
sources of Hg from industrial output can be identified in
precipitation and in gaseous Hg because they contrast in
isotopic composition with globally well-mixed atmospheric
reservoirs (Sherman et al. 2012). Similarly, industrial inputs
of Hg to rivers, lakes, and marine coastal areas can often be
distinguished from natural background Hg and atmo-
spherically deposited Hg based on isotopic composition
(Donovan et al. 2014). Mercury isotopes have also been
used as an indicator of Hg methylation and demethylation
rates and hotspots within ecosystems, and more broadly as a
tool for understanding Hg biogeochemistry (Donovan et al.
2016). In situations where at least two isotopically distinct
sources of Hg are present, Hg isotopes have also been used
to trace the source of Hg in biota and humans (Sherman and
Blum 2013).

To link Hg sources with changing Hg concentrations in
biota is complicated due to the complex post-emission
processing of Hg (i.e., between emission/release and uptake
in the food chain; Li et al. 2022). However, efforts have

been made to make the link evaluating Hg burdens in dif-
ferent biotic media. For example, in the Fennoscandian fish
Hg database more than 3000 lakes were classified per
dominant Hg pollution source based on expert judgment,
including (1) lakes with no local Hg pollution sources,
implying that atmospheric deposition of Hg is the dom-
inating pollution source, and (2) lakes with known local
industry point source(s) (Braaten et al. 2019). The data
indicated that for the point-source lakes (2), the temporal
trends showed a significant long-term decreasing trend
between 1965 and 2015. However, since 1995, the temporal
trends were not decreasing, indicating that most of the
change in concentrations happened earlier. The authors
argue that, in Fennoscandia, a peak in industry emissions
and releases occurred during the 1950s and 60 s and since
the 1980s local emissions and releases in Fennoscandia
have been reduced significantly. This is more recently
confirmed in an evaluation of the effectiveness of Norwe-
gian Hg regulations and policies (i.e., the National Mercury
Assessment for Norway; Braaten et al. 2022) where the
official governmental total emissions of Hg to the atmo-
sphere and releases to soil and water are documented. The
reasons for the decline in discharge and emissions in
Scandinavia are, in addition to regional and national control
legislation, improved technology and reduction of polluting
industrial production.

Describing spatial gradients

The availability of MeHg to high trophic level organisms
can vary widely in relation to environmental conditions.
Some ecosystems are more sensitive to inorganic Hg input
than others (Driscoll et al. 2007; Eagles-Smith et al.
2016a, 2018; Branfireun et al. 2020) and it is these areas
where biological MeHg hotspots (or ecosystem sensitive
areas) can form and are especially pronounced in higher
trophic-level organisms (Evers et al. 2007). For terrestrial
ecosystems, such areas are generally associated with wet-
lands and other temporally wetted habitats and can be
particularly pronounced in ecosystems with water chemistry
variables such as low pH, moderate to high dissolved
organic carbon concentrations, low to moderate primary
productivity, or availability of sulfur (Bishop et al. 2020). In
particular, fluctuating water levels can have an important
contribution in generating higher methylation rates and
increases in MeHg bioavailability (Evers et al. 2007;
Willacker et al. 2016); and may happen at daily (e.g., tidal),
monthly (e.g., artificial reservoirs and pools), or seasonal
(river floodplains and dry tropical areas flooded during the
wet season) timeframes, as well as in areas where water
levels are managed (e.g., rice agriculture).

Therefore, determining which areas may have elevated
MeHg availability requires consideration of other
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environmental factors in addition to the deposition or
release of inorganic Hg into the environment. Globally,
models can now identify the sensitivity of ecosystems and
therefore areas of greatest concern (Evers et al. 2023).
Because of an understanding of environmental factors that
drive methylation rates in temperate ecosystems in North
America and Europe, as well as a history of abiotic and
biotic Hg data collection there are many good examples that
quantitatively assess the dynamics between atmospheric
deposition of Hg and the ecological response in lakes.

For example, Kejimkujik National Park (Nova Scotia,
Canada) experiences relatively low precipitation-weighted
mean concentrations and deposition of total Hg (<5 ng/L
and <7.5 µg/m2/y, respectively; Dastoor and Larocque
2004; Dastoor et al. 2015), yet biotic MeHg accumulation is
some of the highest in North America (e.g., 0.30 and 3.0 µg/
g, ww in fish muscle and bird blood, respectively; Evers
et al. 1998; Burgess and Hobson 2006; Burgess and Meyer
2008; Wyn et al. 2009, 2010). Fennoscandia is another
example where the contemporary global “background”
levels of atmospheric Hg deposition support Hg con-
centrations in fish that often exceed healthy advisory levels,
even after half a century of decline in the measured fish Hg
levels of the region (Braaten et al. 2017, 2019). Most lakes
and catchments in the area are sensitive to inorganic Hg
input and have high methylation potential and MeHg
bioavailability because of important habitat character-
istics including a combination of low pH, high dissolved
organic carbon, high percentage of hydrologically-
connected wetlands, low primary productivity, and in
some cases catchment disturbance such as forest man-
agement or beaver activity (Bishop et al. 2009; de Wit
et al. 2014; Eklöf et al. 2018; Negrazis et al. 2022).
Ultimately, the identification of biological MeHg hot-
spots for freshwater and terrestrial eocsystems can be
improved via better standardization of existing biotic data
(Evers et al. 2011b; Ackerman et al. 2016; Eagles-Smith
et al. 2016a) to inform modeling of ecosystem sensitivity
at multiple spatial scales (Evers et al. 2023).

In marine regions, spatial patterns in biological MeHg
concentrations are less resolved but will be facilitated by the
development of a global biotic database of Hg concentra-
tions in marine species and supporting modeling efforts to
help explain observed spatial patterns. Differences in MeHg
concentrations across ocean basins are clear from the lit-
erature. For example, Médieu et al. (2021) reported a five-
fold spatial gradient in total Hg concentrations in albacore
tuna across the North Pacific Ocean. This trend is driven by
local anthropogenic Hg release along the Asia coast – where
total Hg concentrations in albacore tuna are highest. Glob-
ally, the highest concentrations of MeHg in seawater have
been reported in some regions of the Southern Ocean,
which also have elevated concentrations of MeHg in some

food webs (Cossa et al. 2011). Considerable spatial varia-
bility in seawater MeHg concentrations has been reported
among other ocean basins, with highest levels in subsurface
waters of the most biologically productive areas (Cossa
et al. 2009; Sunderland et al. 2009; Bowman et al.
2014, 2016; Munson et al. 2015; Kim et al. 2017). The
Arctic appears to have higher concentrations of MeHg in
near-surface seawater, which may reflect unique microbial
activity resulting from the combination of stratification,
freshwater discharges, and ice cover (Lehnherr et al. 2011;
Heimbürger et al. 2015; Schartup et al. 2015a). Much work
remains to gather more data from data-poor basins (see
Tables 5 and 6), and link MeHg production areas in the
ocean to tissue concentrations in marine biota.

Tracking temporal trends

Models simulating the deposition of Hg from anthropogenic
emissions at global scales (using several anthropogenic
emissions scenarios) indicate a best scenario of a decrease
of up to 50% in the Northern Hemisphere and up to 35% in
the Southern Hemisphere by 2035 relative to 2010 (Pacyna
et al. 2016). Although tracking Hg emissions, deposition,
and releases are important tools for understanding patterns
of environmental Hg loads (Sundseth et al. 2017), the
relationship between modeled (or measured) deposition and
MeHg concentrations in biota is poorly understood in both
freshwaters and oceans, and usually when measured
divergence in Hg trends in air and biota is likely (Wang
et al. 2019a). Reasons for this divergence are often unex-
plained but can sometimes be linked to shifts in trophic
structure and dietary preferences initiated by invasive spe-
cies (Lepak et al. 2019). Observations of long-term trends
are critical for improving the understanding of the linkages
and can be viewed through fish, birds, and marine mammal
studies using data within the GBMS database.

Trends in inorganic Hg concentrations are thought to
differ among ocean basins because anthropogenic emissions
have strongly declined in North America and Europe,
leading to large declines in atmospheric concentrations,
especially in the Atlantic Ocean (Zhang et al. 2016). Lee
and Fisher (2016) postulated that this may also explain
observed declines in Atlantic bluefin tuna MeHg con-
centrations between 2004 and 2012 in the North Atlantic
Ocean – which are supported in measured Hg concentra-
tions in blue marlin (Makaira nigricans) (Rudershausen
et al. 2023). In a Norwegian study, Braaten et al. (2020),
argued for a link between declines in Hg in fish in pristine
lakes since the 1970s and reduced sulfate deposition in
northern Europe. Mercury trends in biota (downward) and
sediment (upward) indicated a disconnect between lake Hg
loading and food web Hg bioaccumulation. The authors
suggested that reduced sulfate deposition constrains
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substrate availability for sulfate-reducing methylating bac-
teria (causing reduced food web MeHg exposure despite
increased Hg loading to the lake).

The relationship of changing fish MeHg concentrations in
different ocean basins is germane to a better understanding of
the geographic origins of Hg in seafood by country or region.
For example, in the U.S., 45% of population-wide MeHg
exposure originates from open oceans (particularly the Pacific
Ocean), 37% from domestic coastal ecosystems, and 18%
from aquaculture and freshwater fisheries (Sunderland et al.
2018). While, in the North Pacific Ocean, both atmospheric
emissions and freshwater discharges of Hg have been growing
on the Asian continent leading to increased Hg levels (Amos
et al. 2013, 2014; Streets et al. 2009; Sunderland et al. 2009;
Zhang et al. 2015). Most recent data indicate the rate of growth
in Hg emissions has been slowed by widespread imple-
mentation of emissions controls on new coal-fired utilities
(Giang et al. 2015; Streets et al. 2017, 2019). While temporal
data on fisheries in the North Pacific are more limited some
researchers have suggested that there is evidence for increases
in tuna MeHg concentrations over recent decades (Drevnick
et al. 2015), which is further supported by additional analysis
of bigeye tuna for the same area (Drevnick and Brooks 2017).

In freshwaters, the regional fish observations across the
northeastern United States (e.g., Millard et al. 2020; Richter
and Skinner 2020) and Fennoscandia (Braaten et al. 2017)
stand out as examples of both the potential and challenges
of long-term monitoring of biota. In the northeastern United
States, records are decades long for fish. The patterns here
are complex, despite documented decreases in atmospheric
deposition and regional Hg emissions to the atmosphere
(Evers et al. 2020). While fish of some species have shown
long-term declines, gamefish (e.g., largemouth bass) have
had stable Hg concentrations (Richter and Skinner 2020). In
the Adirondack, New York region within the United States,
comparative surveys of lakes sampled a decade apart in the
2000s showed Hg increases in fish (Millard et al. 2020).
The wide variation of responses seen in the biota of the
northeastern United States reveal the role of environmental
factors on Hg biomagnification, including climate and dis-
solved organic carbon concentrations in surface waters.

In Fennoscandia, the half century of records dating back
to the mid-1960s is composed of fish collected from dif-
ferent lakes, different species, and different sampling
methods. Nonetheless, the large number of fish and the
decades of Hg data make it possible to reasonably associate
both regional declines in atmospheric deposition and
reductions in local pollution sources have led to reduced
levels of Hg in fish (Braaten et al. 2019). Such large, long-
term data and associated analyses are a resource for both
designing new, long-term programs and the interpretation of
existing datasets compiled from different sources to achieve
better spatial and temporal coverage.

While freshwater fish Hg data regularly exist for the
North American and European continents because of
intensive field sampling efforts linked to human exposure
concerns since the 1960s (Johnels et al. 1967), birds are also
useful bioindicators of those and other continents and
biomes. Multi-decadal Hg biomonitoring in birds is well-
established in North American lakes using blood, feathers
and eggs in breeding common loons (Evers et al.
1998, 2003; Meyer et al. 2011; Schoch et al. 2020), in eggs
for herring gulls for the Great Lakes (Blukacz-Richards
et al. 2017), and in eggs for seabirds in the Arctic (Braune
et al. 2016; Bianchini et al. 2022) and Atlantic Canada for
the Leach’s storm petrel (Calvert et al. 2024).

Through the use of feathers from museum specimens,
birds can also provide a temporal profile that commonly
exceeds one century. Recent studies that have combined
retrospective Hg analyses of museum feathers with their
contemporary counterparts from field samples are particu-
larly important. For example, from the tundra of Alaska’s
North Slope feather Hg concentrations from 1845 to 2012
indicated a doubling of Hg body burdens for the yellow-
billed loon with projections of a four-fold increase by 2050
(Evers et al. 2014). Another retrospective study across
Canada and northeastern United States found feather Hg
concentrations from 1871 to 2015 from the rusty blackbird
(Euphagus carolinus) to have substantially increased by 10-
fold or more (Perkins et al. 2020).

To investigate changes in Hg over the past century in the
Arctic landscape, Dietz et al. (2011) analyzed Hg in polar
bear hair from northwest Greenland during 1892–2008.
Mercury concentrations showed yearly significant increases
of nearly 2% over that nearly 120-year time period. No
change in trophic levels over this period was detected from
stable isotopes, so changes in feeding patterns do not
explain the change in Hg exposure. These trends were in
accordance with an earlier review (Dietz et al. 2009). The
latter study examined the literature concerning the long-
term changes of Hg in humans and selected Arctic marine
mammals and birds of prey since preindustrial times (i.e.,
before 1800 A.D.), to determine the anthropogenic con-
tribution to present-day Hg concentrations and the historical
timing of any changes. The authors calculated historical
trends in Hg concentration in hard tissues of various Arctic
biota. They found that “on average, 92% of the present-day
Hg in Arctic wildlife is likely to be of anthropogenic origin”
(AMAP 2011), while studies across tissues and species
from the circumpolar Arctic generally did not demonstrate a
consistent trend during the last 30 years or so (Rigét et al.
2011; Morris et al. 2022a, b). This is related to varied
responses in different tissues (e.g., muscle vs. liver tissues)
and that biota Hg concentrations are influenced by many
factors, including changes in the food web (Morris et al.
2022a).
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Framework for global mercury biomonitoring

To develop a sustainable and long-term global biomoni-
toring framework that could link existing biotic Hg data and
biomonitoring programs with objectives of the Minamata
Convention, several criteria could be considered, including:
(1) stabilizing and expanding existing monitoring programs,
(2) identifying areas that have regional data gaps so new
programs can be purposely launched that define relevant
sample sizes necessary for understanding spatial gradients
that incorporate ecosystem sensitivity (Evers et al. 2011b)
and temporal trends (Rigét et al. 2011; Morris et al.
2022a, b), and (3) identifying an existing queryable global
environmental database platform to serve as a standardized
and interpretive source of biota Hg information (e.g., United
Nations Environment Program’s World Environment
Situation Room; www.wesr.unep.org).

Moreover, international collaboration and coordination
among national projects (emphasizing ratified countries)
could create harmonized regional approaches and would
integrate biomonitoring activities into an interdisciplinary
framework to assess ecological and human health risks.
Using the example of successful programs such as the
Northern Contaminants Program (NCP) in Canada for the
development of other national programs may also aid in
building capacity of Indigenous Peoples in monitoring and
research activities, which can lead to more robust mon-
itoring and a more comprehensive understanding on Hg
levels in the ecosystem and their possible drivers in addition
to helping guide policy development (Houde et al. 2022).
By developing a hierarchical framework, data compilation
would be easier and regional and temporal trends could be
assessed. Based on an information document for the Con-
ference of Parties for their fourth meeting of the Minamata
Convention on Mercury (UNEP 2022), guidance on mon-
itoring of Hg and Hg compounds to support evaluation of
the effectiveness can be grouped to achieve six objectives:
(1) Estimation of contemporary Hg concentrations for areas
without (i.e., background sites) or with (i.e., affected sites)
local anthropogenic sources; (2) Identification of temporal

trends; (3) Characterization of spatial patterns; (4) Estima-
tion of source attribution; (5) Estimation of exposure and
adverse impacts, and; (6) Quantification of key environ-
mental processes to improve our understanding of cause-
effect relationships.

Based on the knowledge of existing biotic Hg exposure,
data availability is generally sufficient for tracking temporal
trends and spatial gradients for all major taxa as bioindicators
for both human health and the environment in the Arctic
(AMAP 2021), as well as for fish in Canada and Europe
(covering parts of the boreal and temperate mixed forests).
There are some long-term Hg monitoring programs that
include birds in North America (e.g., loons [Gavia spp] in
temperate lakes of the United States and Canada; Scheu-
hammer et al. 2016; Evers et al. 1998, 2005, 2011a, 2020)
and in the Arctic and subarctic (Fort et al. 2017). Retro-
spective MeHg analyses of museum bird feathers (Frederick
et al. 2004; Head et al. 2011; Evers et al. 2014; Perkins et al.
2020) and mammal fur, whiskers, and baleen (Dietz et al.
2011) are a promising approach for expanding options for
examining temporal trends in many regions of the world.
Therefore, in the interest of using comparable data for rele-
vant terrestrial biomes and associated aquatic areas, based on
existing data (See Tables 5 and 6), we suggest that a matrix of
available data and museum specimens can respond suffi-
ciently to initial overarching questions related to temporal
trends and spatial gradients.

A generalized assessment of global Hg data availability
describes areas where existing data gaps are most notable -
such as within the tropical rainforest biome and associated
marine areas (Table 7). These areas are most problematic
when coupled with Hg releases from artisanal small-scale
mining activities and other major Hg source types. Infor-
mation for marine mammals is generally missing as well,
except for the Arctic Ocean. The preferred choice of trophic
level 4 or higher bioindicators by biome and general eco-
system type (i.e., land, freshwater, marine) is influenced by
objective (e.g., linking human Hg exposure, source types,
understanding spatial gradients and tracking temporal
trends) and several other factors (e.g., practicality,

Table 7 Generalized assessment of global Hg data availability at poor (Data gap), good (X) and excellent (XX) levels for trophic level 4
bioindicators within major biomes and associated marine areas for both ecological and human health bioindicators

Terrestrial biomes and associated marine areas Ecological health bioindicators Human and ecological health bioindicators

Freshwater
birds

Marine
birds

Marine
mammals

Freshwater
fish

Marine
fish

Marine
mammals

Arctic Tundra and Arctic Ocean XX XX XX XX XX XX

Boreal Forest-Taiga and N. Pacific and Atlantic Ocean X X Data gap XX X Data gap

Temperate Mixed Forest and Pacific and Atlantic Ocean XX X Data gap XX X Data gap

Tropical Rainforest and S. Pacific and Atlantic and
Indian Ocean

Data gap Data gap Data gap Data gap Data gap Data gap

The data availability category “excellent levels” indicates information is available for tracking both temporal trends and spatial gradients. This
assessment is based on quantified findings in Table 6
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sustainability, comparability, and cost effectiveness are all
factors to consider for Hg monitoring in biota).

One way to make a relatively standard comparison of
global Hg exposure in high trophic level fish species is to
assess the percentage that may exceed human health stan-
dards. Based on the GBMS database, the percentage of fish,
seabirds (based on eggs), and marine mammals that average
over or include individuals that exceed 0.46 µg/g, ww of total
Hg in edible tissue can be determined for taxonomic groups
of concern to people (Table 8). Notably, over half (or nearly
half) of the species, genera or families include individuals that
exceed 0.46 µg/g, ww in tuna, billfish, sharks, marine fish in
the Mediterranean and Caribbean Seas, and freshwater fish in
North and South America, and Europe, as well as marine
mammals. Africa has the greatest number of fish families that
are considered safe to consume by humans (for at least one
meal per week). A global analysis of freshwater fish for
muscle Hg concentrations within the GBMS database
(n= 312,335) indicates that 45% of the 131 families include
individuals that exceed 0.46 µg/g, ww.

A further breakdown of global Hg exposure as indicated
by biota can be viewed by biome. In the Arctic, standard
bioindicators have been selected by AMAP to monitor Hg
for human health and the environment and represent a long-
term existing dataset and confidence for future coverage
(AMAP 2021). In the taiga and boreal areas of the Northern
Hemisphere comparable Hg data are available (because of
relatively similar game fish species) in Canada, the United
States and Fennoscandia. The practicality and sustainability
of Canada’s NCP and those directed by the other country’s
respective governments makes the operation of standardized
Hg monitoring programs cost-effective (Depew et al. 2013;
Gandhi et al. 2014). The major exception for these northern
biomes is Russia (Morris et al. 2022a).

For temperate biomes in the western hemisphere, existing
(or recent) efforts are primarily in place in parts of the United

States (e.g., state efforts such as in New York; Millard et al.
2020) and parts of Europe (Braaten et al. 2019) for freshwater
ecosystems and some marine areas – although they rarely
reflect long-term datasets and are generally not standardized
across states, provinces, and countries. However, regional
efforts in the Great Lakes and national efforts in United States
rivers have provided standardized abiotic data over time
(Wathen et al. 2015a, 2015b; Grieb et al. 2020). Southern
hemisphere Hg biomonitoring efforts in temperate biomes are
not as strong as the northern hemisphere and if added could
contribute to the knowledge of hemispheric Hg cycling (Chen
and Evers 2023).

In tropical and subtropical areas, few Hg monitoring
efforts and datasets are in place. Environmental Hg-related
research has been significant in some countries, such as
Brazil and China, but are not as robust for Hg biomoni-
toring as in temperate areas. The practicality, sustainability
and comparability are also all challenging because of lim-
ited infrastructure and history of monitoring activities. In
addition, ecosystems and habitats that are susceptible to
creating elevated levels of MeHg availability that may or
may not be associated with ASGM contamination include
reservoirs (Ouédraogo and Amyot 2013), estuaries (Diop
and Amara 2016), and large wetlands (Daso et al. 2015).
River deltas and estuaries are especially of interest as they
have high methylating abilities and fisheries resources that
are important to local communities. There are very few
data from these ecosystems along the African coast, which
are among many examples where more investigations
could help to fill the extensive data gaps on the African
continent (see Table 6). In particular, human and ecolo-
gical exposure to MeHg is thought to be generally lower in
African versus North American and European temperate
lakes (i.e., the “tropical African mercury anomaly”; Black
et al. 2011). Since MeHg biomagnification rates appear to
be similar in African lakes to temperate and Arctic lakes

Table 8 Percentage of species or
families that include individuals
with muscle tissue Hg
concentrations exceeding the
recently updated. USEPA –

USFDA human health threshold
of 0.46 µg/g, ww (“choices to
avoid”)

Taxa group of interest to human health Taxonomic unit Number Percentage exceeding risk

Tuna Species (commercial) 6 of 9 67%

Billfish Species 5 of 7 71%

Sharks Genera 21 of 24 88%

Marine Fish – Mediterranean Sea Families 24 of 36 67%

Marine Fish – Caribbean Sea Families 25 of 39 64%

Freshwater Fish – African Families 3 of 16 19%

Freshwater Fish – South America Families 17 of 36 47%

Freshwater Fish – Asia Families 21 of 31 39%

Freshwater, estuarine, marine fish - Australia Families 7 of 18 38%

Freshwater Fish – North America/Europe Species 12 of 25 48%

Seabirds – Arctic and subarctic Species 6 of 20 30%

Marine Mammals – toothed whales Species 38 of 38 100%

Percentages are based on data from the graphs presented within this paper
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(Kidd et al. 2003), the selection of bioindicators needs to
be cautiously made in geographic areas considered to have
high sensitivity to Hg input (Evers et al. 2023). Ultimately,
tropical ecosystems are especially limited with Hg bio-
monitoring programs.

Across ocean basins (outside of the Arctic and Antarctic
Oceans), commercial fisheries for tuna and billfish provide a
platform for long-term, sustainable, and cost-effective
monitoring of Hg based on existing and regular capture
opportunities that can be coupled with sampling (Esposito
et al. 2018; Médieu et al. 2023). Nearshore fish monitoring
signifies Hg concentrations that may differ from those in
offshore more pelagic fish, especially when considering the
complexity and variable processes related to offshore Hg
deposition, methylation, bioavailability, and biomagnifica-
tion (Médieu et al. 2021). In response, high trophic level
species such as barracuda, snapper and grouper are impor-
tant bioindicators for evaluating nearshore MeHg avail-
ability to fish (Christian et al. 2024).

Mercury biomonitoring will need to incorporate
potential confounding impacts from global climate change
(Pinkney et al. 2015; Sundseth et al. 2017; Schartup et al.
2019; Bishop et al. 2020; Sonke et al. 2023), which is
supported by findings in marine ecosystems (McKinney
et al. 2015; Sundseth et al. 2015; Wang et al.
2023a, 2023b; Bargagli and Rota 2024), Arctic ecosys-
tems (McKinney et al. 2015; Sundseth et al. 2015; Ché-
telat et al. 2022; McKinney et al. 2022; Grunst et al.
2023), subarctic and temperate lakes (Chen et al. 2018),
temperate estuaries (Jonsson et al. 2017; Willacker et al.
2017), and terrestrial temperate (Eagles-Smith et al. 2018)

and tropical ecosystems (Yang et al. 2023). Specific
effects of global climate change that impact MeHg
availability include enhanced air-seawater exchange,
melting of polar ice caps and glaciers, increased thawing
of permafrost, and changes in estuarine sulfur bio-
geochemistry. However, how these landscape processes
relate to changes in biotic Hg exposure is relatively
unknown. Sunderland et al. (2018) demonstrated that
global climate change is altering fish harvest MeHg
exposures in species such as cod and pollock that are
sensitive to climate-driven warming of seawater.

Iterative efforts to link realistic and applied biomoni-
toring efforts at local levels with regional science-policy
groups aimed at assisting the Conference of Parties of the
Minamata Convention may ultimately help keep pace
with the many emerging scientific findings that may fill
existing information gaps. As the overall understanding
of source types and their ecosystem linkages, spatial
gradients, and temporal trends, and the interest of using
bioindicators for human exposure and ecological health
that reasonably reflect terrestrial, freshwater, and
marine environments, two overarching global biotic Hg
monitoring approaches have been identified for con-
tinents and oceans; these approaches are partly described
below and are more fully detailed in Evers and Sunder-
land (2019).

Continental framework for integrated mercury monitoring

To identify the best locations for global Hg monitoring
requires multiple defined steps (Fig. 22). An initial step is

Step 1
a. Map ecosystem 
sensi�vity spots based 
primarily on wetland, lake 
and river GIS layers at the 
con�nental level;
b. Iden�fy highest wetland 
area quality and greatest 
con�guous area using the 
Ramsar Conven�on;
c. Determine availability of 
exis�ng Hg data for 
targeted areas.

Step 2
a. Iden�fy overlap of 
exis�ng Hg data and 
ecosystem sensi�vity spots 
with ar�sanal small-scale 
gold mining (ASGM) and 
other Hg contaminated 
areas;
b. Iden�fy overlap with 
areas important for 
aqua�c-based animal foods 
for people (e.g., fish);
c. Iden�fy loca�ons with 
greatest overlap of 
important  biodiversity 
areas;
d. Iden�fy poten�al 
bioindicators for 
harmonized sampling and 
comparison.

Step 3
a. Select top ecosystem 
sensi�vity spots that have 
the most overlap with 
ASGM and other 
contaminated areas, 
important fishing areas, 
and key biodiversity areas 
per con�nent;
b. Use trophic level 4 or 
above bioindicators for 
assessing health and 
trophic level 3 or 4 for 
temporal trends;
c. Connect bioindicators 
with Hg sources using Hg 
isotopes.
d. Develop Hg 
biomonitoring programs at 
relevant spa�al and 
temporal levels that 
incorporate subsistence 
communi�es and 
Indigenous Peoples.

Fig. 22 Stepwise components
for developing a conceptual
continental approach using biota
for Hg monitoring (see Evers
and Sunderland 2019)
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to understand the complexities of a landscape and its
ability to methylate Hg and make it available in the
foodweb. Net mercury methylation rates are generally
high in wetlands – particularly in estuarine wetlands such
as mangroves, peatlands, and lake or rivers with shoreline
wetlands especially those associated with fluctuating
water levels. Forested areas are also an important factor
for increasing dry deposition rates of atmospheric Hg in
temperate (Driscoll et al. 2007; Obrist et al. 2018) and
tropical (Gerson et al. 2022) ecosystems, while agri-
cultural areas that introduce large amounts of phosphorus
and nitrogen to freshwater systems tend to dampen
methylation levels by promoting biodilution (Chen et al.
2008; Lavoie et al. 2013). As many of the most important
wetland areas in the world are identified and protected
through the Ramsar Convention (https://www.ramsar.org/
), their 2,341 locations covering 252,489,973 ha, along
with ASGM activities (e.g., Steckling et al. 2017), FAO
data, and Red List species as identified through the
International Union for Conservation of Nature
(https://www.iucnredlist.org/), can be feasibly combined
with the GBMS database to further advance analytical
assessments. For example, the identification and potential
overlap of ecosystem sensitivity spots with priority lakes,
rivers and wetlands may help prioritize areas of greatest
concern for protecting human health and the environment.
Similarly, summarizing information by watershed has
proven to be an important base area for mapping, pro-
viding additional hierarchical structure whereby the
choice of the most appropriate scale for analysis (i.e.,
choice of hydrologic unit codes [HUC], and land-use
impacts) will depend on the specific objectives being
assessed (Evers et al. 2023).

Oceanic framework for integrated mercury monitoring

The approach for monitoring Hg in oceanic areas greatly
differs from the continental approach (Fig. 23). The cycling
and movement of Hg in the world’s oceans varies by
hemisphere, basin, ocean depth, and juxtaposition with the
continental land masses and associated river deltas. There-
fore, Hg concentrations in fish, birds, and marine mammals
vary significantly. For example, bluefin tuna (representing
three sibling species – the Atlantic, Pacific, and Southern)
have average Hg concentrations in their muscle tissue
across six ocean regions that may vary three-fold (Fig. 2).
Reasons for this variation differ and need to be accounted
for when globally monitoring Hg in oceanic areas.

Based on the GBMS database, the species of highest Hg
concern with the greatest interest for human consumption
are the larger tuna species and swordfish. The Hg con-
centrations in tuna vary greatly by species (Fig. 2) because
of their growth rates, ultimate size, age, trophic level, and
ocean basin and therefore species selection is important.
Médieu et al. (2023) provide a template for monitoring Hg
in tuna, to standardize data collection and reporting, and
also suggest other environmental variables that could be
integrated into monitoring to aid in interpretation of spatial
and temporal trends. Coastal fish biomonitoring would
generally include different species – for the Caribbean a
new Hg biomonitoring network has identified four key
species (barracuda, mahi-mahi, and various snapper and
grouper species (Christian et al. 2024). While commercial
harvest of some of the highest-trophic level fish is important
for global Hg biomonitoring, perhaps some of the most
vulnerable populations are Indigenous Peoples and sub-
sistence communities who depend on a broad variety of

Step 1
a. Iden�fy dis�nc�ons among 
ocean basins of interest;
b. Collect FAO and na�onal 
commercial fisheries data for 
targeted ocean basins;
c. Iden�fy relevant exis�ng 
programs and Hg data 
sources. 

Step 2
a. Iden�fy tuna and billfish 
popula�ons of greatest 
commercial and recrea�onal 
interest by ocean basin for 
open ocean biomonitoring;
b. Iden�fy barracuda, mahi-
mahi, snapper, and grouper 
or other species for coastal 
ocean biomonitoring; 
c. Iden�fy other trophic level 
4 at-risk bioindicators, 
including sea turtles, birds 
and marine mammals, that 
are on the IUCN Red List.

Step 3
a. Determine exis�ng Hg data 
overlaps with best 
bioindicators for ocean basins 
of interest;
b. Conduct power analyses 
based on the species/groups 
selected and their known Hg 
concentra�ons within target 
ocean basin to determine 
sample size;
c. Collect samples from target 
bioindicators with an 
emphasis in areas with known 
elevated levels and/or data 
gaps.
d. Develop Hg biomonitoring 
programs at relevant spa�al 
and temporal levels that 
incorporate subsistence 
communi�es and Indigenous 
Peoples.

Fig. 23 Stepwise components
for developing a conceptual
oceanic approach using biota for
Hg monitoring (see Evers and
Sunderland 2019)
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biota for their local, traditional diet – which includes many
species with established highly elevated MeHg body bur-
dens in the Arctic and subarctic (Basu et al. 2018, 2023),
within tropical systems (Salazar-Camacho et al. 2020), and
across oceanic islands (Sabino et al. 2022).

Conclusions

Efforts to assemble disparate but related biotic Hg data
into standardized and comparable databases are essential
for understanding the patterns and trends of Hg exposure,
and for informing critical policies designed to lower Hg
risks and impacts to ecosystems and people. Building from
a history of successful regional efforts in North America,
we describe the use of existing monitoring programs and a
first effort to assemble a standardized global database of
published, peer-reviewed Hg concentrations in biotic tis-
sue - called the Global Biotic Mercury Synthesis (GBMS).
We use this database to identify critical knowledge gaps
and describe adoption of specific quantitative and replic-
able approaches to create harmonized biomonitoring
efforts that can be developed and made available to
countries. We provide examples of how to standardize
efforts to document where, when, how, and what to
monitor for tracking environmental Hg loads, their chan-
ges over time, and potential impacts on human and eco-
logical health.

To illustrate the value of GBMS data to environmental
policies, we present new syntheses of global Hg data in
relation to Minamata Convention objectives. Our findings
demonstrate that while there are a few large biological Hg
datasets, they generally do not provide the ability to
determine changes in biotic Hg exposure at regional or
global scales over decadal periods (with the notable
exceptions of AMAP, the Northern Contaminants Program
in Canada, and the Fennoscandian fish database) in
response to the obligations of the Minamata Convention
(Evers et al. 2016; Potera 2019; Rosendal et al. 2020).
Robust statistical approaches are critical for confidently
tracking biotic Hg concentrations in the many different
biomes around the world, and controlling for the effects of
other factors, such as global climate change, altered fora-
ging habitat, changes in primary productivity, and chan-
ging growth rates that can drive shifts in biotic MeHg
concentrations that are not due to altered anthropogenic
loading of Hg to the ecosystem. One factor in particular,
global climate change, will alter future MeHg concentra-
tions in biota in all biomes and ocean basins. Specific
effects of global climate change include enhanced air-
seawater exchange, melting of polar ice caps and glacier
ice sheets, increased thawing of permafrost and changes in
estuarine sulfur biogeochemistry – but how these

landscape processes relate to changes in biotic Hg expo-
sure is relatively unknown (Wang et al. 2019a).

Iterative efforts to link realistic and applied biomonitor-
ing efforts at local levels with science-policy groups aimed
at assisting the Conference of Parties of the Minamata
Convention will ultimately help keep pace with the many
emerging scientific findings that may fill existing informa-
tion gaps that are key for local landscape management as
well as global policymaking. Ultimately, the careful selec-
tion and use of bioindicators that closely match provisions
of the Minamata Convention (e.g., linkages to Hg sources,
spatial gradients, and temporal trends) can be a cost-
effective and time-efficient way to track human and ecolo-
gical health of anthropogenic loading of Hg into the air and
onto the water and landscape at a global level (Evers et al.
2016; Evers and Sunderland 2019). As described, the
methods for biomonitoring and the interpretation of the
tissues sampled are generally well-established for many
target taxa. The extensive knowledge of Hg exposure in a
wide range of fish and wildlife that are available in existing
monitoring programs and research efforts are described in
the peer-reviewed literature, and now in the GBMS data-
base. This therefore provides a platform for informed
selection of the appropriate taxa within specific biomes or
waterbodies. For example, a synthesis of the compiled
global Hg datasets that represent Hg concentrations of biota
ingested by people (i.e., freshwater and marine fish, sea-
birds, and marine mammals) found 45% of the 131 families
of representative organisms include individuals that exceed
the 0.46 µg/g, ww newly updated benchmark identified by
the United States government as food “choices to avoid”
(n= 312,335 individuals; Table 8).

Biomonitoring should build from existing programs,
which are generally found within developed countries at
local, national, and sometimes regional levels. Global pilot
projects based on existing networks with local organizations
and governmental agencies have been tested for fish (Buck
et al. 2019) and humans (Trasande et al. 2016), and regional
biomonitoring approaches in temperate and tropical marine
ecosystems are described (Evers et al. 2008; Christian et al.
2024). Generating a more coordinated global approach that
provides best practice examples, can connect existing bio-
monitoring programs and identify the ecosystem, taxa, or
geographic gaps that are both needed and feasible. Research
and monitoring efforts that work in an equitable and ethical
partnership with Indigenous Peoples and utilize Indigenous
Knowledge have been found to be particularly successful
and can also be used as examples (Houde et al. 2022).

In order to better understand and reduce the impact of Hg
on people and the environment, additional effort is needed
to bridge information and knowledge gaps more effectively.
There are many landscape, ecological, and demographic
factors that influence MeHg generation and bioavailability –
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many of which are known and can be used for scaling
models. Other factors that affect spatial gradients of biotic
MeHg exposure still need further investigations (e.g.,
ASGM and climate change). Once global needs and inter-
ests of the Minamata Convention are determined by the
Conference of Parties, we suggest that it is feasible to
generate cost-efficient and reliable biomonitoring approa-
ches at geographic scales of interest that can be integrated
with existing local and regional Hg biomonitoring net-
works. Invariably, a commitment to long-term standardized
regional biomonitoring approaches is needed - as proven by
a 50+ year global tuna Hg assessment that identified mul-
tiple limitations generated by high inter-annual variability
among species and geographical scale (Med́ieu et al. 2024).

Lastly, there is an urgency to monitor and assess the
influence of MeHg on biota because of the potential adverse
impacts to biological diversity (e.g., at ASGM sites:
Palacios-Torres et al. 2018; Dossou et al. 2024) during a
time when global stressors are causing long-term and sig-
nificant declines (Leclère et al. 2020; Eddy et al. 2021).
Recent evidence demonstrates that the multifaceted effects
of anthropogenic chemicals and other pollutants such as Hg
in the environment are posing a growing threat to biodi-
versity (Sigmund et al. 2023) and that there is justification
in targeting a wider scope of environmental contaminants
within strategies and actions associated with the post-2020
global biodiversity framework of the Convention on Bio-
logical Diversity (Sigmund et al. 2022).
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