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Abstract
Mapping dominant tree species in miombo woodlands is essential for enhancing their monitoring and management. 
We evaluated PlanetScope imagery to map Julbernardia globiflora, Brachystegia spiciformis, and Pterocarpus tinctorius in 
Tongwe Forest Reserve, Tanzania. The study assessed the effectiveness of PlanetScope bands in discriminating tree spe-
cies and investigated how different months/seasons influenced tree species classification. Optimal months (seasons) and 
spectral bands were selected using Principal Component loading, temporal pattern analysis, mean decrease in accuracy, 
and mean decrease Gini techniques. Random forest classification was employed for tree species classification, and accu-
racy was assessed using an error matrix. The study identified March, July, and September as optimal months for acquiring 
imagery, with effective bands including blue, green-1, green, yellow, red, and red-edge. July and September imagery in 
the dry season achieved higher overall accuracies of 65% and 69%, respectively, while March imagery in the wet season 
reached 55%. The highest overall accuracy of 72% was achieved using images from different seasons. Producer’s accuracy 
was highest for Brachystegia spiciformis (79%) and Julbernardia globiflora (95%), whereas Pterocarpus tinctorius had lower 
accuracy (25%). User’s accuracy varied with 74% for Brachystegia spiciformis, 70% for Julbernardia globiflora, and 67% for 
Pterocarpus tinctorius. Mapping accuracy was notably high for Brachystegia spiciformis and Julbernardia globiflora, reflect-
ing their high sample size (dominance) and distinct phenology. The yellow and red bands were particularly effective in 
distinguishing miombo tree species demonstrating PlanetScope’s capability. Future research should focus on scaling up 
PlanetScope’s application for broad miombo tree species mapping.

Article Highlights

• Multi-season imagery enhances the accuracy of mapping dominant miombo tree species.
• Yellow and red spectral bands are the most effective in discriminating miombo tree species.
• PlanetScope reliably maps populations of the dominant species Brachystegia spiciformis and Julbernardia globiflora.

Supplementary Information The online version contains supplementary material available at https:// doi. org/ 10. 1007/ s42452- 024- 
06248-8.

 * Siwa E. Nkya, nkyasiwa@gmail.com | 1Regional Research School in Forest Sciences (REFOREST), College of Forestry, Wildlife, 
and Tourism, Sokoine University of Agriculture, P.O. Box 3009, Chuo Kikuu, Morogoro, Tanzania. 2Tanzania Forestry Research Institute, P.O 
Box 1854, Morogoro, Tanzania. 3Department of Ecosystems and Conservation, College of Forestry, Wildlife, and Tourism, Sokoine University 
of Agriculture, P.O. Box 3010, Chuo Kikuu, Morogoro, Tanzania. 4National Carbon Monitoring Centre, Sokoine University of Agriculture, 
P.O. Box 3009, Chuo Kikuu, Morogoro, Tanzania. 5Laboratory of Geo-Information Science and Remote Sensing, Environmental Sciences 
Group, Wageningen University and Research, Postbus 47, 6700AA Wageningen, The Netherlands. 6Department of Forest Resource 
Management, Swedish University of Agricultural Sciences, S.E.—901 83 Umeå, Sweden. 7College of Forestry, Wildlife, and Tourism, Sokoine 
University of Agriculture, P.O. Box 3009, Chuo Kikuu, Morogoro, Tanzania.

https://doi.org/10.1007/s42452-024-06248-8
https://doi.org/10.1007/s42452-024-06248-8


Vol:.(1234567890)

Research Discover Applied Sciences           (2024) 6:528  | https://doi.org/10.1007/s42452-024-06248-8

Keywords Unmanned aerial vehicle (UAV) · Temporal pattern analysis · Principal component analysis (PCA) · Mixed 
forests · Variable importance · Random forest

1 Introduction

Miombo refers to woodlands dominated by tree genera Brachystegia, Julbernardia, and/or Isoberlinia from the legume 
family Fabaceae, subfamily Caesalpinioideae [1]. These woodlands are extensive tropical dry forests covering 2 million 
square kilometers across Angola, Malawi, Mozambique, Tanzania, Zimbabwe, Zambia, and the Democratic Republic of 
Congo [2]. The miombo ecosystems harbor 8,500 plant species, of which over 54% are endemic [1]. This plant diversity 
is crucial for providing household energy, timber, and food such as mushrooms, fruits, and honey, sustaining income 
through beekeeping, and supporting crop pollination [3–5].

The rising demand for woodland products and the expansion of cropland due to population growth are leading to 
woodland loss [6, 7] and loss of miombo tree species [8].These drivers could potentially affect the dominant species, 
which determine the properties of the miombo ecosystem [8, 9]. Dominant tree species are large, coarse-grained resource 
foragers that significantly contribute to plant biomass in specific vegetation types [10]. According to mass ratio theory, 
these species play a major role in ecosystem functions and sustainability [10]. Therefore, the decline and loss of dominant 
tree species signify a decline in ecosystem functions and the benefits they provide to humans.

Given the unprecedented rate of woodland loss and the potential threat of climate change [11, 12], it is imperative to 
effectively manage miombo-dominant tree species to uphold the health and stability of the miombo ecosystem. How-
ever, the current reliance on labor-intensive and costly ground surveys in Tanzania for essential data hinders consistent 
and comprehensive monitoring. Remote sensing technologies offer a practical and cost-effective alternative, enabling 
frequent and extensive monitoring of large areas to accurately assess the distribution of dominant tree species [13].

To map dominant tree species in miombo woodlands, sensors with very high spatial, spectral, and temporal resolutions 
are essential. These sensors capture details of canopy structure, internal leaf structure and biochemicals, and phenologi-
cal variations between tree species [14]. Consequently, multi-date and multispectral Unmanned Aerial Vehicle (UAV) 
imagery—including blue, green, red, red-edge, and near-infrared bands—was used to track dominant tree species in 
the wet miombo woodlands of Zambia [15]. It is important to note that while UAV imagery provides very high spatial 
resolution, it is limited to mapping small areas, such as plots or fields [16].

Mapping tree species on a large scale requires Very High-Resolution (VHR) satellite data [14]. WorldView-2 imagery 
was used to map seven common savanna tree species with large crowns in South Africa, achieving an overall accuracy 
of 77% ± 3.1 [17]. Quickbird imagery was used to discriminate five indigenous tree species in woodlands within Palapye, 
Botswana, with an overall accuracy of 88.7% [18]. Additionally, WorldView-2 imagery was used to discriminate four tree 
species in the savannah vegetation of South Africa, achieving the highest overall accuracy of 80% [19].Moreover, using 
multi-seasonal imagery significantly improved the classification accuracy of tree species [15]. Multi-seasonal imagery 
enhanced accuracy, particularly when acquired during the transition from wet to dry season in the savannah vegetation 
of South Africa [19]. Additionally, multi-seasonal images improved the mapping of nine wetland and dryland communi-
ties in KwaZulu-Natal, South Africa, achieving a high overall accuracy of 86 ± 2.8% using RapidEye imagery (5-m spatial 
resolution) [20].

To comprehensively leverage the phenological data of tree species, it is imperative to utilize high-resolution satellite 
sensors such as PlanetScope. With its daily global revisit capability and a range of spectral bands including coastal blue, 
blue, green, green I, yellow, red, red edge, and near-infrared, PlanetScope imagery is strategically positioned for effective 
tree species and vegetation monitoring. Recent studies have demonstrated the utility of PlanetScope imagery in map-
ping tree species based on their phenological variations [21]. Nevertheless, there remains a paucity of efforts to harness 
the potential of PlanetScope for mapping dominant tree species within miombo woodlands.

This study assessed PlanetScope’s utility for mapping dominant tree species in the wet miombo of Western Tanzania 
by exploiting their seasonal phenological differences. The following research questions guide the study in meeting its 
objective: (i) What is the optimal month and season for acquiring images to discriminate tree species? (ii) Which Planet-
Scope bands help discriminate miombo dominant tree species? (iii) Does the use of multi-date, including multi-season, 
improve miombo dominant tree species classification?
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2  Material and methods

2.1  Study area

The study was conducted on a 9-hectare site within the Tongwe West Forest Reserve (TWFR) in the Tanganyika District 
of the Katavi Region (Fig. 1). The site is located at longitude 30° 29′ 13″ E and latitude 5° 27′ 41″ S, with an elevation of 
1490 m above sea level. TWFR experiences minimum and maximum annual temperatures of 15 °C and 25 °C, respec-
tively, with a yearly total rainfall of 1210 mm [22]. The rainfall pattern at the site is unimodal, beginning in November 
and ending in May of the following year. Due to the total annual rainfall exceeding 1,000 mm, the site is predominantly 
categorized as awet miombo.

2.2  Study species

We selected three miombo tree species to map within the 9-hectare study area. Brachystegia spiciformis (Mtundu) and 
Julbernardia globiflora (Muva) were chosen as the two most dominant species in this area. Pterocarpus tinctorius (Mku-
rungu), a valuable timber species listed under CITES Appendix II, was selected due to its contribution to the biomass of 
the 9-hectare area, ranking just after Brachystegia spiciformis and Julbernardia globiflora.

Brachystegia spiciformis and Julbernardia globiflora are not only dominant locally within the 9-hectare study area, but they 
are also two of the most common species regionally in the miombo woodland of Western Tanzania. This is supported by a 
survey carried out in the Tabora and Sikonge districts of the Tabora Region, as well as in the Mlele and Tanganyika districts 
of the Katavi Region, in 2022 and 2023. The current survey employed a two-stage sampling design, with 52 grids chosen in 
the first stage based on Woodland Cover, NDVI, Elevation, Rainfall, Soil Moisture Index, Soil Organic Carbon, Total Nitrogen, 
and Total Phosphorous variables using a spatially balanced design. Within each grid, up to three plots measuring 30 × 30 m 

Fig. 1  Location of the site within the Tongwe Forest Reserve in the Tanganyika District, Katavi Region, Tanzania
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were randomly selected in the second stage, resulting in a sample size of 152 plots, sufficient to estimate the floristic com-
position (Fig. 2).

In these plots, trees with a diameter ≥ 5 cm were identified and measured for Diameter at Breast Height (DBH). The 
observed number of species was 148, and according to Chao1, Jackknife, and Bootstrap measures, the estimated number 
of species ranged between 159 and 185.

In this study, the Importance Value Index (IVI) was used to assess species dominance within a community. The IVI measures 
the relative importance of species based on their frequency, density, and dominance (basal area). It is calculated by summing 
the relative frequency (RF), relative density (RD), and relative dominance (RD) of each species.

The formula used to calculate relative values for each species were:

Relative Frequency (RF) =
Number of plots inwhich a species occurs

Number of plots inwhich a species occurs summed for all species
× 100

Relative Density (RD) =
Number of individuals of each species per plot area

Number of individuals of each species per plot area summed for all species
× 100

Relative Dominance (RD) =
Basal area of each species per plot area

Basal area of each species per plot area summed for all species
× 100

Fig. 2  An illustration of the stages involved in the sampling design: A The sampling frame (grid 1 × 1  km2) and 1000 grids were randomly 
selected from this frame using a balanced sample in the first stage, covering the entire Tanzania. B Selected 52 grids within the study area. C 
Plots within the grids were automatically classified based on auxiliary canopy cover and used as sampling classes. D Sample plots were ran-
domly selected from the closed miombo–Miombo woodlands with the canopy cover above 70%
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However, in this study, the importance value index (IVI) was calculated using the importancevalue function of 
BiodiversityR package in R software.

Results from the importance value index (IVI) of tree species indicated that Brachystegia spiciformis, Julbernardia 
globiflora, and Pterocarpus tinctorius ranked first, second, and seventeenth, respectively (Appendix 1).

The target species are deciduous trees belonging to the Fabaceae family. The observed distinctive features of 
these trees in the study area were as follows:

• Julbernardia globiflora has light red young leaves from August to September and yellow-white flowers in February 
and March.

• Brachystegia spiciformis produces red/pink young leaves from August to September before the rains. Its green 
flowers, easily mistaken for leaves, emerge during the leaf flush period of August to September.

• Pterocarpus tinctorius produces golden yellow flowers from March to May.

2.3  Methods

Figure 3 provides a flowchart of the applied methods.

2.3.1  Step 1: sampling of tree crowns for training and validation

Training data collection is a prerequisite in supervised image classification. These data guide the classifier in deter-
mining specific spectral values for the training, which the classifier will use to map the distribution of the classes/
species. In this study, canopy trees of interest were identified in the field, and their locations were captured using 
differential GPS. Additionally, drone images were acquired to identify and digitize the crowns of the identified trees 
and to digitize woodland and non-woodland areas. Seventy per cent of the digitized crowns per tree species were 
used to train the classifier, while 30% were used to validate the classifier in mapping dominant miombo tree species. 
The process involved the following steps:

2.3.1.1 Identifying and capturing tree location The site was divided into nine 1-hectare plots. Within each plot, cano-
pies of dominant tree species were selected based on the following features: solitary tree crowns, tree crowns with 
no interlocking with other tree species’ crowns, the concentration of tree crowns of the same species in an area, and 
the presence of flowers in tree crowns (e.g., Julbernardia globiflora and Pterocarpus tinctorius crowns). The concen-
tration of tree crowns of the same species was crucial in enhancing the species’ canopy cover, as Cho et al. (2010) 
found that the crown of the tree species to be mapped should be at least three times the size of the image’s pixel to 
be used for mapping. Other tree species besides the target species were grouped separately. Selected tree species 
were measured for diameter at breast height (DBH), and their locations in the plots were captured by Differential 
GPS (DGPS).

2.3.1.2 Acquiring drone imagery The DJI-MAVIC Air 2 camera captured imagery on 13 March 2024. Drone images were 
gathered between 08:30 am and 09:15 am (East African Time, Nairobi) in an east–west pattern at a ground speed of 
15.7 km/hr and a height of 40 m. We collected 1032 frames with 80% forward and 80% side overlaps, and a quality score 
above 0.5 (ranging from 0 to 1), to build accurate and detailed orthophotos at a spatial resolution of 1 cm. Moreover, we 
deployed 16 Ground Control Points (GCPs) georeferenced with a differential GPS (DGPS) to enhance the alignment of 
the cameras and geometric accuracy.

Drone imagery was processed using Agisoft Metashape Professional software. High alignment was applied to align 
the cameras with placed markers and Ground Control Points to enhance geometric accuracy. Additionally, high-quality 
settings were used to build dense clouds. Following this, a digital elevation model and orthomosaic were created. The 
crowns of sampled trees were digitized from the orthomosaic, guided by the tree location data collected during sampling 
(Fig. 4). Tables 1 show the tree species’ sampled crown areas  (m2).
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2.3.2  Step 2: model training feature

We acquired cloud-free PlanetScope images for the year 2023 from Planet Labs obtained through a research license. 
PlanetScope operates in coastal blue, blue, green, green I, yellow, red, red edge, and near-infrared bands. These bands 
were used as features in mapping woodland and non-woodland areas, as well as the dominant miombo tree species. 

Fig.3  A flowchart of the applied methods. Step 1 involved collecting reference data. Step 2 involved acquiring PlanetScope spectral bands. 
Step 3 involved feature selection to map miombo-dominant tree species. Step 4 involved mapping woodland cover. Step 5 involved map-
ping tree species
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We used the digitized layers to extract bi-monthly reflectance values from the PlanetScope spectral bands for both 
woodland and non-woodland covers, as well as tree species.

2.3.3  Step 3: feature selection

We selected optimal features for distinguishing miombo/non-miombo areas and dominant miombo tree species.

2.3.3.1 Determination of  optimal months and  optimal spectral bands The optimal months and spectral bands for 
mapping tree species were determined by analyzing all the bands from bi-monthly PlanetScope imagery for the 
year 2023 using Principal Component Analysis (PCA), Temporal Pattern Analysis, Mean Decrease in Accuracy (MDA), 
and Mean Decrease in Gini (MDG) in R software. PCA with the prcomp function identified the layer that best sepa-
rated the tree species. Principal Component (PC) loading was used to extract bands that contributed most to this 
separation. The temporal pattern analysis displayed trends of spectral band values of the tree species over the dates 
of 2023, highlighting the bands and months that differentiated the species. MDA and MDG, as random forest metrics, 
determined important variables [23, 24]. The MDA and MDG validated observations from PCA and Temporal Pattern 
Analysis.

Fig. 4  Illustrations of tree 
crown digitization from the 
drone orthomosaic

Table 1  Samples collected per dominant tree species in the study area

Species Sampled crown

Total Minimum area of 9  m2

Number of 
sampled crown

Crown area  (m2) Crown area  (m2) 
used for training

Crown area  (m2) 
used for validation

Number of 
sampled crown

Crown area  (m2)

Julbernardia globiflora 128 4941 3966 975 116 4876
Brachystegia spiciformis 111 5370 4279 1091 95 5281
Pterocarpus tinctorius 50 2277 1708 569 45 2263
Other species (Control) 13 492 290 202 13 492
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2.3.4  Step 4: woodland and non‑woodland classification

The random forest classifier in R software was used to map woodland and non-woodland covers from the optimal Plan-
etScope imagery. Temporal pattern analysis (Fig. 5), PCA (Fig. 7a), MDA (Fig. 9a), and MDG (Fig. 9a) collectively identified 
March, May, June, and October as the optimal months for acquiring satellite imagery to distinguish between woodland 
and non-woodland areas. The most significant bands were yellow, red and Red edge (FigS. 7b and 9a, displaying the top 
10 and 15 most important bands out of 168, respectively). Based on these results, an image from early June, at the start 
of the dry season, was selected to create a woodland mask.

The classifier was trained using 70% of the woodland training data and validated with the remaining 30%. The map 
in Fig. 6b was produced with an overall accuracy of 88.5%. The producer accuracies for woodlands and non-woodlands 
were 90.6% and 76.47%, respectively, with user accuracies of 95.6% and 59.09%.

2.3.5  Step 5: tree species classification

The random forest classifier in R was used to map dominant tree species from mono-temporal and multi-temporal 
PlanetScope images. The mono-temporal images were the color composite images from optimal months, while the 
multi-temporal images were stacks of bands from the color composite images of these months. The random forest 
classifier was trained using 70% of the crown data for each tree species group—Brachystegia spiciformis, Julbernardia 
globiflora, Pterocarpus tinctorius, and others. The remaining 30% of the crown data was used to validate the tree species 
maps (Table 1).The random forest classifier is a popular non-parametric machine-learning method that aims to find the 
best tree structure. It is known for its high classification accuracy, ease of determining important features, and ability to 
capture complex interactions among features, which is particularly useful when the spectral variation between classes 
is low. Additionally, it is less sensitive to overfitting [14, 25].

Fig. 5  Temporal curves of (a) Blue, (b) Green 1, (c) Green, (d) Yellow, (e) Red, (f) Red Edge, and (g) Near Infrared for Non-Woodland and 
Woodland based on PlanetScope images from 2023
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The accuracies of the classifications were assessed using an error matrix, which provides information on the 
overall,producer’s and user’s accuracies. Based on this information, the classification with the highest accuracy was 
identified.

3  Results

3.1  Important months for mapping tree species

Tree species were better separated along dimension 2 (PC2) (Fig. 7c). The distinction between species was more pro-
nounced between Brachystegia spiciformis and the rest. In contrast, Julbernardia globiflora, Pterocarpus tinctorius, and 
the control group (others) exhibited substantial overlap. The images that contributed significantly to dimension 2 (PC2) 
were from March in the wet season and July and September in the dry season (Fig. 7c, displaying the top 10 and 15 most 
important bands out of 168), respectively. The temporal pattern analysis results revealed that the separation between 
tree species was more pronounced during the dry season (defoliating period) from the end of June to mid-September 
(Fig. 8a–f ). Based on the Mean Decrease in Accuracy (MDA) and Mean Decrease in Gini (MDG) results, the most important 
images for classifying tree species were from July and September in the dry season.

Due to these results, images from March in the wet season, and from July and September in the dry season, were 
selected as optimal for mapping tree species.

3.2  Important bands for mapping tree species

According to PCA, the most important bands that contributed to the separation of tree species in dimension 2 were the 
blue and red bands (Fig. 7d). Meanwhile, the blue, green-1, green, yellow, red, and red-edge bands contributed to the 
separation of tree species from the end of June to mid-September (dry season) according to the temporal pattern analysis. 
During this period, these bands, particularly the red band (Fig. 8e), exhibited the highest reflectance for Brachystegia spici-
formis and the lowest for Julbernardia globiflora. Moreover, the near-infrared band was observed to discriminate the tree 

Fig. 6  a Raw color infrared PlanetScope image of the site. b Woodland/non-woodland classification map
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species with the highest reflectance for Brachystegia spiciformis and the lowest for Julbernardia globiflora from mid-April 
to early May at the end of the rainy season (Fig. 8). The important bands identified by MDA and MDG for distinguishing 
between tree species were yellow, red, and near infrared (NIR), with the yellow band being the most optimal (Fig. 9b).

Based on these results, the blue, green-1, green, yellow, red, and red-edge bands were selected as the optimal bands 
to discriminate between tree species.

3.3  Accuracy of utilizing images from optimal months compared to their multi‑month combinations for tree 
species classification

Results revealed that images acquired in the dry season, especially in September, were the best for classifying tree 
species (Table 2). Utilizing images acquired in the wet season produced the lowest accuracy in mapping tree species. 
However, combining images from the wet season with those from the dry season yielded the highest accuracy in tree 

Fig. 7  a Principal Component Analysis (PCA) of Non-Woodland and Woodland, b Input PlanetScope layers that contribute significantly to 
the 73.7% variation explained by Principal Component 1 in distinguishing between non-woodland and woodland, c Principal Component 
Analysis (PCA) of Dominant tree species, d Input PlanetScope layers that contribute significantly to the 27.7% variation explained by Princi-
pal Component 2 in distinguishing between the dominant tree species in the year 2023
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Fig. 8  Temporal curves of a Blue, b Green 1, c Green, d Yellow, e Red, f Red Edge, and g Near Infrared, for the dominant tree species based 
on PlanetScope images from 2023

Fig. 9  The fifteen most important variables according to Mean Decrease Accuracy for a Woodland/Non-Woodland classification and b 
Miombo dominant tree species classification
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species mapping, particularly using combinations like March and July or March and September. Using multi-date images 
acquired within a single season, such as the dry season, resulted in lower accuracy compared to using multi-season 
images. Adding an image from another month within the dry season, such as July, to the multi-season combination did 
not improve tree species classification.

Furthermore, the Producer’s and User’s accuracies for mapping Brachystegia spiciformis and Julbernardia globiflora were 
high across all classifications (Fig. 10). However, these accuracies were higher in classifications utilizing images acquired 
in July and September (the dry season) compared to those utilizing images acquired in March (the wet season). Despite 
generally low Producer’s and User’s accuracies for mapping Pterocarpus tinctorius, images acquired in March (the wet 
season) had the highest accuracy for mapping this species.

The Producer’s accuracy for mapping Brachystegia spiciformis, Julbernardia globiflora, and Pterocarpus tinctorius from 
the multi-season combination of March and September was 79%, 95%, and 25%, respectively. The User’s accuracy was 
74%, 70%, and 67%, respectively (Fig. 11) (Appendix 2).

4  Discussions

4.1  Optimal months to acquire PlanetScope imagery for tree species mapping

Images acquired during the dry season, particularly July and September, contributed highly to species classification due 
to leaf phenological changes. During this period, carotenoid levels increase in the miombo woodlands as leaves dry and 
fallen leaves on the ground become more exposed (cf. [26]).

August, during the dry season, was identified as the optimal month for acquiring images to distinguish dominant tree 
species in Zambia’s wet miombo woodlands. Conversely, in the transition from the wet to dry season, April was found 
to be optimal for separating savanna tree species in South Africa [19]. However, both studies lacked images covering 
all months of the year. In the dry season within Western Tanzania’s wet miombo, Brachystegia spiciformis exhibits the 
highest reflectance, followed by Pterocarpus tinctorius and Julbernardia globiflora. This pattern indicates physiological 
differences in coping with the dry season, with Brachystegia spiciformis shedding its leaves earlier than the other species.

4.2  Optimal bands from PlanetScope imagery to use for tree species mapping

The yellow band in the visible spectrum is the most significant for classifying tree species. Other vital bands include 
greens (green—1 and green), blue, and red within the visible spectrum, as well as the red-edge band outside the visible 
spectrum. Reflectance in these bands, particularly in yellow, increases during the dry season as carotenoid levels rise 
and chlorophyll—the pigment that absorbs them—declines. The yellow band significantly improved the classification 
accuracy of savanna tree species in South Africa [17, 19]. Similarly, the red band greatly enhanced the accuracy of map-
ping tree species in the South African savannah and Zambian wet miombo woodlands [15, 19]. The red edge band was 
also effective for mapping wet miombo-dominant tree species in Zambia [15]. These results highlight the importance of 
the yellow and green- 1 bands, which are absent in very high spatial resolution satellites with only four bands, for map-
ping dominant miombo tree species. Therefore, the blue, green—1, green, yellow, and red bands should be considered 

Table 2  Overall accuracy in 
random forest for tree species 
classification using selected 
temporal images

Month (s) Season (s) Overall 
accuracy 
(%)

March Wet 55
July Dry 65
September Dry 69
March/July Wet/Dry 72
March/September Wet/Dry 72
July/September Dry/Dry 67
March/July/September Wet/Dry/Dry 68
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when mapping tree species in miombo woodlands, aligning with the emphasis on choosing optimal bands for high 
accuracy [27].

4.3  Accuracy of utilizing images from optimal months compared to their multi‑month combinations for tree 
species classification

The results indicated that the highest overall accuracy of 72% was achievable from multi-season image combinations. For 
a single season, the highest classification accuracy of 69% was obtained from the image acquired in September. Using 
multi-seasonal images yields the highest accuracy as it captures phenological variations of tree species across seasons. 
Combining multi-date images from key phenological stages of dominant miombo tree species in Zambia resulted in 
higher classification accuracy than using images from a single optimal period [15]. Similarly, in other vegetation types, 
seasonal spectral features were found to outperform single-date features in classifying tree species [19–21, 28, 29]. 
Consequently, multi-season images should be considered for mapping miombo tree species.

Fig. 10  Producer’s and User’s accuracies in mapping tree species using temporal images in the Year 2023
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In general, the accuracy of mapping tree species increases sequentially from others to Pterocarpus tinctorius, Brachy-
stegia spiciformis, and Julbernardia globiflora, reflecting the high sample size (dominance) of Julbernardia globiflora and 
Brachystegia spiciformis and their distinct phenology at the site. Mapping accuracy was highest for Julbernardia globiflora 
which had the highest sample size, and lowest for other species with smaller sample sizes.

The results of this study provide effective processes and tools for mapping dominant tree species in miombo wood-
lands using PlanetScope, overcoming the current constraints of using moderate-resolution satellite data like Sentinel and 
Landsat. These processes could guide drone-based mapping of dominant tree species at the field scale. This will improve 
knowledge of tree species distribution, abundance, and traits over time. Enhancing species-oriented management is 
crucial for sustaining tree species amid deforestation and climate change challenges. Although the mean spectral values 
of tree species were distinct, individual spectral values were highly variable and nearly overlapping. This limitation was 
addressed by employing non-parametric random forest classification in tree species classification (cf. [27]).

5  Conclusions

Classifications using dry season images were more accurate than those using wet season images. The best mono-tempo-
ral imagery for tree species mapping was acquired in September, during the dry season. The optimal PlanetScope bands 
for classifying dominant tree species were blue, green-1, green, yellow, red, and red-edge. Additionally, classifications 
using multi-season images from March and July, as well as from March and September, yielded the highest accuracy 
in tree species classification. Mapping accuracy increased with the dominance of the tree species at the site. Based on 
these results, we recommend further research to apply this methodology for mapping dominant tree speciespopulations 
across extensive miombo woodland areas.

Fig. 11  The distribution of 
the dominant tree species 
obtained from the random 
forest classification of the 
combined images from March 
and September. The overall 
accuracy was 72%
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Appendix 2

See Table 4.

Table 4  Error matrices

Classifications Crown of the tree species

Julbernardia 
globiflora

Brachystegia 
spiciformis

Pterocarpus 
tinctorius

Others Total User Accuracy (%)

March Julbernardia globiflora 23 9 3 3 38 60.52
Brachystegia spiciformis 8 20 6 2 36 55.56
Pterocarpus tinctorius 6 3 7 16 43.75
Others 1 1 0 2 4 50.00
Total 38 33 16 7 94
Producer Accuracy (%) 60.53 60.61 43.75 28.57

July Julbernardia globiflora 30 2 7 4 43 69.77
Brachystegia spiciformis 3 30 7 1 41 73.17
Pterocarpus tinctorius 6 1 1 1 9 11.11
Others 0 1 0 1 2 50.00
Total 39 34 15 7 95
Producer Accuracy (%) 76.92 88.24 6.67 14.29

September Julbernardia globiflora 34 5 4 5 48 70.83
Brachystegia spiciformis 1 26 8 35 74.29
Pterocarpus tinctorius 3 2 4 1 10 40.00
Others 0 0 0 1 1 100.00
Total 38 33 16 7 94
Producer Accuracy (%) 89.47 78.79 25 14.29

March and July Julbernardia globiflora 34 4 6 3 47 72.34
Brachystegia spiciformis 3 29 6 2 40 72.50
Pterocarpus tinctorius 2 0 4 1 7 57.14
Others 0 0 0 1 1 100.00
Total 39 33 16 7 95
Producer Accuracy (%) 87.18 87.88 25 14.29

March and September Julbernardia globiflora 37 6 5 5 53 69.81
Brachystegia spiciformis 1 26 7 1 35 74.29
Pterocarpus tinctorius 1 1 4 0 6 66.67
Others 0 0 0 1 1 100.00
Total 39 33 16 7 95
Producer Accuracy (%) 94.87 78.79 25 14.29

July and September Julbernardia globiflora 32 6 7 5 50 64.00
Brachystegia spiciformis 1 28 6 1 36 77.78
Pterocarpus tinctorius 6 0 3 9 33.33
Others 0 0 0 1 1 100.00
Total 39 34 16 7 96
Producer Accuracy (%) 82.05 82.35 18.75 14.29

March, July and September Julbernardia globiflora 34 5 7 5 51 66.67
Brachystegia spiciformis 1 28 7 1 37 75.68
Pterocarpus tinctorius 3 0 2 0 5 40.00
Others 1 0 0 1 2 50.00
Total 39 33 16 7 95
Producer Accuracy (%) 87.18 84.85 12.5 14.29
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